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SEQUENCE SIMILARITY PARALLELIZATION OVER HETEROGENEOUS COMPUTER
CLUSTERS USING DATA PARALLEL PROGRAMMING MODEL

MAJID HAJIBABA∗, SAED GORGIN∗, AND MOHSEN SHARIFI†

Abstract. Sequence similarity, as a special case of data intensive applications, is one of the neediest applications for paral-
lelization. Clustered commodity computers as a cost-effective platform for distributed and parallel processing, can be leveraged
to parallelize sequence similarity. However, manually designing and developing parallel programs on commodity computers is a
time-consuming, complex and error-prone process. In this paper, we present a sequence similarity parallelization technique using
the Apache Storm as a stream processing framework with a data parallel programming model. Storm automatically parallelizes
computations via a special user-defined topology that is represented as a directed acyclic graph. The proposed technique collects
streams of data from a disk and sends them sequence by sequence to clustered computers for parallel processing. We also present
a dispatching policy for balancing the cluster workload and managing the cluster heterogeneity to achieve more than 99 percent
parallelism. An alignment-free method, known as n-gram modeling, is used to calculate similarities between the sequences. To show
the cost-performance superiority of our method on clustered commodity computers over serial processing in powerful computers,
we simply use UniProtKB/SwissProt dataset for evaluation of the performance of sequence similarity as an interesting large-scale
Bioinformatics application.
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1. Introduction. As a result of increases in the size of available genome sequence data, the processing
and storage of such data have become one of the major challenges in modern genomic research. Bioinformatics
applications such as finding genes in DNA sequences, or aligning similar proteins, all need complex computations
and vast amounts of processing power beside massive memory capacity. Therefore, there is high demand for
faster algorithms and more powerful computers to reduce the execution time of these applications.

For Bioinformatics applications, the primary form of information are raw DNA and protein sequences.
Therefore, one of the first steps toward obtaining information about a new biological sequence is to compare
it with a set of known sequences in existing sequence databases [1]. The results of comparisons often suggest
functional, structural, or evolutionary analogies between sequences. For a given sequence, searching in sequences
of protein databases is one of the most fundamental and important tools for predicting the structural and
functional properties of uncharacterized proteins.

The similarity between two sequences (gene or protein) indicates that they may be derived from the same
ancestral sequence by an evolution. This evolutionary similarity is called homology and similar sequences are
known as homologous [2].

The most common metric showing the similarity between two instances is their distance. Computing
distances between sequences in large datasets is a computationally intensive task [1]. To handle the complexity
of this task,we can take advantage of parallelization techniques. Pairwise calculation provides a natural target
for parallelization because all elements of the distance matrix are independent [1].

Using network-attached workstations as a platform for distributed and parallel computing is becoming
more and more popular. This is due to the fact that todays desktop machines are extremely powerful as well
as affordable. In contrast, dedicated supercomputers are often very expensive, so most research groups have
only limited access to such machines. Commodity computers may be slower than commercial supercomputers,
but they are readily accessible and usable for many tasks. Small networks of commodity computers can be
used for coarse-grain parallelization of database searches. As a result, in response to the rapid increase in
the amount of data generated by the new technologies, such as next-generation sequencing (NGS), researchers
can use parallelization strategies and distributed systems on commodity clusters to accelerate the search in
such datasets. However, the users of Bioinformatics tools are typically unaware of the advantages of emerging
technologies in distributed computing. This is due to the difficulty of converting sequential jobs to distributed
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ones and the challenge of understanding distributed technologies well enough to create and manage a distributed
environment [3]. Therefore, it can be useful to show how to parallelize Bioinformatics applications that can be
followed by Bioinformaticians.

A practical study on using parallel computing to speed up the Bioinformatics problems has different as-
pects. A rich and complex study of parallel computing techniques and technologies for solving Bioinformatics
problems has been explored in [1]. In this paper, we use sequence similarity as a case study of Bioinformatics
problems for applying parallelization strategy. But, we focus on alignment-free sequence similarity methods.
So, parallelization strategy for alignment-based methods such as BLAST [4, 5] is out of scope of this work.
On the other hand, we try to find a software parallel solution to sequence comparison, and hardware parallel
solutions are not in our scope. Various parallel architectures for sequence similarity search are compared in
[6]. Moreover, some researchers in this scope have used parallel technologies such as GPU to speed up the
sequence analysis algorithms [7, 8, 9]. In this paper, we concentrate on having applications that are run both
in parallel and in a distributed manner and ignore solutions that only consider running applications in parallel
like GPU solutions. We use commodity clustered computers to distribute sequence searches much the same
as other researches that have parallelized sequence searches on workstation clusters, such as the work in [10]
that uses an alignment-based method. There are also other works that emphasis on parallelization of sequence
similarity search [11, 12, 13, 14], but few works use streaming to overcome big data challenges [15, 16, 17]. For
example, [15] has proposed a stream-based approach for NGS read alignment based on the IBM InfoSphere
Streams computing platform deployed on Amazon EC2.

