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Abstract A wide variety of auction models exhibit close relationships be-
tween the winner’s expected profit and the expected difference between the
highest and second-highest order statistics of bidders’ information, and be-
tween expected revenue and the second-highest order statistic of bidders’ ex-
pected asset values. We use stochastic orderings to see when greater envi-
ronmental variability of bidders’ information enhances expected profit and
expected revenue.

Keywords auctions, revenue, expected profit, order statistics, stochastic
orderings (JEL:D44)

In the usual formulation of a game of incomplete information, each player
privately observes his type, with each type drawn from a distribution that is
common knowledge. Auction models typically follow this specification, either
with types drawn independently, or drawn from affiliated distributions; inde-
pendence conditional on a stochastic common value is a frequent example. A
bidder values the auctioned asset as some commonly known function of the
profile of types, with common-value auctions and private-values auctions (in
which each bidder’s value is his type) as special cases.

Typically, the equilibrium examined in these models exhibits a positive
expected profit conditional on winning.1 The winner’s profit results from the
presence of private information: his estimate of asset value, properly condi-
tioned on his type and on the event of winning, is an estimate for which other
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1 The exceptions stem from various heroic assumptions yielding full surplus extraction,
cf. Mares and Harstad (2007) and references therein.
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bidders have but an imperfect substitute. The most widely studied case is inde-
pendently drawn types; then under mild assumptions, Myerson (1981) shows
that equilibrium expected revenue for any standard auction form is equal to
the second-highest expected value estimate, and expected profit conditional on
winning equals the difference between the highest and second-highest expected
value estimates. This paper examines the relationship between the variability
of the type distributions and these expected estimates, illuminating compar-
isons across auction environments where bidders’ private information is less
dispersed in one, and dispersed more widely in the other.2

To normalize to zero the seller’s value of the auctioned asset is usual,
harmless, and assumed throughout. The gains from trade are then equal to
the highest expected value estimate. Except in virtually pathological cases,
more widely dispersed private information increases the gains from trade. We
explore assumptions determining whether the seller, and whether the winning
bidder, shares in these increased gains.

In some auction settings, variability of bidders’ information may be par-
tially under the bid-taker’s control: a seller may decide to reveal greater or
lesser information about technical specifications of an auctioned asset; a buyer
seeking bids for construction of a skyscraper may choose to offer insurance
against price increases for certain raw materials as part of the auction speci-
fications.

Sections 1 and 2 examine independently-distributed information; affiliation
is considered following. Most proofs are relegated to the appendix.

1 The Winning Bidder’s Expected Profit

This analysis contrasts a benchmark environment where any of the n bidders
observes a type X drawn i.i.d. from nondegenerate distribution function F
with a more-dispersed-information environment where any bidder observes a
type Z = X + Y , with the added randomness Y distributed (independently)
as G. 3 Let X =

(
X(1), ..., X(n)

)
denote the order statistics (in descending

order) of a sample of size n from the population random variable X, and
Z =

(
Z(1), ..., Z(n)

)
, correspondingly. The characterization sought, Dispersion

Benefits Bidders (DBB), is then formally:

E
[
X(1) −X(2)

]
≤ E

[
Z(1) − Z(2)

]
.

Several types of stochastic orderings play roles:

2 For concreteness, the text develops the case where bidders compete to buy from a bid-
taking seller; completely corresponding results about the variability of (1) the second-lowest
order statistic, and (2) the difference between the lowest and second-lowest order statistics,
illuminate expected project cost and expected profit in the case where bidders compete to
sell to a bid-taking buyer.

3 The incremental dispersion need not be additive: Z can simply be more dispersed than
X, with Y = X − Z by definition.
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1. X is stochastically smaller than Y (read, X ≤st Y ) if F (t) ≤ G(t) ∀t .4

2. X is less dispersed than Y (X ≤disp Y ) if 0 < α < β < 1 =⇒ F−1(β) −
F−1(α) ≤ G−1(β)−G−1(α) (Shaked 1982).

3. X is smaller than Y in the excess wealth order (X ≤ew Y ) if p ∈ (0, 1) =⇒∫∞
F−1(p)

F (x)dx ≤
∫∞

G−1(p)
G(x)dx (Shaked and Shanthikumar 2006).

4. X is smaller than Y in the increasing convex order (X ≤icx Y ) if
∫∞

t
F (x)dx ≤∫∞

t
G(x)dx ∀t (Ross 1996).

Theorem 1 Either (1) X has a log-concave density5 or (2) X has an increas-
ing failure rate (IFR)6 is sufficient for DBB.

