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Abstract

Many authors have argued that proper modeling of the strategic interaction between

players requires a game theoretic approach as opposed to a decision theoretic approach.

We argue in this paper, however, that there are many environments in which decision

analysis can deal with strategic interactions just as well and we present equivalence

results for such environments. These equivalence results allow the prescriptive decision

analyst to use the standard tools that a sound decision analysis requires, including

decision trees and sensitivity analysis, even when confronted with strategic settings.

We further present two technical comments on the Cavusoglu and Raghunathan paper.
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1 Introduction

In their recent paper published in this journal, Cavusoglu and Raghunathan (2004) (CR),

contrast a decision analysis approach with a game theoretic approach to the problem of

configuring detection software.1 They argue that proper modeling for this problem would

require a game theoretic approach and that a firm applying the game theoretic approach

would achieve higher gains than a firm applying a decision analysis approach. Underlying

these arguments is an intellectual divide between the fields of decision analysis and game

theory. The commonly made distinction between the two fields is that decision analysis

focuses on one decision maker (DM) facing an uncertain environment, whereas game theory

also studies the strategic interaction between decision makers.

In contrast, in this comment we argue that there are many situations in which decision

analysis can deal with strategic interactions as well. Many sequential games, such as the

two-stage games considered in this paper (e.g. the Stackelberg leader-follower game), can

be analyzed using a decision analysis approach, as long as the decision theorist chooses the

inputs to the decision problem carefully. For this class of games, sophisticated decision

analysis is equivalent to game theory. In two-player, two-stage games in which the follower

has a unique best response, we show that as long as the chance nodes of the leader in the

decision analysis are chosen to represent the strategy of the follower, a decision analysis is

equivalent to a game theoretic analysis. However, we also provide an example in which a

decision analysis and a game theoretic analysis differ in meaningful ways. It is in these cases

that one might make the argument for going beyond the confines of decision analysis.

In addition to commenting on the conceptual basis for a distinction between game theory

and decision analysis, we make two technical points related to the CR paper. First, we show

that the reasoning presented by CR for their solution to the sequential game is not correct.

Second, we argue that once the authors allow for a discretization of the strategy space, then

one can easily tackle the problem considered in their paper using decision analysis, although

one would need to use a more sophisticated response function than the naive one assumed

in CR’s decision analysis approach.

We begin by defining what we mean by decision analysis and what we mean by game

theory. Decision analysis can be defined as a structured way of thinking about how actions

taken in a decision environment influence the final outcome. As such, we can distinguish

three main features of the decision situation: (i) the set of alternatives, (ii) the chance and

unknown events that can affect the outcome, and (iii) the outcome itself. Decision analysis

1The same issue contained another application of game theory within a decision analysis by Lippman and
McCardle (2004).
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then constructs models that are mathematical representations of the relationships within

and between these three features of the decision situation. A fourth main feature is then an

algorithm for solving the constructed model, usually called the solution concept.2

Once the model is solved, it allows the DM to infer the implications of each course of

action that he might take, so that he can better understand the relationship between his

actions and his objectives. Note that these four key features of a decision analysis, i.e. (i)

the set of alternatives, (ii) the chance and unknown events, (iii) the results and (iv) the

solution concept, have straightforward counterparts in game theory, namely, (i) the strategy

set, (ii) the moves of nature, (iii) the payoff mapping, and (iv) the equilibrium concept. The

difference between decision analysis and game theory can be summarized by the following

elements of a game that a decision analysis does not have: (v) the other players and (vi)

the dependence of the payoffs on the actions of the other players. However, we argue in this

paper that having multiple players does not necessarily imply the need for a game theoretic

analysis. There are many situations in which a decision analysis is equivalent to a game

theoretic analysis, because in many situations it is possible to model the payoff dependence

on the other players’ actions as chance nodes.

For the remainder of this paper, the definitions of game theory and decision analysis

described above are too broad. Instead, we will focus on the definitions given in the sections

below. In these definitions, we assume some basic concepts are understood, such as the

definitions of a decision tree and an extensive and normal form game. Further, we define a

solution to the decision tree as a selection of actions from the decision nodes that maximize

the decision maker’s expected payoff.

