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Abstract —In this paper, we’ve proposed BlueArch, a testbed 
for 5G research and experimentations. It is a customized setup, 
that comprises of several opensource components. It provides a 
platform to create and customize virtual network infrastructures 
and benchmarks prototypes. BlueArch provides high flexibility 
in terms of customization, configuration, and programmability. 
It supports 5G features such as softwarisation, virtualization, 
and orchestration etc. Furthermore, it offers use cases like IoT, 
MEC, and SDN through various modes such as simulation, 
emulation, access to physical network and interfacing with other 
testbeds. 
The goal of this paper is to present the structural and functional 
building blocks of BlueArch, along with their organization and 
implementation. Finally, three uses cases are also given with 
results, to demonstrate the functionalities. 
 
Index Terms—5G Testbed, Interoperability, SDN 
 

I. INTRODUCTION 

The fifth-generation mobile network (5G) era is about 
to begin. With massive anticipation, it is getting ready to 
hit the commercial market in 2020[1]. The underlying 
philosophy is to make a mobile network around people 
and things [2], that will satisfy the following use cases. 
• Extreme Mobile Broadband (eMBB) for an on-

demand gigabit connection 
• Massive Machine Type Communication (mMTC) to 

connect a scalable sensor network 
• Ultra Reliable Low Latency Communication 

(URLLC) for having real-time tactile internet. 
In order to achieve these verticals, the European Union 

funded 5G public-private Partnership (5GPPP) working 
group has proposed certain architectural enablers such as 
Millimeter wave, Massive MIMO, Visible Light 
Communication (VLC), Heterogeneous Networks (Het- 
Net), Internet od Things (IoT) etc. Also, Softwarization 
[3]–[5]i.e. programming a virtualized network 
infrastructure using software has brought the 
communication engineering and software engineering 
into the same page. The network has eventually become 
smarter, robust and manageable. Programming a network 
in abstraction has given flexibility, unprecedented to the 
previous generation. Technologies such as software-
defined networking (SDN), Network function 
virtualization (NFV), Management Orchestration 
(MANO), Machine Learning (ML), Virtualization and 
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Cloud-Native plays play a key role to enable those 
verticals. Finally, Self-organized networks (SON) and 
Network Slicing has given the ability to manage and 
work with complex heterogeneous networks. 

For the research community, 5G has been in the 
limelight for a while. Due to its diverse field application, 
it has brought researchers together from several domains 
and disciplines. One fundamental practice in such 
interdisciplinary research is to craft an artificial 5G test 
environment to implement, verify and validate concept 
before leading into prototyping. Therefore, a testbed is an 
essential tool for any 5G oriented research that comprises 
of all the enabling technologies such as SDN, ML, and 
Virtualization etc. and let the researcher test the concept 
in form of algorithms without bothering too much about 
the system implementation and operational details. 
Undoubtedly, building such a Testbed is a key step, 
however, there are three possible alternative forms in 
which they generally come.  

Fully Simulated: This type of environment are the 
lightest alternatives. Mathematical models (such as delay, 
mobility and queuing models etc.) to calculate network 
parameters while simulating. A detailed comparison of 
such simulators like NS2, QualNet, OPNET, TOSSIM is 
presented by authors in [6]– [8]. These environments are 
limited to interfacing with external. Emulated: Network 
Emulators are typically UNIX based, using native drivers 
such as HWSim, these platforms can interface with 
physical systems and can produce more realistic results. 
Common Open Research Emulator (CORE) [9] is one of 
the classic examples of such an environment. Mininet is 
presently one of the most popular network emulators for 
SDN [10], [11]. Also, Mininet-Wi-Fi [12] an extension of 
standard Mininet is capable of emulating wireless 
networks with several mobilities and propagation models. 
Graphical Network Simulator (GNS3) is an option for 
advanced implementation, it provides virtualization, 
Docker containerization, and appliance support. One can 
use GNS3 to mimic an almost real scenario [13], [14]. 
These environments are typically heavy and some needs 
network configuration skills to prepare the test 
environment. 

Hybrid: The Hybrid environment is the most advanced, 
they practically simulate and emulate the network and 
provides outstanding interfacing capabilities to the 
external world and other simulation environments. 
Netsim [15] is one of the top hybrid platforms used by 
many universities and corporate houses for both research 



and production. These platforms are typically commercial 
hence includes likening. 
 