We also use stream processing for a data and compute-intensive scientific problem (i.e. DNA sequence
analysis). But, as a software solution, our strategy is based on a high-level parallel programming paradigm in
an open source stream processing framework named Apache Storm. In order to get an efficient use of Storm
on a heterogeneous commodity cluster, we have developed a scheduler to balance the workload on processing
nodes. The used similarity method, in our work, is based on n-gram that is derived from statistical language
modeling that uses the Markov chains representation together with cross-entropy from information theory to
get a measure of similarity between n-grams [18]. We use stream processing to overcome computation challenges
as well as memory challenges in this type of sequence similarity search method [19, 20].

More precisely, our contributions are as follows:
• We use protein-sequence streaming as a data partitioning strategy and utilize stream processing for
coarse-grain search in a large database. Using protein-sequence streaming instead of database parti-
tioning, we can reduce the cost of storage in some solutions such as in cloud computing.
• We build a task dispatching strategy (i.e., a weighted round-robin scheduler) to provide a balanced
workload among heterogeneous clustered computers. In this strategy, we dispatch tasks with corre-
sponding data to processing elements. So, each element takes proper sized subsets of the dataset,
according to its computing power.
• We deploy Apache Storm for parallelization of a word-based sequence similarity search method in a
semi-automatic programmer directed manner.

The rest of this paper is organized as follows. Section 2 outlines the scope of the work, the method used for
sequence similarity and the parallel framework used in this paper. Section 3 describes the parallelization concerns
of our work and used strategy to overcome these concerns in a real heterogeneous distributed environment.
Section 4 presents how we have evaluated the performance and effectiveness of our proposed strategy. Section 5
concludes the paper.

2. Background.

2.1. Sequence comparison. Sequence comparison is used to detect the similarity of proteins for explain-
ing phylogenetic relations between them. Existing sequence comparison methods can be classified into two main
categories:

1. Alignment-based methods.
2. Alignment-free methods.

Alignment-based methods [21, 22] use dynamic programming to find the optimal alignment. These methods
assign scores to different possible alignments and select the alignment with the highest score. The similarity
score between two sequences in alignment-based methods is measured by an alignment algorithm (e.g., BLAST
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[23] or FASTA [24]). However, the alignment-based methods have computational limitations on large biological
databases and suffer from speed limitation [19, 25].

Alignment-free methods [26, 27] have been developed to alleviate the limitations of alignment-based methods
[20]. The similarity score of two sequences in an alignment-free method is measured by various distance metrics,
such as Euclidean distance or Kullback-Leibler divergence [28].

The alignment-free methods can be subdivided into three different classes: gene contents, data compression,
and word composition [19]. The latter that has received considerable attention counts the number of words
shared between a subject and a query sequence. Basically, in word-based methods, an optimal word length k is
chosen, and then the similarity of any two sequences is assessed by comparing the frequencies of all subsequences
of k adjacent letters (also called n-gram, k-mer, k-tuple or k-word) in sequences. High computing time and
memory usage are disadvantages of all these three methods [19, 20]. Nonetheless, word-based methods have
received credit in high-throughput classification of genome sequences and are deployed for diverse objectives in
genomics such as sequence clustering and word similarity searches [29].

Some of the word-based methods [30, 31], determine the similarity between sequences by using a Markov
model to estimate the probability that a sequence is relevant to a given query with respect to their word
frequencies. In this paper, we deploy a similar method to calculate similarities between sequences, which is
described in Section 2.2.

2.2. Similarity method. Amino acids consist of 20 different symbols that can be considered as the
alphabet of a hypothetical language. Protein sequences can also be treated as texts written in this language.
With this analogy, we can apply statistical language techniques in biological sequence analysis [18].

The unique order of amino acids in sequences affects the similarity of proteins. These orders can be obtained
by n-gram based modeling techniques and used in similarity methods with cross-entropy related measures [18].
In these techniques, a Markov chain is built for n-gram models. For example, in Drosophila gene eyeless sequence
[32], amino acids in the range of 30 to 40 are EAV EASTASH. Available tokens of this gene in 2-gram model
are continuous base pairs with length 2, which are {EA,AV, V E,EA,AS, ST, TA,AS, SH}, while in the 3-gram
model, are continuous base pairs with length 3, which are {EAV,AV E, V EA,EAS,AST, STA, TAS,ASH}.

The Shannon entropy [33] can be used to show how a sequence is fitted by an n-gram model, which is
estimated by equation 2.1 [34].

