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ANALYSIS OF MEMORY FOOTPRINTS OF SPARSE MATRICES PARTITIONED INTO

UNIFORMLY-SIZED BLOCKS∗
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Abstract. The presented study analyses memory footprints of 563 representative benchmark sparse matrices with respect to
their partitioning into uniformly-sized blocks. Different block sizes and different ways of storing blocks in memory are considered
and statistically evaluated. Memory footprints of partitioned matrices are then compared with their lower bounds and CSR, index-
compressed CSR, and EBF storage formats. The results show that block-based storage formats may significantly reduce memory
footprints of sparse matrices arising from a wide range of application domains. Additionally, measured consistency of results is
presented and discussed, benefits of individual formats for storing blocks are evaluated, and an analysis of best-case and worst-case
matrices is provided for in-depth understanding of causes of memory savings of block-based formats.
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1. Introduction. The way how sparse matrices are stored in a computer memory may have a significant
impact on the required memory space, i.e., on the matrix memory footprints. Reduction of matrix memory
footprints may positively influence related computations and executions of corresponding programs [14, 23, 20,
21]. One way of reducing memory footprints of sparse matrices is their partitioning into blocks. Much has been
written about block processing of sparse matrices, frequently in the context of memory-bounded character of
sparse matrix-vector multiplication (SpMV) [3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 17, 18, 19, 24, 25, 27, 28, 30, 29, 31,
32, 33, 34, 35]. In this article, we address the problem of minimizing memory footprints of sparse matrices by
their partitioning into uniformly-sized blocks. Its solution raises two essential questions:

1. How to choose a suitable block size?
2. How to store resulting nonzero blocks in a computer memory?

These questions form a multi-dimensional optimization problem that needs to be solved prior to the partitioning
itself. We refer to both these problems—optimization and partitioning—as (block) preprocessing.

The above introduced optimization problem raises another question: How to specify the optimization space,
i.e., the space of tested configurations? Intuitively, the larger the optimization space is, the lower matrix memory
footprint can be found, however, at a price of longer preprocessing runtime. To amortize block processing of
a sparse matrix, the optimization space thus need to be chosen wisely in a form of a trade-off: we want it to
be small enough to ensure its fast exploration but also large enough to contain the optimal or nearly-optimal
configuration generally for any sparse matrix.

We present a study that analyses memory footprints of 563 representative sparse matrices from the Uni-
versity of Florida Sparse Matrix Collection (UFSMC) [11] with respect to their partitioning into uniformly
sized blocks. These matrices arose from a large variety of applications of multiple problem types and thus have
highly diverse structural and numerical properties. Our goal is to minimize memory footprints of matrices and
we consider an optimization space that consists of different block sizes and different ways of storing blocks in
memory. Based on the obtained results, we finally provide suggestions for both efficient and effective block
preprocessing of sparse matrices in general.

This article is an extended version of our conference paper [21]. It recapitulates main contributions of the
paper and adds new material, which mainly covers following subjects:

1. To assess representativeness of benchmark matrices, we measured the consistency of results across
randomly selected subsets of these matrices (see Section 3.5).
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2. We investigated influence of individual storage formats to the results and show that there is practically
no reason to use the CSR storage format for storing blocks (see Section 3.6).

3. Originally, memory footprints of matrices were compared with their lower bounds and with 32-bit
indexed CSR storage format (CSR32), which is the most commonly used format in practice. However,
in our block-based approach, we assume index compression. It makes therefore sense to compare
memory footprints of matrices also with index-compressed implementation of CSR (see Section 3.8).

4. We show that the lower bound for matrix memory footprint is the amount of memory required to store
the values of matrix nonzero elements [25, 21]. However, in practice, we can approach this lower bound
only if we make some assumptions about a matrix structure. Without such assumptions, i.e., in generic
cases, we can define another lower bound for memory footprints of sparse matrices that stems from
compression of data about matrix nonzero structure. This concept is used by so-called entropy-based
format (EBF) and within this article, we present memory footprints of matrices compared to EBF as
well (see Section 3.9).

5. We provide statistical analysis of measured memory footprints with respect to CSR32 as a function
of some of their characteristics, namely their application domain, density of nonzero elements, and
deviation of number of nonzero elements per rows (see Section 3.7).

6. We provide in-depth analysis of best-case and worse-case matrices, which are matrices most suitable
and unsuitable for block processing, respectively. This analysis allows better understanding of our
block-based concepts and may clarify some of their aspects (see Section 3.11).

Some parts of the original paper were shortened or omitted.

2. Methodology. In Section 1, we referred to a matrix memory footprint as to an amount of memory
space required to store a given matrix in a computer memory. More precisely, we can define it as a number
of bits (or bytes) that is needed to store the values of the nonzero elements of a given matrix together with
the information about their structure, i.e., their row and column positions. The ways how sparse matrices are
stored in a computer memory are generally called sparse matrix storage formats; we call them formats only if
the context is clear. Matrix memory footprint is thus a function of a given matrix and a used format (memory
footprints for the same matrix but distinct formats may differ considerably).

2.1. Block Storage Schemes. In case of partitioned sparse matrices, their nonzero blocks represent
individual submatrices that can be treated separately. In practice, well-proven formats used for nonzero blocks
of sparse matrices are:

• The coordinate (COO) format, which stores values of block nonzero elements together with their row
and column indices [6, 24, 30].

• The compressed sparse row (CSR) format, which stores values and column indices of lexicographically
ordered block nonzero elements together with the information about which values / column indices
belongs to which block row [24, 27, 28, 30].

