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Abstract—The web graph is a commonly-used network rep-
resentation of the hyperlink structure of a website. A network
of similar structure to the web graph, which we call the session
graph has properties that reflect the browsing habits of the agents
in the web server logs. In this paper, we apply session graphs to
compare the activity of humans against web robots or crawlers.
Understanding these properties will enable us to improve models
of HTTP traffic, which can be used to predict and generate
realistic traffic for testing and improving web server efficiency,
as well as devising new caching algorithms. We apply large-
scale network properties, such as the connectivity and degree
distribution of human and Web robot session graphs in order
to identify characteristics of the traffic which would be useful
for modeling web traffic and improving cache performance. We
find that the empirical degree distributions of session graphs for
human and robot requests on one Web server are best fit by
different theoretical distributions, indicating at a difference in
the processes which generate the traffic.

I. INTRODUCTION

Agents accessing the World Wide Web (WWW) can be
placed into two broad categories - human and robot. A robot
is defined as software that makes requests to a web server
without direct human interaction. Examples of robots are web
indexers, which are employed by search engines to build their
indexes; scrapers, which can mass download large numbers
of pages for offline storage; and link checkers, which verify
that hyperlinks on a web page are still valid over time. There
is evidence that traffic from web robots will only increase
over time. A 2004 study found that Web robots accounted for
8.51% of HTTP requests and 0.65% of bytes transferred, while
in a 2008 study they made up 18.5% of HTTP requests and
3.52% of bytes transferred [1]. More recently, studies have
found Web robots to make up over 50% of traffic in different
domains [2]. A growing source of web robot traffic comes
from Internet of Things (IoT) devices, which can send large
amounts of traffic from real-time sensors [3]. Another source
are mobile devices, whose traffic volume is growing faster than
traditional broadband [4].

Recognizing that most web server system optimizations
expect traffic that is statistically and behaviorally human-like,
it is important to recognize the similarities and differences
between human and robot traffic. For example, a common
technique used by web servers improve response times is
caching, which allows commonly requested resources to be

served faster by storing them in some limited but fast memory.
Since cache space is limited, a standard approach will not be
able to keep up with traffic that requests a wide variety of re-
sources unpredictably. Previous studies suggest that web robot
traffic can have a negative impact on cache performance [2].
This means that traditional approaches to caching will perform
worse as the proportion of web robot traffic increases.

In order to mitigate cache performance degradation, the
characteristics of web robot traffic which set it apart from
human traffic must be understood so that new caching policies
and algorithms can be devised which are able to handle traffic
from robots. Knowledge of the characteristics of web robots
could also be used to create models to simulate web traffic,
which could be used to test new caching algorithms without
requiring real traffic. Traffic simulation would also give the
cache algorithm designers control over the properties of the
generated traffic, allowing them to test certain aspects of their
algorithms under known conditions.

A common model of the World Wide Web (WWW) is as a
directed network known as the web graph [5]–[7]. The nodes
of the network are resources such as images, HTML pages,
JavaScript resources, etc. An edge is drawn from an HTML
resource to any other resource if there is a hyperlink from that
HTML resource to the other resource. Under the assumption
that agents follow the link structure of a website, it may be able
to reconstruct portions of the network structure of a website
from raw server log data. Building this network using a notion
of sessions is the starting point for our work.

This paper presents an analysis of the characteristics of
web robot and human traffic using metrics from network
science. Most of the measures assign a number to each node,
giving an empirical probability distribution over nodes which
can be compared across graphs. We place particular focus
on modeling the degree distributions of session graphs as
computed from Web server logs. Our study confirms the
presence of separate mechanisms driving the different traffic
classes, suggesting that new forms of web server optimization
are needed to handle traffic that is dominated by robots.

The rest of this paper is structured as follows: In the
Related Work section, references to publications that study
the characteristics of the web graph and web traffic are given.
The Methodology section introduces the dataset, how it is
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processed, and the network metrics computed to compare the
two networks. The Analysis section describes our results and
what they tell us about the differences between human and
robot requests. We end with a Conclusion and a discussion of
possible further work in studying session graphs.

