
UCLA
UCLA Previously Published Works

Title
Decreasing Marginal Value of Information Under Symmetric Loss

Permalink
https://escholarship.org/uc/item/8dz8t6c2

Journal
Decision Analysis, 10(3)

ISSN
1545-8490

Authors
Bikhchandani, Sushil
Mamer, John W

Publication Date
2013-09-01

DOI
10.1287/deca.2013.0274
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8dz8t6c2
https://escholarship.org
http://www.cdlib.org/


Decision Analysis
Vol. 10, No. 3, September 2013, pp. 245–256
ISSN 1545-8490 (print) � ISSN 1545-8504 (online) http://dx.doi.org/10.1287/deca.2013.0274

©2013 INFORMS

Decreasing Marginal Value of Information
Under Symmetric Loss
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We investigate conditions under which the value of additional information is diminishing in a setting where
the decision maker has access to multiple, identically-distributed, information signals. The signals are

assumed to be independent conditional on an unknown payoff-relevant parameter. The decision maker mini-
mizes a quadratic loss function. Quadratic losses arise in quality control, scoring rules, and other applications.
We characterize two concepts of diminishing marginal value of information. The first is an ex ante concept,
before any information is observed, and the second is an ex post concept, after observation of previous infor-
mation signals. The former concept is useful for ex ante information acquisition decisions and the latter for
sequential information acquisition.
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1. Introduction

We consider a decision maker who may acquire
multiple, identically-distributed, information signals.
We are interested in conditions under which the value
of an additional information signal diminishes in the
number of signals already assessed. One’s initial con-
jecture might be that diminishing marginal value of
information is the norm rather than the exception, but
it is well-known that the value of information need
not obey the law of diminishing marginal returns. For
instance, Radner and Stiglitz (1984) established that
under certain conditions, the value of information
is nonconcave.1 Violations of diminishing returns to
information are problematic in principal-agent mod-
els, quality control, demand estimation, and optimal
experimentation.
Although we explicitly model a decision maker

interested in a single project, decreasing marginal
value of information is also useful when the choice is
among multiple projects. Consider a decision maker
who must choose among several projects (or alterna-
tives). Before selecting a project, the decision maker
may acquire information about one or more projects.

1 See also Chade and Schlee (2002).

Multiple, identically-distributed, information signals
are available for each project. This is the rank-
ing and selection problem introduced by Raiffa and
Schlaifer (1968). Suppose further that the decision
maker must allocate a budget to acquire information
before any observation of information. If the return
from the projects are independent, then diminish-
ing marginal value of information for each project
simplifies the information acquisition problem of the
decision maker. Frazier and Powell (2010) derive
information acquisition strategies in ranking and
selection problems when the value of information
is not diminishing.2 In Bickel and Smith (2006), the
value of information may exhibit nonconcavities in a
dynamic information-gathering process. This compli-
cates the problem of allocating a budget for acquiring
information.
Because plausible general results on the value of

information are not true, further enquiry in this area
must impose restrictions on the decision problem.
Radner and Stiglitz (1984) allowed for a general class
of utility functions in their analysis. Throughout the

2 Note that, among other differences, the payoff function for each
alternative used in Frazier and Powell (2010) is different from our
quadratic loss function.

245



Bikhchandani and Mamer: Decreasing Marginal Value of Information Under Symmetric Loss
246 Decision Analysis 10(3), pp. 245–256, © 2013 INFORMS

paper, we restrict attention to a risk-neutral deci-
sion maker. The decision maker chooses one alter-
native from a set of available actions. The decision
maker’s payoff is symmetric in the “error”; that is,
difference between the selected action and the optimal
action under perfect information. Initially, we assume
that the decision maker minimizes a quadratic loss
(equivalently maximizes quadratic gain). Quadratic
loss/gain is a natural choice as it is used in a vari-
ety of applications. Later, we allow for more gen-
eral, symmetric, convex loss/gain functions under the
assumption of normally-distributed uncertainty and
information.
In addition to Radner and Stiglitz (1984), other

work has obtained negative or counterintuitive results
about the value of information. The value of informa-
tion does not depend in a systematic way on the risk-
iness of the decision problem (Gould 1974), the risk
aversion of the decision maker (Freixas and Kihlstrom
1984, Willinger 1989), or the wealth level of the deci-
sion maker (Hilton 1981). The dependence on the set
of available actions is mixed: the value of information
increases with the flexibility (in the sense of reversibil-
ity) but not necessarily with the range of available
actions (Jones and Ostroy 1984).3

An individual’s demand for information is derived
from its use in a decision setting. Information does
not directly enter the utility function; instead, it helps
make better decisions under uncertainty. The derived
nature of the demand for information is the cause
of these negative results. Essentially, changes in the
parameter (with respect to which a comparative static
is desired) change the expected utility of the opti-
mal information-based strategy and the expected util-
ity of the optimal uninformed decision. This leads to
a nonmonotonic effect on the change in the value of
information.
We present the model and provide applications

of quadratic loss and decreasing marginal value of
information in §2. The underlying uncertainty is rep-
resented by a random variable �̃ and information
signals about �̃ are X̃1� X̃2� � � �. The information signals
have decreasing marginal value if for all n the ex ante

