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Abstract—Congestion is one of the most critical issues im-
pacting the performance of Internet networks, hence the need
of Congestion Control Algorithms (CCAs) to either prevent or
remove it. Nevertheless, CCAs may affect the network fairness
given that the transport behavior can drastically change in func-
tion of the CCA (e.g., Performance-oriented Congestion Control
(PCC), Bottleneck Bandwidth and Round-trip propagation time
(BBR), Reno) used in the endpoints.

New transport protocols such as Quick UDP Internet Con-
nections (QUIC) allow to easily customize their CCA, which
increases the types of CCAs on the Internet. Evaluating the
fairness among competing CCAs is thus essential. In this work,
we focus on determining an impartial Fairness Measurement
Procedure (FMP) capable of assessing equity when several CCAs
compete in a bottleneck during a given period of time. In order
to validate the proposed mechanism, we perform an exhaustive
evaluation of various competing CCAs within multiple network
configurations while varying latency, packet loss, queuing policy
and buffer size. Results show that the grade of fairness achieved
by two different CCAs depends on the network configuration.
This claim confirms the relevance of the proposed fairness
measurement procedure.

Index Terms—fairness, congestion control, QUIC.

I. INTRODUCTION

Since the rise of the Internet, researchers have developed
protocols and algorithms to increase the overall network
efficiency while preserving fairness among concurrent users or
applications and preventing network collapses. In this work we
are especially interested in the Congestion Control Algorithms
(CCAs), which are implemented in the transport layer of
the Internet protocol stack. The most popular CCAs, namely
RENO [1] and CUBIC [2], identify congestions by means
of packet loss detection. These algorithms enable data rate
adjustment among concurrent network flows; however packet-
loss-based CCAs do not meet the latency requirements of the
incoming network services such as real-time applications, low
latency slices in 5G mobile, virtual reality, among others.

Recent research efforts have yielded new CCAs, in partic-
ular Bottleneck Bandwidth and Round-trip propagation time
(BBR) [3], [4] and Performance-oriented Congestion Con-
trol (PCC) [5]. Both proposals aim to improve the network
performance by maximizing both network data rate and user
satisfaction BBR and PCC differ from RENO and CUBIC by
no longer relying on loss detection. BBR is based on latency
evolution whereas PCC is based on flow prediction.

Another factor of changes in the implementation of CCAs
is the development of new transport protocols, especially
Quick UDP Internet Connections (QUIC) [6], which has been
recently deployed by Google. In QUIC (based on User Data-
gram Protocol (UDP)), the CCA is implemented in the user
space within applications, for instance in Internet browsers
as Chrome or in web servers as those of YouTube. This fact
facilitates the diversification of CCAs on Internet and enables
their continuous updating unlike traditional CCAs, which are
implemented in the kernel of the Operating System (OS) at
both client and server sides. Thus, updating and upgrading
kernel-based CCAs as TCP CUBIC and TCP RENO require
patching a significant amount of devices.

When the network deals with a wide variety of transport
protocols and notably CCAs, the risk is that the fair sharing
of network resources is jeopardized due to insufficiently tested
CCAs. This claim is a major concern for network operators.
Moreover, recent studies such as those presented in [7] reveal
that the performance of CCAs does not always match what is
announced by their designers. For instance, a content provider
that implements a CCA tailored to its particular needs cannot
be certain of the obtained results. It is then required to develop
appropriate testing and validation mechanisms of incoming
CCAs, notably when evaluating their behavior in heteroge-
neous environments where various CCAs run concurrently.

When implementing new CCAs, the best practice is to
check whether new algorithms compete fairly with traditional
standardized CCAs. The challenge is that there exists a wide
range of Internet configurations which need to be taken into
account during evaluations. Yan et al. in [7] have recently
proposed a worldwide platform (namely Pantheon) for testing
the performance of CCAs and protocols over the Internet.
Pantheon employs various client and server machines deployed
around the world to measure the performance of various
CCAs (BBR, CUBIC, PCC, among others) while capturing
measurements for more than one year. Results show that the
performance of CCAs can dramatically vary as a function
of the network configuration, i.e., network path, bottleneck
buffers sizes (notably when considering the queuing strategy),
and traffic variations.