II. RELATED WORK

This paper combines two types of studies: characterization
of web robot and human traffic, and analysis of the web
graph using network science. There have been many studies
done on the characteristics of human and web robot traffic.
A classic study on web crawlers is by Dikaiakos et al.
[8]. The authors use web-server access logs from academic
sites in three countries and compare crawler traffic to gen-
eral WWW traffic and devise metrics to provide qualitative
characteristics of crawler behavior. Lee et al. published a
characterization study of web robots based on over a billion
requests made to microsoft.com [9]. Similar to [8], they look
at the characteristics of specific web crawlers, and use similar
metrics such as response sizes and codes. In [10], Sisodia
et al. compare the access behavior of human visitors and
web robots through the access logs of a web portal. They
analyze the hourly activity, exit and entry patterns, geographic
origin of the agents, and the distribution of response size and
response codes by agents. Doran et al. studied the distributions
of response sizes and codes, resource types, and resource
popularities between human and robot agents [2]. S. Ihm et al.
analyzed five years of web traffic to determine major changes
in the characteristics of this traffic over time [11].

Several studies have also been done on properties of the web
graph. Broder et al. analyze the large-scale structure of the web
graph, showing that it resembles a bowtie with an ”IN” com-
ponent, an ”OUT” component, and a large strongly-connected
core [5]. Donato et al. analyze the topological properties of
web graphs, including degree distribution, PageRank values,
and number of connected components [12]. A more recent
study confirms the existence of a large strongly connected
component, but indicates that other features such as the
”bowtie” structure could be dependent on the crawling process
that produced the web graph [13]. Sanders and Kaur use DNS
traffic traces to study the graph-theoretic properties of the
Web [14], in contrast to the more common approach of using
HTML pages. They look at the degree distributions, graph
spectrum, clusters, and connected components of the resulting
web graph.

Liu et al. analyze the user browsing graph [15], which is
similar to the session graph studied in this paper. However,
there are two key differences: instead of considering sessions
they always create an edge for two requests by the same user
in sequence, regardless of the time between the requests. They
also compare their browsing graph to an hyperlink graph,
instead of comparing Web robot browsing graphs to human
browsing graphs. They conclude their study by looking at the
PageRank [16] values of the networks. Computing sessions
and comparing Web robot and human traffic are the novel
aspects of our approach.

III. METHODOLOGY

This section introduces the notion of a session graph, the
dataset we evaluate robot and human traffic within, and the
metrics considered. First, key definitions and concepts which
give rise to the networks we consider are presented.

Definition 1: A web graph G = (V,E) is a collection of
hyperlinked resources V , along with a set of directed edges
E, where an ordered pair of resources (v1, v2) are in E if v1
links to v2.

Note that the web graph is based solely off of the HTML
(hypertext) structure of a website, without any consideration
of the agents which visit it. A session graph is based on the
identification of user sessions discussed in [17] and [18]. We
give a formal definition of a session below.

Definition 2: A session S = (r1, . . . , rn) of length n is a
sequence of resources ri requested by the same agent such
that if τ(ri) is the time at which resource ri in the sequence
was requested, then for i = 2, . . . , n, we have that τ(ri) −
τ(ri−1) < T where T > 0 is some cutoff time.
Note that we will often use the word transition to mean an
ordered pair (ri, rj) of resources which appear in sequence
within a session. With the concept of a session defined, we
can now proceed to define a session graph constructed from
Web server logs.

Definition 3: Given a collection of sessions S and a cutoff
time T > 0, the session graph defined by S and T is a tuple
G = (V,E) where the vertices V are the resources appearing
in the S and a directed edge (r1, r2) is in E if the sequence
r1, r2 appears in some session.

The preceding definitions can be understood more infor-
mally as follows. A session is a sequence of requests made
by an agent with the same user-agent string (or IP address)
such that the time between each request is less than some
cutoff value T > 0. The nodes of the session graph are all
resources appearing in the Web server logs. A directed edge is
added between two nodes if the two resources were requested
in sequence within a session. To identify agents, we use the
User-Agent string provided in the HTTP header along with
the IP address.

A. Dataset and Preprocessing

Our dataset consists of web server access logs from the
domain wright.edu for the months of April, May, and July
in 2016. A typical entry in the log looks like the following:

- - [02/Apr/2016:00:00:09 -0400]
"GET /path/to/some/resource HTTP/1.1" 200
5972 "http://www.example.com/refererpage.html"
"Mozilla/5.0 (iPhone; CPU iPhone OS 7_0
like Mac OS X)" "11.111.111.111"

Each log entry includes at least the time and date the request
was observed, HTTP request including method, path, and
HTTP version, HTTP response code from the server, and IP
address of the requester. Other fields which may or may not be
present are the response size, referer field in the HTTP header,
and User-Agent string. Each file containing the raw server
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logs is split into two separate files, one containing only human
traffic, and the other containing only robot traffic. This is done
using the crowd-sourced database BotsVsBrowsers [19] to
identify robots based on the User-Agent HTTP header field
and/or IP address. We acknowledge that probabilistic methods
exist to better separate robots and humans [1]; however, our
goal is to extract samples of robot and human sessions that
are verifiably correct, so such a complicated approach is not
necessary.