3 A positive comparative statics result is obtained by Delquié (2008),
who shows an increase in the value of information with a decrease
in the intensity of prior preference for the optimal choice.

expected decrease in loss from observing X̃
n
(in addi-

tion to X̃1� X̃2� � � � � X̃n−1) is less than the expected
decrease in loss from observing X̃

n+1 (in addition to
X̃1� X̃2� � � � � X̃n

).
The main results are in §3, where we provide a

characterization of decreasing marginal value of infor-
mation in terms of the first and second moments of
the posterior distribution of �̃. Let �̃

n
be the posterior

mean and �̃
2
n
the posterior variance of �̃ after obser-

vation of X̃1� � � � � X̃n
. Then the signals have decreasing

marginal value if and only if Var��̃
n
� increases at a

decreasing rate with n, or equivalently if and only if
E��̃2

n
� decreases at a decreasing rate with n. We show

that an important set of examples that have decreas-
ing marginal value come from exponential families
of distributions. These examples are characterized by
the feature that �̃

n
is a linear function of a sufficient

statistic of the signals.
In §4.1 we extend our results to an ex post notion

of decreasing marginal value of information and in
§4.2 to convex, symmetric loss functions. We conclude
in §5.

2. The Model

A risk-neutral decision maker chooses an action d

under uncertainty represented by a random vari-
able �̃. The objective is to minimize the expected value
of a quadratic loss function4

L��̃� d�= ��̃− d�
2
�

The cumulative probability distribution function of
�̃ is H��� with support �a� b� ⊆ �. The decision
maker chooses an optimal action under imperfect
information after observing identically-distributed
information signals X̃1� X̃2 � � � that are conditionally
independent given �̃. The conditional distribution of
X̃

i
given �̃= � is F �x � ��.5
Let d

n
�X̃1� � � � � X̃n

� denote an optimal action after
observing n information signals. That is

d
n
�X̃1� � � � � X̃n

� ∈ argmin
d∈�a� b�

E
�
��̃− d�

2 � X̃1� � � � � X̃n

�
�

4 Equivalently, one could think of maximizing the expected value
of a gain function G��̃�d�=−L��̃� d�.
5 We use R̃ for a random variable and r for its realization.
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Define

L
∗
n
�X̃1� � � � � X̃n

�= E
�
��̃− d

n
�X̃1� � � � � X̃n

��
2 � X̃1� � � � � X̃n

�
�

L̄
∗
n
= E

�
��̃− d

n
�X̃1� � � � � X̃n

��
2�= E

�
L
∗
n
�X̃1� � � � � X̃n

�
�
�

where L
∗
n
�X̃1� � � � � X̃n

� is the random variable rep-
resenting the minimum expected loss after observ-
ing n information signals and L̄

∗
n
is the minimum

expected loss, computed ex ante before n information
signals are observed.
Quadratic loss functions are commonly used in sta-

tistical decision theory (see DeGroot 1970, Chapter 7).
A quadratic scoring rule induces truth telling when
soliciting the opinion of an expert (see Winkler 1996
for a survey of scoring rules and Bickel 2007 for an
assessment of different scoring rules). Quadratic loss
functions play a prominent role in quality control. For
instance, the Taguchi method introduces a loss func-
tion to describe the total cost of variation in prod-
uct quality. Quadratic loss is commonly used in this
application (see, for example, Ryan 1989).
We explore conditions under which the ex ante

value of information signals has diminishing marginal
returns. Recall that the decision maker is risk neutral
and his objective is to minimize the expected value of
the loss. Therefore, the value of information of informa-
tion signals X̃1� � � � � X̃n

is

L̄
∗
0 − L̄

∗
n
�

The marginal value of information of X̃
n
, ex ante before

observing X̃1� � � � � X̃n−1, is

L̄
∗
n−1 − L̄

∗
n
�

Because additional information can always be
ignored, the marginal value of X̃

n
is nonnegative.