Contribution 
In this paper, we’ve presented our 5G Testbed 

BlueArch, as a part of the SONNET project [16]. It is an 
organization of several open source tools and supports all 
the necessary technologies including hybrid architecture, 
interfacing to external environment etc. This paper is 
useful as a guide to building such a testbed from scratch. 

The rest is organized as, Section II describes the 
architecture and details of components and their 
implementation, Section III Demonstrates various use 
cases and experiments conducted and finally, we 
conclude and acknowledge at section IV & IV 
respectively. 

II.  SYSTEM ARCHITECTURE & 
IMPLEMENTATION 

Fig. 1 depicts the schematic diagram of BlueArch. It’s 
a hybrid platform that supports simulation, emulation, 

interfacing to external platforms and physical 
environment. It is a collection of six virtual machines 
(VMs) each runs a specific service, in case of scalability, 
it is provisioned to add more VMs to accommodate the 
need. The virtualized service-oriented architecture (v- 
SOA) provides easy recovery by snapshots and 
portability by migration. The implementation can be 
made physical by cloning the VMs into physical servers, 
this improves overall performance. A NAS server is used 
as shared storage and this make a private network running 
at 10.1.2.0/24 address space. A gateway router connects a 
wireless access point running on same private address 
space, an external OpenStack private cloud setup, and 
internet. A Mobile edge computing (MEC) 
implementation [17] using raspberry pi, is interfacing 
with the platform. This is a use case of IoT infrastructure 
with virtual network function (VNF) migration over the 
test bed. In the following section, BlueArch’s features are 
described in detail. 

 

Fig. 1. Schematic Diagram of BlueArch 



A. Firewall: For this implementation PfSense[18] 
opensource firewall is used. It is a Free BSD based 
implementation that along with a basic firewall 
provides services like network monitor, traffic 
shaper, load balancer, deep packet inspection, and 
routing. In the virtualized setup the WAN port of 
PfSense is connected to the bridged external network 
and the LAN port is connected to the all other VMs. 
For a physical setup, it must be placed between the 
gateway router and the private network. 
 

B. SDN Controller: In an SDN environment the control 
plane decides and governs the communication. It 
controls the underlying forwarding devices using the 
OpenFlow protocol, in this setup the forwarding 
devices are Open-V-Switch (OVS) [19]. For the 
Control plane, there are the controllers are hosted, 
OpenDaylight (ODL), Ryu and HP- VAN. This 
supports the implementation of cross-platform, 
multi-controller infrastructure. The controller is 
hosted as VMs under a paravirtualized environment 
hosted by Citrix XEN server (which is an open 
source type 1 hypervisor like, VMWare ESXi). The 
paravirtualization is perhaps optional, but it gives 
better flexibility with cloning and Snapshots. 
 

C. Orchestration: BlueArch also supports ETSI MANO 
orchestration, Open Mano and RIFT.io orchestrators 
are hosted as VMs within a XEN environment. This 
supports orchestrating Virtual Network Functions 
(VNF) and leverage network slicing ability [20], [21] 
for optimal service and resource management. RIFT 
allows prebuilt VNFs to plug and play over the 
system, called onboarding. 

 
D. Application Server: This acts as the SDN application 

layer. Although the given implementation runs 
Windows 10 and VMWare workstation pro, one can 

use any opensource client operating systems such as 
Ubuntu 64 bit and XEN server or Virtual box as 
opensource alternatives. The client OS runs the 
GNS3 UI, a type 2 hypervisor and XEN center. 

 
• GNS3 UI is the graphical user interface of the GNS3 

software. This provides a platform to draw and design 
a network, accessing individual device with CLI 
though terminal or GUI using VNC is also possible 
from GNS3 UI. Fig. 2 shows the GNS3 layout of a 
sample network topology. GNS3 also allows emulated 
devices to access external network using NAT or 
Bridged connection. For large scale simulation, GNS3 
offers a separate compute platform, typically 
virtualized, called GNS3 VM. While simulating a 
network GNS3 UI offload the devices to GNS3 VM 
via either QEMU virtualization or Docker containers. 
GNS3 UI also provides a RESTful web API to 
monitor activities and support Wireshark integration 
for traffic analysis and Deep packet inspection. GNS3 
website provides a wide range of Docker/QEMU 
based open source appliances, some of the most 
popular ones are, OVS, Ostinato traffic generator, 
Ubuntu, Cumulus VX etc. 
 