Human traffic was extracted from all three months of data.
Only robot requests for the first 20 days of the month of
April were used due to computational limitations from the
large number of robot requests. Since the resulting number of
Web robot requests was still larger than the number of human
requests, and because we don’t feel it’s likely that the nature of
Web robot traffic would change greatly in 3 months, this does
not have a large impact on our analyses. Summary statistics
of the robot and human traffic are provided in Table I. Even
though more files were used for humans than robots, there are
still more robot requests than human requests. However, there
are less robot sessions. This could indicate that robots tend to
have larger sessions. A similar thing happens with agents and
IP addresses; there are more human agents, but less human IP
addresses. This is probably due to the fact that crawlers tend
to have several different IP addresses, but sharing the same
user-agent string. The number of resources is larger for robots
than humans, indicating that robots may tend to request old,
non-existent, or otherwise uncommon resources more often.

TABLE I
SUMMARY OF THE DATASET

Metric Humans Robots
# Files 91 20

# Requests 197056 427472
# Sessions 23825 11259
# Agents 1429 330

# IP addresses 2174 4211
# Resources 34185 75776
Start time April 1, 2016 April 1, 2016
End time June 30, 2016 April 20, 2016

We parsed the Web server logs using a regular expression
in Python, then used the freely available igraph library [20],
[21] to build the session graph and compute its various
properties.

B. Session Graph Metrics

This section describes the network metrics analyzed and
also serves to clarify the notation used. For an introduction
to network science as a whole, the text by Newman [22] is
standard. Other overviews can be found in [23]–[25].

We will denote a directed graph by G = (V,E) where V
is the set of vertices or nodes and E ⊆ V × V is the set
of directed edges. n = |V | will always be the number of
nodes and m = |E| the number of edges. The principal graph
representation used is the adjacency matrix A, which is an

n× n matrix with entries given by

Aij =

{
1, if there is an edge from i to j
0, otherwise

(1)

This work focuses on connectivity measures, which describe
the distribution of edges, their number, and how nodes in a
network relate to each other. We start with in- and out-degrees,
given by

kin
i =

|V |∑
j=1

Aji (2)

and

kout
i =

|V |∑
j=1

Aij (3)

The in-degree conveys how often a resource was visited after
another resource within sessions, and the out-degree tells us
how many times another resource was visited after this one.
A comparison of the degree distributions for human and web
robot traffic networks can tell us how likely it is they were
generated by the same process, even when the exact nature of
the process is unknown.

Another measure is the density of the network, defined as

ρ =
|E|

|V |(|V | − 1)
(4)

where the denominator is the total number of possible edges in
a directed network with |V | vertices. This gives an idea of how
close to being fully connected the network is. In terms of the
session graph, the density reflects the proportion of transitions
observed out of all possible transitions. For agents following
the the hyperlink structure of the website, the graph’s density
should be close to that of the underlying Web graph.

One way to define a partition over the vertex set of a net-
work is to consider its connected components. For a directed
graph, there are two notions of connectivity; two nodes vi and
vk are weakly connected if in the graph obtained by replacing
all directed edges with undirected ones, there is a path from
vi to vk. Then vi and vk are strongly connected if there is a
directed path from vi to vk or if there is a directed path from vk
to vi. Then the weakly (strongly) connected components of a
network G are a set of subgraphs of G, C = (C1, . . . , Ck) such
that the Ci are pairwise disjoint, their union is all of G, and
such that in each Ci all nodes are weakly (strongly) connected.
We investigate the number of connected components and sizes
of connected components of our networks.

For interaction measures, we study the reflexivity or reci-
procity of a directed network, which is given by

r =
2
∑|V |
i=1,j=1AijAji

|V |(|V | − 1)
(5)

For our networks, this provides a way to measure how often
two resources are requested in order both ways. An example of
a reflexive relation in a web graph would be two HTML pages
which link to each other. Reflexive relations in our network



can also appear, for example, when a user clicks a link and
then navigates back to the previous page by either pressing
the “back” button on a web browser or by clicking a link on
the page that leads back.