Information signals X̃1� X̃2� � � � have decreasing
marginal value of information (DMVOI) if

L̄
∗
n−1 − L̄

∗
n
≥ L̄

∗
n
− L̄

∗
n+1� n= 2�3� � � � � (1)

DMVOI states that the minimum expected loss
decreases with n at a decreasing rate. If each X̃

i
is

either perfectly informative or completely uninforma-
tive about �̃ then DMVOI is satisfied. We rule out
these trivial cases.
This is an ex ante notion of diminishing marginal

value, appropriate for settings where the number

of information signals to be acquired is determined
before any signals are observed. See §4.1 for a defini-
tion of ex post decreasing marginal value of informa-
tion, which is appropriate for sequential information
acquisition decisions.
We provide a few applications of DMVOI. Observe

that, as in the ranking and selection problem men-
tioned in §1, it is the information acquisition problem
that is simplified by DMVOI.
• Consider a monopolist facing an uncertain

demand curve p = �̃ − aq, where p is the price, q is
the quantity produced (the selected action), a > 0 is a
constant, and �̃, the vertical intercept of the demand
curve, is unknown. If the marginal cost of production
is c per unit, the monopolist’s profit is quadratic:

���̃� q�= ��̃− aq�q− cq =−a

�
�̃− c

2a
− q

�2

+ ��̃− c�
2

4a
�

In effect, the monopolist’s optimal quantity q is his
best estimate for ��̃ − c�/�2a�. The monopolist can
acquire several information signals X̃1� X̃2� � � � about �̃
before selecting q. If DMVOI is satisfied, then the
monopolist’s information-acquisition problem is well-
behaved and has a unique optimum.
• The property of DMVOI makes the problem of

calculating, ex ante, the optimal fixed sample size
very easy. Suppose that the cost of obtaining n

observations is c
n
. We assume that c

n
is increasing

(c
n
> c

n−1) and there are no economies of scale in
obtaining observations (c

n
− c

n−1 is nondecreasing).
The optimal sample size minimizes L̄

∗
n
+ c

n
and is the

largest n such that L̄∗
n−1 − L̄

∗
n
≥ c

n
− c

n−1.
• Another application is a principal-agent problem

where the principal’s gross profit is a function of a
random variable �̃ and the agent has access to costly
signals X̃1� X̃2� � � � about �̃. The principal cannot mon-
itor the number of signals acquired by the agent. The
agent acquires signals and reports an estimate d for �̃.
If DMVOI is satisfied, then the principal can design
a payment function for the agent that is quadratic in
the difference between the realized �̃ and the agent’s
estimate d such that the number of signals gathered
by the agent maximizes the principal’s net profits,
given the incentive constraints. Without DMVOI, the
agent’s information acquisition problem is not con-
cave; it may not be possible to design an incentive
scheme such that the agent selects the number of sig-
nals that maximize the principal’s net payoff.
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• Finally, consider a decision maker who can hire
multiple experts. The experts are similar, and expert i
can assess random variable X̃

i
that is informative

about �̃. An appropriate scoring rule induces truth-
telling by the experts. If DMVOI is satisfied for the
decision maker, then the number of experts to be
hired is easily determined and their reports merged
via conditional expectation.
In this paper, we find it natural to focus on the

problem of minimizing the expected value of a loss
function and define the value of information as the
decrease in expected loss brought about by acquisi-
tion of information. This is certainly not the only way
to define the value of information or to frame the
decision problem. One may frame the problem as that
of maximizing expected utility, and measure the value
of information as the certain amount that the decision
maker would give up to acquire the information (the
“buying price”) or would require to relinquish the
information (the “selling price” of information) (see
for example Delquié 2008). For the situation of risk-
neutral decision makers, these models yield equiva-
lent specifications to ours.

3. Main Results

We obtain two characterizations of decreasing mar-
ginal value of information in Proposition 1 next.
These characterizations make use of the mean and the
variance of the random variable �̃ conditional on the
information signals X̃1� � � � � X̃n

. Let

�̃
n
=E

�
�̃ � X̃1�����X̃n

�
� (2)

�̃
2
n
=Var

�
�̃ � X̃1�����X̃n

�
=E

�
��̃−�̃

n
�
2 � X̃1�����X̃n

�
� (3)

The dependence of �̃
n
and �̃

2
n
on X̃1� � � � � X̃n

is sup-
pressed in the notation.
After observing X̃1� � � � � X̃n

, the expected loss mini-
mizing action is

d
n
�X̃1� � � � � X̃n

�= �̃
n
�

See DeGroot (1970, p. 228) for a proof. Therefore, the
minimum expected loss is

L
n
�X̃1� � � � � X̃n

�= �̃
2
n
� (4)

It is easy to show that E��̃2
n
� decreases with n

and Var��̃
n
� increases with n for very general joint

distributions of ��̃� X̃1� X̃2� � � ��. The interpretation of
Var��̃

n
� requires some care. When the decision maker

has not observed any information signals, we have
�0 = E��̃� and Var��0�= 0, whereas after observing X̃1

the posterior mean of �̃ is �̃1, which is a random vari-
able with positive variance. As n increases, Var��̃

n
�

increases and approaches a limit as n goes to infinity.
The next proposition shows that DMVOI holds if

and only if E��̃2
n
� decreases at a decreasing rate with n,

or equivalently if and only if Var��̃
n
� increases at a

decreasing rate with n.

Proposition 1. The following are equivalent:

(i) Information signals X̃1� � � � � X̃n
have DMVOI.

(ii) E��̃
2
n
� is decreasing in n at a decreasing rate.