H(x) = −
∑

w∗

P (wn
i ) logP (wi+n−1|w

n−1
i )(2.1)

In equation 2.1, wn
i corresponds to {wi, wi+1, . . . , wi+n−1}. The summation is over all feasible combinations
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that can be broken down using the Chain Rule to yield equation 2.2.
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In equation 2.2, P (wi+n−1|w
n−1
i ) is the conditional probability of the nth word of a n-gram with respect

to the previous n− 1 words. Using the maximum likelihood estimation (MLE) [33], this term can be estimated
by using the n-gram frequencies:
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In equation 2.3, C(wn
i ) is the count of wn

i . For example, in the aforementioned Drosophila gene eyeless
sequence [32], the probability of bigram AS is:

P (A|S) =
C(AS)

C(A)
=

2

3
= 0.66

and its bigram model is illustrated in Figure 2.1, after calculating MLE for each token.
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Fig. 2.1. The bigram model of the sequence of EAVEASTASH

If equation 2.1 is applied to two different sequences X and Y , the outcomes show which sequence is better
fitted by the model, but cannot be used for their direct comparison. Thus, the similarity between two sequences
must be represented as equation 2.4.

H(x, y) = −
∑

w∗

PX(wn
i ) logPY (wi+n−1|w

n−1
i )(2.4)

In equation 2.4, PX(wn
i ) relates to the subject sequence X and PY (wi+n−1|w

n−1
i ) relates to the query

sequence Y whose model has to be estimated. Variable wn
i runs over all the words (or n-grams) of the query

protein sequence.
Now, if we let Sr be a subject sequence and S = S1, S2, . . . , SN be the target protein database, then we can

compute the similarity between them by using equation 2.4. The first step is the computation of reference score
for the subject protein by calculating H(Sr, Sr). Next, each sequence in the target database, Si(i = 1, . . . , N) is
given as the model sequence for calculatingH(Sr, Si). After these calculations, we can haveN dissimilarities that
are the absolute differences against the reference score D(Sr, Si) = |H(Sr, Si)−H(Sr, Sr)|, for all i = 1, . . . , N .
Finally, by ordering these N dissimilarity measures, we can simply find the most similar sequences with the
lowest distance to the subject sequence.

For protein coding genes, a tuple size of 3 can be a good choice [35] with less sensitivity and computation,
but for more accuracy in this paper, we have chosen n = 4.

2.3. Apache Storm. Apache Storm is a real-time stream processing framework built by Twitter that is
available as an Apache project [36]. After the batch processing became popular, it was realized that in many
cases, the turnaround time was unacceptable. Given the needs for low-latency asynchronous stream processing
solutions, Storm has tried to address these needs.

Storm is a scalable, fault-tolerant, distributed and real-time platform that provides distributed stream
processing in a cluster. The Storm programming paradigm consists of Streams, Spouts, Bolts, and Topology. A
Stream is a continuous unlimited sequence of data that can be processed in a parallel and distributed fashion.
A Spout acts as a source that Streams come from and a Bolt takes the input Streams, processes them and
produces new output Streams. The Spouts and Bolts are organized in a directed acyclic graph (DAG) called
a Topology (Figure 2.2). An application developer that uses Storm can define an ideal Topology to describe
communications between processing elements in his/her application and declare data dispatching mechanisms
between processing elements. In Storm, data placement and distribution are provided by this user-defined
Topology. Bolts and Spots in this topology are connected together with stream grouping. Stream grouping
defines how Streams should be distributed among the Bolt’s tasks. For example, in shuffle grouping, tuples are
randomly spread over the Bolt’s tasks such that each Bolt gets an equal number of tuples or in all grouping,
the Stream is replicated across all tasks of the Bolt. Storm does not use intermediate queues to pass Streams
between tasks. Instead, Streams are passed directly between tasks using batch messages at the network level to
achieve a good balance between latency and throughput. Storm employs a master-worker computational model
wherein the master is the main process that distributes tasks among the workers. Each worker process runs a
Java Virtual Machine (JVM), on which it runs one or more executors. An executor is a thread in the system
that is generated by a worker process and runs within the workers JVM. Executors are made of one or more
tasks. The actual work for a Bolt or a Spout is done with the task. A worker process executes a subsection of
a Topology on its own JVM.
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Fig. 2.2. An example of Storm topology (components with the same color have the same work)

Fig. 2.3. An example program in Storm

The Storm resource manager divides nodes into slots and for each worker node, the user configures how
many slots exist on that node. The Storm default scheduler uses a simple round-robin strategy [37]. When a
job is submitted to the master, the scheduler counts all available slots on the worker nodes and assigns worker
instances to nodes one by one in a round-robin manner. It deploys workers so that each node in a topology has
almost an equal number of worker instances. The scheduler gets a job and decomposes it into tasks based on
the topology, which can be delivered to slots.

Here are some reasons why Storm has been chosen as our choice for stream processing. Firstly, it is one of
the leading open source stream processing tools that guarantees scalable, reliable and fault-tolerant processing
of data. Secondly, compared with other leading open source tools such as Apache Spark, Storm processes
the incoming streams in real time without any intentional latency. Thirdly, Storm has an easy programming
paradigm (in contrast to map-reduce in Spark) and is usable with many programming languages (supports both
JVM and non-JVM languages) without requiring any additional new concepts (such as Resilient Distributed
Dataset (RDD) in Spark). Figure 2.3 shows a simple example Java code in Storm for the topology represented
by Figure 2.2.

At last, but not least, Storm can be deployed on clustered commodity computers with low memory (1GB)
and old architecture, while Spark needs high memory capacity for in-memory processing.