The comment proceeds as follows. In Section 2, we state the required definitions and

then provide results for environments with sequential or simultaneous strategic interaction.

We assess how well pure decision analysis (i.e., decision analysis that does not allow

randomization over actions) and extended decision analysis (i.e., decision analysis that allows

for randomization) are able to address strategic situations. In Section 3 we offer our more

technical comments on the CR paper. In Section 4, we conclude.

2 Decision Analysis versus Game Theory

2.1 Definitions

We begin by defining what we mean by pure decision analysis and then we define an

extended decision analysis. Whereas pure decision analysis does not allow a strategic mixing

2These definitions are paraphrased versions of the definitions formulated by the Decision Analysis Society.
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over strategies, extended decision analysis does allow such mixed strategies. These mixed

strategies are, in fact, optimal strategies as long as the decision maker is randomizing over

actions that each maximize his or her expected payoff. Specifically in the context of auditing

and detection, which is the example introduced in CR, such mixtures over actions play an

important role.

Definition 1 A pure decision analysis is a solved decision tree that provides a selection of

pure actions from the decision nodes that maximize the decision maker’s expected payoff or

utility.

Note that a pure decision analysis does not let a decision maker randomize over actions.

In fact, when a decision maker is playing against nature, there is no value-added from

randomizing over actions. When two actions lead to the same outcome, the decision maker

is simply indifferent between the two. The DM can then randomly select one of those

actions, but there is no reason for applying one randomization mechanism versus another.

This randomization is therefore of no interest to the pure decision analyst.

Second, we define what we mean by a game theoretic analysis.

Definition 2 A game theoretic analysis is a game, either in extensive or normal form,

together with an equilibrium strategy profile.

As described in the introduction, one of the main characteristics of a game is the presence

of multiple players. We can study the behavior of multiple players in a decision analysis by

simply considering multiple trees. We focus on games with two players, although the analysis

extends to a finite number of players. In the presence of two players, we consider two trees,

one for each player.

Definition 3 A paired pure decision analysis is a pair of solved decision trees, where the

decision nodes in one tree correspond to the (degenerate) chance nodes in the other tree, and

where the (degenerate) probabilities on the chance nodes in one tree correspond to the payoff

maximizing pure decisions in the other tree.

Definition 4 A paired pure decision analysis is equivalent to a game theoretic analysis if

the selected actions for player 1 in the first decision analysis match the player’s equilibrium

strategy in the game theoretic analysis, and similarly for the selected actions for player 2 in

the second decision analysis.

A pure decision analysis is intended to analyze a DM’s optimal actions when playing

against nature. Therefore, there is no value-added from playing randomized (mixed)

3



strategies. We can extend pure decision analysis by allowing for mixed strategies, which we

call extended decision analysis. The main motivation for introducing such mixed strategies

is that in strategic settings a solution in pure strategies may not exist.

Definition 5 An extended decision analysis is a solved decision tree that provides a selection

of, possibly randomized, actions from the decision nodes that maximize the decision maker’s

expected payoff or utility.

We can extend the definitions of a paired decision analysis and of equivalence in the

obvious way.

Definition 6 A paired extended decision analysis is a pair of solved decision trees, where

the decision nodes in one tree correspond to the chance nodes in the other tree, and where the

probabilities on the chance nodes in one tree correspond to the payoff maximizing decisions

in the other tree.

Definition 7 A paired extended decision analysis is equivalent to a game theoretic analysis

if the probabilities associated with selected actions for player 1 in the first decision analysis

match the player’s equilibrium strategy in the game theoretic analysis, and similarly for the

selected actions for player 2 in the second decision analysis.

2.2 Sequential Strategic Interaction

We now investigate how well a pure decision analysis is able to model the strategic interaction

between players in a two-player leader-follower game, which is defined below.

Definition 8 A two-player leader-follower game is a pair (A, π), where A1 and A2 are the

action sets and π1 : A1 × A2 → R and π2 : A1 × A2 → R are the payoff functions of the

two players. The follower has a unique best response for every possible action of the leader

if ∀a1 ∈ A1, arg maxa2∈A2
π2(a1, a2) is a (non-empty) singleton set.