(iii) Var��̃
n
� is increasing in n at a decreasing rate.

Proof. (i) ↔ (ii). Equation (4) implies that L̄
∗
n
=

E��̃2
n
�. Therefore, (1) holds if and only if

E��̃2
n−1�−E��̃2

n
�≥ E��̃2

n
�−E��̃2

n+1�≥ 0�

(i)↔ (iii). From Ross (1983, p. 29),

Var��̃�=E�Var��̃ � X̃1�����X̃n
��+Var�E��̃ � X̃1�����X̃n

��� (5)

Thus, for all n,

Var��̃� = E
�
E���̃− �̃

n
�
2 � X̃1� � � � � X̃n

�
�
+Var��̃

n
�

= E
�
��̃− �̃

n
�
2�+Var��̃

n
�

= L̄
∗
n
+Var��̃

n
�

= L̄
∗
n−1 +Var��̃

n−1�

⇒ L̄
∗
n−1 − L̄

∗
n
=Var��̃

n
�−Var��̃

n−1��

The definition of DMVOI in Equation (1) implies that
(i) if and only if (iii). �
Equation (5) partitions the variance of �̃ into the

expected posterior variance of �̃ and the variance
of �̃

n
, the optimal posterior action, both after observ-

ing X̃1� � � � � X̃n
. Because the expected posterior vari-

ance of �̃ is the expected posterior loss, this leads
directly to the characterization in the proposition.

Example 1 (Normal–Normal).6 If �̃ ∼N��̃0�1/��,
X̃

i
= �̃+ �̃

i
where �̃

i
∼N�0�1/��, then �̃

2
n
= 1/�� +n��

6 See Winkler (1972) for a value of information problem with linear
loss function for the distributions in this example.
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(see De Groot 1970, p. 167). Thus, E��̃2
n
�= 1/�� +n��

implies E��̃2
n−1� − E��̃2

n
� = �/��� + n���� + �n − 1����

≥ 0 is decreasing in n. Hence, Proposition 1(ii) implies
that DMVOI is satisfied. �
In this example, we used the characterization

in Proposition 1(ii) to establish DMVOI. In Exam-
ples 2–4, it is convenient to use the characterization
in Proposition 1(iii), i.e., show that the variance of the
posterior mean is increasing at a decreasing rate, to
establish DMVOI.
In each of the Examples 1–4, the posterior mean �̃

n

has the following linear form:

�̃
n
= E��̃ � X̃1� � � � � X̃n

�= x0 +
�

n

i=1 h�X̃i
�

n0 +n
(6)

where h�X
i
� is a function of X

i
.7 One may think of

n0 as representing the strength of the prior distribu-
tion of �̃ relative to n, the number of information sig-
nals. For example, in the multiple experts example
discussed at the end of §2, n0 is the number of experts
who have already been consulted and n is the number
who will be consulted.
With �̃

n
given in (6), we have

Var��̃
n
�= Var�

�
n

i=1 h�X̃i
��

�n0 +n�2
�

Using the fact that the X̃
i
are identically distributed

and conditionally independent, the last expression
can be simplified to

Var��̃
n
� =

nVar�h�X̃
i
��+n�n− 1�Cov�h�X̃

i
��h�X̃

j
��

�n0 +n�2

= n+n�n− 1��
�n0 +n�2

Var�h�X̃
i
���

where Corr�h�X̃
i
��h�X̃

j
�� is denoted by �. Define

f �n�= n+n�n− 1��
�n0 +n�2

�

Proposition 2 gives a condition under which f �n�

is increasing and concave8 in n. If this condition is

7 As discussed in §3.1, Examples 1–4 are members of exponential
families and, in particular,

�
i
h�X

i
� is a sufficient statistic for the

information signals.
8 It is convenient to treat n as a continuous variable keeping in mind
that f �n� has meaning in our context only when n is integer. Thus,
if f is concave and increasing in n then

f �n�− f �n− 1�≥ f �n+ 1�− f �n�≥ 0�

satisfied in examples with �̃
n
of the form in (6), then

Proposition 1(iii) implies DMVOI.

Proposition 2. The function f �n� is increasing and

concave in n if n0 > 0 and

1
2n0 + 1

≤ �≤ 2
n0 + 2

� (7)

The proof of this (and of all subsequent proposi-
tions) is in the appendix.
We use Proposition 1(iii) and Proposition 2 to show

that DMVOI is satisfied in Examples 2–4. With h� · � as
implicitly defined in (6), we have h�X̃

i
�= X̃

i
in Exam-

ples 2 and 3 and h�X̃
i
�= X̃

2
i
in Example 4.