• The bitmap format, which stores values of block nonzero elements in some prescribed order and encodes
their row and column indices in a bit array [7, 18, 24].

• The dense format, which stores values of both nonzero and zero block elements in a dense array (row
and column indices of nonzero elements are thus effectively determined by positions of their values
within this array) [2, 16, 17, 24].

Considering these formats, we have 6 options how to store nonzero blocks of a sparse matrix in memory:
1. store all the blocks in the COO format,
2. store all the blocks in the CSR format,
3. store all the blocks in the bitmap format,
4. store all the blocks in the dense format,
5. store all the blocks in the same format such that the format minimizes the memory footprint of a given

matrix (we refer to this option as min-fixed),
6. store each block generally in a different format such that the format minimizes the contribution of this

block to the memory footprint of a given matrix (we refer to this option as adaptive).
We call these options block storage schemes, or shortly schemes only. Since the first 4 schemes prescribe a fixed
format for all the blocks, we call them fixed-format schemes.
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For the min-fixed and adaptive schemes, we consider formats for nonzero blocks to be chosen from COO,
CSR, bitmap, and dense. In case of the min-fixed scheme, the matrix memory footprint thus contains 2
additional bits for storing the information about the format used for all the nonzero blocks. In case of the
adaptive scheme, the matrix memory footprint contains 2 additional bits for each nonzero block to store the
information about its format.

2.2. Block Sizes. To evaluate memory footprints of a given matrix for different schemes and some par-
ticular tested block size, we need information about numbers of nonzero elements of all nonzero blocks [24].
In the end, this information must be obtained for each distinct block size from the optimization space, which
represents the most demanding part of the whole optimization process [22]. The block preprocessing runtime is
thus approximately proportional to the number of distinct tested block sizes. Consequently, the lower is their
count, the higher are the chances that the partitioning will be profitable at all.

Generally, there is O(m×n) ways how to set a block size for anm×nmatrix, but for fast block preprocessing,
we need to choose only few of them.1 One possible approach is to consider only block sizes

2k × 2ℓ, where 1 ≤ k ≤ K and 1 ≤ ℓ ≤ L, (2.1)

which reduces the number of tested block sizes to K × L. The rationale behind such a choice consists, e.g., of
much faster block preprocessing, full employment of bits for storing in-block row and column indices, higher
utilization of caches, and possible storage of block elements in Z-Morton order [26] (for detailed explanation of
these aspects, see [21]).

Within the presented study, we consider block sizes (2.1) and set K = L = 8. The choice of these upper
bounds stemmed from our auxiliary experiments which showed that space-optimal block sizes have mostly less
than 64 rows/columns. Taking into account block sizes with up to 256 rows/columns should cover even the
remaining corner cases.

Consequently, each m × n matrix is further treated as a set of block matrices of sizes ⌈m/2k⌉ × ⌈n/2ℓ⌉,
where 1 ≤ k, ℓ ≤ 8.

2.3. Optimization Space. In the summary, our optimization space is initially defined by S6×B64, where
S6 denotes a set of selected block storage schemes:

S6 =
{

COO,CSR, bitmap, dense,min-fixed, adaptive
}

(2.2)

and B64 denotes a set of selected block sizes:

B64 =
{

2k × 2ℓ : 1 ≤ k, ℓ ≤ 8
}

. (2.3)

2.4. Additional Considerations. Additionally, when measuring matrix memory footprints, we need to
decide how to represent information about nonzero blocks and how to represent indices. In the presented study,
we assume:

1. nonzero blocks stored in memory in the lexicographical order;
2. explicit storage of block column index for each nonzero block;
3. storage of the number of nonzero blocks for each block row;
4. a minimum possible number of bits, i.e., ⌈log2 n⌉ bits, to store an index related to n entities (such an

approach is in the literature sometimes referred to as index compression).

2.5. Benchmark Matrices. Sparse matrices are often divided into two main categories—high perfor-
mance computing (HPC) matrices and graph matrices, the latter being binary matrices for unweighted graphs.
Efficient processing of graph matrices is generally governed by special rules that are different from those being
effective for HPC matrices [1, 8, 36] (e.g., higher matrix memory footprints in some cases lead to higher perfor-
mance of computations and graph matrices are also typically not suitable for simple block processing mainly due

1In addition to multiplication and Cartesian product, we also use the multiplication sign “×” to specify matrix/block sizes. In
such cases, m × n does not denote multiplication, but a matrix/block size of height m and width n (i.e., having m rows ans n

columns).
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Table 2.1

Counts of tested matrices falling under particular problem types (referred to as “kinds” in the UFSMC).

Problem Matrices

2D/3D 36
acoustics 4
chemical process simulation 25
circuit simulationi 41
computational fluid dynamics 47
computer graphics/vision 8
counter-example 2
duplicate model reduction 5
economic 24
eigenvalue/model reduction 2
electromagnetics 11
frequency-domain circuit sim. 4

Problem Matrices

least squares 7
linear programming 51
materials 15
model reduction 11
optimization 66
power network 35
semiconductor device 16
statistical/mathematical 1
structural 82
theoretical/quantum chem. 42
thermal 11
weighted graph 17

to emergence of hypersparse blocks [7, 8]). Within this work, we focused mainly (but not exclusively) on HPC
matrices. Particularly, for experiments, we took real matrices from the UFSMC that contained more than 105

nonzero elements and that exhibited a unique structure of nonzero elements.2 This way, we obtained 563 sparse
matrices arising from different application problems (see Table 2.1) and thus having different structural (and
numerical) properties; we denote these matrices by A1, . . . , A563. Of these matrices, 281 were square symmetric
and the remaining 282 were either rectangular or square unsymmetric.