One popular equilibrium concept for this game is the subgame-perfect equilibrium, which

we define below. In what follows, given set S, we let ∆(S) denote the set of probability

distributions over the elements of S.

Definition 9 A subgame-perfect equilibrium (SPE) of the two-player leader-follower game

(A, π), where the follower has a unique best response for every possible action of the

leader, is (σ∗
1, a

∗
2), where σ∗

1 ∈ ∆(A1) and a∗2 : A1 → A2, such that ∀a1 ∈ A1, a
∗
2(a1) ∈

arg maxa2∈A2
π2(a1, a2) and ∀a1 ∈ {A1 | σ∗

1(a1) > 0}, a1 ∈ arg maxa1∈A1
π1(a1, a2(a1)).
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We can now state our first proposition.

Proposition 1 Given a two-player leader-follower game in which the follower has a unique

best response for every possible action of the leader, for every game theoretic analysis

involving a pure-strategy SPE, there exists an equivalent paired pure decision analysis.

Proof. Take a pure-strategy SPE of the extensive-form game as given. It must

specify for each action a1 ∈ A1 of the leader, the unique action aBR2 (a1) ∈ A2 of

the follower, and it must specify as the equilibrium strategy for the leader, an action

aBR1 ∈ arg maxa1∈A1
π1(a1, a2(a1)). We now construct an equivalent decision analysis. For

the first decision tree, begin with a decision node for player 1, with a branch for each action

in A1, and with each branch followed by a chance node that has a branch for each action

in A2. For all a1 ∈ A1, for the chance node attached to decision node branch a1, let the

probability be one on branch aBR2 (a1) and zero on all other branches. For the decision node,

select the branch aBR1 . Given the definitions of aBR1 , this is a (correctly) solved decision tree.

For the second decision tree, begin with a chance node for player 1, with the branch for

action aBR1 receiving probability one and all other branches receiving probability zero. At

the end of each branch, attach a decision node with a branch for each action in A2. For the

decision node attached to chance node branch a1, select branch aBR2 (a1). Given the definition

of aBR2 , this is a (correctly) solved decision tree. By construction the paired pure decision

analysis is equivalent to the game theoretic analysis. Q.E.D.

As an application of Proposition 1, consider the usual Stackelberg leader-follower game.

To begin, view the leader as the decision maker and view the follower’s behavior as

probabilistic, but use the follower’s best response function to determine the conditional

probabilities (conditional on the leader’s choice) associated with his available actions. For

any two-player sequential move game in which the follower has a unique best response for

every possible action of the leader, a decision analysis approach with this type of sophisticated

modeling on the leader’s uncertainty regarding the follower’s action, is equivalent to a game

theoretic approach.

To give a more concrete example of the Stackelberg game, assume two firms, linear

demand P = a− bQ, where Q = q1 + q2, and constant marginal cost c. Assume a > c ≥ 0

and b > 0. In the first stage the leader, firm 1, chooses its quantity, and then in the second

stage the follower, firm 2, chooses its quantity. The payoff for firm i is (a− bQ− c)qi.

In any SPE of the game, given quantity q1 for the leader, the follower chooses q2 to solve

max
q2

(a− bq1 − bq2 − c)q2.
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Thus, the follower chooses qr2(q1) = a−c
2b

− q1
2

in the subgame defined by a quantity choice of

q1 by the leader. Given this reaction function, the leader maximizes its payoff by choosing

q1 to solve

max
q1

(a− bq1 − bqr2(q1) − c)q1.

Thus, in the unique SPE of the game, the leader chooses q1 = a−c
2b

and, on the equilibrium

path, the follower chooses q2 = a−c
4b

. Off the equilibrium path, the follower chooses according

to the reaction function qr2(q1).

