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DEVELOPING SECURE CLOUD APPLICATIONS

MASSIMILIANO RAK, MASSIMO FICCO∗AND ERMANNO BATTISTA, VALENTINA CASOLA, NICOLA MAZZOCCA†

Abstract. Today the main limit to Cloud adoption is related to the perception of a security loss the users have. Indeed,
the existing solutions to provide security are mainly focused on Cloud service provider prospective in order to securely integrate
frameworks and Infrastructures as a Services in a Cloud datacenter. Customer could not monitor and evaluate the security
mechanisms enforced by service provider. Service Level Agreements mainly focus on performance related terms and no guarantees
are given for security mechanisms. Customers are interested in tools to verify and monitor the implemented security requirements.
On the other hand, developers need tools to deploy Cloud applications offering measurable security grants to end users. In this
paper, we propose an approach to implement security mechanisms as components in the application design process. We modeled
security interactions according to the specific threat, the specific security requirements and user/application capabilities trying to
improve security. It enables a Service Provider to offer security guarantees to customers. The approach has been designed to fit
with different Cloud platforms, but to demonstrate its applicability, we will present a case study on the mOSAIC Platform.
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1. Introduction. The most desirable Cloud feature is the self-service on demand approach. Cloud cus-
tomers are able to access and use Cloud services without interacting with system administrators. Resources and
services are charged on a pay-per-use base. The clear advantage for customers is the chance to have access to
virtually infinite amount of resources, paying for them only when effectively used. As a side effect, end users do
not own a real infrastructure: servers and data reside in the Cloud. In such scenario, the main limit to Cloud
adoption is related to the perception of a loss of security the users have: is it possible to control where data
reside? Are the customers granted about who can access their data? Is the provider reliable? Cloud customers
can buy resources from different providers on the basis of the grants they offer, usually expressed in terms of
Service Level Agreements (SLAs), i.e., contracts among the customer and the provider that specify what is
granted [1, 2]. At state of art, even if clear innovative solutions exist, like the one proposed in the FP7 projects
(SLA@SOI [3, 4], Contrail [5], mOSAIC [6]) or with standard languages like WS-Agreement ( [7]), SLAs are
commonly expressed in natural language and usually focus on performance related terms.

Existing solutions to provide security are mainly focused on Cloud service provider prospective in order
to securely integrate frameworks and Infrastructures as a Services (IaaS) in Cloud datacenter. So, they focus
on how to enable a Cloud service provider to offer security grants. Up to date very few results are available
that consider end customers’ perspectives. However, customers are interested in tools to verify and monitor the
implemented security requirements. Nevertheless, application developers should be taken in consideration, too.
They need tools to deploy Cloud application offering measurable security grants to end users [8, 9].

In this paper we will focus on these latter perspectives. In particular, we propose a methodology that
enables the correct usage of a Platform as a Service (PaaS), in order to develop applications which clearly
expose security grants to end users. The methodology has been designed to fit with different Cloud platforms,
but to demonstrate its applicability we present a case study on the mOSAIC Platform [6].

The remainder of the paper is organized as follows: the next section aims at defining the problem of
Cloud application security, outlining actors and roles. Section 3.1 describes the technology we focused on for
application development and introduces a simple application we will use as a running example. Some related
works are presented in Section 3.2. Section 4 describes the proposed methodology to take into account security
requirements in Cloud application design. Section 5 shows how to apply the methodology. Finally, in Section
6 some conclusions and future work are presented.

2. Problem Description. The Cloud Computing paradigm implies to move from a local ownership of
resources, services and infrastructures to a different approach in deploying, accessing and managing them. This
leads to the multiplication of interactions among providers and Cloud users (actors), involved in the system
and, consequently, to the perception of loss of control over data and offered services.
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Fig. 2.1. Actors and interactions

Figure 2.1 briefly describes the interactions among Cloud actors. In particular, we identified three main
actors: the customer, which uses Cloud applications and has specific security requirements; the Cloud service
provider that deploys applications over Cloud resources, and provides application features to customers; de-
veloper that builds up the applications, and delivers them in terms of software packages offered to the service
provider. Moreover, resources may be hosted over independent Cloud providers, which may sell them to the
service provider under different conditions and with different guarantees. Service providers can then negotiate
with their customers the adoption of such resources and services. In such context, a Cloud application runs over
a Platform and it is offered in terms of a Cloudware (i.e., a software package that can be executed over Cloud
resources in order to offer a platform able to run Cloud applications).