In the interest of validating new CCAs a first estimation



of their friendliness1 need to be obtained by means of lo-
cal test platforms. In this line of research, the Real-time
Transport Protocol Media Congestion Avoidance Techniques
(RMCAT) initiative [8], [9] proposes several methods for
network fairness assessment through a limited number of
representative network scenarios. However, this initiative is
limited to video streaming use-cases. The main drawback is
that RMCAT measures the network equity at a given instant
of time although the fairness must be evaluated over the entire
session. Indeed, the beginning of sessions can easily become
more relevant than the end of them notably when considering
web services and video streaming use-cases where the Quality
of user Experience (QoE) is mainly influenced by the first
elements [10], [11].

We propose in this paper a generic impartial Fairness
Measurement Procedure (FMP), in order to evaluate the
session-level fairness between two network endpoints while
considering a broad range of wire-line network configurations
representing real scenarios. The proposed FMP is based on
the Jain’s index (a quantitative measure of fairness proposed
in [12]) and takes into account the data rate evolution over time
for a given session. To be more specific, the proposed fairness
assessment metric meets the need of determining whether
incoming CCAs preserve the fair network performance while
paying special attention at the beginning of sessions. The
proposed FMP is validated by emulation while performing an
exhaustive evaluation of network configurations. We evaluate
three CCAs: RENO and the two (supposedly more aggressive)
new CCAs BBR and PCC.

This paper is organized as follows: Section II presents a
general background and related works. Section III provides
a formal definition of fairness. Section IV introduces the
proposed metric in order to evaluate CCA fairness. Section V
describes the test-bed platform used for the emulation of the
various network configurations. The fairness evaluation of the
aforementioned CCAs (i.e., RENO, BBR, PCC) is discussed in
Section VI. Conclusions are finally presented in Section VII.

II. BACKGROUND AND RELATED WORK

A. On Fairness

Fairness has strong importance for network operators, who
aim at ensuring that each user receives a fair share of network
resources, in particular a fair share of the bandwidth. In an
unfair flows, one application in particular gets more data to
the detriment of other applications. This detrimental behavior
can result in unsatisfaction for the users. While being a key
requirement to meet, fairness has also been a complex object
of research for years. Thus, multiple definitions have been
proposed by researchers to capture a different characteristic of
the problem [13]. The max-min fairness in particular compares
multiple competing flows sharing a bottleneck in the network
under three principles: (i) increasing the data-rate of one flow
results in a decrease in the data-rate of another flow; (ii) each

1The term friendliness refers to the capacity of new CCAs of coexisting
with others without disrupting them notably in terms of fairness.

flow has a saturation point in its path; and (iii) each flow
obtains the best performance with respect to its requirements.

To the best of our knowledge, the existing definitions of
fairness do not capture one element that has become an
essential development driver for service provider: the notion
of session. Today’s connections between a client and a server
are long sessions where not all data have the same impor-
tance. Thus, service providers can develop strategies where
a flow (session) preempts more resources at certain time of
the connection, resulting in transient unfairness. As we will
discuss in Section III, the fairness should neither be measured
at the end of a session, not be measured on a small fraction
of its duration. The researchers miss a definition that could
take into account that the competition between flows should
be considered at the level of sessions.

B. Fairness Metrics

Metrics determine whether CCA results in a fair share
of network resources. The Internet Engineering Task Force
(IETF) introduces three such metrics [14], for n competing
flows, each flow i receiving Ti data.

Jain Index [12]. Let Oi be the max-min optimal bit-rate
(defined for example with the algorithm of progressive filling
[13]). The Jain’s index is defined as

J(x1, x2, . . . , xn) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

(1)

with xi = Ti/Oi. Jain’s index ranges from 1
n to 1, which

allows comparison between network management policies
regardless of the bottleneck bandwidth.

Product measure [15]. The product of the data-rates is
maximized when all connections receive the same bit-rate.

P =
∏

i∈{1,...,n}

Ti (2)

The maximum value,
(
B
n

)n
depends on the link bandwidth B

(bottleneck). Hence, the fairness comparison is only possible
when network links have similar bandwidth configurations.