IV. COMPARATIVE ANALYSIS

A summary of various metrics of the networks is presented
in Table II. The graph for robots was much larger due to
the presence of more robot requests in the web server logs
than human requests. This could also represent the fact that
some robots such as crawlers request resources that are less
popular among humans, in order to crawl as much of the
website as possible. Note that even though the network for
robots has more edges than the humans’ network, its density is
comparable, both being on the order of 10−5. The reciprocity
for both networks is comparable, and is quite low, indicating
that only 5% or so of possible reciprocal edges were observed.
This means that it is very unlikely that if two resources are
requested in sequence, they will be requested some time later
in the reverse of the original sequence.

TABLE II
PROPERTIES OF THE GRAPHS

Network # Nodes # Edges Density Recip. E[Degree]
Humans 93,655 118,706 1.353e-05 0.0532 1.2675
Robots 179,432 377,047 1.171e-05 0.0511 2.1013

The decomposition of a graph into connected components
provides a partition on the vertex set. Since we are working
with directed graphs, there are two notions of connectivity,
namely weak and strong connectedness. We computed the
weakly and strongly connected components of the networks
and analyzed the properties of this decomposition. A summary
of measures computed from the weakly connected components
(WCCs) and strongly connected components (SCCs) is pro-
vided in Table III.

TABLE III
SUMMARY OF ANALYSIS OF CONNECTED COMPONENTS

Network # WCCs # SCCs Largest WCC Largest SCC
Humans 3,816 19,328 83,641 74,148
Robots 1,626 8,261 177,267 171,089

Notice that despite having much more nodes than the
humans’ network, the robots’ network only has 1,626 weakly
connected components compared to the humans’ 3,816. It also
has fewer SCCs, with 8,261 compared to the humans 19,328.
This could indicate that robots are more likely to jump from
one resource to another, even if there are no links, leading to a
more connected structure. In both cases, the largest SCC and
largest WCC contains almost all of the nodes of the network.
This shows the existence of a giant connected component,
similar to that of the web graph [5], [13], but restricted to a
single web server.

A. Community Detection and Visualization

Due to the large size of the networks, it was not possible
to visualize them in their entirety. The difficulty arises in

computing an aesthetically pleasing layout for such networks
in a reasonable time. This is a well-studied problem in the
mathematical field of graph theory [26] . Instead, for each
network, the subgraph consisting of the 5000 nodes of highest
degree was selected and the largest connected component
of that subgraph was visualized in Gephi [27] using the
ForceAtlas2 algorithm to compute the graph layout [28].

The humans network is depicted in Figure 1. Nodes are
colored by modularity class, using modularity maximization
to compute the community structure [29]. The nodes are
sized based on the number of times they were requested. At
the very center of the network is the root node, with path
/ on the web server. Much of the resources near the root
node are objects such as JavaScript and CSS files which are
automatically loaded by Web browsers when loading the page.
Since the root node is visited often, these resources end up
having a large number of requests as well. Notice the cluster
of beige-colored nodes which is a little bit more separated from
the central agglomeration of clusters. These nodes represent
calendar pages which give the dates of important events at the
university and is used across a number of web pages. There are
also several “ribbons” of resources which may be an artifact
of the process of not visualizing the entire network. These are
nodes which are visited in sequence with nodes of low degree,
but which have high degree themselves. When constructing the
subgraph used in visualization, these low degree nodes are left
out, isolating the sequences of high degree resources.

The robots network is depicted in Figure 2. Nodes are col-
ored by modularity class in this visualization as well, and node
sizes are based on the number of requests for the resource. The
central green cluster is the “core” of the wright.edu domain,
including the robots.txt file. The purple cluster at the
bottom are the contents of personal webpages of faculty and
students. The orange cluster in the middle-upper left comprises
the calendar pages, which are often linked to by news and
events on the front page. There are less ribbons and flares in
this visualization, indicating that the highest degree nodes in
the robots network are more interconnected than those in the
humans network.
B. Degree Distributions

The distribution of degrees in a network can provide much
information on how well-connected the network is, among
other things. It has often been observed that the degree
distributions of Internet-related networks tend to follow power
laws [30]–[32]. Power laws are subsets of heavy-tailed distri-
butions, which is any distribution over a random variable X
for which

lim
x→+∞

eλx Pr(X ≥ x) =∞ (6)

holds. Heavy-tailed distributions follow a power law when, for
α > 0, we have

Pr(X ≥ x) ∼ x−α (7)

Heavy-tailed distributions have a significant non-zero proba-
bility for large values compared to distributions such as the
exponential and normal. A key characteristic of power laws
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Fig. 1. Connectivity among high degree nodes in human session graph

Fig. 2. Connectivity among high degree nodes in robot session graph

is that their probability mass functions (PMFs) are shaped
linearly when plotted on a loglog scale. In practice it is difficult
to identify power laws, since that many other distributions
look nearly linear on a loglog plot. Furthermore, the right-tail
often exhibits high variance in many empirical data sets [31],
making it hard to distinguish between heavy-tail and power-
tail behavior. We observe that the degree distributions of the
networks all exhibit at least heavy-tailed or sub-exponential
behavior [33].