Customers have security requirements that should be granted by the service provider, but many security
issues can arise in the described service supply chain. The service provider’s task is to grant the overall security
for the offered applications, but: (i) it uses resources bought from an independent Cloud provider, and (ii) it
offers applications developed by third-party developers. Both Cloud providers and developers can enforce proper
security mechanisms, but the interaction among them may not be secure at all.

We can summarize the problems to address, as follows: the customers have their security requirements, the
developers have to implement them and service providers have to guarantee them in spite of the complex supply
chain that can be effectively used. Therefore: (1) developers need to understand the requirements and enforce
them into the application; (2) Service providers should be able to control the applications and their security
features in order to guarantee them; (3) Customers need to negotiate and monitor their enforcement.

2.1. Contribution. Our first goal, presented in this paper, is to propose a methodology that enables
developers to map user security requirements into security mechanisms to enforce; the enforcement is performed
by adding security components to existing applications in the design phase and taking into account user re-
quirements and possible application threats. Our long term goal, in future work, will be to enable the automatic
negotiation, evaluation and enforcement of security features on developed applications.

In order to illustrate the approach in the practice, we focus on the mOSAIC Platform [10, 6], as the enabling
technology for development of Cloud applications. The next section briefly introduces the mOSAIC Platform
and shows how to develop an application using the mOSAIC APIs. We will use this example to outline the
steps of the application development and how to improve security during the design stages.

3. Background and Related Works.

3.1. Developing applications with the mOSAIC Framework. The mOSAIC platform aims at pro-
viding a very simple way to develop Cloud applications [6, 10]. The target user for the mOSAIC solution is the
application developer (mOSAIC user). In mOSAIC, a Cloud application is structured as a set of components
running on Cloud resources (i.e., on resources leased by a Cloud provider) and able to communicate with each



Developing Secure Cloud Applications 51

other. Cloud applications may also be provided in the form of Software-as-a-Service, and can be accessed/used
by users and by the mOSAIC developer (i.e., by final users).

Developing a mOSAIC application is very simple as it is built up as a collection of interconnected mOSAIC
components. Furthermore a wide set of components is available. Components may be (i) core components, i.e.,
predefined tools offered by the mOSAIC platform for performing common tasks, (ii) COTS (commercial off-
the-shelf) solutions embedded in a mOSAIC component, or (iii) Cloudlets developed using the mOSAIC APIs
and running in a Cloudlet Container. mOSAIC Cloudlets are stateless, and developed following an event-driven
asynchronous approach [10].

Among ready-to-use components it offers: (1) queuing systems used for component communications (rab-
bitmq and zeroMQ), (2) an HTTP gateway, which accepts HTTP requests and forwards them to application
queues, and (3) NO-SQL storage systems (as Key-Value stores and columnar databases). mOSAIC components
run on a dedicated virtual machine, named mOS (mOSAIC Operating System), which is based on a minimal
Linux distribution. The mOS is enriched with a special mOSAIC component, the Platform Manager, which
makes it possible to manage set of virtual machines hosting the mOS as a virtual cluster, on which the mOSAIC
components are independently managed. It is possible to increase or to decrease the number of virtual machines
dedicated to the mOSAIC application, which scales up and down automatically.

A Cloud application is described as a whole in a file named Application Descriptor, it lists all the required
components and Cloud resources. A developer has both to develop new components, and to write the application
descriptor to connect them together.