Epsilon-fairness [16]. It enables defining a binary metric,
whether a network management policy is fair or is not. The
boundary between fair and unfair is determined by a variable
ε.

mini∈{1,...,n} Ti

maxi∈{1,...,n} Ti
≤ 1− ε (3)

The higher is ε, the stricter to fair is the ratio. This metric
focuses on extreme flows.

These metrics do not respect two key fairness requirements:
(i) they do not evaluate fairness evolution over the duration of
a session and (ii) they do not take into account the data-rate
fluctuations within the session.



C. Fairness Evaluation for CCAs

CCA fairness is usually evaluated either by testing it on
the Internet, by using a testbed for emulating the real network
behavior, or even by simulation. A recent solution called Pan-
theon [7] presents a new performance evaluation framework
of CCAs which is able to run on both Internet and a pre-
configured testbed. Pantheon aims to replace platforms like
Planet-Lab [17], Emulab [18], and ORBIT [19] for CCAs
performance evaluation.

In general, Pantheon enables the performance evaluation of
protocol and CCAs under multiple network configurations.
In [7], authors reveals that the performance of transport
protocols notably depends on (i) the network path and (ii) the
time. Hence, evaluating CCA performance on Internet does
not enable reliable results. In fact, the use of testbeds and
simulations with well-defined path features is mandatory to
obtain valuable fairness measurements [20].

III. FAIRNESS ANALYSIS IN NETWORK SESSIONS

Online services are no longer restricted to only data down-
load. Instead, the interactions with users require complex
network exchanges throughout the duration of sessions. A
sudden drop of performance during a session can have harmful
repercussions for the user (for example service interruptions,
video re-buffering, and misbehaviors). Meanwhile, service
providers try to get more resources at some time of a session
because a sudden increase of data-rate can be suitable during
the session (for example fast-video playing delay and key web
resources download). In this context, network operators aims at
guarantying a fair access to the network resources with respect
to all competing flows at any time.

In order to evaluate the session-level fairness during the
time, we introduce the notion of slots to split the session into
small temporal periods of time (typically 100 ms). The idea of
the session-level fairness is that every flow gets a fair sharing
of the resources throughout the full duration of the sessions.

Fairness Definition. We consider that the network behavior
is fair at the session-level of a given flow when it is friendly
with all other competing flows while the totality of slots are
separately analyzed. In other words, a session that would
obtain much more resources than other flows for some slots
but compensate them by getting less resources for some other
slots is not fair since this behavior may jeopardize the access
to the services for the competing flows (even if, overall, the
equity is respected). The type of session is also important when
evaluating fairness. In fact, the type of session determines the
network requirements in order to optimize the QoE of users.
Some examples of network services according to the network
features are given below [21], [22]:
• Constant data-rate over time: real-time applications
• More importance at the beginning of a session: video

streaming, web pages
• Low latency and reduced packet loss: autonomous cars,

critical virtual reality applications (medicine)
• Non-critical: IoT, download software, OS update

In this paper, we focus on the services where the QoE is
highly impacted by the amount of data received at the begin-
ning of the session. This is typically the case for online video
services and web pages, which represent respectively 73 % and
18 % of the overall Internet traffic [23]. For the traffic related
to web pages, several studies have shown that 40 % of people
leave a website if they have to wait more than 3 s to get the first
information [24]. To reduce the display time, browsers can use
multiple Transmission Control Protocol (TCP) connections to
make multiple Hypertext Transfer Protocol (HTTP) requests
simultaneously (for example, Firefox and Chrome use up to
maximum 6 TCP connections simultaneously). For the traffic
related to video streaming, other studies have revealed that the
abandonment rate rises quickly after more than two seconds
spent at waiting for start of the video (5.8 % more abandon per
second after the first two seconds). Then, after these critical
first slots, the network flows for web pages and for online
video services do not require as much bandwidth as in the
earliest seconds. Typically in online video, once the buffer is
filled, the video rate adaptation mechanisms can accommodate
slight reduction of throughput [25].