We compare four candidate distributions to determine which
one best matches the empirical distribution of degrees: ex-
ponential, log-normal, Zeta (power law), and double Pareto
log-normal (DPLN) distributions. The Zeta distribution is the
discrete analogue of the Pareto distribution with parameter α,

and has PMF

f(x;α) =
x−α

ζ(α)
(8)

where ζ(α) is the Riemann zeta function, defined for α > 1:

ζ(α) =

∞∑
n=1

n−α (9)

The Zeta distribution was chosen as a candidate distribution
as it is the simplest discrete distribution exhibiting power law
behavior. When describing discrete, non-negative values such
as network degrees, a power law is preferred over a log-normal
because a random variable drawn from the latter can take on
real values, and depending on the parameters, may even have
negative values.

The DPLN is a continuous distribution with four parameters,
α, β, µ, and σ, and has PDF

f(x) =
αβ

α+ β

[
x−α−1 exp

{
αµ+

α2µ2

2

}
Φ

(
log x− µ− ασ2

σ

)
+

xβ−1 exp

{
−βµ+

β2µ2

2

}
ΦC
(

log x− µ+ βσ2

σ

)]
(10)

where Φ is the cumulative distribution of the standard Normal
distribution N (0, 1), and ΦC(x) = 1 − Φ(x). A derivation
of the DPLN, its properties, and some of its applications can
be found in [34], [35]. The DPLN was chosen as a candidate
distribution based on the observation of a noticeable “bend”
in the plots of empirical degree distributions which will be
shown in the sequel.

Summaries of the maximum likelihood estimates for the
log-normal and Zeta parameters are given in Table VI. The
degree distributions for the human networks are shown in
Figures 3a and 3b, and the distributions for robots in Fig-
ures 4a and 4b. In each plot, a Zeta distribution is fit using
maximum likelihood estimation to the empirical data, and
shown alongside it. A log-normal distribution is also fit,
since noise in the right tail can obscure behavior that would
distinguish between a log-normal distribution and a power
law [36]. The DPLN is approximated using the method of
moments as described in [34]. The DPLN distribution is
notable for exhibiting power-tail behavior in both directions,
while being similar to the log-normal in between [37]. The
two parameters σ and µ control the log-normal behavior, and
the parameters α and β affect the power-tail (Pareto) behavior.
Power-law-like behavior is most apparent in the human degree
distribution plots, which appear nearly linear up to the tail
of the empirical distribution. Notice also the “bend” in the
robot empirical degree distributions, which seems to indicate
behavior more complicated than just a power law.

Note that in the case of the robots plot, the empirical dataset
is plotted twice. This is because the estimated value at which
power-tail behavior begins, xmin, was not 1, so that there were
values below xmin which had to be excluded when fitting
the power law and log-normal. Therefore, power law and log-
normal distributions are only plotted for degrees greater than
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Fig. 3. Frequency plots of the humans network’s degree distributions
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Fig. 4. Frequency plots of the robots network’s degree distributions

or equal to xmin, while the DPLN is fitted and plotted for
degrees greater than or equal to xmin and for all degrees.

TABLE IV
LOG-LIKELIHOODS ON DEGREE DISTRIBUTIONS FOR HUMANS

Distributions In/out R p-value
Exponential-Power law in -10941.4470 1.3979e-33
Lognormal-Power law in 25.7459 0.0006

Lognormal-Exponential in 10967.1929 9.7510e-34
DPLN-Power Law in 19362.2517 0.0
DPLN-Lognormal in 19336.5058 0.0

Exponential-Power law out -10779.5440 1.7099e-33
Lognormal-Power law out 21.1163 0.0048

Lognormal-Exponential out 10800.6603 1.2665e-34
DPLN-Power Law out 19404.8105 0.0
DPLN-Lognormal out 19383.6942 0.0

We evaluated goodness-of-fit for the candidate degree dis-
tributions by performing log-likelihood ratio tests [38] for
each pair of candidate distributions. The results are shown
in Table IV for humans and Table V for robots. A positive
value of R means that the first distribution is a better fit in the
sense of having a larger data likelihood; a negative value of R
indicates that the second distribution is a better fit. The null
hypothesis is that the two distributions fit the data equally well,
and the alternative is that one is a better fit than another. We
reject the null hypothesis for p-values less than 0.05, which
gives 95% significance. Only the observed degrees of value

xmin or larger were used for testing, since it would not be
possible to compare a DPLN distribution fit to the entire range
of degrees to power laws which are not valid for values less
than xmin.