To construct the paired decision analysis for this game, first construct a tree for the

leader in which the decision node for the leader is followed by a chance node representing

the follower’s actions. Following choice q1 by the leader, assign probability 1 to action qr2(q1)

by the follower. In this tree, the leader maximizes its payoff with choice q1 = a−c
2b

. Second,

construct a tree for the follower in which the initial node is a chance node, representing the

leader’s actions, and then each branch for the chance node is followed by a decision node

for the follower. Assign probability 1 to the branch representing q1 = a−c
2b

. In this tree, the

follower maximizes its payoff with choice qr2(q1) = a−c
2b

− q1
2

following the chance node branch

representing q1 = a−c
2b

.

To given an example with finite action spaces, consider a game of product differentiation.

There are two firms, a leader and a follower. The leader moves first, deciding between

two possible product configurations, A and B. Then the follower responds with a product

configuration decision of its own, choosing between configurations C and D. The payoffs are

as follows, where a ∈ [0, 30]:

follower

leader

C D

A 10, 10 20, 20

B 30, a 10, 30 − a

In this game, the follower’s best reply to A is D, and the follower’s best reply to B is

C if a > 15 and D otherwise (with indifference if a = 15). Thus, in the SPE, if a < 15,

the leader chooses A, anticipating a payoff of 20 from A and a payoff of 10 from B, and if

a > 15, the leader chooses B, anticipating a payoff of 20 from A and a payoff of 30 from B.

Thus, the SPE outcome is (A,D) if a < 15 and (B,C) if a > 15. (If a = 15, then there is a

SPE in which the leader chooses A and the follower chooses D and the follower chooses D

off the equilibrium path after the leader chooses B, and there is a SPE in which the leader

chooses B and the follower chooses C and the follower chooses D off the equilibrium path

after the leader chooses A.)
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Once again, the game can be represented as a paired decision analysis. In the leader’s

decision tree, the follower choice is modeled as a chance node with probability one of the

follower’s best reply. In the follower’s decision tree, the leader’s choice is modeled as a chance

node with probability one on the leader’s payoff-maximizing strategy.

Note that in this game, as the parameter a increases from below 15 to above 15, the

follower’s best reply to B changes and, as a result, the leader’s optimal strategy changes.

Thus, even though the parameter affects only the follower’s profit, changes in the parameter

can cause a shift in the leader’s optimal strategy because the leader anticipates the effect of

the parameter on the follower’s best reply.

These results show that thoughtful decision analysis can be used in place of game theoretic

analysis for certain types of sequential strategic interaction. In the next section, we consider

simultaneous strategic interaction.

2.3 Simultaneous Strategic Interaction

Now we investigate how well a pure decision analysis is able to model the strategic interaction

between players in a two-player simultaneous move game, which we define below.

Definition 10 A two-player simultaneous game is a pair (A, π), where A1 and A2 are the

action sets and π1 : A1 ×A2 → R and π2 : A1 ×A2 → R are the payoff functions of the two

players.

Definition 11 A Nash equilibrium of the two-player simultaneous game (A, π) is (σ∗
1, σ

∗
2),

where σ∗
1 ∈ ∆(A1) and σ∗

2 ∈ ∆(A2), such that σ∗
2 ∈ arg maxσ2∈∆(A2) π2(σ

∗
1, σ2) and

σ∗
1 ∈ arg maxσ1∈∆(A1) π1(σ1, σ

∗
2).

In what follows we refer to a strategy in a game theoretic analysis as strictly mixed if it

places positive probability on at least two actions, i.e., if it is not a pure strategy.

As the following proposition shows, we now have another example of equivalence between

decision analysis and game theoretic analysis.

Proposition 2 Given a game theoretic analysis consisting of a two-player simultaneous-

move game and a pure strategy Nash equilibrium, there exists an equivalent paired pure

decision analysis.

Proof. Take a pure strategy Nash equilibrium of the simultaneous-move game as given. As

in the proof of Proposition 1, one can choose actions in the paired decision analysis to match

the equilibrium actions in the game theoretic analysis. Q.E.D.
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In contrast, when the Nash Equilibrium of the simultaneous-move game is in mixed

strategies, and each player in a decision analysis can only select one action, there is no pure

paired decision analysis that is consistent with the Nash Equilibrium. This suggests a flaw

in the standard definition of a decision analysis, but as stated in the following proposition,

this flaw is easily corrected by allowing a DM to randomize over actions that give it the same

expected payoff or utility.