Due to the need for more data in the earliest time, the
service providers could implement a CCA, which is especially
aggressive at the earliest instant of the session, and which
is thus more aggressive than the other competing flows. On
the contrary, network operators are concerned by maintaining
a fair sharing of the bottleneck throughout the session and
especially in the first slots of the session. In this paper, we
address this problem by introducing a novel fairness metric,
as well as a full procedure for assessing the fairness when
several independent sessions sharing the same bottleneck start
concurrently.

IV. FAIRNESS MEASUREMENT PROCEDURE

We introduce a new metric called Fairness Measurement
Procedure (FMP) to evaluate the fairness at the level of a
whole session. The main idea behind FMP is splitting sessions
into multiple slots, to measure the fairness during each slot,
and to aggregate all measures at the end of the session in order
to compute a global session-level fairness. We concretely aim
at assessing a session-level fairness for a set of competing
sessions. We represent in Figure 1 an illustration of our
proposal for two competing flows sharing the same bottleneck.

A. FMP definition

Lets consider two competing flows: A and B, where ∆ is
the time during which both flows compete for the network
resources. We split the competition time (namely, the session)
into S temporal slots. In our experiments, we set S so that the
duration of a slot ∆

S is 100 ms. For each time slot i, 1 ≤ i ≤ S,
we collect two measures:
• The fairness Ji during i-th slot, using any of the afore-

mentioned metric. In our case, we use the Jain index ji
because it is a well-adopted bounded measure. Hence,



we have Ji is equal to 1 − ji so that 0 represents a fair
network and 1

2 is the worst case (unfair).
• The dominant flow di, which indicates which flow re-

ceives the greatest amount of data during slot i. We have:

di =

{
−1, if A is dominant
1, if B is dominant

(4)

Then, based on the collected measures J = {J1, . . . , JS}
and D = {d1, . . . , dS}, the generic definition of a FMP is:

K = f (J,D)

In this work, we focus on the fact that all slots are not
equal, i.e., some slots have a greater importance than others
during a competition between two given flows. As discussed
in Section III, various scenarios can be studied. Here, we
are interested in the case where both flows compete at the
beginning of the session by an overly aggressive policy. Hence,
we study in this paper a particular function f(·) where more
importance is given to the beginning of the session:

K =
∑

i∈{1,...,S}

diαiJi

where αi is the weight of the i-th slot. Since the earliest
slots are more important than the latest slots, we define αi

as a strictly decreasing function of i. Thus, the FMP is a
weighted sum of fairness measurements, where, depending
on the variation of dominant flow, the effect of transient
unfairness can reinforce or diminish (with a decreasing impact)
the overall result.

B. FMP analysis

To illustrate the behavior of the FMP, we discuss in the
following three typical scenarios of competition between two
flows sharing a bottleneck of 1 Mbps in the network. These
scenarios are shown in Figure 1. For each typical flow compe-
tition, we represent three sub-figures: the measured data-rate,
the variation of K over time (new procedure), and finally the
averaged value of the Jain’s index collected over whole the
session (existing procedure). The cases are:
Figure 1a. A fair share of the bottleneck. The value of K is

0 over the all session. The values of the averaged Jain’s
index converge toward 1.

Figure 1b. An unfair share of the bottleneck. The K values
quickly decrease toward 0.5. At the end, we obtain
K = 0.57, which indicates the domination of a flow. The
cumulative average of Jain’s index behaves similarly. The
final Jain’s index is 0.56 (which is close to the final K
value).

Figure 1c. An alternate domination of flows. At the begin-
ning, the flow A is dominant, so the values of K after
40 s show a very unfair network share, with a value close
to −0.5. Then, the flow B becomes dominant. Here, the K
values increase toward 0, which reflects that, after 80 s,
both flows have received a fairly good amount of data
(with a slight advantage for flow A because it was the
first one to be served).

On the contrary, the averaged Jain’s index notices only
unfair sharing measures but, due to its blindness of
the dominant flow, it fails in reflecting the dominance
variation between A and B.

The proposed FMP is thus able to identify when one flow
dominates over another, and particularly is able to detect the
alternation of domination. Furthermore, it is able to put priority
to some slots such as in the first seconds of the session by
means of weights. In this proposal, FMP is designed for a
competition between two flows. In the case of competition
between multiple flows, in particular three flows as we will
see later, we compute the FMP for every pair of flows and we
take the worst K value.