3. Distributed computation and parallelization. As mentioned in Section 1, Bioinformatics is con-
fronted with increasingly large datasets. Processing of these datasets takes unacceptably long time on a single
computer. Therefore, distributed computing on multiple computers is becoming an attractive approach to
achieve shorter execution times [3]. In this section, we describe how to distribute sequence comparison jobs
using a stream processing model on commodity computers to process large data in parallel.
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Sequence comparison tasks can run on parallel processors using either coarse-grain or fine-grain methods [6].
In a coarse-grain method, sequences are partitioned equally among the processing elements that are appropriate
for searches in a large database. So equal sized subsets of the database are assigned to processing elements,
one subset to one processing element. Then, each element performs sequence analyses independently on its
subset of the database. If there is a small number of sequences, coarse-grain parallelism may not be a good
method. In these cases, a fine-grain method can be used to get a better speedup [6]. In our work, in order to
evaluate the search in a huge database on a commodity cluster, we use coarse-grain parallelization to minimize
the interactions between parallel processes.

Manually developing parallel programs is a time consuming, complex and error-prone process. Up to
now, various tools have been available to assist programmers in converting serial programs into parallel ones.
Designing and developing parallel programs by these tools requires the use of a parallel programming model
such as a message passing or a data-parallel model. In distributed-memory parallel computation, a data-parallel
model does not need to pass messages and thus makes the programming easier. A well-known representation
of the data-parallel model is a Directed Acyclic Graph (DAG) in which nodes represent application tasks and
directed arcs represent inter-task dependencies. One such tool that offers semi-automatic parallelization and
follows the data-parallel model in a DAG is the Apache Storm that was described in Section 2.3.

The Storm programming model provides a distributed model for processing of streams on processing el-
ements, wherein each element processes the input stream. Since batch processing is a specialization of the
stream processing [38], we can use stream processing frameworks to do batch processing works. In this sense,
we can aggregate the streams arriving in a time period and pass the aggregate to a processing element. So,
Storm assumes the incoming streams as a batch and a set of batch tasks can be executed in parallel in a stream
processing framework. In this manner, each task takes a chain of inputs, processes them using a user-defined
function, and produces a result.

For sequence similarity, in this paper, a simple topology is used in Storm. In this topology, a Spout
receives data and constructs a sequence from character streams to prepare the data elements in protein-sequence
streaming. The Spout sends the result to main processing elements (i.e. Bolts) to compare them with the
subject sequence. It sends sequences asynchronously to Bolts via a queue channel, so Bolts have their input
data ready for execution. If the queue does not get empty during execution, with a sufficient number of Bolts,
we can fully utilize the CPU cycles of the nodes. The subject sequence can be retrieved from a distributed
coordination system such as Apache Zookeeper [39]. Sequences are sent from Spout to Bolts with a statically
balanced Weighted Round Robin method that is described later (Algorithm 2). This architecture is illustrated
in Figure 3.1.

For all schedulers in a distributed system, fairness is a critical feature to be considered. The round robin
strategy as the default Storm scheduler in a shared heterogeneous cluster, which has multiple nodes with different
hardware configurations, may not be fair. In default scheduling, although the processing is done in parallel, a
job waits for its slowest worker to finish.

To balance the workload, we must partition the database into a number of portions according to the
number and the power of processors allocated. To do this, our scheduling algorithm gets benchmarking data
(as described in Algorithm 1) and then dispatches data elements according to their class weights to balance the
workload of the cluster (as described in Algorithm 2).

By using the weights that are taken from benchmarks, the scheduling described in Algorithm 2 minimizes
the imbalance ratio in comparison to the default scheduler; the imbalance ratio is the ratio of largest and
smallest load on a processing instance, that we measure it in the next section.

In the next section, we compare the performances of the default scheduling and our proposed scheduling,
as well as the cost-adjusted-performance of the clustering.

4. Experiments and results. There are various ways to measure the performance of parallel codes. To
be rigorous, the speedup obtained by a parallel implementation should be compared with the best available
sequential code for that problem. Also of importance is the concept of efficiency, defined as the ratio of speedup to
the number of processors, and the computation to communication ratio. But the speedup is not quite calculable
due to heterogeneity of clustered computers. Also, sequence-search algorithms can be measured along many
dimensions such as execution time (or speed), millions of cell updates per second (MCUPS), deployment cost,
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Fig. 3.1. Sequence similarity distributed computing system overview

Algorithm 1 Prepare information for choosing tasks

Input: Benchmark is information receive from benchmarking phase
Output: WorkersMeta is a List of workers’ metadata
1: Info {

id, ◃ id of a worker that is running on a node
weight, ◃ class weight of the worker
counter ◃ the count of tasks must execute on the worker
};

2: cluster ← fetch running workers
3: for each worker ∈ cluster do
4: id← identification number of the worker
5: weight← derive the weight of node from Benchmark using GCD
6: counter ← weight ∗ factor ◃ factor used to round the weight to a proper counter

(normally is 10)
7: tmpInf ← (Info)[Id, weight, counter]
8: WorkersMeta.add(tmpInf)
9: end for

10: return WorkersMeta

and sensitivity [40]. In this section we measure the imbalance load ratio and the speedup of our solution.
At last, we investigate the cost-adjusted-performance that is the product of execution time multiplied by the
deployment cost.