For symmetric matrices, we always assume storage only of their single triangular parts in memory, which
is a common practice. When referring to the number of nonzero elements of a matrix, we thus generally need
to distinguish between the number of all nonzero elements and the number of elements that are assumed to be
stored in a computer memory. While measuring memory footprints of sparse matrices, we take into account the
latter one.

2.6. Matrix Memory Footprint. According to the text above, a matrix memory footprint for a sparse
matrix Ak partitioned into uniformly-sized blocks is a function of the following parameters:

1. a sparse matrix itself (Ak),
2. a block storage scheme s ∈ S6,
3. a block size h× w ∈ B64,
4. a number of bits b required to store a value of a single matrix nonzero element.

We denote this function by MMF⊞(Ak, s, w×h, b). We further assume storing values of matrix nonzero elements
in either single or double precision IEEE floating-point format [15], which implies b = 32 or b = 64, respectively,
in case of real matrices. We refer to such a floating-point precision as precision only.

We say that a matrix memory footprint for a given matrix A and a given precision determined by b is
optimal (with respect to our work) if it equals

min
{

MMF⊞(A, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

. (2.4)

We call the corresponding block storage scheme and block size optimal as well.

2.7. Optimization Subspaces. Let S ⊆ S6 and B ⊆ B64. S×B thus define a subspace of the optimization
space S6 × B64. Let

∆b
S,B(k) =

(

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S, h× w ∈ B
}

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

} − 1

)

× 100. (2.5)

2As for April, 2016.
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Table 3.1

Minimum, average and maximum values of Ub
s,B64

(in percents).

Single precision (b = 32) Double precision (b = 64)

Scheme (s) Minimum Average Maximum Minimum Average Maximum

COO 0.00 4.78 15.27 0.00 2.52 7.67
CSR 0.73 6.84 19.13 0.41 3.74 11.05
bitmap 0.00 3.13 22.01 0.00 1.75 12.38
dense 0.00 84.61 217.04 0.00 92.40 249.02
min-fixed 0.00 1.19 5.41 0.00 0.64 2.94
adaptive 0.00 0.10 2.24 0.00 0.05 1.30

This function expresses of how much percent is the minimal memory footprint of Ak from S ×B higher (worse)
than its optimal memory footprint. To assess the subspace S × B, we define the following parametrized set

Ub
S,B =

{

∆b
S,B(k) : 1 ≤ k ≤ 563

}

. (2.6)

The minimum, mean (average; µ), and maximum of Ub
S,B then reflect the best, average, and worst cases,

respectively, for S ×B across the tested matrices. If S or B consists of a single element only, we omit the curly
braces in the subscript of U for the sake of readability; e.g., we write Ub

s,B64
and Ub

S6,h×w instead of Ub
{s},B64

and

Ub
S6,{h×w}.

3. Results and Discussion.

3.1. Block Storage Schemes. First, we assessed block storage schemes. Complete statistics of Ub
s,B64

are presented in Table 3.1 and lead to the following observations:
• No fixed-format scheme minimized matrix memory footprints in comparison with the others. Bitmap
was the best in average, however, it was inferior to both COO and CSR in worst cases.

• Dense provided extremely high matrix memory footprints in average and worst cases. Due to the
explicit storage of zero elements, this scheme is suitable only for kinds of matrices that contain highly
dense blocks; obviously, there were only few such matrices in our tested suite.

• The lowest memory footprints were provided by the min-fixed and adaptive schemes; their numbers are
considerably lower in comparison with the fixed-format schemes.

3.2. Block Sizes. Similarly as block storage schemes, we assessed block sizes. Figure 3.1 shows for how
many tested matrices were individual block sizes optimal in case of double precision measurements; for single
precision, the results differed only for 2 matrices. We may observe that some block sizes were especially
favourable. The 8× 8 block size was optimal for 257 matrices, which corresponds to 45.6% of their total count.
Together with 4 × 4 and 16 × 16, these 3 block sizes were optimal for 65.2% of tested matrices. However,
the numbers from Figure 3.1 reflect only best cases. To find out how much were particular block sizes better
than the others in average and for their worst-cases matrices, we present the average and maximum values of
Ub
S6,h×w in Tables 3.2 and 3.3 for single and double precision, respectively. According to these results, some

blocks sizes—especially 8× 8—provided alone average matrix memory footprints close to their optimal values.
However, there was not a single block size that would yield the same outcome for all the tested matrices; the
maxima were for all the block sizes relatively high.

3.3. Subsets of Block Sizes. Let us remind that one of our goals is a possible reduction of the number
of block sizes in the optimization test space. The question thus is whether there is some subset B ⊂ B64 that
would, at the same time:

1. significantly reduce the number of block sizes (|B|),
2. provide matrix memory footprints close to their optimal values for most of the tested matrices (average

of Ub
S6,B

close to zero),

3. provide low matrix memory footprints for all the tested matrices (low maximum of Ub
S6,B

).
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Fig. 3.1. Numbers of tested matrices for which are block sizes optimal, measured for double precision; block size 8 × 8 was
optimal for 257 matrices.

Table 3.2

Average and maximum values of U32
S6,h×w

(in percents), sorted by average.