V. TEST-BED SETTINGS

Testing the fairness of competing CCAs in a laboratory
requires the implementation of a test-bed for emulating real
client-server communications under various network scenarios.
For this purpose, we have implemented a test-bed whose
architecture is illustrated in Figure 2.

Both client and server OSs are based on Linux (Debian for
the client and Ubuntu for the server). The configuration of
the network settings is based on the Linux traffic control tc
program, which enables changing the traffic control configu-
ration. In our case, tc is used to set a customized latency, the
error rate of the link, the bottleneck queuing policy, and the
buffer size.

The flow configuration enables changing the characteristics
of each data flow (latency, error rate, and bit rate) before
the bottleneck. The network configuration is done before the
traffic generation. Then, the traffic generation (file delivery)
concretely modifies the size of files, the current number of
connections on the network link, and the type of CCAs. Since,
each CCA is configured in the OS and we evaluate two CCAs,
we need two different endpoints. We then use two virtual
machines for the traffic generation. Note that, they are not part
of the bottleneck emulation, which is done on a real network
card.

This platform evaluates different CCAs, which are meant
to avoid congestion collapse on the network. Most CCAs fall
into three main categories: loss-based, delay-based and bit rate
prediction-based. In order to obtain valuable and no skewed
results, we have selected one representative CCA per category,
namely RENO, BBR, and PCC and tested them on a wide
range of network configurations.
• Loss based CCA: the CCA detects a congestion on

the network by the observation of a packet loss. The
popular RENO algorithm manages congestion by two
different mechanisms. The first one is based on detecting
isolated packet loss. Upon detecting a missing packet, the
receiver notifies it with three Acknowledgment messages
(ACKs) to the transmitter. In turn, the transmitter resends
the packet and halves the bit-rate, thereby reduces the
network load. The second mechanism detects network
saturation based on TCP timeout. The transmitter then



0 50 100 150
0

0.5

1
·106

time (s)

bi
t-

ra
te

(b
ps

)
data flows

0 50 100 150
−0.5

0

0.5

time (s)

K
va

lu
e

proposed FMP (K evolution)

0 50 100 150

0.5

0.6

0.7

0.8

0.9

1

time (s)

av
er

ag
e

of
Ja

in
’s

in
de

x

existing procedure

(a) fair case

0 20 40 60 80 100
0

0.5

1
·106

time (s)

bi
t-

ra
te

(b
ps

)

0 20 40 60 80 100
−0.5

0

0.5

time (s)

K
va

lu
e

0 20 40 60 80 100

0.5
0.6

0.7

0.8

0.9

1

time (s)

av
er

ag
e

of
Ja

in
’s

in
de

x

(b) unfair case

0 50 100
0

0.5

1
·106

time (s)

bi
t-

ra
te

(b
ps

)

0 50 100
−0.5

0

0.5

time (s)

K
va

lu
e

0 50 100

0.5

0.6

0.7

0.8

0.9

1

time (s)
av

er
ag

e
of

Ja
in

’s
in

de
x

(c) alternate dominant case

Fig. 1: Three typical scenarios of competition between two flows sharing a bottleneck. On the left, the evolution of data-rates,
on the middle, intermediate K values of FMP (proposed procedure), and on the right average values of the Jain’s index (existing
procedure).
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Fig. 2: Test-Bed architecture.

begins a new period of slow-start, which reduces the bit-
rate.

• Delay based CCA: the CCA is based on latency variation
to determine a congestion on the network. An example is
BBR [4] recently deployed by Google. It observes latency
variance to determine when the network is saturated (i.e.
the latency increases when the buffer is full). It adapts
the bit-rate accordingly, to prevent congestion.

• Bit-rate prediction CCA: the CCA analyzes the current
data exchange to estimate the next bit-rate. An example
is PCC [5], which is currently a work in progress at
the IETF. PCC then tests the performance under various
data-rate and chooses the best one for the user (either a
constant bit-rate while avoiding packet loss, or a higher
bit-rate without looking for reducing the packet loss).