Example 2 (Beta-Bernoulli). Suppose �̃ ∈ �0�1� is
distributed beta with parameters � and � and X̃

i
is

distributed Bernoulli with parameter �̃. Then the pos-
terior distribution of �̃ � X̃1� � � � � X̃n

is beta with param-
eters �

n
= � +�

n

i=1 X̃i
and �

n
= � + n −�

n

i=1 X̃i
(see

De Groot 1970, p. 160). Thus,

�̃
n
= �

n

�
n
+�

n

= �+�
n

i=1 X̃i

�+�+n
�

�=Corr�X̃
i
� X̃

j
�= 1

�+�+ 1
�

Then (6) implies that x0 = �, n0 = �+�, and (7) is sat-
isfied for any pair �> 0 and �> 0. Thus, Proposition 2
implies DMVOI. �

Example 3 (Gamma-Poisson). Suppose that �̃ ∼
������, X̃

i
is Poisson with unknown mean �̃. The pos-

terior distribution of �̃ � X̃1� � � � � X̃n
is ���

n
��

n
�, where

�
n
= �+�

n

i=1 X̃i
and �

n
= �+ n (see De Groot 1970,

p. 164). Thus,

�̃
n
= �

n

�
n

= �+�
n

i=1 X̃i

�+n
�

�=Corr�X̃
i
� X̃

j
�= 1

�+ 1
�

Then (6) implies that x0 = � and n0 = �. It may be
verified that (7) is satisfied for any �> 0. Thus, Propo-
sition 2 implies DMVOI. �

Example 4 (Inverse Gamma-Normal). In Exam-
ples 1–3, the signals were unbiased estimates of �̃, i.e.,
E�X

i
� �̃�= �̃. This is not the case in Example 4. Further,

unlike the previous examples, the sufficient statistic



Bikhchandani and Mamer: Decreasing Marginal Value of Information Under Symmetric Loss
250 Decision Analysis 10(3), pp. 245–256, © 2013 INFORMS

for the signals is not equal to the sum of the signals.
That is, in applying Equation (6) to this example, h�x�
is equal to x

2 rather than x.
Suppose �̃ has an inverse gamma distribution

f �� � ����= �
�

����
�
−��+1�

e
−�/�

� � > 0

where � > 2 and � > 0. Then E��̃� = �/�� − 1� and
Var��̃�= �

2
/���− 1�2��− 2��. An inverse gamma ran-

dom variable is the reciprocal of a gamma random
variable.
Next, let Z̃

i
be standard normal random variables

that are pairwise independent and each Z̃
i
is indepen-

dent of �̃. The signals are X
i
=
�
�̃Z̃

i
. Conditional on �̃,

each X
i
is normal with mean 0 and variance �̃.

It may be verified that

�̃
n
= 2�+�

n

i=1X
2
i

2�− 2+n
�

�=Corr�X̃2
i
� X̃

2
j
�= 1

2�− 1
�

Thus, Equation (6) is satisfied with x0 = 2�,
n0 = 2�− 2, and h�x�= x

2, and condition (7) of Propo-
sition 2 is also satisfied. Thus DMVOI holds. �

3.1. Exponential Family of Distributions

A distribution over �̃ and conditionally independent
signals X̃

i
belongs to an exponential family if the con-

ditional distribution of the signals given �̃ has the
functional form

f �x1� � � � � xn � ��= g�x1� � � � � xn�e
����t�x1�����xn�−����

for some functions g� · �, t� · �, �� · �, and �� · �; observe
that t� · � is a sufficient statistic for the signals
X̃1� � � � � X̃n

. The support of the posterior distribution
of �̃ does not change after observing any signals. See
Bernardo and Smith (2000) for an extensive treatment
of exponential families.
All of our examples of DMVOI belong to an expo-

nential family. In Examples 1–3,
�

i
X̃

i
and in Exam-

ple 4,
�

i
X̃

2
i
, were sufficient statistics for X̃1� � � � � X̃n

.
This is not accidental. A result in Diaconis and
Ylvisaker (1979) states that under fairly general con-
ditions members of an exponential family of distribu-
tions satisfy the following

E�h�X̃
n+1� � X̃1� � � � � X̃n

�= x0 +
�

n

i=1 h�X̃i
�

n0 +n
(8)

for some x0 and n0 > 0.9 In addition, our Examples 1–4
satisfy

E�h�X̃� � �̃�= �̃� (9)

If (8) and (9) hold, then

x0 +
�

n

i=1 h�X̃i
�

n0 +n

= E�h�X̃
n+1� � X̃1� � � � � X̃n

�

= E�E�h�X̃
n+1� � �̃� X̃1� � � � � X̃n

� � X̃1� � � � � X̃n
�

= E�E�h�X̃
n+1� � �̃� � X̃1� � � � � X̃n

�

= E��̃ � X̃1� � � � � X̃n
��

The first equality follows from (8), the third equality
follows from the conditional independence of the X̃

i

given �̃, and the fourth from (9). Consequently, �̃
n
is

of the form (6) and, provided n0 satisfies (7), DMVOI
is satisfied.
Next, we present an example from the exponential

family that does not satisfy DMVOI. This example
puts to rest the plausible conjecture that a sufficient
condition for DMVOI is conditional independence of
the signals and membership of the exponential family.
Observe that �̃

n
is not linear in the signals.