.
Rank h× w Avg. Max.

1 8×8 1.23 18.36
2 8×16 2.14 19.35
3 16×8 2.26 21.41
4 4×8 2.32 17.31
5 8×4 2.38 19.52
6 16×16 2.56 21.82
7 4×4 2.92 21.94
8 4×16 2.99 16.51
9 16×4 3.23 20.44
10 8×32 3.65 21.26

Rank h× w Avg. Max.

11 16×32 4.03 23.75
12 32×8 4.13 23.97
13 4×32 4.36 18.71
14 32×16 4.53 24.45
15 32×4 4.87 23.60
16 32×32 5.20 26.50
. . . . . . . . . . . .
62 256×2 14.44 37.33
63 256×128 14.61 38.32
64 256×256 14.65 35.42

Based on the analysis presented in detail in [21], we propose the following reduced sets of block sizes:

B8 =
{

2k × 2k : 1 ≤ k ≤ 8
}

, (3.1)

B14 = B8 ∪
{

2k × 2ℓ : 2 ≤ k, ℓ ≤ 4
}

, (3.2)

B20 = B8 ∪
{

2k × 2ℓ : 2 ≤ k, ℓ ≤ 5
}

. (3.3)

A subscript i in Bi expresses the number of its block sizes, i.e., |Bi| = i.
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Table 3.3

Average and maximum values of U64
S6,h×w

(in percents), sorted by average.

.
Rank h× w Avg. Max.

1 8×8 0.69 11.07
2 8×16 1.18 11.67
3 16×8 1.25 12.91
4 4×8 1.30 9.74
5 8×4 1.33 10.98
6 16×16 1.40 13.16
7 4×4 1.63 12.34
8 4×16 1.66 9.96
9 16×4 1.79 12.32
10 8×32 1.99 11.97

Rank h× w Avg. Max.

11 16×32 2.19 12.84
12 32×8 2.26 14.45
13 4×32 2.40 10.56
14 32×16 2.47 14.04
15 32×4 2.68 14.23
16 32×32 2.82 14.18
. . . . . . . . . . . .
62 256×2 7.88 21.59
63 256×128 7.92 19.56
64 256×256 7.93 18.96

Table 3.4

Average and maximum values of Ub
s,Bj

(in percents) for j ∈ {64, 20, 14, 8}.

(a) Single precision (b = 32)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 1.19 5.41 0.10 2.24
B20 1.32 6.23 0.22 4.21
B14 1.35 6.89 0.28 6.81
B8 1.51 10.06 0.51 11.07

(b) Double precision (b = 64)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.64 2.94 0.05 1.30
B20 0.71 3.52 0.12 2.37
B14 0.73 3.77 0.16 3.83
B8 0.81 5.34 0.28 5.88

3.4. Reduced Optimization Subspaces. Table 3.1 revealed that to minimize memory footprints of (all)
the tested matrices, we had to use either the min-fixed or the adaptive block storage scheme. To reduce the
block preprocessing overhead, we now proposed several reduced sets of block sizes. Let us now assess these
options together. We measured the statistics of Ub

s,Bj
for all the combinations of s ∈ {min-fixed, adaptive} and

j ∈ {64, 20, 14, 8}; the results are presented in Table 3.4. The average matrix memory footprints were in all
cases close to their optimal values.

3.5. Consistency. Up to now, we have presented measurements conducted for all 563 tested matrices. To
assess their “representativeness”, we measured the consistency of memory footprints statistics across randomly
selected subsets of these matrices. Such an experiment should reveal to which extent are our measurements
sensitive to the set of input matrices.

Let R
(i)
n denote an ith set of n randomly selected tested matrices; different i thus allows us to distinguish

different random selections. Let K
(i)
n denote a set of matrix indices from R

(i)
n , thus R

(i)
n =

{

Ak : k ∈ K
(i)
n

}

. Let

V
b,(i)
s,Bj ,n

=
{

∆b
s,Bj

(k) : k ∈ K(i)
n

}

. (3.4)
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Table 3.5

Standard deviations of avgV
b,(i)
s,Bj ,200

and maxV
b,(i)
s,Bj ,200

(in percents) for 1 ≤ i ≤ 50.

(a) Single precision (b = 32)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.06 0.33 0.02 0.24
B20 0.07 0.37 0.03 0.64
B14 0.08 0.42 0.04 1.41
B8 0.09 0.86 0.07 1.40

(b) Double precision (b = 64)
s = min-fixed s = adaptive

Block sizes Average Maximum Average Maximum

B64 0.03 0.19 0.01 0.14
B20 0.04 0.23 0.02 0.29
B14 0.04 0.22 0.02 0.82
B8 0.05 0.50 0.04 0.61

V
b,(i)
s,Bj ,n

thus expresses of how much percents are memory footprints of matrices from R
(i)
n —measured for scheme

s, a set of block sizes Bj , and a precision given by b—higher than their optimal memory footprints. Similarly

as before, we were interested in average and maximum values of V
b,(i)
s,Bj ,n

; let them denote by avgV
b,(i)
s,Bj ,n

and

maxV
b,(i)
s,Bj ,n

, respectively. To assess the consistency introduced above, we measured standard deviations of these
metrics for 50 sets of 200 randomly selected tested matrices, i.e., standard deviations of the following sets:

{

avgV
b,(i)
s,Bj ,200

: 1 ≤ i ≤ 50
}

and
{

maxV
b,(i)
s,Bj ,200

: 1 ≤ i ≤ 50
}

. (3.5)

The results obtained for the min-fixed and adaptive schemes, sets of blocks sizes B64,B20,B14,B8, and both
precisions are shown in Table 3.5.