In all cases, an exponential distribution can be rejected with
high confidence, which is a baseline for showing empirically
that a set of samples follows a heavy-tailed distribution. That
is, an exponential distribution being a better fit than any
heavy-tailed distribution would be indicative of non-heavy-
tailed behavior. In the case of humans, a DPLN distribution
is the best fit, followed by a log-normal and finally a power
law. With robots, a DPLN distribution can be rejected, but the
log-likelihood test could not establish a significant difference
between the log-normal and power law fits. We conclude that
log-normal and zeta distributions describe the robots degree
distribution equally well.

Depending on the exact distribution of the degree dis-
tributions of our networks, we can draw conclusions about
how they formed. Barabási and Albert showed that a random
network model which has preferential attachment, where the
probability of a vertex sharing an edge with another vertex
depends on their degrees, naturally leads to a degree distri-
bution following a power law [39]. Lognormal distributions
are generated by multiplicative processes [40], wherein some
variable Xj at time j is determined by its previous state Xj−1



TABLE V
LOG-LIKELIHOODS ON THEORETICAL DEGREE DISTRIBUTIONS FOR

ROBOTS

Distributions In/out R p-value
Exponential-Power law in -1133.5414 0.0031
Lognormal-Power law in 0.3770 0.8335

Lognormal-Exponential in 1133.9184 0.0030
DPLN-Power Law in -131.2078 2.1611e-20
DPLN-Lognormal in -131.5848 8.5745e-21

Exponential-Power law out -1230.2352 0.0019
Lognormal-Power law out -0.2428 0.1927

Lognormal-Exponential out 1229.9925 0.0019
DPLN-Power Law out -129.5294 2.2385e-21
DPLN-Lognormal out -129.2866 3.4606e-21

TABLE VI
DEGREE DISTRIBUTION SUMMARIES

Network Zipf Distribution Lognormal Distribution
In-deg. (α) Out-deg (α) In-deg (mu) In-deg (σ)

Humans 3.1064 3.1195 -9.5261 2.3997
Robots 2.1810 2.1810 -0.9049 1.3495

by multiplying it with some random variable Fj :

Xj = FjXj−1 (11)

By taking the logarithm of both sides and applying the Central
Limit Theorem, it can be shown that logXj follows a normal
distribution as j → ∞, and hence Xj is asymptotically log-
normally distributed. The presence of a log-normal degree dis-
tribution in our networks would indicate that the average rate
of increase in the degree of a node at time t is proportionate
to the degree at that time. Thus, resources which are already
popular become more popular faster than less commonly
requested resources. This “rich get richer” behavior is common
to processes underlying many heavy-tailed distributions.

A process which produces a double-Pareto distribution
related to DPLN is described by Mitzenmacher [41]. In this
generalization of the multiplicative process, the time steps T
of the random variable XT are exponentially distributed. In
particular, if the human network’s degree distribution is DPLN,
this would imply that the times between the observation
of requests of new resources by humans is exponentially
distributed. The observation of new resources in the trace of
human requests is reflected by the appearance of new nodes in
the session graph, while unique pairs of resources that appear
in sequence within a session lead to the appearance of new
edges. The distribution of the creation times of new nodes and
the dependence of edge formation on the degrees of the nodes
are what give rise to a DPLN distribution.