Proof Preliminaries: [a] X satisfies X ≤disp X + Y for Y independent of X
if and only if X has a log-concave density. [b] Let V(i) = X(i) − X(i+1) and
W(i) = Z(i) − Z(i+1) , i = 1, 2, ..., n.7 If X ≤disp Z, then V(i) ≤st W(i),
i = 1, 2, ..., n. [c] X satisfies X ≤ew X +Y for Y independent of X if and only
if X is IFR. [d] If X ≤ew Z then X(1)−X(k) ≤icx Z(1)−Z(k) for k = 2, 3, ..., n.8

If X has a log-concave density, then (by [a]) X ≤disp X + Y , and (by
[b]) V(1) ≤st W(1). Now E

[
V(1)

]
≤ E

[
W(1)

]
follows from {A ≤st B} =⇒

{E [A] ≤ E [B]}. If X is IFR, then (by [c]) X ≤ew X + Y , and (by [d])
X(1)−X(2) ≤icx Z(1)−Z(2), which is a stronger result than E

[
X(1) −X(2)

]
≤

E
[
Z(1) − Z(2)

]
.9

Many commonly used distribution families have log-concave densities. These
include uniform, normal, logistic, extreme value, exponential, Laplace, chi-
squared (c ≥ 2), Weibull (c ≥ 1), power function (β ≥ 1) , gamma (m ≥ 1)
and beta (a ≥ 1, b ≥ 1) (See Bagnoli and Bergstrom 2005 for a more extensive
list).

It is frequently the case in auction theory that results for two-bidder auc-
tions may only extend to auctions where n > 2 under more stringent conditions
(if at all). This is such a situation, as the above conditions are unnecessary in
two-bidder auctions:

Theorem 2 That n = 2 is sufficient for DBB.

4 For a random variable W ∼ H, the survival function H(t) = Pr{W > t} ∀t.
5 Paul and Gutierrez (2004) obtain a corresponding characterization under a more strin-

gent and less transparent assumption on the underlying stochastic order; their principal
concern is with the relationship between the number of bidders and the expectation of the
difference between the two highest order statistics.

6 Log-concave density and IFR are related but not nested. If the density function h is
continuously differentiable and log-concave on [a, b], then the distribution H has IFR.

7 For completeness, for U ∼ H, define U(n+1) = inf{t : U(t) > 0}; this step assumes
X(n+1) and Z(n+1) are finite, which is harmless for present purposes.

8 Sources: [a] Shaked and Shanthikumar 2006 Theorem 3.B.7; [b] Bartoszewicz 1986
Lemma 3(b); [c] Shaked and Shanthikumar 2006 Theorem 3.C.8; [d] Kochar et al. 2007
Theorem 3.

9 The weaker result is also in Li (2005).
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These three conditions suffice for dispersion to benefit bidders, but do not
indicate the extent of the benefit. A fourth condition offers a measure of
bidder benefit.

Theorem 3 That X and Y are normal is sufficient for DBB. Moreover, the
increment of expected profit is proportional to the increment of the standard
deviation.

None of these sufficient conditions are necessary. An abundance of cases
exhibit DBB for arbitrary n, but no illuminating necessary condition seems
possible.

It might appear that the expected difference between the two highest order
statistics should always expand as variability increases. A counterexample: let
X ∼ log-normal(2,4), Y ∼ N(15,5); a 10, 000-iteration simulation with n = 50
yields E

[
X(1) −X(2)

]
≈ 8.49, but E

[
Z(1) − Z(2)

]
≈ 7.57.

To understand how the example works, we introduce the concept of locally
dispersive order. We say that X is locally less dispersed than Y on range subset
[α, β] if 0 < α < β < 1 and ∃d ∈ (−α, 1 − β) such that F−1(β) − F−1(α) ≤
G−1(β + d)−G−1(α+ d). Intuitively, the definition means that the C.D.F. of
Y is flatter than that of X on some regions on their respective supports. In our
problem, although Z tends to be more dispersive than X globally, the converse
can happen locally. This leads to an algorithm to construct counterexamples:
first, select Y such that Z is locally less dispersed than X; then select n
such that X(1),X(2), and Z(1), Z(2) fall in the corresponding regions. In the
above counterexample, E

[
X(1)

]
≈ 18.90 and E

[
X(2)

]
≈ 10.41, both far in the

tail of the distribution. Adding a normal distribution with a mean between
E
[
X(1)

]
and E

[
X(2)

]
increases the variability, but also shifts rightward the

log-normal distribution’s head. The first- and second-order statistics are then
in the resultant distribution’s head. As the tail is much flatter than the head,
the desired locally dispersive order is obtained. The general structure of cases
reversing the DBB inequality eludes specification. The example demonstrates
that dispersion does not always benefit the winning bidder.