Proposition 3 Given a game theoretic analysis consisting of a two-player simultaneous-

move game and a strictly mixed Nash equilibrium, there exists a paired extended decision

analysis that is equivalent to the Nash equilibrium of the game, although there does not exist

an equivalent paired pure decision analysis.

Proof. Take the Nash equilibrium of the simultaneous-move game as given. As in the proofs

of the above results, choose probabilities in the extended paired decision analysis to match

the equilibrium probabilities. Q.E.D.

Although Proposition 3 shows that a paired extended decision analysis exists that is

equivalent to a game theoretic analysis for a two-player simultaneous-move game with a

unique Nash equilibrium in completely mixed strategies, to find the Nash equilibrium, one

must go beyond a one-step iteration of the paired decision trees.

To illustrate the use of decision analysis in simple simultaneous move games, consider the

inspection game (Fudenberg and Tirole, 1993, Example 1.7). In that game the firm chooses

either to inspect or not inspect a worker, who chooses either to shirk or work. Working costs

the user g and produces output with value v for the firm. Inspection costs h to the firm. The

firm pays the user w unless the user is caught shirking. The payoffs are as follows, where

g > h > 0 and w > g:

worker

firm

S W

I −h, 0 v − w − h, w − g

NI −w,w v − w,w − g

In the unique Nash equilibrium of the game, the firm mixes between inspecting and not,

with probability g/w on inspection, and the worker mixes between shirking and working,

with probability h/w on shirking.

In games such as this (simultaneous move games with a unique Nash equilibrium in

completely mixed strategies), the game theoretic approach requires that one solve the
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following system of equations, where x denotes the probability with with the worker shirks

and y denotes the probability with which the firm inspects:

−hx− (v − w − h) (1 − x) = −wx+ (v − w)(1 − x)

w(1 − y) = w − g.

One could identify the Nash equilibrium by setting up two decision trees, one with the

firm as the decision maker and one with the worker as the decision maker, as shown in

Figure 1, and then iterating until the two decision trees were consistent in the sense that the

behavior anticipated by the decision maker in one tree was, in fact, optimal for the decision

maker in the other tree, and vice versa. If such a process converges, then it identifies a Nash

equilibrium.

Insert Figure 1 Here

In Figure 1, the upper tree depicts the tree of the worker who chooses between shirking

and working, or some randomization between the two with a probability x on shirking.

Similarly the second tree shows the decision problem of the firm who chooses to either

inspect, or not inspect, or mix with a probability y on inspecting. As described above, in

the Nash equilibrium, the two trees should be consistent with one and another. This is

guaranteed by the strategic use of the variables x and y, which appear in one tree as the

decision variable and in the other as a subjective probability. When x = h/w the expected

value for each of the firm’s alternatives is equal and therefore the firm may as well mix over

inspecting and not inspecting. Equivalently, when y = g/w the worker may as well mix over

shirking and not shirking. So, for these values of x and y, the two trees are consistent.

For any other values of x and y the trees will be inconsistent. Suppose, for example, that

the firm’s subjective probability of dealing with a shirking worker equals x > h/w. Then it

is optimal for the firm always to inspect. However, if the firm always inspects, consistency

of the two trees requires that the worker’s subjective probability of facing an inspecting firm

be y = 1. This means that the agent should never shirk, which (once more appealing to

the consistency between the trees) implies that the firm should have a subjective probability

of dealing with a shirking worker x = 0, which contradicts the initially assumed subjective

probability x > h/w.

As mentioned above, in order to identify the Nash equilibrium in the two decision trees of

Figure 1, one could iterate until the two decision trees are consistent. However, this iterative
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process is not part of a standard decision analysis. In other words, there is no single-pass

approach, such as backwards induction or rolling back the tree, that delivers the solution to

this problem. It is in problems like this one in which the simultaneity is the key issue that

allow us to clearly distinguish the decision analysis and game theoretic approaches.3

One thing that is part of standard decision analysis is sensitivity analysis to see how the

recommended decision changes with changes in various parameters. In the context of a paired

decision analysis, sensitivity analysis would be conducted with respect to some parameter

by changing the value of that parameter in both of the trees in the paired decision analysis.