3.1.1. mOSAIC application example. To illustrate our work, in this paper, we refer to a simple Cloud
application: an XML document manager (XDM) that analyzes the incoming XML files. For each received file,
it counts the number of occurrences of XML tags inside the file and stores the results as a pair <filename,
tagcounts> (where tagcounts is a collection of <tag, count> pairs) into the Key-Value store (KV ).

The application consists of several components, which interact according to the sequence diagram shown
in Fig. 3.1: an HTTPgw Cloudlet manages the HTTP messages, and pushes the XML document (XML Doc)
into a queue; the XML Analyzer extracts and parses the queued XML documents, and stores the results (Res)
in a KV store.

Fig. 3.1. XDM component interactions

Fig. 3.2 shows the architecture of such mOSAIC application, outlining the role of the different actors
identified at the beginning of this section and different application components (Httpgw, Queue, Analyser and
KV store).

Such application does not provide any security features and it is subjected to a number of attacks and
threats. As an example, it may be subjected to XML Denial of Services attacks and it cannot guarantee
mutual authentication among users and the application. The application developer well knows the components
and how to connect them thanks to the application descriptor. If the developer knows - at this stage - the
user requirements, is he able to enforce proper security mechanisms? Is there the possibility to design a
methodology that help him in identifying and enforcing correct security solutions? At this aim, we propose
an approach to implement security mechanisms as components to add in the design process. We can design
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Fig. 3.2. The XML Analyzer mOSAIC application

component interactions according to the specific user security requirement, to its security capabilities and to
known threats, trying to connect such security components with application/functional specific components.

3.2. Related Work. The protection of cloud resources is still an open problem and different approaches
are available in the literature. In particular, several works propose specification languages to specify security
attacks and requirements.

Abstract State Machine Language (AsmL) is a software specification language developed by Microsoft,
defining abstract state machines through a fairly high-level language that can be compiled into executable code.
Raihan et al. [11] propose a formal extension of AsmL, which describes how to model attacks, and present
the design and implementation of a compiler that generates attack signatures from the attack specifications.
Zulkernine et al. [12] present a method for integrating AsmL and Unified Modeling Language (UML) state
charts, in order to extend finite state machine based software specification languages, with the Snort open
source Intrusion Detection System (IDS). The attack scenarios are specified in AsmL or UML state charts,
and then, automatically translated into Snort rules. The Snort’s detection engine is modified so that it can
understand the rules translated from AsmL or UML state chart scenarios.

Hussein et al. [13] present a framework for developing components with intrusion detection capabilities.
This framework uses UMLintr, an UML profile for intrusion specifications [14]. The profile allows developers to
specify intrusion scenarios using UML diagrams. Specifying intrusion scenarios, using the same language that is
used for specifying software behavior, eliminates the need for separate languages for describing intrusions. UML
diagrams used in UMLintr are called misuse-case and misuse-state-machine diagrams. Misuse-state-machine
diagrams are used to specify the detection of intrusion scenarios. Each misuse-state-machine represents the
states which its corresponding attack may go through.

STATL is a language to describe security violations as sequences of actions that an attacker performs
to compromise a computer system [15]. The STATL language has been successfully used in describing both
network-based and host-based attacks, and it has been tailored to very different environments. By abstracting
away from the details of a particular attack, it is possible to detect previously unknown variations of an attack
or attacks that exploit similar mechanisms. In particular, the STATL language provides constructs to represent
an attack as a composition of states and transitions.

CORAS [16] is a method for conducting security risk analysis, it presents a customized language for threat
and risk modeling, and provides detailed guidelines explaining how the language should be used to capture and
model relevant information during the various stages of the security analysis.

The main difference between the proposed approach and the above described solutions, is that, our solution
follows a bottom-up approach, focusing on the application architecture and implementation, having has target
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user the developer. In particular, the previous works mainly propose formalisms to specify attack and intrusion
models, as well as security rules. Our approach aims at proposing a methodology to describe mechanisms as
components in the cloud-based application design process, which can be used to enforce security requirements
specified in SLA.