• Type 2 Hypervisor is used to host custom 
applications and some optional applications. The main 
reason for its placement is to isolate the homegrown 
apps from the rest of the system. The hypervisor is 
hosting two Ubuntu 64-bit VMs let them be VM1 and 
VM2. VM1 runs Cisco OpenDaylight Open Flow 
Manager (OFM) app [22], this is an extension of the 
ODL controller, using RESTConf protocol it 
communicates with ODL. The Flow Maker tool of 
OFM allows the user to easily create OpenFlow rules 
and manipulate switch wise OF tables. OFM runs its 
own web Node JS based server and hence the UI can 

Fig. 2. Network design, A Sample topology in GNS3 UI 



be accessed from anywhere within the private 
network. VM2 hosts the bespoke applications, most of 
the prototyping is done here.  

 
• Custom Tools, BlueArch presently contains four such 

prototyped applications, following four applications, 
written in python3.6 are developed for various 
projects running on top of BlueArch. 

i) ShellMon: This is a client-server-based resource 
monitor. The client is installed into a Linux system 
as a push agent, the server fetches system resource 
utilization. Fig. 3 shows a sample plot of ShellMon 
Server. 

ii) TopoBuild: These app uses are used for interacting 
with external simulators such as MATLAB or 
NS3.  
Data from the remote simulator is first written into 
the MySQL database server discussed in a later 
section. Using a MySQL client API TopoBuild 
reads the dataset and RESTful API it conveys to 
GNS3 or Mininet environment. The primary task is 
to replicate the topology and network state such as 
node and channel properties to an SDN platform. 
TopoBuild is event-driven, therefore any change in 
the remote environment triggers changes in the 
testbed. 

iii) TopoSense: This app uses the OpenDaylight 
northbound interface (NBI) to read and right 
controller information. Using RESTConf protocol 
it fetches the network topology and flow table 
information respectively from network/topology 
and node/inventory resources. The topology and 
flow table information are fused into a Graph 
Structure to compute various graph-theoretic 
algorithms such as shortest paths, Spanning Tree 
etc. Results are written back to the ODL, which the 
ODL translates into OpenFlow rules and inject into 
OVSs. 

iv) TopoRoute: It is one of the subroutines of 
TopoSense, used for calculating routes. It 
calculates all pair shortest paths from topology 

generated by TopoSense and the set of paths are 
returned. Fig. 4 shows a sample plot of TopoRoute 
generated all pair shortest path from a 6 nodes 
topology. 

 
E. Network Emulation Server: This is the most compute-

intensive VM among the others in the testbed. This 
hosts three emulators Mininet for wired SDN 

simulation, Mininet Wi-Fi for wireless SDN simulation 
and GNS3 Compute hosting offloaded computation 
from GNS3 UI. Emulators are hosted as VMs. GNS3 
VM mainly hosts OVS instances and Quagga software 
routers as Docker containers and Cisco IOU instances 
as QEMO VMs. For some legacy Cisco images, GNS3 
offers an inbuild hypervisor called dynamips which can 
optimally schedule their resource allocation using Idle-
PC tool. 
 

F. Database Server: The database server is running 
MySQL Server, primarily used as a middleware 
between the testbed and any external platform. Since 
SQL is a standard data modeling language, it provides 
superior compatibility. Fig. 5 shows an example 
schema to handshake live data from a remote 
MATLAB based simulator, further discussed in Use 
cases. Hence, of SQL enhances interoperability. One 
can use alternatives like Elastic Search for better 
throughput. 
The modeling of the schema has two primary entities 
Node and Channel. The node caries information such 
as node ID, operating frequency etc. whereas, the 
channel properties are Channel ID, Bandwidth etc. 
shown in table 1 and 2 respectively. 

Fig. 3. ShellMon Server plotting live utilization of 4 Raspberry Pi nodes 
with over a IP network 

Fig. 4. ERD of a sample database schema to model data exchange 
between the testbed and a remote simulator 



 

 

Node Attributes Description 
Node ID Unique ID for each node  
Type Access point or User equipment  
Position (𝑥, 𝑦) axis of the node  
Range Range in meter  
Channel  Operating channel   
Frequency  Operating Frequency in Hz 
Mode The mode of transfer (b/g/n etc.) 
Tx_Power Transmit power in (db)  
IP Address Generated by the emulator  
MAC Generated by the emulator  

Table 1 Node table attributes 
 

Channel Attributes Description 
Channel ID Unique ID for each channel 
Bandwidth  E2E throughput in Mbps 
Distance  Physical distance in meter  
Pathloss Measured from SLS 
Latency  Packet processing time in ms 
Delay Round trip time in ms 

Table 2 Channel Properties  
 
A node can be a Host/UE or a Switch/AP. If a node is a 
switch/AP then it also contains its flow table, fetched 
from the controller. Each AP knows about the list of 
hosts it is associated to, each host knows the node-ID 
of its associated AP. Two nodes (one must be a switch) 
makes a channel that refer to the channel ID, two host 
nodes can’t make a channel. Channel between two 
switches is a backhaul link and channel between a 
switch and a host is a fronthaul link. 