For evaluation, the proposed method has been applied to publicly available protein database SWISS-PROT
[41] as the target database to compare with the genome HIV-gp120 as a query sequence [42]. The input data
(target and query) are all FASTA formatted sequence files. Characteristics of the target dataset and the query
sequence are shown in Tables 4.1 and 4.2 respectively.

The studied similarity method has been benchmarked on several testbed systems in an effort to characterize
their performance. We first present the performance on a commodity cluster with default Storm scheduler,
demonstrating a poor performance caused by heterogeneity. Our comparative study of the performance of our
proposed scheduling shows significant improvement in execution time.
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Algorithm 2 Choose worker for processing the sequence

Input: Task is a task for comparing two sequence,
WorkersMeta is a List of workers’ metadata

Output: worker is the id of a worker to running the task

1: Let n be the size of WorkersMeta List
2: Let workerInf [1 . . . n] be an Array of Info initiated from WorkersMeta

3: worker ← −1
4: Label : WorkerSelection

5: i← 0
6: while i < n do
7: counter ← workerInf [i].counter
8: if counter > 0 then
9: worker ← workerInf [i].id

10: counter ← counter − 1
11: break
12: end if
13: i← i+ 1
14: end while
15: if worker = −1 then
16: for all worker ∈ workerInf do
17: worker.counter ← worker.weight ∗ factor
18: end for
19: goto WorkerSelection

20: end if
21: return worker ◃Send Task to Worker

Table 4.1

SWISS-PROT dataset characteristics

Characteristic value
Name SWISS-PROT

Number of sequences 460,903
Shortest sequence 6
Longest sequence 35,213

Average nucleotides per sequence 374
Total number of nucleotides 172,370,171

Our test cluster had 10 compute nodes, each with 1GB memory and Intel processors with different archi-
tectures. Specifications of nodes deployed in the cluster, the execution time for each node to compare subject
sequence with previously known target sequences in the dataset, and the number of each node are stated in
Table 4.3. Compute nodes ran Apache Storm 0.9.3 under Ubuntu-12.04 to execute 1 or 2 workers per node
according to the number of cores.

To evaluate our cluster, lets consider a cluster wherein we are given m workers for scheduling that are
indexed by the set W = w1, .., wm. There are additional given n tasks for scheduling that are indexed by the set
T = t1, .., tn. Let Ti be the set of tasks scheduled on wi. Then, the load of the worker i (that is wi) is defined
by equation 4.1.

ℓi =
∑

ti∈T

Ci,j(4.1)

In equation 4.1, task tj takes C(i, j) units of time if it is scheduled on wi. The maximum load of scheduling
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Table 4.2

SHIV-gp120 characteristics

Characteristic value
Name HIV1 HXB2 GP120
Length 481
Residues 31-511

Table 4.3

Specifications of the cluster nodes

CPU Model
# of
Cores Price1

Single
Thread

Execution
Time

# of
Nodes

Intel Pentium Processor E2180
(1M Cache, 2.00GHz, FSB 800MHz) 2 $0.5 1h 15m 1

Intel Pentium Processor E2160
(1M Cache, 1.80 GHz, FSB 800MHz) 2 $0.01 2h 10m 2

Intel Pentium 4 Processor HT
(3.20GHz, 1M Cache, FSB 800MHz) 1 $2.2 1h 50m 3

Intel Pentium 4 Processor
(2.40GHz, 512K Cache, FSB 533MHz) 1 $1.99 3h 30m 3

Intel Celeron D Processor 336
(256K Cache, 2.80GHz, FSB 533MHz) 1 $2.95 4h 20m 1

is called the makespan of the schedule and is given by equation 4.2.

ℓmax = max
i∈{1,...,m}

ℓi(4.2)

In our test case, lets assume that T is the set of sequence comparison tasks that is submitted to the master.
Each task is composed of two subtasks ta and tb. ta is the task of constructing a sequence from Stream and tb
is the comparison of the sequence with the subject sequence. Since ta is a lightweight task with respect to tb,
i.e. tb ≫ ta, and ta always runs on a fixed node (Spout node), we can ignore it from calculations. In addition,
if we assume all sequences have the same length, so all tasks would be identical. In our dataset, the difference
between sequence lengths is not significant, so for simplicity in calculations, we can assume that all tasks are
identical. Sequence comparison tasks have also no data dependencies and are independent of each other in a
non-preemptive manner.

Our cluster of computers was composed of 7 one core PCs and 3 double core PCs. To achieve a high level of
parallelism, we used a fixed number of workers on each node according to its number of cores. Since we set cores
per node as computing resources, we had 13 workers. One worker was used as Spout to collect and dispatch
data sequentially. Therefore, twelve (m = 12) workers W = w1, w2, . . . , w12 were left for sequence comparison
in parallel. Scheduling was carried out at worker level and each worker used First-In, First-Out (FIFO) method
for performing the sequence comparison tasks.