4. Modeling Secure Cloud Interactions. Traditional techniques for protecting systems have almost
clear boundaries and rely on a permanent architecture, which is hardened through the introduction of ad-hoc
security mechanisms. This is not the case for a Cloud application: it runs over an enabling platform, which
consumes multiple Cloud resources dynamically acquired. In order to design an application which offers clear
grants to Customers, grant for which the Provider is responsible, we need a way to state such requirements and
a way to evaluate how they are offered.
The approach is based on the following logical steps:

1. developers identify application use cases according to a common software development methodology;
2. developers identify the interactions (i.e., every kind of data exchange among actors in a Cloud system)

among components of the Cloud application under study (next sections will detail what we mean with
the interaction terms) and describe the use cases as a workflow of different interactions ;

3. any interaction can be implemented and offered with different modalities, taking into account security
mechanisms, threats, user requirements, user security attributes and capabilities.

Basing on these assumptions, we propose to develop specific security components that are available to
developers, pre-associated to user requirements and pre-evaluated in terms of security guarantees. In this way,
a developer can easily add security mechanisms to their applications and, furthermore, he will be able to control
the security level that he is enforcing. The pre-evaluated components also enable the Service Provider to evaluate
the goodness of a secure application and have a tool to guarantee this to end-users.

In order to demonstrate this, we will introduce the main concepts of modeling interactions and interaction
modalities by using an Infrastructure as a Service example, then we will apply them on a real case study, based
on a Platform as a Service (the mOSAIC Platform) to develop the security components.

4.1. The proposed approach. Several Cloud providers, such as Amazon EC2, Google Compute Engine,
GoGrid, offer similar services and applications to customers, but they use different technologies and techniques
to guarantee security grants to end users. Our approach is to offer to developers and customers a way to identify,
independently of the technologies, the features they are interested in terms of components and additional security
components to enforce security requirements expressed by end-users. We introduce a model that describes Cloud
applications in terms of interactions and the ways in which such interactions take place (modalities) to implement
specific Use Cases. Moreover, we took into account the roles’ interactions that may occur in a Use Case.

4.1.1. Cloud actors. The actors classification introduced in the first section is specialized according to
their capabilities to perform an action inside or outside the Cloud:

• EU: End Users (the customers) that interact with the Cloud by means of proper Web or software
interfaces.
• CSP: Cloud Service Provider.
• S: Services that provide access to applications, resources and features.
• R: Resources located in the Cloud.

Each actor can assume different roles being both providers or requester of services. According to the specific
interaction with the system, the roles we located are:

• INVOKER: It initiates the interaction and provides all the necessary information to process.
• TARGET: It is the interaction object.
• PROVIDER: It provides and manages the target. It is responsible for the accessing mechanisms both
in terms of functionalities (such as interfaces) and security (e.g., access control lists, policy).

4.1.2. Actor roles. Even if actors can assume any role, generally, the EU acts as an INVOKER, the R
acts as a TARGET, while CSP and S assume all the three roles. The general interaction schema among actors is



54 M. Rak, M. Ficco, E. Battista, V. Casola, N. Mazzocca

SNS2S1

RMR2R1

Cloud Service Provider
(CSP)

End Users

Fig. 4.1. Interactions among actors

reported in Fig. 4.1. For instance an EU can access a resource either using an ad-hoc service or through a CSP
interface. Moreover, a CSP can offer a resource using direct access or by a service. The EU interacts with the
Cloud resources and services in order to use an available Use Case. The term Use Case refers to the application
features that an Invoker requests to the Provider. An Use Case implementation requires several interactions
that can be implemented in different modalities. Therefore, we will model an Use Case as a workflow (sequence)
of interactions. Each an interaction is characterized by the triple:

<INVOKER, PROVIDER, TARGET>.

Examples of valid interactions in which an EU has the Invoker role are reported in Tab. 4.1. Such examples
help in clarifying what we mean with an interaction Type.