III. EXPERIMENTS & USE CASES 

In this section, three experiments are described as each 
having different use cases.  

Case 1: RESCUE a cloud-based IoT system for 
Disaster Recovery [23]. The referred paper demonstrates 
the Monitoring and Load balancing feature. The 
ShellMon client is installed on the IoT gateways and the 
server remotely monitors the Realtime resource 
utilization (Figure 3).   

 
Case 2: Self Migration of Docker Containers, 

interfacing with the physical network. In this use case, 
Raspberry Pi is used as a MEC node hosting a VNF as a 
Docker container. Whenever the MEC gets overloaded, 
the migration function gets self-triggered and initiates a 
post-copy migration to another MEC which is infeasible 
distance and having an adequate free resource to 
accommodate the immigrant container.  Fig. 6 describes 
the migration.  

Unlike Case 1, here ShellMon server also runs a 
learning agent that interprets the varying resource 
utilization as a time series. The learning agent learns a 
pattern from the time series and with given cutoff, if it 
forecasts a failure, it triggers a migration. The triggered 
migration works as following, we term the overloaded 
node as Victim and Target be the most feasible node 
where the victim can offload. The selection of Target is 
by a proprietary algorithm which is beyond the cope of 
this article. The algorithm chooses the container (or 
container chain) from the victim, to be offloaded and the 

Fig. 6. Self Migration of VNF over MEC. Till mark A the average utilization is under the cut-off 40%, within mark A,B the 
average exceeds the cutoff, at B migration starts and continues till mark C hence and the utilization comes down. 

Fig. 5. All pair Shortest paths of a graph with 6 vertices, generated by 
Dijkstra’s single source SPF algorithm 



generates a snapshot. Thereafter a secure channel is 
established between the source and the target and the 
transfer is initiated. After transfer if the container is still 
running then a new snapshot is taken sent otherwise the 
previous snapshot is used. Likewise, the system can 
dynamically choose between Pre-Copy and Post-Copy 
migration depending upon the situation.  

A major difference between migration offered by 
docker swarm, the proposed migration also supports Fall-
back feature, i.e. not only when a system goes off the 
migration is initiated, but also, when the system spins off 
again the migrated containers perhaps come back. In 
addition, the system is immune to preventive failover, i.e. 
the offloading takes place based on the probability of 
failure, which is learned from the trend of usage.  

Figure 6 depicts the experimental outcome, here the 
client is deliberately stressed to cause a migration. The X 
axis is the time window of 100 seconds. The Y axis is 
utilization, measured in a scale of [0,1000] where 1000 
denotes 100% utilization. For experimental purpose, the 
cutoff value is set to 40% i.e. at 400 mark. The client 
monitors the CPU, memory and Network interface 
utilization and boiled them down into a single scaler 
called Z_Value. The detailed calculation of Z_Value is 
discussed in our previous paper [24]. The server only 
learns from the time series of Z_Value for each client. 
During timestamp [0,40] there are some spikes that 
exceeds the cutoff, which the learning algorithm 
successfully detects as outlier. At the timestamp “A” the 
system is stressed which causes a hike in CPU utilization, 
that also hiked the Z_Value. At timestamp “B” the server 
detects the pattern as a overload and triggers migration, 
between “B” & “C” network activity can be evident, that 

is due to the transfer of the container to the Target over 
the network. At “C” the migration finishes, and the 
container is shuts off at the victim that causes a sudden 
fall of the CPU and Z_Value.  

 
Case 3: Interfacing with remote Simulator. In this 

use case, a remote MATLAB based simulator computes 
Channel Models of a RAN, and BlueArch provides SDN 
support on top that by interfacing, Fig. 7 shows the 
sequence diagram of the handshaking process and Fig. 8 
Shows the cumulative Result. 