Example 5 (Bernoulli Signals). Assume that �̃ ∈
�0�1� and the prior probability is p = Pr��̃ = 1�. Con-
ditionally i.i.d. signals X̃

i
take two possible values, l

and h, with likelihoods

Pr�X̃
i
= h � �̃= 1�= Pr�X̃

i
= l � �̃= 0�= q > 0�5�

As the loss function is L= ��̃− d�
2 and �̃ ∈ �0�1�, the

optimal action is d�p
n
� = p

n
and L

∗
n
�p

n
� = p

n
�1 − p

n
�,

where the p
n
is the probability belief (after observing

n signals) that �̃ = 1. A direct application of Bayes’
rule establishes that p

n
, hence �

n
, is nonlinear in the

signals. Thus L̄
∗
0 = p�1− p�= Pr��̃= 1�Pr��̃= 0�.

We show that DMVOI is violated when p = 0�99
and q = 0�75 or q = 0�85 or q = 0�95, i.e., when initially
there is little uncertainty about �̃ and the information
signal is relatively noisy compared to the prior belief.

9 Note that h�X̃
i
� may be k≥ 1 dimensional in general. In our exam-

ples, h�X̃
i
� is one dimensional.
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Table 1 Marginal Value of Information (MVOI)

MVOI of q = 0�75 q = 0�85 q = 0�95

X̃1 0�129× 10−3 0�363× 10−3 1�430× 10−3

X̃2 0�278× 10−3 1�332× 10−3 5�562× 10−3

First, note that L̄∗
0 = p�1− p�= 0�0099 and

L̄
∗
1 = Pr�X̃1 = h�Pr��̃= 1 � X̃1 = h�Pr��̃= 0 � X̃1 = h�

+Pr�X̃1 = l�Pr��̃= 1 � X̃1 = l�Pr��̃= 0 � X̃1 = l��

L̄
∗
2 = Pr�X̃1X̃2 = hh�Pr��̃= 1 � X̃1X̃2 = hh�

·Pr��̃= 0 � X̃1X̃2 = hh�+ 2Pr�X̃1X̃2 = hl�

·Pr��̃= 1 � X̃1X̃2 = hl�Pr��̃= 0 � X̃1X̃2 = hl�

+Pr�X̃1X̃2 = ll�Pr��̃= 1 � X̃1X̃2 = ll�

·Pr��̃= 0 � X̃1X̃2 = ll��

The marginal value of X̃1 is L̄
∗
0 − L̄

∗
1 and the marginal

value of X̃2 is L̄
∗
1 − L̄

∗
2. These are shown in Table 1 for

q = 0�75� q = 0�85, and q = 0�95.
Observe that for each of the three numerical

cases, �p� q�= �0�99�0�75�, �0�99�0�85�, and �0�99�0�95�,
DMVOI is violated as the marginal value of the sec-
ond signal is greater than the marginal value of the
first signal.10 Figure 1(a) plots the marginal value of
X̃

n
for n= 1�2� � � � �25 for these three cases.
In Figure 1(b), the dark region is the set of �p� q�

values for which DMVOI is not satisfied because
the marginal value of the second signal is greater than
the marginal value of the first signal. Essentially, if the
prior p is close to one and the signals are not infor-
mative enough, then the first signal is not as valuable
as the second signal.
In the lightly shaded region of Figure 1(b), the

marginal value of signals is decreasing for the first
two signals. Observe that in Figure 1(a) the marginal
value as a function of n has a single peak; if this holds
for all �p� q� and n values then DMVOI would be sat-
isfied in the lightly shaded region of Figure 1(b). �

10 There are other parameter values in this example (e.g., p = 0�99
and q = 0�99) for which the first signal has greater marginal value
than the second.
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4. Extensions

We explore two extensions of our results. In §4.1, we
define ex post DMVOI, a stronger concept of DMVOI
that is suitable for sequential sampling applications.
In §4.2, we investigate DMVOI with general con-
vex, symmetric loss functions (quadratic loss being an
example) under the assumption that the distribution
of ��̃� X̃1� � � � � X̃n

� is normal.

4.1. Ex Post DMVOI

The notion of decreasing marginal value of informa-
tion investigated so far is an ex ante one. An ex post
notion of diminishing marginal value would require
that the value of information signal X̃

n+1 after observ-
ing �X̃1 = x1� � � � � X̃n−1 = x

n−1� X̃n
= x

n
� is less than

the value of information signal X̃
n
after observing
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�X̃1 = x1� � � � � X̃n−1 = x
n−1� for all �x1� � � � � xn−1�xn� and

for all n. We make this precise in the following.
Let

L
∗
m
�x1� � � � � xk�

≡ E���̃− �̃
m
�
2 � X̃1 = x1� � � � � X̃k

= x
k
�� m≥ k (10)

where �̃
m
= E��̃ � X̃1 = x1� � � � � X̃k

= x
k
� X̃

k+1 = x
k+1�

� � � � X̃
m
= x

m
�.