A paired decision analysis specifies a particular solution for each tree (multiple solutions

are possible if the DM is indifferent between alternatives at a decision node), and once a

parameter value is changed, one can easily check whether the prior solution continues to be

a solution in the revised decision trees. If it is not, then the decision, and corresponding

equilibrium in an equivalent game theoretic analysis, is not robust to that parameter change.

As described above, in some cases an iterative process allows one to identify new solutions to

the two trees such that they once again form a paired decision analysis, where the selections

from the decision nodes in one tree correspond to the probabilities on the chance nodes in

the other tree. A new solution identified in this way suggests one possible change in the

outcome that might result from the parameter change under consideration. But, as noted

above, there may be no finite iterative process that can identify a new solution. In this case,

the sensitivity analysis may be best performed in the context of the game theoretic analysis,

where one can identify the new equilibrium of the game.

3 Solving the Detection Software Game

The remainder of our paper makes two main points regarding CR. First, we argue that the

reasoning that they present for their solution to the sequential game is not quite right. Our

second point is that once the authors allow for a discretization of the strategy space (their

ε > 0), one can easily tackle the problem considered in their paper using decision analysis.

To do this, we need to apply the method we explained in the previous sections. Our method

proposes a more sophisticated response function than the naive one assumed in CR’s decision

3As noted by Fudenberg and Tirole (1993, chapter 1, footnote 9), one can easily compute the optimal
contract, i.e., the w that maximizes the principal’s, i.e. the firm’s, expected payoff. This optimal wage
is given by w =

√
hv. Further, the game substantially changes when the principal can “commit” to an

inspection level. In this case the principal is better off. Consider the game where the principal plays first
and commits to an inspection level y. The agent, i.e., the worker, after observing y chooses whether to shirk.
For a given value of w (>g) the principal can choose y = g/w + ε, where ε is positive and small. The agent
then works with probability 1. Note that this commitment essentially turns the simultaneous game into a
sequential game, which is the subject of Section 2.2.
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analysis approach.

3.1 Equilibrium in CR’s Sequential Game

In the sequential game considered in CR, there are two players, the firm and the user. The

idea behind the game is that the firm must set up detection software and a strategy for

conducting audits, while the user decides whether to commit fraud or not. In the first stage,

the firm chooses the configuration point and the inspection strategy. The configuration point

represents the tradeoff between false positives and false negatives and is given by (PD, PF ),

where PD is the probability of detection conditional on there being fraud, and PF is the

probability of a false positive. The inspection strategy consists of two probabilities (ρ1, ρ2),

where ρ1 is the probability of investigation when the program signals a fraud and ρ2 is

the probability of investigation when the program signals no fraud. The damage from an

undetected fraud for the firm is d and the cost of manual investigation is c. The user’s pure

strategies are to commit fraud or not. The user receives a benefit of µ for committing fraud

if not detected. If the fraud is detected, the user incurs a penalty of β leading to a net benefit

of µ− β. The probability that a user commits fraud is denoted by ψ.

To ease notation, let s1 ∈ S1 ≡ {(PD, PF , ρ1, ρ2) | PD, PF , ρ1, ρ2 ∈ [0, 1]} denote the firm’s

strategy and s2 ∈ {F,N} denote the user’s strategy. Let π1(s1, s2) be the firm’s payoff given

the players’ strategies, and let π2(s1, s2) be the user’s payoff given the players’ strategies.

The payoffs for pure strategies, given (PD, PF ), are given in the following table:

User

Firm

F NF

ρ1 = 1, ρ2 = 1 (−c, µ− β) (−c, 0)

ρ1 = 1, ρ2 = 0 (−d− (c− d)PD, µ− PDβ) (−cPF , 0)

ρ1 = 0, ρ2 = 1 (−c+ (c− d)PD, µ− (1 − PD)β) (−c(1 − PF ), 0)

ρ1 = 0, ρ2 = 0 (−d, µ) (0, 0)

In the second stage of the game, the user takes the firm’s strategy as given and

chooses s2 to solve maxs2∈{F,N} π2(s1, s2). If π2(s1, F ) > π2(s1, N), then s∗2(s1) = F ; if

π2(s1, F ) < π2(s1, N), then s∗2(s1) = N ; and if π2(s1, F ) = π2(s1, N), then the user is

indifferent between F and N and so any mixture between F and N is a best response. Let

σ∗
2(s1) denote the user’s equilibrium strategy.