Table 4.1
Examples of valid Interactions Types

n. Use Case description Interaction Type

1 First EU’s registration to CSP <EU,CSP,CSP>

2 EU mounts a disk to an instance <EU, S, R>

3 EU creates a virtual volume <EU, S, S>

4 EU generates a new set of credentials for SSH <EU,CSP,S>

The first example focuses on the actions performed by an EU when he registers himself to the Cloud
provider. In this case, we outline that the End user acts as Invoker, while the CSP as Provider. Note that, the
Target is the CSP itself: the interaction has the effect of changing the set of users of the CSP, enabling the EU
to accept future requests for different services. From a security point of view, this operation is critical and the
security mechanisms adopted to protect such interaction will be very relevant. We will take into account these
mechanisms in the Iteraction Modality.

4.1.3. Iteraction modalities. CSPs can offer the same Use Case by several modalities. In Tab. 4.2
different examples of Interaction Modalities are associated to the same interaction. The Use Case “First EU’s
registration to CS” can be implemented with a Web Console interface and can require a user and password
authentication mechanisms, or a more secure One Time Password mechanisms; these two are equivalent from
the functional point of view, but provide a different security level being the second more secure.

Each modality can be associated to a different security mechanisms, which depends on threat related to
the specific interaction modality, on user requirements, on his attributes and capabilities. Finally, different
modalities can provide a different security level that is pre-evaluated. The evaluation of the security level
is performed by adopting an evaluation methodology as the ones presented in [17, 18, 19]. Therefore, we
can characterize an interaction modality by <Threat, Security Requirements, Security Mechanisms, Invoker’s
Attributes>, where:

• threats are specific attacks or systems vulnerabilities that we want to mitigate;
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Table 4.2
Examples of valid Interactions Modalities and Security Level

Interaction Type Interaction Modalities Security Level

<EU,CSP,CSP> Web Console with usr/pwd 2

- Web Console with OTP 3

<EU,S,S> Web Console with usr/pwd 1

- Web Console with OTP 2

- HMAC SHA1 3

- HMAC SHA2-256 4

• security requirements are user desiderata that usually are requested in the Service Level Agreement
with the provider;
• security mechanisms can be enforced with both additional components or with a specific implementation
of an already existing component; for example, to improve security in the communication channel, one
can use components that already have cryptoghaphic primitives to encrypt the channel or, alternatively,
one can add external components to provide this feature;
• invoker attributes are needed to specify invokers security capabilities, if any.

Fig. 4.2. Modeling a Use Case with interactions

From the developer point of view, this model helps to see a Cloud application as a composition of n
different Use Cases implemented by a number of interactions Ti. In Fig. 4.2 the Use Case representation
model is reported. Interactions Ti can be implemented in different modalities Mj that enforce different security
mechanisms and are able to guarantee different pre-evaluated security levels. The developer has the possibility
to choose one of the available application packages that best fit user requirements and provider guarantees.
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Specifically, the approach will enable to add security related terms in the Service Level Agreements among
Customers and Service Providers being able to easily evaluate and enforce proper security mechanisms.

4.2. Security mechanism description. Some security mechanism to be adopted can be defined by the
security (detection) rules that it has to implement. A rule is specified by three basic elements: Condition,
Attributes, and Reaction.

• Condition A rule is satisfied if its condition is true. A condition is made of a set of events. An event can
be any significant occurrence detected by a probe, such as a particular string contained in a received
packet, a predetermined number of messages received from the same IP or a high number of failed login
attempts. It is also possible to set up a hierarchy of rules. In this case, a condition can be made of
multiple rules too. If all the rules are true and the events are occurred, then the condition is satisfied.
Events and rules can be combined with AND, OR, NOT logical operators.
• Attributes Every rule may have some attributes too. Designer has the possibility to specify the involved
security probes or the monitored resource. For example, it is possible to specify the variable or the
log file considered by the rule condition. It is also possible to include the eventual security protocol
involved in the rule.