The ex post marginal value of information of X̃
n
, after

observing �X̃1 = x1� � � � � X̃n−1 = x
n−1�, is

L
∗
n−1�x1� � � � � xn−1�−L

∗
n
�x1� � � � � xn−1��

It is the expected reduction in loss from acquir-
ing signal X̃

n
after having observed �X̃1 = x1� � � � �

X̃
n−1 = x

n−1�.
Information signals X̃1� X̃2� � � � have ex post decreas-

ing marginal value of information (ex post DMVOI) if
for all �x1� � � � � xn−1�xn� and for all n,

L
∗
n−1�x1� � � � � xn−1�−L

∗
n
�x1� � � � � xn−1�

≥ L
∗
n
�x1� � � � � xn�−L

∗
n+1�x1� � � � � xn�� (11)

Note that both sides of (11) are nonnegative.
If after observing �X̃1� � � � � X̃n−1�= �x1� � � � � xn−1� the

decision maker finds that the benefit of additional
signal X̃

n
(the left-hand side of (11)) exceeds the

cost of obtaining an additional signal, it is optimal
to stop gathering information. No matter what X̃

n

might have been observed, it would not be optimal
to pay to observe signal X̃

n+1 after observing X̃
n
.

In other words, the property of ex post DMVOI
assures that the optimal policy for the sequential infor-
mation acquisition problem is myopic. Thus, ex post
DMVOI is appropriate when information is gathered
sequentially. If, in the ranking and selection prob-
lem mentioned in §4.1, information acquisition deci-
sions can be made sequentially, after observing some
information signals about various alternatives, then
ex post DMVOI simplifies the information acquisition
problem.
Ex post DMVOI implies ex ante DMVOI. To see

this, note that (11) implies that for all x1� � � � � xn−1

L
∗
n−1�x1� � � � � xn−1�−L

∗
n
�x1� � � � � xn−1�

≥ E�L∗
n
�x1� � � � � xn−1� X̃n

�−L
∗
n+1�x1� � � � � xn−1� X̃n

��

= L
∗
n
�x1� � � � � xn−1�−L

∗
n+1�x1� � � � � xn−1��

Therefore,

E�L∗
n−1�X̃1� � � � � X̃n−1�−L

∗
n
�X̃1� � � � � X̃n−1��

≥ E�L∗
n
�X̃1� � � � � X̃n−1�−L

∗
n+1�X̃1� � � � � X̃n−1��

=⇒ L̄
∗
n−1 − L̄

∗
n
≥ L̄

∗
n
− L̄

∗
n+1

which is (1).
Proposition 1 is adapted to ex post DMVOI in the

next result. The proof is similar to the proof of Propo-
sition 1 and relies on partitioning the posterior vari-
ances of �̃. Before stating the proposition, recall that
�̃

n
and �̃

2
n
, defined in (2) and (3), are random vari-

ables that represent the posterior expected value of �̃
and the posterior variance of �̃, respectively.

Proposition 3. The following are equivalent:

(i) Information signals X̃1� � � � � X̃n
have ex post

DMVOI.

(ii) For all �x1� � � � � xn�,

E��̃
2
n−1 � X̃1 = x1� � � � � X̃n−1 = x

n−1�

−E��̃
2
n
� X̃1 = x1� � � � � X̃n−1 = x

n−1�

≥ E��̃
2
n
� X̃1 = x1� � � � � X̃n

= x
n
�

−E��̃
2
n+1 � X̃1 = x1� � � � � X̃n

= x
n
�≥ 0�

(iii) For all �x1� � � � � xn�,

Var��̃
n
� X̃1 = x1� � � � � X̃n−1 = x

n−1�

≥Var��̃
n+1 � X̃1 = x1� � � � � X̃n

= x
n
��

Example 1, where �̃ is normally distributed and
X̃

i
are normally distributed with mean �̃, satisfies

ex post DMVOI. To see this, note that for this exam-
ple E��̃2

m
� ≡ E��̃2

m
� X̃1 = x1� � � � � X̃k

= x
k
� and thus the

condition in Proposition 3(ii) is equivalent to the con-
dition in Proposition 1(ii).

4.2. Convex, Symmetric Loss Functions

We turn to sufficient conditions for DMVOI when the
loss function is not quadratic. In particular, suppose
that the loss function L��̃� d�= l��̃− d� depends only
on the difference between �̃, and the action d is con-
vex and symmetric. It turns out that the distribution
of �̃ and X̃1� X̃2� � � � in Example 1 satisfies DMVOI for
this more general class of loss functions, as the next
proposition shows.
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Proposition 4. Assume that:

(i) The loss function L���d� = l�� − d�, where l:

�→�+ is convex with l�0�= 0, l�x�≥ 0, and l�x� =
l�−x� for all x. Further, l is a real analytic function and

there exists M > 0 such that �l�i��0�� < M where l
�i�
�x�

denotes the ith derivative of l at x. Also, l
�2i�

�0�≥ 0.
(ii) The information signals X̃

i
have a normal distribu-

tion with mean �̃.