The measured standard deviations are of 1 to 2 orders of magnitude lower than the corresponding numbers
from Table 3.4. By normalizing the standard deviations (with respect to Table 3.4), we found out that the
standard deviations ranged from 5.16 to 9.28 percents for the min-fixed scheme and from 10.30 to 21.33 percents
for the adaptive scheme. Seemingly, the min-fixed scheme provides more consistent relative memory footprints
of matrices with respect to their optimal values, while the adaptive scheme is more sensitive to the selection of
matrices. Note, however, that the measured standard deviations were according to Table 3.5 in all cases relatively
small with the maximum value 1.41; recall that these numbers are relative differences in percents between optimal
matrix memory footprints and those measured for particular tested configurations. Especially, the standard
deviations for average metrics are practically negligible, which manifests high level of representativeness of the
tested matrices.

3.6. Block Storage Schemes Without CSR. We have defined the min-fixed and adaptive block storage
schemes such that the format used for storing blocks is selected—from COO, CSR, bitmap, and dense—either
for all blocks collectively or for each block separately; the corresponding results were presented by Table 3.4.
However, we were also interested in how these results would change if we modified the min-fixed and adaptive
schemes by excluding individual formats. We carried out such measurements and their results revealed that:

1. without the COO or bitmap format, the memory footprints of matrices grew significantly;
2. without the CSR or dense formats, the memory footprints of matrices grew negligibly;
3. without both the CSR and dense formats, the memory footprints of matrices grew negligibly as well.

The question therefore is whether the CSR and dense formats are at all useful for storing blocks. Based on
our knowledge and experience, we would not suggest to exclude the dense format. Though this format is optimal
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Table 3.6

Average and maximum values of Ub
s,Bk

(in percents) for k ∈ {64, 20, 14, 8} with excluded CSR.

(a) Single precision (b = 32)
s = min-fixed-w/o-CSR s = adaptive-w/o-CSR

Block sizes Average Maximum Average Maximum

B64 1.20 5.55 0.15 2.24
B20 1.32 6.44 0.26 4.22
B14 1.35 6.89 0.31 6.82
B8 1.51 10.06 0.54 11.07

(b) Double precision (b = 64)
s = min-fixed-w/o-CSR s = adaptive-w/o-CSR

Block sizes Average Maximum Average Maximum

B64 0.65 3.01 0.09 1.30
B20 0.71 3.52 0.15 2.37
B14 0.73 3.77 0.18 3.84
B8 0.82 5.34 0.30 5.88

in rare cases only, it is likely the most efficient format for matrix computations. For example, multiplication of
a block stored in the dense format with a corresponding vector part can be performed by invoking a relevant
operation from some dense linear algebra library, such as BLAS [12]. In practice, every HPC system provides
at least one optimized implementation of such a library that is highly-tuned for a given hardware architecture
(e.g., ATLAS, BLIS, Cray LibSci, IBM ESSL, Intel MKL, OpenBLAS, etc.).

On the contrary, CSR does not provide the same benefits as the dense format, especially when it is im-
plemented together with index compression. Moreover, CSR is the only considered format that prescribes a
fixed order of nonzero elements; consequently, it does not allow to store them in an order that might be com-
putationally more efficient, such as the Z-Morton order. One therefore might consider excluding CSR from the
min-fixed and adaptive schemes to simplify related algorithms and their implementations. We call such modified
schemes min-fixed-w/o-CSR and adaptive-w/o-CSR and present the results for them in Table 3.6. Obviously,
the numbers are either the same or only slightly higher than those measured for the original min-fixed and
adaptive schemes; see Table 3.4.

3.7. Memory Savings Against CSR32. Likely the most widely-used storage format for sparse matrices
in practice is CSR, which is supported by vast majority of software tools and libraries that work with sparse
matrices. To distinguish between CSR used for blocks of partitioned matrices and CSR used for whole (not-
partitioned) matrices, we call the latter CSR32, since it is typically implemented with 32-bit indices. Researchers
frequently demonstrate the superiority of their algorithms and data structures (formats) by comparison with
CSR32, which have become de facto an etalon in sparse-matrix research [25].

Comparison of memory footprints of sparse matrices partitioned into blocks and the same matrices stored
in CSR32 allows us to assess our block approach. Let MMFCSR32(A, b) denote a memory footprint of a matrix
A stored in memory in CSR32 with respect to a precision given by b. The function

Λb(k) =

(

1−
min

{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

MMFCSR32(Ak, b)

)

× 100 (3.6)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in CSR32. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.7. The obtained numbers speaks strongly
in favour of partitioning of sparse matrices in general. Even in worst cases, our block approach reduced the
memory footprints of matrices of 25.46% and 17.08% for single and double precision, respectively. In average,
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Table 3.7

Statistics of Λb(k), i.e., memory savings of optimal block configurations against CSR32 in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum 25.46 17.08
Average 42.29 28.67
Maximum 50.21 35.86

the savings were 42.29% and 28.67%, which significantly reduces the amount of data that needs to be transferred
between memory and processors during computations.