The main network settings are detailed below.

Queuing Policy. Different queuing policies are implemented



by default on Linux: (i) First In First Out (FIFO) is the
default buffer implementation: the first arrived packet is the
first one to come out. When the buffer is full, packets are
dropped. (ii) fair queuing controlled delay (fq codel) is
a buffer algorithm that aims to fix inequity problems on
the network. It emulates a dedicated FIFO buffer per flow
which is identified by source address, destination address,
source port, destination port and type of protocol. Controlled
Delay (CoDel) avoids the accumulation of packets in the
buffer and removes the inequity between the different flows.
(iii) Random Early Detection (RED) drops packets with a
probability that gradually increases as the buffer fills in.

Link Characteristics For latency, loss rate, and buffer size,
we use well-adopted values [9] (see Table I).

Latency on the link (ms) 0, 1, 50, 150, 300

Loss rate on the link (%) 0, 1, 5, 10, 20

Buffer size (bytes) 8750, 37 500, 62 500, 125 000, 250 000

TABLE I: Network characteristics.

VI. PERFORMANCE ANALYSIS

We analyze in this section the result of the fairness measure-
ment procedure when evaluating three CCAs (RENO, PCC,
BBR) by using the above presented testbed. First we study
the behavior of CCA as a function of latency, loss rate, buffer
size and queuing policy and then we determine the number of
tests that must be performed for achieving accurate results.

A. Competition between BBR and PCC

To evaluate fairness, files are simultaneously sent between
the client and the server with all network configurations
applied on the link after the bottleneck (see Section V). We
limit the bit rate of each flow to 1 Mbits/s at the generator
traffic level and the bandwidth of the link after the bottleneck
is 1 Mbits/s, this configuration prevents burst problems. During
the execution of the tests, we monitor the link after the
bottleneck using tcpdump. For all captures using tcpdump we
apply the metric detailed in Section IV to measure the fairness.
Based on these measurements, we study the fairness among
flows for the three CCAs.

We show an example of such a study in Figure 3 with
a competition between PCC- and BBR- based flows. We
represent the latency, the loss rate, and the queuing policies on
the x-axis and the number of occurrences of K according to
these values on the y-axis. The x-axis is divided into two parts:
the left part represents the values of K in the configuration
where PCC-based flow dominates and the right part represents
the values of K when BBR-based flow is dominant. Note that,
the conclusions made in the following apply to various other
CCA competitions
Figure 3a represents the fairness evaluation according to the

latency. For K values between 0.5 and 0.8 the number
of occurrences is constant, i.e., the latency does not
influence fairness.

The main reason is that BBR considers the latency
fluctuation, then, when it is constant BBR does not react
(i.e., whether the fixed latency value is 0 ms or 300 ms
has no impact on the congestion detection).

Figure 3b shows the fairness evaluation according to the loss
rate. Results reveal that for higher values of loss rate the
unfairness increases and harms BBR.
The main reason is that PCC does not react to the loss
rate and seeks to maximize the flow data rate. Therefore,
when the loss rate increases, PCC does not change its
behavior while BBR has more difficulty to estimate the
available bandwidth due that the Round-Trip Time (RTT)
increases.

Figure 3C shows the different queuing policies. Queuing
policies have a significant impact on the fairness indi-
cators. The FIFO queuing policy is the least fair one
among the three tested queuing policies. Since FIFO
delivers the oldest stored packet first, it drops the newest
packets without regards to the others flows. The RED
queuing policy is more equitable than FIFO due that
the dropping strategy is not based on random choices
but on probability. It chooses with higher probability the
dominant flow. This solution is only efficient for the
CCAs that are based on packet loss. Since PCC and
BBR ignore packet loss, the fq codel queuing policy is
the fairest. CoDel avoids the accumulation of packets in
the buffer and removes the inequity between the different
flows.

In general, the above fairness evaluation reveals that an
exhaustive number of tests are required to compare two CCAs.
This fact is due to the variability of the behavior of CCAs
in function of network configurations. For example, for two
competing CCAs that are based on different principles, the
competition is fair under some network configurations and
unfair under some others. An important message that we
convey in this paper is the necessity to define the required
number of tests for achieving fairness metric accuracy.