In the first stage of the game, the firm takes the user’s strategy as given and chooses s1 to

solve maxs1∈S1
π1(s1, σ

∗
2(s1)). CR identify a partition of S1, {SF1 , SN1 , SM1 }, where the user’s

unique best response for any s1 ∈ SF1 is fraud, his unique best response for any s1 ∈ SN1 is

no fraud, and for any s1 ∈ SM1 , he is indifferent between fraud and no fraud.
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CR dismiss the case of s1 ∈ SF1 . Presumably they have in mind an assumption under

which the firm strictly prefers to choose some s1 ∈ SN1 ∪ SM1 over any s1 ∈ SF1 . Clearly

the optimal strategy for the firm in SF1 is the least-cost solution of never investigating, i.e.,

ρ1 = ρ2 = 0. In this case, the firm’s payoff is −d, where d is the damage from undetected

fraud. CR’s “Case 1” considers the case in which s1 ∈ SN1 . A correct analysis of this case

shows that because the set SN1 is open, the solution to maxs1∈SN

1

π1(s1, N) does not exist.

Thus, there can be no equilibrium in which s1 ∈ SN1 . In contrast, CR discretize the set SN1
and find the limit of the firm’s best reply as the unit of discretization approaches zero.

It is important for the calculation of the solution that CR identify an upper bound

for maxs1∈SN

1

π1(s1, N), which we can write as sups1∈SN

1

π1(s1, N). Next, CR’s “Case 2”

considers the case in which s1 ∈ SM1 . CR dismiss this case as never giving the firm

a higher payoff than in their Case 1. However, an optimal strategy for the firm does

not exist for Case 1. A correct analysis would ask whether there exists ψ ∈ [0, 1]

such that there is a solution to maxs1∈SM

1

ψπ1(s1, F ) + (1 − ψ)π1(s1, N) and such that

maxs1∈SM

1

ψπ1(s1, F ) + (1 − ψ)π1(s1, N) ≥ sups1∈SN

1

π1(s1, N). If such a ψ can be found,

then we have identified an equilibrium of the game. Furthermore, as long as we can rule out

equilibria involving s1 ∈ SF1 , the set of all such ψ characterize the set of all equilibria of the

game.

Since SM1 is compact and π1(s1, F ) and π1(s1, N) are continuous in s1, a solution exists

for any ψ. However, one can show that for ψ > 0, maxs1∈SM

1

ψπ1(s1, F )+ (1−ψ)π1(s1, N) <

sups1∈SN

1

π1(s1, N). (This argument appears indirectly in CR.) Thus, there can be no

equilibrium involving ψ > 0.

Thus, we conclude that in any equilibrium ψ = 0, i.e., the user commits fraud with

probability zero. Assuming π1(s1, N) has a unique maximizer on SM1 , then the unique

equilibrium is for the firm to choose s1 to solve maxs1∈SM

1

π1(s1, N) and the user not to

commit fraud. (If π1 does not have a unique maximizer on SM1 , then there exist equilibria

in which the firm uses a mixed strategy.) In particular, the equilibrium value of s1 is not an

element of SN1 as implied by the analysis presented in CR.4 Although in equilibrium both

players choose pure strategies, in equilibrium the user is indifferent between committing

fraud and not. In addition, CR’s arguments do not clearly establish the uniqueness of the

equilibrium.