2 Expected Revenue

As stated in the introduction, the bid-taker’s expected revenue is the second-
highest expected value estimate. Continuing with Z = X + Y , X,Y indepen-
dent, we explore conditions yielding the characterization Dispersion Benefits
Seller (DBS ), formally:

E
[
X(2)

]
≤ E

[
Z(2)

]
.

First, some intuition. Unlike E
[
W(1) −W(2)

]
, the expected value of the

second-highest order statistic is clearly location dependent. For example, if
X ∼ U [0, 1] and Y ∼ U [−3,−2], then obviously Z(2) ≤ −1. Roughly speaking,
the addition of Y can be thought to have two effects. First, the mean of Y :
if E [Y ] > 0, it can “push up” E

[
Z(2)

]
, making it larger. Inversely, E [Y ] < 0
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may “drag it down.” Second, the variability of Y : it increases the variability of
Z. This will approximately “push up” all order statistics above the mean and
“push down” those below it. For n > 3, greater variability tends to increase
the second order statistic–usually above the mean.

Proposition 1 That Y is nonnegative is sufficient for DBS.

It is trivial to construct a case in which DBS fails by choosing negative
Y . To avoid trivialities, restrict attention to Y with E [Y ] ≥ 0. When n = 2,
the second order statistic is below the mean as long as the distribution is not
very right-skewed. To find a counter case is easy. When n = 3, E

[
Z(2)

]
is the

median. To construct a similar example, focus on the right-skewed distribu-
tions, as the mean exceeds the median. Let X ∼log-normal(10, 10), T ∼log-
normal(10, 100) and Y = T − 9, so E [Y ] = 1. By 10,000-iteration simulation
with n = 3, E

[
X(2)

]
≈ 8.25 < E

[
Z(2)

]
≈ 3.69. This inequality holds as well

in simulations for n = 4, 5, 6.
So examples of higher revenue with less dispersed information exist when

n ≤ 6. How about many bidders? Intuitively, the larger n is, the more difficult
to find such an example. While the natural conjecture is that examples may be
constructed correspondingly, we know of no algorithm assuredly constructing
examples for arbitrarily large n.10

3 Going Beyond Independent Randomnesses

This section moves from independent randomness to the more complicated
environments in which randomnesses are correlated. We consider a widely
used case of the affiliation model: conditionally independent random variables.
Let there be a random variable V , and let (X1, . . . , Xn) and (Y1, . . . , Yn) be
independent conditional on V = v (Y being white noise is included as a special
case).

The previous two sections utilized tools that link stochastic orders to or-
der statistics under that assumption of independence; to our knowledge, there
are not extant tools for analyzing affiliated variables. Accordingly, the char-
acterizations here are slightly narrower than for independent types (although
Proposition 1 extends by the same proof).

In general, if sufficient conditions in section 1 [2] above hold given V = v ∀v
for conditional variables X and Y , then the same conditions are uncondition-
ally sufficient for DBB [DBS] with affiliated values. These extensions follow
from the relationship EA[A] = EB [E[A|B]]. To characterize fully general con-
ditions under which sufficient conditions hold “for each v” is elusive. Two
broad, fairly general classes are treated in the following two theorems:

Theorem 4 If X has an unconditional distribution that is hierarchical, that
is, if V is a parameter of the distribution of X, then sufficient conditions for

10 See appendix for a further discussion on several related questions.
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DBB [DBS] under independent types remain sufficient when X and Y are
independent conditional on V .

Letting V be the asymptotic mean of X is sufficient to satisfy Theorem
4 when (X1, . . . , Xn) are exchangeable. For example, if X ∼ normal(V, σ),
then X has log-concave density for all V = v, extending DBB. Hierarchical
distribution is sufficient but not necessary:

Theorem 5 If X = W + g(V ) for some nondecreasing function g(·), then
either a log-concave density or IFR of Wi’s is sufficient for DBB.

Proof X + Y = W + g(V ) + Y . The claim follows immediately by treating
g(V ) + Y as a random variable and applying Theorem 1.