V. CONCLUSION

In this paper, we described a method for constructing a
network called a session graph from Web server logs based
on the notion of a session described in [18]. We looked at
the basic properties of these graphs for human and Web robot
traffic on a university web server. We observed the presence
of giant connected components using both weak and strong

connectivity, and studied qualitatively the rapid decrease in the
size of weakly connected components. We observed slight dif-
ferences in this decrease between human and robot networks,
showing further that there are differences in Web robot and
human traffic. We also carried out a comprehensive analysis
of the degree distributions of the networks and find that they
are best described by different theoretical distributions. This
indicates important differences in the generative process for
the respective networks. Of the distributions considered, we
found that the DPLN best describes the humans network, while
we were unable to distinguish between a power-law or log-
normal distribution for the robots network. We further found:
• that the densities of the human and robot session graphs

are comparable;
• that all session graphs have low reciprocity;
• that a giant connected component (both weak and strong)

is present in both session graphs;
• that the communities obtained by modularity maximiza-

tion are more tightly connected in the robots’ session
graph than the humans;

• the degree distributions of both session graphs exhibit
heavy-tailed behavior;

• that a DPLN distribution best fits the degree distribution
of the humans’ session graph;

• that the DPLN fit for the robots’ session graph’s degree
distribution, but a log-normal or a Zeta distribution may
be a reasonable fit for the humans’ session graph.

These findings lead to the following conclusions about
behavioral differences between human and Web robot traffic
at wright.edu:
• If a transition in one direction is observed, it is unlikely

to be observed in the other direction. This may reflect the
hyperlink structure of the website.

• The existence of a giant connected component in the
session graphs may reflect the fact that the underlying
web graph is almost fully connected, i.e. starting from the
homepage it is possible to reach almost every resource
on the Web server.

• Robots may be more likely to transition between re-
sources that are not connected by hyperlinks, as seen by
the existence of fewer connected components and higher
connectivity between communities in their session graph.

• The time between the appearance of requests for re-
sources that haven’t been observed before may be ex-
ponential, under the assumption that the humans’ session
graph has a DPLN degree distribution.

• Assuming heavy-tailed degree distributions, resources are
more likely to be observed in sequence if their degrees
in the session graph are high.

Future studies could analyze data from multiple Web servers
and compare their networks to identify similarities and dif-
ferences that arise from different types of Web traffic. For
example, by analyzing the degree distributions of networks
constructed from traffic from various Web servers, a study
could be done to examine differences in these distributions and

wright.edu


produce hypotheses about the processes behind the network
formation. By understanding network formation, this tells us
something about the characteristics of Web robot and human
traffic that could be used to improve prefetching and caching
algorithms. Another area for future work is in determining
what constitutes a session. For purposes of constructing a
network representation of Web traffic, using a timeout may
not capture the properties of traffic as well as logical sessions
using referers. An approach that includes more than the time
between requests could be used to improve session identi-
fication and generate better network representations of the
requests. Finally, there were many network measures which
were not considered. Centrality measures such as eigenvector
centrality, closeness centrality, and PageRank provide further
distributions to study for differences between human and
Web robot session graphs. Other analyses that could have
been carried out are community detection and blockmodeling,
which could be used to find sets of resources which are
somehow related. Future work could compute these measures
and partitions on smaller networks for tractability sake.

ACKNOWLEDGMENTS

We thank Logan Rickert for data processing support and
Mark Anderson for providing the Wright State University
server log data. This paper is based on work supported by the
National Science Foundation (NSF) under Grant No. 1464104.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the NSF.

REFERENCES

[1] D. Doran and S. S. Gokhale, “Web robot detection techniques: overview
and limitations,” Data Mining and Knowledge Discovery, vol. 22, no. 1,
pp. 183–210, 2011.

[2] D. Doran, K. Morillo, and S. S. Gokhale, “A comparison of web
robot and human requests,” in Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining. ACM, 2013, pp. 1374–1380.

[3] Y.-K. Chen, “Challenges and opportunities of internet of things,” in
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific. IEEE, 2012, pp. 383–388.

[4] G. Maier, F. Schneider, and A. Feldmann, “A first look at mobile hand-
held device traffic,” in International Conference on Passive and Active
Network Measurement. Springer, 2010, pp. 161–170.

[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener, “Graph structure in the web,” Computer
networks, vol. 33, no. 1, pp. 309–320, 2000.

[6] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins, “The web as a graph: measurements, models, and methods,”
in International Computing and Combinatorics Conference. Springer,
1999, pp. 1–17.

[7] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tompkins,
and E. Upfal, “The web as a graph,” in Proceedings of the nineteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems. ACM, 2000, pp. 1–10.

[8] M. D. Dikaiakos, A. Stassopoulou, and L. Papageorgiou, “An investiga-
tion of web crawler behavior: characterization and metrics,” Computer
Communications, vol. 28, no. 8, pp. 880–897, 2005.