4On p.141, CR state that “the equilibrium solution of the sequential game when ρ
1
PD + ρ

2
(1−PD) > µ

β

is as follows. ρ∗
1

= 1, ρ∗
2

= 0, P ∗
D = µ

β
, ....” Although this suggests that the game has an equilibrium in this

case, one can show that the condition ρ1PD + ρ2(1 − PD) > µ
β

is not satisfied at the equilibrium values.
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3.2 Extended Decision Analysis in CR’s Sequential Game

We now apply our extended decision analysis approach to CR’s detection software

application. First, we present the two decision trees. Figures 2 and 3 below show the

decision trees of respectively the firm and the user. The firm chooses a mixed strategy where

conditional on a signal, it investigates with probability ρ1 and conditional on no signal it

investigates with probability ρ2. The user chooses a mixed strategy over committing fraud

or no fraud, i.e. commit fraud (F) with probability ψ and no fraud (NF) with probability

1 − ψ. The symbols S and NS indicate whether there is a signal (S) or no signal (NS) from

the detection software. The detection software gives a false positive (i.e., it detects a fraud

when there is none) with probability PF and gives a false negative (i.e., it does not detect a

fraud when there is) with probability 1 − PD.

In the sequential game, the firm rolls back the tree of the user to derive the probability

of fraud ψ as a function of the probabilities ρ1 and ρ2, substitutes this probability into its

own decision tree and optimizes over ρ1 and ρ2.

Insert Figure 2 Here

Figure 2: Decision tree for the firm in the detection software game.

Insert Figure 3 Here

Figure 3: Decision tree for the user in the detection software game.

4 Conclusion

In a response to Cavusoglu and Raghunathan (2004) (CR), which was published in this

journal, we formulate three points, one conceptual and two technical. Conceptually, we

argue in this paper that there are many situations in which decision analysis can deal with

strategic interactions just as well as game theory can. When the equilibrium of the game

is in pure strategies, it is relatively straightforward to find decision trees that are consistent

with the equilibrium of the game. However, when the equilibrium of the game involves mixed

strategies, we need to extend decision analysis for it to be able to model strategic situations.

One might argue that in most decision settings, some player has to move first. As long

as the decision made by that first mover is observed by the second mover, then allowing

for randomization over actions is sufficient to prove equivalence between game theory and

an extended decision analysis, at least one with a sophisticated view towards modeling

expectations about the second mover’s behavior. In this environment, game theory adds

13



value to the decision analysis through its suggestion on how the decision maker should form

its beliefs about the behavior of the environment, i.e., about the actions of players whose

behavior is modeled as uncertain.

We further make two technical points related to the CR paper. First, the reasoning

presented by CR for their solution to the sequential game is not quite correct. One can also

complete their argument by establishing uniqueness of the equilibrium. Second, we argue

that once the authors allow for a discretization of the strategy space, then one can easily

tackle the problem considered in the paper using decision analysis. To do this, one would

need to use a more sophisticated response function than the naive one assumed in CR’s

decision analysis approach.
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Figure 1: Decision tree representation of the inspection game.
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PF + ψ(PD − PF )

NS

1 − PF − ψ(PD − PF )

I

ρ1 = 1

ρ1 ∈ (0, 1)
ρ1c

1 − η1

ρ1c+(1-ρ1)d
η1

NI

ρ1 = 0

I

ρ2 = 1

ρ2 ∈ (0, 1)
ρ2c

1 − η2

NI

ρ2 = 0

c
1 − η1

c
η1

0
1 − η1

d
η1

c
1 − η2

c
η2

0
1 − η2

ρ2c+(1-ρ2)d
η2

d
η2

Figure 2: Decision tree for the firm in the detection software game. The probabilities η1 and

η2 are given respectively by η1 = PDψ

PDψ+PF (1−ψ)
and η2 = (1−PD)ψ

(1−PD)ψ+(1−PF )(1−ψ)
.
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ψ = 1

ψ ∈ (0, 1)

NF

ψ = 0

S

PD

NS 1 − PD

S

PF + ψ(PD − PF )

NS 1 − PF − ψ(PD − PF )

S

PF

NS 1 − PF

µ− βI
ρ1

µNI
1 − ρ1

µ− βI
ρ2

µNI
1 − ρ2

ψ(µ− β)I
ρ1

ψµNI
1 − ρ1

ψ(µ− β)I
ρ2

ψµNI
1 − ρ2

0I
ρ1

0NI
1 − ρ1

0I
ρ2

0NI
1 − ρ2

Figure 3: Decision tree for the user in the detection software game.
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