Table 3.7 shows the statistics of memory savings across all the tested matrices. However, we also wanted
to find out which matrices were especially suitable/unsuitable for partitioning in general. For this reason, we
measured the memory saving against CSR32 also as a function the following criteria, which are commonly used
to distinguish/quantify different types of sparse matrices:

1. application problem type,
2. relative count of matrix nonzero elements (their density),
3. uniformity of the distribution of matrix nonzero elements across its rows.

The application problem types were introduced by Table 2.1. As for the second criterion, we define the density
of nonzero elements for an m×n matrix A with nnz nonzero elements in percents as ϱ(A) = nnz/(m×n)×100.
Its values thus ranges from 0 for an empty matrix to 100 to a fully dense matrix.

Let rnnz (i) denote a number of nonzero elements of ith row of A; rnnz (i) thus ranges from 0 for empty rows
to n for fully dense rows. To allow a collective evaluation of matrices with different row lengths, we transform
rnnz (i) into relative counts in percents as follows: prnnz (i) = rnnz (i)/n × 100. The standard deviation of
prnnz (i) for i = 1, . . . ,m then represents an inverse measure of the above introduced third criterion for A. Zero
standard deviation of prnnz (i) then implies a matrix whose all rows have exactly the same number of nonzero
elements.

Recall that in Section 2 we defined two kinds of the numbers of nonzero elements, counting either all of
them or just those stored in a computer memory (for unsymmetric matrices, these numbers would be equal).
Accordingly, we can quantify the above introduced second and third matrix criteria in two ways; we further
show results for both of them.

The measurements for the first criterion and double precision are presented by Table 3.2; the results for
single precision are practically the same, just scaled accordingly. We need to be careful when making general
conclusions based on these results, since for some problem types, our tested suite of matrices contain only few
representatives. However, we may observe that the memory savings against CSR32 were relatively consistent
across problem types; there was no problem type that would provide much better or much worse savings than
the others, including even the graph matrices.

The measurements for the second and third criteria are presented by the top and bottom parts of Table
3.3, respectively. Again, we show results only for double precision for the same reason as above. Seemingly
(and maybe interestingly), there is no obvious correlation between the memory savings of partitioned matrices
against CSR32 and the density of nonzero elements of matrices / uniformity of their distribution across matrix
rows.

In summary, the obtained results support the potential profitability of partitioning of sparse matrices in
general.

3.8. Memory Savings Against Index-Compressed CSR. Recall that within our block approach we
assumed index compression, i.e., a minimum amount of bits to be used for all indices (Table 2.4). However,
for CSR32, we considered all indices to occupy 32 bits each, since this is the most common implementation of
CSR in practice. To provide fair comparison with CSR, we therefore also considered storage of matrices in the
implementation of CSR with indexed compressed indices; we call such a variant CSRic.

Let MMFCSRic(A, b) denote a memory footprint of a matrix A stored in memory in CSRic with respect to
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Fig. 3.2. Statistics of relative memory savings against CSR32 in percents across the tested matrices grouped by individual
problem types, measured for double precision. Circles represent average values, the extents from minimal to maximal values are
indicated by bars.

Table 3.8

Statistics of Ωb(k), i.e., memory savings of optimal block configurations against CSRic in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum 1.41 0.84
Average 22.43 13.70
Maximum 35.63 22.43

a precision given by b. The function

Ωb(k) =

(

1−
min

{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

MMFCSRic(Ak, b)

)

× 100 (3.7)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in CSRic. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.8. Memory footprints of matrices stored in
CSRic are either the same or more likely lower than memory footprints of matrices stored in CSR32. Therefore,
memory savings Ωb(k) are lower than Λb(k). However, even when compared to CSRic, our block approach
still reduces memory footprints of matrices in average by 22.43% and 13.70% for single and double precision,
respectively, which represents significant memory savings.

3.9. Memory Savings Against EBF. If the structure of a sparse matrix is completely known (such as
in case of tridiagonal matrices), the amount of memory required to store the information about its structure
is effectively zero. Many sparse matrix storage formats are based on assumptions that matrices (more or less)
match some particular structure of nonzero elements. For instance, block-based formats work best for matrices,
that has nonzero elements clustered in dense blocks.
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Fig. 3.3. Relative memory savings against CSR32 in percents as a function of ϱ ( above) and the standard deviation of prnnz
(below) measured for the tested matrices and double precision considering both all/stored nonzero elements.

On the contrary, if we do not assume any particular structure of nonzero elements, we can find an amount
of memory required to store the information about matrix nonzero structure as follows: nnz nonzero elements
can be placed to m× n positions in C(mn,nnz ) different ways, where

C(mn,nnz ) =
(mn)!

(mn− nnz )! · nnz !
. (3.8)

To distinguish between them, we thus need log2 C(mn,nnz ) bits. Such an approach is employed by so-called
Entropy based format (EBF) [30], which is rather a theoretical concept and establishes a lower bound for generic
memory footprints of sparse matrices in cases where no assumptions about their structures are made.

Let MMFEBF(A, b) denote a memory footprint of a matrix A stored in memory in EBF with respect to a
precision given by b. The function

Θb(k) =

(

1−
min

{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

MMFEBF(Ak, b)

)

× 100 (3.9)

then expresses how much memory in percents we would save if we stored the tested matrix Ak in its optimal
block configuration instead of in EBF. We measured these memory savings for all the tested matrices and
processed them statistically; the results are presented by Table 3.9. For worst-case matrices, EBF required less
memory. However, our block approach still reduced memory footprints of matrices in average by 12.63% and
7.36% for single and double precision, respectively. These results indicate that the nonzero structure of the
majority of matrices from our highly diverse benchmark suite have some kind of a block character.