• Reaction If the specified condition occurred, the rule is true and the system may be under cyber attack.
Thus, when all the events and the rules in a condition are true, an appropriate reaction is performed.
The action to take is different basing on the events occurred. Actions depend also on events severity
level. For example, an alert e-mail can be sent to the administrator if a low severity event occurs.
Instead, in the case of a critical event extreme countermeasures must be taken.

Figure 4.3 shows an example of a rule representation. The stereotype ‘Rule’ characterizes the object and
a numerical ID uniquely identifies the rule. The object is divided in three sections. The first one contains a
short rule description and a list of all its optional attributes. In ‘Condition’ there are events and rules that
make true the rule considered. The rule is valid if at least one of the conditions is verified. Each event must be
associated to an ID and should be described in a separately table. ‘Reaction’ contains a short description of
what the system has to do. It may contain a list of operations too.

5. A Case Study: Securing mOSAIC Applications. In order to validate the proposed approach we
consider the application described in Section 3.1. We assume that the application offers two use cases:

• UCP : a parsing service of the XML documents (XML Doc), i.e., it performs the XML analysis (using
a DOM approach), and computes the total number of nested XML tags;
• UCQ: a query service for retrieving results (Res).

In this case study, we consider two kinds of Denial Of Service threats, the HTTP flooding and the Deeply-
Nested XML:

• The HTTP flooding aims at creating a plenty of requests to the XDM application in order to exhaust
resources and to inflict a denial of service to legitimate EUs.
• The Deeply-Nested XML exploits the XML message format by inserting a large number of nested
XML tags in the message body. The goal is to force the XML parser (the Analyzer), to exhaust the
computational resources of the host VM, by processing a large number of deeply-nested XML tags [20].
Moreover, this kind of attack is particularly harmful when using DOM based parser. A DOM based
parser reads the complete message and builds an in-memory representation (called DOM tree), that is
much larger than the message itself. Therefore, the application memory would be exhausted before the
validator could even start the validation process.

For this case study, an advantage of using mOSAIC is the ability of automatically scale the application
components (the Cloudlets and queues) when the host resources are overloaded (because the attack). But, as
a side effect, the application consumes an increased amount of resources, on charge of the application owner
(the Service Provider). The Provider needs proper security mechanisms in order to mitigate the considered
attacks, as well as to guarantee the signed SLA. In next section we will illustrate how the developer can add
such security mechanisms within the already deployed application, by simply adding the set of already available
Cloudlets that act as mitigation means.
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Fig. 4.3. Example of rule representation

5.1. Approach implementation. To understand how to apply the proposed methodology, we need to
understand how to map user requirements with specific security mechanisms to add in the application. For
this reason, to express user requirements, we will adopt the same tuple as described in the previous section,
in this way it will be easier to identify additional components for the application developer. Fig. 5.1 expresses
the security requirements and attacks to mitigate (they can be reported in a Service Level Agreement with
the adoption of the same tuple [21]). In particular, they state that the User wants to protect the interaction
TP from both the attack types, and TQ by the HTTP flooding. During the specification of requirements, the
protection mechanisms and security attributes are not explicitly indicated and the values in the tuple are zero.

Fig. 5.1. Security requirements expressed with the same formalism as interaction types

According to these requirements, in the design phase, in order to protect the application from the considered
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attacks, the developer has to identify/choose appropriate mitigation means (i.e., the modalities) for reducing or
eliminating the potential intrusions. Specifically, for each interaction between the application components (in
terms of INVOKER and PROVIDER), the developer has to identify the vulnerabilities that can be exploited
by the specified attacks and, for each attack, he has to define/choose the mitigation means to be implemented,
in order to mitigate or eliminate attacks exploiting an interaction vulnerability.

Therefore, the overall approach consists in mapping the high level Interaction Modes Mp1 and Mp2, which
express security requirements, with the low-level interactions among application components, as defined in
the Service Descriptor of mOSAIC [22]. Moreover, for each interaction type, the developer has to identify
vulnerabilities, possible mitigation means, needed user attributes to eventually enforce one mechanism (Can the
user manage security tokens? Can the user provide a secret password?).