A situation fitting Theorem 5 is when the private-value and common-value
components are additive (as in, e.g., Pesendorfer and Swinkels 2000, or Goeree
and Offerman 2003).11

Section 1 [2] provided examples in which dispersion harmed bidders [seller]
when X and Y are independent. Corresponding examples for affiliated X ′ and
Y ′ can easily be constructed in the following way: take any of the examples
favoring the less dispersed environment for independent X and Y . Letting
X ′ = X and Y ′ = Y + εX ′ introduces affiliation. Letting |ε| be arbitrarily
small maintains affiliation and the inequality found above for that example.

4 Concluding Remarks

Under tenable assumptions for independent-types or affiliated-types environ-
ments, greater dispersion in bidders’ information aids both bidders, via higher
expected profit, and sellers, via higher expected revenue. Yet the needed as-
sumptions are far from innocuous, as unusual but not pathological cases have
been presented where greater variability in information can yield the reverse
inequalities for expected differences between the two highest order statistics
and for expectations of the second-highest value estimate.

There is reason to expect some robustness of the conclusions drawn, in
such directions as small deviations from symmetric type distributions or from
distributional families discussed. An example with sizable deviations from
symmetric type distributions illustrates. Let types be drawn from uniform
distributions: X1 ∼ U [2, 6] , X2 ∼ U [3, 6] , X3 ∼ U [4, 6] , X4 ∼ U [5, 6] and
the mean-preserving spreads Z1 ∼ U [1, 7] , Z2 ∼ U [2, 7] , Z3 ∼ U [3, 7] , Z4 ∼
U [4, 7]. The more dispersed environment exhibits a greater expected profit,
E
[
X(1) −X(2)

]
= 0.45 < E

[
Z(1) − Z(2)

]
= 0.83, and a greater expected rev-

enue, E
[
X(2)

]
= 5.21 < E

[
Z(2)

]
= 5.34. The greater expected profit in the

higher variability environment wouldn’t necessarily be an expectation each
bidder could face, but in this example, conditional on winning, each bidder’s
expected profit is higher with type distributions (Zj) than with (Xj).12

11 The appendix considers situations where affiliated types do not satisfy conditional in-
dependence.
12 A related example is in the appendix.



7

As noted, often bid-takers may have auction design decisions and information-
disclosure policy decisions that can impact type variability. There may also
be scope for decisions by bidders that have information-dispersion aspects.
Matthews (1977, 1984) and Bergemann and Valimaki (2002) consider mod-
els in which bidders decide how precise an estimate of asset value to acquire,
at a cost; more precise estimates are likely to yield the environments con-
sidered here to have less dispersed types. In their models, ex-ante symmet-
ric information-improving technologies lead to equilibria in which information
precision is symmetric. The results above suggest the circumstances in which
greater information-improving efforts might coincide with lesser (or greater)
dispersion of resulting asset value estimates and thus with lesser or greater gra-
dients of expected profitability. Further, they suggest when a seller might have
an incentive to subsidize (or, if feasible, to tax) bidders’ information-improving
costs.

Appendix

Proof of Theorem 2: Construct trial observations of Z as follows. Take 2 draws of X, denoted
x(1), x(2) (descendingly), and 2 draws of Y , denoted by y(1), y(2). Next, randomly assign
y(i)’s to x(i)’s, i = 1, 2. It is equally likely that x(1) is associated with y(1) or y(2), each
having probability 0.5. First, suppose x(1) is associated with y(1), so x(2) is associated with
y(2). Recall z(1) = x(1) + y(1) and z(2) = x(2) + y(2), so ∆z = z(1) − z(2) = (x(1) −
x(2)) + (y(1) − y(2)) = ∆x + ∆y. Second, if instead x(1) is associated with y(2), then x(2)

is associated with y(1). It is then unclear which of x(1) + y(2) and x(2) + y(1) is bigger,
but clear that ∆z = |(x(1) + y(2)) − (x(2) + y(1))| = |∆x −∆y|. Hence the expected value
of ∆z = 0.5(∆x + ∆y) + 0.5|∆x − ∆y| ≥ 0.5(∆x + ∆y) + 0.5(∆x − ∆y) = ∆x, namely
∆z ≥ ∆x in each such constructed trial. Then, by the law of large numbers, E [∆Z] =

limn→∞
∑n

k=1 E[∆zk]

n
≥ limn→∞

∑n
k=1∆xk

n
= E [∆X]. �

Proof of Theorem 3: Letting Z = αX + β, where α is a positive constant, it is straight-
forward that

1. Z(i) , αX(i) + β for all i, and13

2. Z(1) − Z(2) , α
[
X(1) −X(2)

]
.

If α = 1 and β = −µ = −E [X], then Z(1)−Z(2) = X(1)−X(2) for Z = X−µ. Thus the
difference between the first- and second-order statistics is location independent. Normalizing
the means of the random variables to 0 is without loss of generality.