B. Required Number of Tests for FMP Accuracy

We are now interested in determining the number of tests
(different network configurations) that are necessary to assess
the fairness between competing flows. For a configuration
between two flows, we have tested 374 network configurations
corresponding to each latency, loss rate, buffer size values and
queuing policies. The runtime of each test takes on average
10 min. Hence, 2 days and 14 h are required to compare two
CCA. Since we have six different competitions between the
three considered CCAs, the whole runtime is more than
41 days.

We take the 90 th percentile to represent a unique final result
of all obtained K values. Indeed, it is a good way to express
that, in most of the configurations (except the 10 th percentile
of outliers), the competition has a certain level of fairness. We
provide the results of the six competitions in Table II.

Since the runtime is too long, even for two competing flows,
we are then interested in obtaining a representative fairness
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Fig. 3: Comparison of two CCAs according to latency, loss rate and queuing policies.

CCAs K values

RENO-RENO 0.97
BBR-BBR 0.90
PCC-PCC 0.88

RENO-BBR 0.60
RENO-PCC 0.50

BBR-PCC 0.51

TABLE II: 90 th percentile of the K values obtained from 374
network configurations.

value while using a limited number of tests. We thus randomly
pick a smaller number of configurations, ranging from 20 to
200, and we compute the obtained 90 th percentile from the
collected results. In order to obtain a representative K value,
we repeat 1000 times the fairness evaluation for each group
of randomly picked network configuration. Hence, the fairness
accuracy can be easily perceived according to the number of
tests. Accuracy results are shown in Figure 4.
Competition between Two Flows. From Figure 4 we obtain
the following conclusions: (i) A small number of values
(notably 20 ) can be insufficient to achieve accuracy, typically
for BBR-BBR, PCC-PCC and RENO-BBR. The difference
between the exhaustive measure and estimated one (i.e., when
using randomly picked network configurations) can be up to
0.2, which is a significant difference. In the worst case, the
estimated measurement for the group twenty configurations
provide a 90 th percentile equal to 0.5 although the exact value
is 0.88. (ii) Experiments show that more than 100 tests (which
is less than one third of the exhaustive analysis) is enough
to provide an accurate and reliable measure of the fairness
between two competing flows. Executing more tests (e.g., 200
tests) does not enable improving the accuracy.

Thus, we compared three CCAs competing in one-to-one
session and we obtained an accurate fairness measure when
executing 600 tests (during 4 days) with a precision that
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Fig. 4: FMP’s accuracy evaluation as a function of the number
of tests.



would have required 2274 tests and more than 41 days of
computations.

Competition between Three Flows. To observe the behavior
of three CCAs, we repeat the same experiment. When the three
flows use the same CCA, results are similar to the case of two
competing flows, so we do not represent these cases.

The number of tests that are necessary to obtain fairness
accuracy is less important than when evaluating two flows.
Hence, accurate values can be obtained when using only 60
different tests.

VII. CONCLUSIONS

The implementation of CCAs in the Internet has recently
received a growing attention from researchers. New CCAs
such as BBR and PCC have been designed to improve the
network performance in terms of data rate for the satisfac-
tion of service providers. Furthermore, the implementation of
QUIC is a promise for faster updates and deployment for new
CCAs. This line of research can however become a problem if
new CCAs are insufficiently tested when considering the fair
usage of network resources. The question of validating that a
CCA behaves well for other competing flows in the network
is open.

In this paper, we introduce a generic impartial fairness
measurement procedure called FMP, which evaluates equity
among the various CCAs competing in the network. The
proposed metric returns a quantitative value of fairness which
ranges from 0 (unfair) to 1 (fair). The main contribution of
this work is that the fairness is evaluated at the session level
and it takes into account the fact that not all instants of a
session have the same importance. In fact, the beginning of
a network session is a critical time, where over-aggressive
CCA policies can harm the fair sharing of network resources.
We evaluate the accuracy of the proposed metric by using an
emulation platform. We illustrate the interest and accuracy of
our proposal by studying the behavior of RENO, BBR and
PCC under multiple network configurations.
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