By benchmarking, we estimated the time taken by each worker on a node to perform each task. The nodes
in the cluster were classified by system benchmarking before submitting a topology. In the benchmarking phase,
we ran several sequence comparisons on each node to get a task execution time. A task execution time was
measured based on the number of sequences processed in a time period. The benchmarking results are stated
in Table 4.4.

In this work, the workers are classified in p classes as G = {wg1 , wg2 , . . . , wgp} wherein gi is an index for
class i. So, the makespan will be ℓmax = maxi∈{1,...,p} ℓgi . Wherein ℓgi =

∑
tj∈Tgi

Cgi,j denotes the load of

1These prices are taken from online marketplaces such as Amazon and eBay
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Table 4.4

Execution time and performance on each type of node in the cluster testbed

Class
(p)

# of
Slots

Job
Completion

Time Sequences

Task
execution time

per
worker (core)

Performance
( sequence

second
)

1 2 75m = 4500s 460,903 0.0097 102
2 3 110m = 6600s 460,903 0.0143 70
3 4 130m = 7800s 460,903 0.0169 59
4 3 210m = 12600s 460,903 0.0273 36
5 1 260m = 15600s 460,903 0.0338 29

wgi , in which, task tj takes Cgi,j units of time if scheduled on a worker with class i, and Tgi denotes the set of
tasks scheduled on wgi .

The Storm default scheduler uses a simple round-robin strategy that grants the same number of tasks
( sizeofT

m
) to each worker. In our test case, each task is a sequence comparison from the dataset with the subject

sequence that is 460903 tasks of sequence comparison. Therefore, the makespan of the default scheduler at
Storm is the following:

ℓmax =
∑

tj∈Tg5

Cg5,j =
460903

12
× Cg5,j = 38409× 0.0338 ≈ 1, 298

in which,

Tg5 = {tk, tk+12, tk+(2×12), . . . , tk+(38408×12)} | 1 ≤ k ≤ 12, Cg5,j ≈ 0.0338

To efficiently use a parallel computer system, a balanced workload among the processors is required. To
compare the effectiveness of balancing the workload, the percentage of load imbalance (PLIB) [43] is defined by
equation 4.3.

PLIB =
ℓmax − ℓmin

ℓmax

× 100(4.3)

PLIB is the percentage of the overall processing time that the first finished processor must wait for the
last processor to finish. This number also indicates the degree of parallelism. For example, if PLIB is less than
one, we achieve over a 99 percent degree of parallelism. Therefore, a computational method with a lower PLIB

is more efficient than another one with a higher PLIB. The workload is perfectly balanced if PLIB is equal
to zero [43].

For default scheduler, PLIB is obtained as follows:

ℓmin =
∑

tj∈Tg1

Cg1,j =
460903

12
× Cg1,j = 38409× 0.0097 ≈ 373

PLIB =
ℓmax − ℓmin

ℓmax

× 100 =
1298− 373

1298
× 100 ≈ 71

Therefore, in this case, we have less than 29 percent parallelism. In this work, the goal is to minimize the
makespan, i.e. the completion time of the last tasks in the schedule. For this goal, we have to achieve ideal
workload balance, where PLIB = 0. In our proposed scheduling method, each worker gets tasks according to
its computation power (or weight). This means that ℓ1 ≈ ℓ2 ≈ . . . ≈ ℓ12.

To obtain the weight of each worker from the benchmark we calculate the greatest common divisor (GCD)
of task execution times on nodes and set weights accordingly. Assuming that the GCD of task execution times



Sequence Similarity Parallelization over Heterogeneous Computer Clusters Using Data Parallel Programming Model 61

is d, then we can set the weight of workers as in equation 4.4.

Weightgi =

∑p

k=1

execution time of wgk

d

execution time of wgi

d

(4.4)

In our example d = 13 and we have

5∑

k=1

execution time of wgk

d
=

execution time of wg1

d
+

execution time of wg2

d
+

. . .+
execution time of wg5

d
= 7.5 + 11 + 13 + 21 + 26 = 78.5

So,

Weightg1 = 10.4,Weightg2 = 7.1,Weightg3 = 6,Weightg4 = 3.7,Weightg5 = 3

In our test case, Storm selects one slot of a node in class 3 as master process. So we have

Tgi =
460903

10.4× 2 + 7.1× 3 + 6× 3 + 3.7× 3 + 3
=

460903

74.2

ℓg1 =
∑

tj∈Tg1

Cg1,j = 6212× 10.4× 0.0097 ≈ 627

ℓg2 =
∑

tj∈Tg2

Cg2,j = 6212× 7.1× 0.0143 ≈ 631

ℓg3 =
∑

tj∈Tg3

Cg3,j = 6212× 6× 0.0169 ≈ 630

ℓg4 =
∑

tj∈Tg4

Cg4,j = 6212× 3.7× 0.0273 ≈ 627

ℓg5 =
∑

tj∈Tg5

Cg5,j = 6212× 3× 0.0338 ≈ 630

ℓmax = max ℓgi ≈ 631

Thus, we expect that our scheduler should perform twice better than the default scheduler (based on their
ℓmax, i.e. 631 compared to 1298), which is also shown by our experimental results in Figure 4.1.