The MATLAB based system level simulator (SLS) 
prepares the channel model and scheduling of radio 
resources.  The network layout is also given. BlueArch’s 
topology module comprising (TopoSense, TopoBuild & 
TopoRoute), introduced in section II.D. makes the SDN 
integration happen. First, based on the network layout, a 
schema is created on a shared Data Base, containing 
number of nodes, number of channel and their relevant 
information. Figure 4 perhaps used as a reference. The 
tables are periodically filled by varying channel and node 
information from the simulator. TopoBuild fetches the 
adjacency information from the database and builds an 
Open-Flow equivalent using OVS in Mininet and GNS3. 
The RAN is emulated in Mininet and the Core in GNS3. 
Since the emulators are bridged to make them 
communicate. Once TopoBuild creates the emulations, it 
periodically reads the channel updates from the Database 
and applies on the emulated network. For the time being 
GNS3 API doesn’t support link properties therefore the 
Core network links don’t get altered. TopoBuild also adds 
the SDN controller, which is ODL in this case. ODL 
establishes OpenFlow communication with the OVSs. 

Fig. 7. Sequence diagram of Interfacing and control message exchanges between BlueArch and MATLAB using 
TopoBuild, OVS, ODL, TopoSense & TopoRoute 



TopoSense uses RESTConf API to connect to the ODL 
northbound interface. It fetches the topology and flow 
table information from the Topology and inventory 
resources of ODL. Along with that the node & link costs 
from the database is fed into the Z_Value calculating 
model. All this information is fused into TopoSense to 
build a much more informed graph we call it Meta-graph, 
the node cost is then relaxed into edges using our 
Stochastic Temporal Edge Normalization (STEN) 
algorithm [24].TopoRoute then uses this Meta-Graph to 
find shortest path between all pair (Figure 5), and the 
response is first fed back to ODL using RESTConf which 
eventually conveys it to the OVSs using OpenFlow, and 
also the updates are sent to the shared database from 
which the MATLAB simulator reads it and learns about 
best routes across the RAN. 

Figure 8 depicts the summery outcome of the subjected 
use-case. 8.A. shows a schematic diagram of the network 
layout, running in MATLAB. There are three Base 
stations (BS1,2 & 3), each connects two user equipment 
(UE1,2…6) over a radio link which acts as a fronthaul. 
TopoBuild places a OVS for each BS, the OVS performs 
all layer 2 functions where the Layer 1 functions are 
performed in the SLS. Therefore, the backhaul is 
established between the OVSs which acts as a data plane 
(DP) for the SDN. The Control plane (CP) is provided by 
ODL and OpenFlow channel is established between the 
OVSs and ODL. The application server runs all the 
custom application an connects to ODL via RESTConf 
protocol. The emulation is shown at 8.B. where the blue 
triangle represents the backhaul (Core) and green shades 
represents the fronthaul (RAN). Each OVS in this 
emulation is treated as an access points and UE as hosts. 

8.C. depicts the topology view from ODL controller. 
Here all the OVS are discovered and UE’s as hosts. ODL 
doesn’t offer a separate view for wireless, thus each 
connection is shown as a link. 8.D. shows the Meta-graph 
generated by TopoSense, the view is generated using 
NetworkX and Matplotlib library. Each node in the graph 
is an object caries node information and flow 
information, where the edge object caries the link 
information, discussed in section II.F. the nodes are 
labeled with their MAC addresses for UE and Datapath 
ID (DPID) for OVS. The Meta-Graph is fed to the 
TopoRoute to generate pair-wise shortest paths. The link 
cost changes dynamically as the channel costs changes in 
MATLAB simulation, which results the change in edge 
length in the Meta-Graph. The SPF uses the length as an 
edge weight in order to calculate the shortest path. 
 

IV. CONCLUSION & FUTURE SCOPES 
 

BlueArch a 5G testbed implementation that provides a 
hybrid platform for conducting various experiments 
including MEC, IoT, SDN, NFV etc. Various mode of 
tests includes simulation, emulation, and interacting with 
the physical network and remote testbed platforms. The 
building blocks of the testbed are Open Source and 
virtualized which makes the architecture interoperable 
and flexible. Several use cases are implemented on top of 
the platform validates its robustness, that includes 
Realtime resource monitoring, Intelligent service 
migration and Cross-Platform interfacing. 

As a future extension, appending a Recurrent Neural 
Network (RNN) node for intelligent network automation 

Fig. 8. Complete workflow of BlueArch. On the left the conceptual architecture is presented. (A) TopoBuild build the network in Mininet 
Wifi, (B) Using OpenFlow ODL reads the network and generate topology, (C) TopoSense, Using RESTConf protocol creates reads the 

flow table and topology and generate a graph 



that includes traffic analysis and route optimization and is 
planned under progress. 
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