To show Theorem 3, assume both X and Y have means 0. By closure of normal
distributions under addition, Z = X + Y is also normally distributed with mean 0. Let

α =
√
σ2
x + σ2

y/σx, then αX is a normal random variable having the same mean and vari-

ance as Z. Hence, Z , αX, so E
[
Z(1) − Z(2)

]
= αE

[
X(1) −X(2)

]
. �

Proof of Proposition 1: Let x1, ..., xn be a size-n realization of X, and x(1), x(2) the
two largest values. Adding a size-n realization of Y to x1, ..., xn yields z1, ..., zn. Suppose
x(1), x(2) become x(1) + ξ, x(2) + τ , where ξ, τ ≥ 0 by assumption. Clearly,

{
z(1), z(2)

}
are

not necessarily
{
x(1) + ξ, x(2) + τ

}
. If z(i) = x(2) +τ for some i = 2, ..., n, then z(2) ≥ z(i) =

x(2) + τ ≥ x(2). If z(1) = x(2) + τ , then z(2) ≥ x(1) + ξ ≥ x(2). Since this is true in each

realization, E
[
X(2)

]
≤ E

[
Z(2)

]
. Note that the proof does not require Y to be independent

of X. �
Further notes on Section 2: An example: If X ∼ N(µx, σ2

x) , Y ∼ N(µy , σ2
y), a sufficient

condition for DBS is that (1−
√
σ2
x + σ2

y/σx)µx + µy > 0. To see this, note that by closure

13 The sign “,” means “equal in distribution”.



8

under addition, Z = X+Y is also a normal. Let α =
√
σ2
x + σ2

y/σx and β = (1−α)µx+µy ,

then Z , αX + β. Note that α ≥ 1. If β > 0, then E
[
Z(2)

]
= αE

[
X(2)

]
+ β > E

[
X(2)

]
.

Several questions: (1) Does DBS follow if X is symmetric, Y has mean 0 , and n > 3?
No, an example: X ∼ [1 + N(0, 1)] and Y ∼ log − normal(2, 4) − 2, E

[
Z(2)

]
≈ 0.98 <

E
[
X(2)

]
≈ 1.30. This is due to the skewness of Y . (2) Does DBS follow if in addition Y is

symmetric? While our conjectured answer is no, no verifying example is at hand. However,
if X has a log-concave density, then DBS follows, since the space between any two adjacent
order statistics increases (this is preliminary [b] in the proof of Theorem 1). �

Further notes on Section 3: That the joint distribution (X,Y ) is bivariate normal is

sufficient for DBB. If, in addition, (1 −
√
σ2
x + σ2

y + 2ρxyσxσy/σx)µx + µy > 0, (where

µx, µy , σx, σy , ρxy are the means, standard deviations, and correlation coefficient), DBS
follows. To see this, note that if the joint distribution (X,Y ) is bivariate normal, then

Z = X+Y is normal. Letting α =
√
σ2
x + σ2

y + 2ρxyσxσy/σx and β = (1−α)µx+µy yields

Z , αX + β. DBB follows since α ≥ 1. In addition, if β > 0, then E
[
Z(2)

]
> E

[
X(2)

]
.

An alternative construction is specialized, but not distribution-specific. Let X and Y
be independent, and assume that for Z = X + Y , sufficient conditions for DBB and DBS
apply (from any results in sections 1 and 2). Construct X′ = X and

Y ′ =

{
αX′ + β, with probability p
Y, with probability 1− p ,

where α, β ≥ 0, p ∈ (0, 1). By construction, X′ and Y ′ are affiliated. Then,

Z′ = X′ + Y ′ =

{
(α+ 1)X + β, with probability p
X + Y, with probability 1− p .

and α′ = α+ 1 ≥ 1, β ≥ 0 suffice for DBB and DBS in this affiliation setting.
Another example of asymmetric distributions: Types are draws from normal distribu-

tions: X1 ∼ N (10, 4.5) , X2 ∼ N (10.5, 4) , X3 ∼ N (11, 3.5) , X4 ∼ N (11.5, 3), and the
variability that the less dispersed environment adds is symmetric: Zj = Xj + Y , with
Y ∼ N (0, 5), again a mean-preserving spread. This example reaches the same comparisons:
E
[
X(1) −X(2)

]
= 2.71 < E

[
Z(1) − Z(2)

]
= 4.53, and E

[
X(2)

]
= 11.93 < E

[
Z(2)

]
=

12.67.
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