Figure 4.1 shows the turnaround times under the default scheduler and our proposed scheduling method
according to the class of nodes in the cluster; the turnaround time includes time to load workers, submission
time of tasks to workers, scheduling time, synchronization time, inter-node communication time, and delays in
acknowledging.

Experimental results in Figure 4.1 show that our proposed method produces a smaller PLIB than the
default scheduler.

PLIB =
ℓmax − ℓmin

ℓmax

× 100 =
631− 627

631
× 100 ≈ 0.6

Our scheduling method also achieved more than 99 percent degree of parallelism.
Program speedup is another important measure of the performance of a parallel program. By conventional

definition of the speedup, if machine M1 can solve problem P in time T1 and machine M2 can solve the same
problem in time T2, the speedup of machine M1 over machine M2 on problem P is represented by equation 4.5.

SP =
T1

T2
(4.5)



62 M. Hajibaba, S. Gorgin, M. Sharifi

Fig. 4.1. Comparison of turnaround times for each class of physical nodes and the whole cluster

If machine M2 is composed of m identical instances of the base processor of M1, then we would expect
m processors to solve the solution m times faster than a single processor. But this expectation is used in
homogeneous clusters. For simple calculation of speedup in heterogeneous clusters, based on [44], if our cluster
is a set H = {M1,M2, . . . ,Mm} of m distinct machines, the speedup of a heterogeneous cluster C on problem
P is defined by equation 4.6.

SP =
min{TM1

P , TM2

P , . . . , TMm

P }

TC
P

(4.6)

In equation 4.6, TMk

P is the execution time on machine Mk to solve problem P . In other words, the fastest
machine is selected for comparison to the cluster. For our cluster with m = 13 based on equation 4.6 the
speedup is:

SP =
min{4500, 6600, 7800, 12600, 15600}

1170
=

4500

1170
= 3.8

But this is not a good measure of speedup for our heterogeneous system due to the difference in nodes
performance (slowest machine is 3.5 times slower than the fastest machine). An extension of the relative
speedup for heterogeneous systems has been presented in [45], which is proved to be an appropriate tool for the
evaluation of the speedup of parallel discrete event simulation in heterogeneous execution environments. So,
accordingly, the relative speedup in this paper is calculated by equation 4.7.

rP =
Ne

TC
P × Pc

(4.7)

In equation 4.7, Ne is the number of events in the system. The cumulative performance of the heterogeneous
system can this be defined by equation 4.8.

Pc =

NT∑

i=1

Pi ×Ni(4.8)

Let us denote the number of CPU types in a heterogeneous system by NT , the number and the performance
of CPU cores available from type i by Ni and Pi, respectively. Since our problem is near to discrete event
simulation, the relative speedup or efficiency of our cluster will be:

Pc = 2× 102 + 3× 70 + 4× 59 + 3× 36 + 1× 29 = 787
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Table 4.5

Cost and performance of the proposed method with other systems

System
# of
Cores Cost

Performance
(turnaround time)

Intel Core i7-3770 Processor
(8M Cache, up to 3.90GHz) 4 $344.99 26.5m

Intel Pentium G620
(3M Cache, 2.60GHz) 2 $78.12 40m
INTEL Xeon E5430

(12M Cache, 2.66GHz) 4 $40.0 48m
Proposed technique
over given cluster 13 $16.04 19.5m

rP =
460903

787× 1170
≈ %50

This value is not bad at all for such heterogeneous clusters [45] with low network bandwidths, especially
when the speedup is limited by the serial section (i.e. Spout) of the program.

Scalability becomes the basic need for distributed systems. Because of some problems such as heterogeneity
of our cluster and lack of more nodes, we cannot practically test the scalability of our solution. However, we
try to measure the scalability of our solutions compared to other similar works that scale well.

A similar work to ours is a streaming approach in a distributed architecture for scaling up natural language
processing methods [46] which also leverages Storm. This work describes a series of experiments carried out
with the goal of analyzing the scaling capabilities of the language processing. It shows that the use of Storm
is effective and efficient for scalable distributed language processing across multiple machines when processing
texts on a medium and large scale. Likewise, as mentioned earlier, the used similarity method in this work
is a form of natural language processing [31] and implemented using Storm in a heterogeneous distributed
environment. So, we can conclude our solution is scalable in nature and is efficient in the same environment.