Looking at the sequence diagram represented in Fig. 3.1, the Use Case UCP is implemented with four
interactions (Fig. 5.2): 〈EU,HTTPgw, put〉, 〈HTTPgw,Queue,
publish〉, 〈Analyzer,Queue, consume〉, 〈Analyzer,KV, put〉 and, for each of them, the possible Interaction Modes
with associated vulnerability are reported. For the sake of simplicity, in figure we just reported the threat and
the requirement without reporting the mechanisms and user attributes that we will illustrate later together with
a description of the located threats.

Fig. 5.2. Use Case P: interaction types and Modes

5.1.1. Interaction Mode implementation. As for the Interaction Mode Mp1.1 related to X-DOS threat,
the schema validation is a good countermeasure against attacks based on XML messages that are not conform
to the Web service description. These schema can be enforced by validating the incoming messages against
specific restrictions [23]. Sophisticated solutions can be implemented by restricting the length of each XML
element or limiting the list of XML elements contained within each message. However, although efficient XML
validation engines (that can operate completely on the fly) have been proposed [24], in the current Web server
frameworks, they are not used or not activated by default. This is mainly due to performance reasons, since
schema validation is expensive regarding CPU load and memory consumption. This mechanism can be used to
verify the presence of an attack, and to identify the malicious flows. If an attack is detected, a reaction can be
triggered to filter malicious requests, or to block the attack sources [25].

The detection rule consists in monitoring the overall CPU consumption of the target application deployed
over the distributed VMs. We can adopt a window-based state monitoring that triggers state alerts only when
the normal state is continuously violated for a time window W [26]. W is essentially the tolerable time in
abnormal state, which must be established by the service provider. Given the threshold TR, the size W of the
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monitoring window, and n monitored VMs with CPU values CPUi(t) at time t, an alert is triggered only when
∑n

i=1 CPUi(t − j) > T , ∀j ∈ [0,W ] at any t. In order to validate the adopted technique, we assume that
the alarm must be triggered when the overall CPU load on the involved VMs exceeds 80% for a time window
W = 10 minutes. The considered rule is represented in Figure 5.3.

Fig. 5.3. Detection rule description for modality MP1.1

As for the Interaction Modes Mp2.1 and Mp2.2 related to HTTP flooding threat, a different consideration
can be done. In the process of visiting a Web site, the user sends requests, which have different properties
in idle time, memory computational and computational load. On the contrary, the HTTP flooding sources
send out HTTP requests with another pattern. In particular, several known worms’ attack pattern use parallel
threads to send GET requests in order to exhaust the server’s resource. They might use different numbers of
threads or different delays, but it’s hard to simulate human user’s request patterns. Therefore, the fact that the
human user and attacker have different request patterns can be used in detecting the attackers, for example, by
exploiting the idle time between each request from the same user [27].

5.1.2. Interaction Mode enforcement. In order to implement the identified solutions, we used specific
mOSAIC components that are available and can be added by the Service Provider in a transparent way with
respect to the application. For example, as for the X-DoS attack the following additional security components
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can be used to implement the iteration modality:
• Monitor : By using the features offered by the mOSAIC Platform, the Monitor monitors the CPU
consumption of the application. In particular, if the average computational load of the XML Analyzer
instances exceeds a fixed threshold for a long time period, the Monitor enables the Detector.
• Detector : It consists of several sub components: the Parser, the Validator, and the Engine [8, 28].
The first two parse and validate the incoming messages, by using a schema validation approach (e.g.,
it is verified whether a hunge number of XML tags included in the incoming messages is below a fixed
threshold). The Engine uses an anomaly based methods to identify the malicious sources (e.g., for each
flow of messages, it counts the number of malformed XML documents received by the application). If
a flow of requests is identified as malicious, it sends a message to the HTTPgw, reporting the malicious
source of the messages (IP address).
• HTTPgw : It is enabled to operate as a filter. It discards the messages flows that are identify as
malicious. This action is applied until the system performance returns to a normal state (e.g., the
average CPU consumption of the observed Cloudlets is below the fixed threshold).