3.10. Memory Footprints Compared with Lower Bounds. Another object of our concern within
this study was of how much are the memory footprints of the tested matrices higher than their potential minima,
i.e., their lower bounds. We further do not consider compression of the values of matrix nonzero elements, since
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Table 3.9

Statistics of Θb(k), i.e., memory savings of optimal block configurations against EBF in percents, across the tested matrices.

Statistics Single precision Double precision

Minimum −9.43 −5.75
Average 12.63 7.36
Maximum 28.25 17.16

it is generally worth applying only for special kinds of matrices where nonzero elements contain few unique
numbers. To store nnz nonzero elements of a matrix A in memory with respect to a precision given by b, we
thus need nnz × b bits to store their values and some additional space to store the information about their
structure. The lower bound for the latter for any particular structure of nonzero elements is 1 bit, since it is
sufficient for distinguishing whether or not a matrix has that particular structure. For instance, we can use
this bit to indicate whether a matrix is tridiagonal. If it is, the bit would be set and we can store the values
of nonzero elements in a dense array; their row and column indices can then be derived from the positions of
values in this array. Such an approach can be generally applied for any particular structure of matrix nonzero
elements.

In practice, we would need to store in memory also some additional information about a matrix, such as its
dimensions or its number of nonzero elements. However, for large matrices such as those from our tested suite,
this additional data require a negligible amount of memory, therefore we define a lower bound for a matrix
memory footprint simply as MMFlb(A, b) = nnz × b.

Let

Γb
⊞
(k) =

(

min
{

MMF⊞(Ak, s, h× w, b) : s ∈ S6, h× w ∈ B64

}

MMFlb(Ak, b)
− 1

)

× 100. (3.10)

Γb
⊞
(k) thus expresses of how much percents is the memory footprint of Ak stored in an optimal block way higher

than its lower bound. For comparison purposes, we define corresponding metrics also for CSR32, CSRic, and
EBF denoted by Γb

CSR32(k), Γ
b
CSRic(k), and Γb

EBF(k), respectively:

Γb
CSR32(k) =

(

MMFCSR32(Ak, b)

MMFlb(Ak, b)
− 1

)

× 100, (3.11)

Γb
CSRic(k) =

(

MMFCSRic(Ak, b)

MMFlb(Ak, b)
− 1

)

× 100, (3.12)

Γb
EBF(k) =

(

MMFEBF(Ak, b)

MMFlb(Ak, b)
− 1

)

× 100. (3.13)

The measured statistics of Γb
⊞
(k), Γb

CSR32(k), Γ
b
CSRic(k), and Γb

EBF(k) for the tested matrices are shown in
Table 3.10. Memory footprints of partitioned sparse matrices were obviously much closer to the lower bounds
than memory footprints of matrices stored in CSR32 and CSRic. Namely, they were 5 times closer in average
and 2 times in worst cases than CSR32. In best and average cases, they were even significantly closer to the lower
bounds than EBF. In best cases, partitioned matrices almost reached their lower-bound memory footprints. For
instance, in double precision, 7, 26, and 120 matrices out of 563 provided memory footprints up to 1, 2, and 5
percents above their lower bounds, respectively.

3.11. Best-Case and Worst-Case Matrices. We define a best-case matrix and a worst-case matrix to
be a matrix Ak with the lowest and highest value of Γb

⊞
(k), respectively.

3.11.1. Best-Case Matrix. In our benchmark suite, the best-case matrix was A180 called exdata 1 in
the UFSMC. It is a square symmetric matrix with 6001 rows/columns, 2269500 nonzero elements in total, and
1137750 nonzero elements in a single triangular part. Its density ρ(A180) = 6.30% considering all the elements.
A visual representation of nonzero pattern of this matrix is shown in Figure 3.4.a.
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Table 3.10

Statistics of Γb
⊞
(k), Γb

CSR32(k), Γ
b
CSRic(k), and Γb

EBF(k) (in percents) for the tested matrices.

Single precision Double precision

Statistics Blk.-opt. CSR32 CSRic EBF Blk.-opt. CSR32 CSRic EBF

Minimum 0.63 100.02 34.52 6.37 0.31 50.01 17.26 3.18
Average 21.85 111.03 57.22 39.58 10.93 55.51 28.61 19.79
Maximum 71.31 152.39 93.19 67.15 35.66 76.19 46.60 33.58

(a) exdata 1 (b) patents main

Fig. 3.4. Visualization of nonzero patterns of the best case ( left) and worst case ( right) matrices obtained from the UFSMC.

Relative memory footprints for this matrix are shown in Table 3.11. In case of blocking, the memory
footprint of this matrix is of only 0.63% higher than its lower bound. In absolute numbers, the lower bound for
single precision is 36408000 bits, while the memory footprint for optimal block configuration is 36637064 bits.

The optimal block size for this matrix is 16 × 16, which results in 5592 nonzero blocks, out of which 4278
blocks are fully dense (have all 256 elements nonzero). Vast majority of the matrix nonzero elements (namely
96.26%) are thus stored in dense blocks, which makes the block approach for storage of this matrix such superior
in comparison with other formats. Figure 3.4.a shows that this matrix contains one large dense block where
most of its nonzero elements are located.

The optimal block scheme for this matrix is adaptive. The second lowest scheme is bitmap, which provides
memory footprint 37890016 bits, i.e., 1.03% higher than the optimum.