Storm was originally aimed for processing twitter streams at scale [36]. The authors in [47] propose an
event detection approach using Apache Storm to detect events within social streams like Twitter that can scale
to thousands of posts every second. It is really a big challenge to analyze the bulk amount of tweets to get
relevant and different patterns of information on a timely manner. We observed that the sequence similarity
algorithm is an embarrassingly parallel problem that is highly parallel and can be deployed on a distributed
system. We can consider sequences as events and similarity of a sequence with the reference as a rule to detect
events. It has one Spout that reads events from document (dataset for our case) and a pipeline topology like
ours. So, through experimentation on a large Twitter dataset by mentioned paper, we can conclude that our
approach can scale to the equivalent size of data.

As a last example, the authors in [48], have addressed the problem of data stream clustering by developing
scalable distributed algorithms that run on the Apache Storm. They demonstrate experimentally that they are
able to gain close to linear scalability up to the number of physical machines. Likewise, our used similarity
method was applied to the clustering sequences, based on Markov chains representation known as n-gram in
statistical language modeling [18]. We used this sequence clustering strategy in a stream processing manner on
Storm. Therefore, with an optimistic attitude, we can conclude that our solution is scalable at the same level
as this work. However, there are some other works that can be used to inference the scalability of our solution
[49, 50, 51].

In order to evaluate the performance-per-cost, we just use CPU costs as an approximation of system cost.
In our test case, the relation between computer system prices and CPU prices is perfect. The modern and more
expensive CPUs need modern and more expensive motherboards, RAMs and also need more power consumption.
So we ignore these costs and simply compare CPU costs. The cost of the total cluster and other systems based
on the lowest prices (obtained from retail marketplaces) are shown in Table 4.5.

The ”cost-adjusted-performance” of the mentioned cluster running Storm with proposed methods, using
the multiplication of the runtime and the cost of the system, is compared with other systems in Figure 4.2. The
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Fig. 4.2. Comparison of Cost-adjusted-performance of our testbed with proposed method and other types of testbeds

results show that a commodity cluster with our proposed scheduling method has a better performance-per-cost
than other systems.

Although the proposed cluster has more cores, but it demonstrates the lowest cost-adjusted-performance
(or highest performance-per-cost) compared to other single systems. The relative importance of equipment cost
makes traditional server solutions less appealing for solving our problem because they increase performance,
but decrease the performance-per-cost.

5. Conclusions and future works. Clustered commodity computers have already experienced enormous
attention and used as a cost-effective platform for distributed and parallel processing of data/compute-intensive
applications, compared to more expensive dedicated supercomputers. In Bioinformatics, searching in a database
is the most widely used technique and is one of the most common targets to use parallelization in Bioinformatics.
In this work, for parallelize sequence similarity methods, we use Storm as a stream processing framework. The
Storm framework automatically provides some specifications for parallel computing, such as the scheduling,
synchronization, and inter-machine communication. But other specifications, especially partitioning the input
data and balancing the workload should be explicitly programmed using a given strategy such as the strategy
we have proposed in this paper. Streaming can be a good choice instead of database partitioning when the cost
of storage and/or bandwidth is important.

In a perfect world of parallelization, for n processors, the runtime should be n times faster than doing the
same work on one processor. However, in a real world, the performance of a parallelization is decreased due to the
interaction between processes and synchronization. Moreover, the heterogeneity affects the workload balancing;
dividing the jobs equally across machines in a heterogeneous cluster leads to load imbalance. So, efficient
scheduling of applications based on the characteristics of computing nodes can yield significant speedups. In
this paper, we tried to alleviate these obstacles by running coarse-grain CPU-intensive tasks on loosely-coupled
workers with the same workload according to their power.

In the first step to cut down parallelization costs, we diminish the process interactions via reducing the
number of tasks. In this work, we try to minimize process interaction by creating coarsely-grained tasks. In
the second step after minimizing interactions with proper granularity, communications will be addressed. In a
distributed memory fashion, inter-process communications is performed by sending messages over the network.
This message-passing paradigm forces programmers to deal with issues such as the location of the data, the
method of the communication, and the communication latencies. However, by using a data-parallel model as
an explicit programming paradigm for distributed-memory parallel computation that is followed by Storm, the
programmer is free from details of message passing. On the other hand, in heterogeneous environments, the
speedup suffers from unpredictable behavior that is due to diversities in the performance of CPUs. Getting
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a good performance in a heterogeneous distributed system by distributing tasks and dispatching data in such
manner that heterogeneity does not affect the speedup is a challenging problem. In this paper, we use an
approach that distributes tasks and balances the workload among nodes and provides twofold speedup on a
heterogeneous distributed environment.

It should be noted that parallelization strategies presented here would also benefit other commonly used
Bioinformatics tools. The alignment-based methods such as BLAST can also be parallelized using our proposed
method by streaming the query sequences. Consequently, other algorithms in computational biology may take
advantage of performance improvement by this method on cluster based implementations. By running parallel
applications on large commodity clusters with tens of nodes, researchers can cheaply perform analyses with
acceptable execution time. We are currently studying the potential parallelism of the algorithm, especially in
balancing the workload and also the programming paradigms of parallel systems such as MapReduce. In our
future work we are going to consider sequence lengths in calculating loads on each node and use a dynamic
workload balancer to avoid benchmarking.
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