[9] J. Lee, S. Cha, D. Lee, and H. Lee, “Classification of web robots:
An empirical study based on over one billion requests,” computers &
security, vol. 28, no. 8, pp. 795–802, 2009.

[10] D. S. Sisodia, S. Verma, and O. P. Vyas, “A comparative analysis of
browsing behavior of human visitors and automatic software agents,”
American Journal of Systems and Software, vol. 3, no. 2, pp. 31–35,
2015.

[11] S. Ihm and V. S. Pai, “Towards understanding modern web traffic,”
in Proceedings of the 2011 ACM SIGCOMM conference on Internet
measurement conference. ACM, 2011, pp. 295–312.

[12] D. Donato, L. Laura, S. Leonardi, and S. Millozzi, “Large scale prop-
erties of the webgraph,” The European Physical Journal B-Condensed
Matter and Complex Systems, vol. 38, no. 2, pp. 239–243, 2004.

[13] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure in
the web—revisited: a trick of the heavy tail,” in Proceedings of the
23rd international conference on World Wide Web. ACM, 2014, pp.
427–432.

[14] S. Sanders and J. Kaur, “A graph theoretical analysis of the web
using dns traffic traces,” in Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS), 2015 IEEE
23rd International Symposium on. IEEE, 2015, pp. 11–14.

[15] Y. Liu, M. Zhang, S. Ma, and L. Ru, “User browsing graph: Structure,
evolution and application.” in WSDM (Late Breaking-Results), 2009.

[16] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[17] M. C. Calzarossa and L. Massari, “Analysis of web logs: challenges and
findings,” in Performance Evaluation of Computer and Communication
Systems. Milestones and Future Challenges. Springer, 2011, pp. 227–
239.

[18] P.-N. Tan and V. Kumar, “Discovery of web robot sessions based on
their navigational patterns,” in Intelligent Technologies for Information
Analysis. Springer, 2004, pp. 193–222.

[19] (2017) Bots vs browsers. [Online]. Available: http://www.
botsvsbrowsers.com/

[20] (2017) igraph. The igraph Core Team. [Online]. Available: http:
//igraph.org/

[21] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5, pp.
1–9, 2006.

[22] M. Newman, “Networks: an introduction. 2010,” United Slates: Oxford
University Press Inc., New York, pp. 1–2.

[23] A.-L. Barabási, “Network science,” Philosophical Transactions of the
Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 371, no. 1987, p. 20120375, 2013.

[24] T. G. Lewis, Network science: Theory and applications. John Wiley
& Sons, 2011.

[25] J.-q. Fang, X.-f. Wang, Z.-g. Zheng, Q. Bi, Z.-r. Di, and L. Xiang,
“New interdisciplinary science: Network science (1),” PROGRESS IN
PHYSICS-NANJING-, vol. 27, no. 3, p. 239, 2007.

[26] J. Dı́az, J. Petit, and M. Serna, “A survey of graph layout problems,”
ACM Computing Surveys (CSUR), vol. 34, no. 3, pp. 313–356, 2002.

[27] M. Bastian, S. Heymann, M. Jacomy et al., “Gephi: an open source
software for exploring and manipulating networks.” ICWSM, vol. 8, pp.
361–362, 2009.

[28] M. Jacomy, T. Venturini, S. Heymann, and M. Bastian, “Forceatlas2,
a continuous graph layout algorithm for handy network visualization
designed for the gephi software,” PloS one, vol. 9, no. 6, p. e98679,
2014.

[29] M. E. Newman, “Modularity and community structure in networks,”
Proceedings of the national academy of sciences, vol. 103, no. 23, pp.
8577–8582, 2006.

[30] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relation-
ships of the internet topology,” in ACM SIGCOMM computer commu-
nication review, vol. 29, no. 4. ACM, 1999, pp. 251–262.

[31] A. Clauset, C. R. Shalizi, and M. E. Newman, “Power-law distributions
in empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.

[32] L. A. Adamic and B. A. Huberman, “Power-law distribution of the world
wide web,” Science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[33] S. Foss, D. Korshunov, S. Zachary et al., An introduction to heavy-tailed
and subexponential distributions. Springer, 2011, vol. 6.

[34] W. J. Reed and M. Jorgensen, “The double pareto-lognormal distribu-
tion: a new parametric model for size distributions,” Communications in
Statistics-Theory and Methods, vol. 33, no. 8, pp. 1733–1753, 2004.

[35] C. C. Zhang, “The double pareto-lognormal distribution and its appli-
cations in actuarial science and finance,” Master’s thesis, Université de
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