3.11.2. Worst-Case Matrix. The worst-case matrix in our benchmark suite was A385 called patents main
in the UFSMC. It is a square unsymmetric matrix with 240547 rows/columns and 560943 nonzero elements.
Its density ρ(A385) = 9.69e − 4%, thus this matrix is of 4 orders of magnitude more sparse than the best-case
matrix exdata 1. A visual representation of the matrix is shown in Figure 3.4.b.

Relative memory footprint for this matrix are shown in Table 3.11. In case of blocking, it is significantly
higher than the lower bound. In absolute numbers, the lower bound for single precision is 17950176 bits, while
the memory footprint for optimal block configuration is 30750736 bits.

The optimal block size for this matrix is 256 × 256, which results in 146772 nonzero blocks. Out of them,
36003 blocks have only a single nonzero element, 111957 blocks have less than 6 nonzero elements, and no block
has more than 22 nonzero elements. Nonzero elements are thus spread all over the matrix and not clustered in
dense blocks, which hinders low memory footprints for our block approach. Note, however, that in spite of this
is the optimal block memory footprint for this matrix only half of that of CSR32 and lower than that of CSRic.

The optimal block scheme for this matrix is COO. The second lowest scheme is adaptive, which provides
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Table 3.11

Relative memory footprints of the best case and worst case matrices in percents with respect to their lower bounds, measured
for single precision.

Format exdata 1 (k = 180) patents main (k = 385)

Γ32
⊞
(k) 0.63 71.31

Γ32
CSR32(k) 100.53 142.88

Γ32
CSRic(k) 40.97 83.05

Γ32
EBF(k) 16.81 56.55

memory footprint 31044280, i.e., 9.5e-3% higher than the optimum.

4. Conclusions. Within this study, we analyzed memory footprints of 563 representative sparse matrices
with respect to their partitioning into uniformly sized blocks. We considered different block sizes and different
ways of storing blocks in a computer memory. The obtained results led us to the following conclusions:

1. Partitioning of sparse matrices substantially reduces memory footprints of sparse matrices when com-
pared to the most-commonly used storage format CSR32. The average observed memory savings in
case of single and double precision were 42.3 and 28.7 percents of memory space, respectively. The
corresponding worst-case savings were 25.5 and 17.1 percents.

2. The corresponding memory savings with respect to index-compressed implementation of CSR, i.e.,
CSRic, were in case of single and double precision 22.4 and 13.7 percents in average, respectively. The
same metric with respect to EBF were 12.6 and 7.4 percents, respectively.

3. Partitioning of sparse matrices provides memory footprints much closer to their lower bounds than
CSR32. In average, the measured memory footprints for optimal block configurations were of only 21.9
and 10.9 percents higher than the lower bounds, while the corresponding memory footprints for CSR32
were higher of 111.0 and 55.5 percents. Moreover, the memory footprints of matrices most suitable for
block processing approach the lower bounds; the amount of memory required for storing information
about the structure of nonzero elements of such matrices is relatively negligible.

4. Partitioning of sparse matrices generally provides memory footprints closer to their lower bound than
CSRic and even than EBF. Many sparse matrices in real world contain such form of a structure of
nonzero elements that is suitable for block processing.

5. For minimization of memory footprints of partitioned sparse matrices, we cannot consider only a single
format for storing blocks. Instead, we need to choose a format according to the structure of matrix
nonzero elements either for all its blocks collectively (min-fixed scheme) or for each block separately
(adaptive scheme). The latter approach mostly yields lower memory footprints.

6. For minimization of memory footprints of partitioned sparse matrices, we cannot consider only a single
block size. However, we can substantially reduce the set of block sizes in the optimization space and
still obtain memory footprints close to their optima. In average, the measured memory footprints for
the proposed reduced sets of block sizes B20, B14, and B8 and the min-fixed/adaptive schemes were
at most of only 1.51 percents higher than the optimal values. Even considering square blocks only is
thus generally sufficient for minimization of memory footprints of sparse matrices. However, there exist
matrices for which the corresponding metrics are significantly higher and are inversely proportional to
the number of tested block sizes. One should thus be aware of whether or not his/her matrices fall into
this category and if yes, he/she might consider using larger sets of block sizes.

7. The obtained results seem to be consistent across a wide range of real-world matrices arising from
multiple applications problems.

8. There is seemingly no advantage for storing blocks in CSR; without considering this format for blocks,
the memory footprints of matrices grow only slightly or not at all. The COO and bitmap formats
themselves minimize memory footprints of partitioned sparse matrices, while the dense format is likely
the most efficient for related computations.
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9. We measured memory savings of partitioned sparse matrices against CSR32 as a function of the following
criteria, which are frequently used in the literature: the application problem type, the density of matrix
nonzero elements, and the standard deviation of the number of nonzero elements across matrix rows.
To our best, we did not find any correlation between the memory savings and these criteria; the block
approach thus seems reduce memory footprints of sparse matrices in general.

Our findings are encouraging since they show that memory footprints of partitioned sparse matrices can
be substantially reduced even when a relatively small block preprocessing optimization space is considered.
Whether or not will such a reduction pay off in practice depends on the objective one wants to achieve. A big
challenge is to improve the performance of memory-bounded sparse matrix operations due to the reduction of
memory footprints of matrices. Within our future work, we plan to face this problem at least partially—we will
focus on the development of scalable efficient block preprocessing and SpMV algorithms for the min-fixed and
adaptive block storage schemes, and we will evaluate them experimentally on mainstream HPC architectures.
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