Fig. 5.4 shows how the architecture of the identified solution changes respect to the original one in Fig. 3.2,
with all connected components to enforce the chosen interaction modalities.

Fig. 5.4. Application components to enforce chosen Interaction modes

According to the proposed solution, the validation process of the incoming messages is enabled only when
an attack symptom is detected. Moreover, in order to prevent resource exhaustion, the Detector works on an
event-based approach, using a SAX parser. For each XML document parsed, an event is sent to the Validator,
which directly operates on this event to validate the document. There is no need, neither for the Parser
nor the Validator, to reconstruct the whole document in memory. In fact the Validator has constant memory
consumption (only depending on the schema size) and linear run-time. The Detector can therefore easily process
very large documents. If the Validator finds a schema violation inside a message, the Detector has read the
document only up to that particular element, the remaining document is not read and therefore there is not
impact on the Detector performance. If the Engine detects a potential attack, the message source is tagged as
malicious, and a policy is set on the HTTPgw to discard messages from that source.

As for the HTTP flooding, two interaction modes can be enabled, but they cover different requirements
(Fig. 5.2). The first mode can be used to prevent the attack. In particular, secure sockets layer (SSL) and
transport layer security (TLS) encryption protocol can be used to secure Web communications via HTTPS. In
particular, we can assume that a flooding attack is likely in progress, if the XDM application is overloaded with
HTTP requests to be processed, and a huge number of incoming HTTP requests are discarded. In such a case,
a detection method must be enabled in order to identify and filter malicious sources. The second mode can be
applied for detecting and mitigating the attack. The associated detection rule is represented in Fig. 5.5

The implemented solution is similar to that presented in Fig. 5.4. By using some mOSAIC Platform
features, a Monitor can monitor the state the XDM application’s queue, as well as the number of incoming
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Fig. 5.5. Detection rule description for modality MP1.2

HTTP requests. If the queue is full for a long time and many HTTP requests are discarded, a specific Detector is
enabled. The Detector analyzes each incoming flow of requests. If a flow is identified as anomalous (it does not
fit the model estimated during the training phase), the source of the flow is considered malicious and filtered by
the HTTPgw. The detection method is based on the assumption that attackers and normal users have different
properties in the request patterns. Therefore, a large volume of normal users’ request sequences can be used
to train a normal model, and then use the model to check incoming users. A Hidden Semi-Markov Model can
be used to describe the process of an user visiting a website [27]. If the user’s request sequence fits the model,
the user will be considered as normal user. Otherwise, it will be considered as a potential attacker source and
should be filtered.

6. Conclusions and Future Work. Security is one of the main limits in the adoption of Cloud infras-
tructures and applications. Users and providers do not have enough tools to evaluate and monitor the real
enforcement of implemented security solutions. Indeed, security parameters are not included in Service Level
Agreements as they cannot be negotiated and easily monitored. In this paper, we propose an approach to
cope with this problem, by giving to cloud application developers the possibility to choose different security
mechanisms that can be easily integrated in the application and have been pre-evaluated from the security
point of view. We propose to model components’ interactions from a security point of view in order to enable a
developer to choose from different solutions which best fits the user requirements. The methodology we propose
does not aim at proposing a new language to specify security attacks and requirements, indeed at the state
of the art many solutions to this problem are based on this kind of approach. We aim at demonstrating the
applicability of a simple methodology to implement security mechanisms in a transparent way with respect to
the user applications, and to enable a Service Provider to easily offer security guarantees to customer. This is
a first work in this direction, and we presented first results through a simple case study that introduces new
components in an existing application to improve the overall security and meet user requirements. In future
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work, we are going to implement different security packages and truly offer different secure interaction modali-
ties. Our goal is to design a full and easy-to-use methodology to develop secure Cloud applications, such that
the provided security is measurable and can be monitored by both end users and providers.
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