(iii) The distribution of �̃ is normal.

Then the optimal action after observing X̃1� � � � � X̃n
is �̃

n
,

and ex post DMVOI is satisfied.

Loss functions that satisfy the hypotheses of Propo-
sition 4 include

l��− d�= ��− d�
2k
� k= 1�2� � � � and

l��− d�= exp��−d�
2k −1� k= 1�2� � � � �

A sum of such l’s satisfies the hypotheses of Proposi-
tion 4 as well.

5. Concluding Remarks

We investigate two concepts of diminishing marginal
value of information, one ex ante and the other
ex post, which are useful in information acquisi-
tion. The uncertainty is modeled as an unknown
random variable �̃ about which conditionally inde-
pendent information signals are valuable. For most
of the paper, the decision maker’s objective is to
minimize a quadratic loss function. We provide two
characterizations of ex ante DMVOI in Proposition 1.
Ex ante DMVOI is equivalent to the requirement that
expected posterior variance of �̃ after n signals is con-
vex and decreasing in n, which in turn is equivalent
to the requirement that the variance of the posterior
expected value of �̃ after n signals is concave and
increasing in n.
In Proposition 2, we establish that the following

condition is sufficient for (ex ante) DMVOI: �̃
n
, the

conditional expectation of �̃ given n signals, is a linear
function of a sufficient statistic of the signals (Equa-
tion (6)) and a parameter of the linear function satisfy
a restriction (Equation (7)). Examples 1–4 satisfy the
sufficient conditions of Proposition 2.11 In addition,
Examples 1–4 belong to the exponential family.

11 We do not have an example that satisfies the linearity of �̃
n
that

does not also exhibit DMVOI; in particular, we do not have an
example that satisfies (6) but not (7).

Example 5 displays a member of an exponen-
tial family that does not satisfy DMVOI for some
parameter values. It shows that membership of the
exponential family is not enough to assure DMVOI.
In this example, �̃

n
is not linear in a sufficient statistic

of the signals. It is an open question whether linearity
of the posterior mean is necessary for DMVOI to be
satisfied for all parameter values.
Next, we considered two related versions of

DMVOI. In §4.1, we characterized ex post DMVOI,
a concept appropriate for sequential information
acquisition. Ex post DMVOI implies ex ante DMVOI.
In §4.2, we allowed for convex, symmetric loss func-
tions; quadratic loss is an example of this class. The
only example that we could find that satisfied these
versions of DMVOI is the normal–normal case of
Example 1. Whether there exists an example other
than normal–normal that satisfies ex post DMVOI
with convex, symmetric loss functions (for all param-
eter values of underlying distribution over �̃ and X̃

i
)

is another open question.
Our assumptions of quadratic loss, risk-neutrality,

and conditionally independent signals limit the
results of this paper. First, nonquadratic loss func-
tions, such as logarithmic or spherical, should be con-
sidered.12 Moreover, risk-aversion or general jointly
distributed signals might modify the results in impor-
tant ways. Relaxing these assumptions is the subject
of future work.
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Appendix

Proof of Proposition 2. It is clear that f �n� → � as
n→�. Thus f �n� is increasing and concave in n iff �−f �n�

is decreasing and convex in n. To this end write

k�n� ≡ �− f �n�= �− n+n�n− 1��
�n0 +n�2

= �2�n0 +�− 1�n+�n
2
0

�n0 +n�2
≡ an+ b

�n0 +n�2
�

12 Bickel (2007) shows several advantages of logarithmic loss
functions.
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where a ≡ 2�n0 + � − 1 and b ≡ �n
2
0. Differentiating with

respect to n gives

dk�n�

dn
= a�n0 +n�

2 − 2�an+ b��n0 +n�

�n0 +n�4

= a�n0 −n�− 2b
�n0 +n�3

= �2�n0 +�− 1��n0 −n�− 2�n2
0

�n0 +n�3

= −n�2�n0 +�− 1�+n0�1−��

�n0 +n�3

= −n�2n0 + 1���− 1/�2n0 + 1��+n0�1−��

�n0 +n�3
�

Because n0 > 0 and n ≥ 0, the denominator of this expres-
sion is positive. The left-hand side of (7) and ��� ≤ 1
together imply that the numerator is positive. Thus, k�n� is
decreasing in n.

Differentiating k�n� a second time yields

d
2
k�n�

dn2 = d

dn

�
a�n0 −n�− 2b

�n0 +n�3

�

∝ −a�n0 +n�
3 − 3�n0 +n�

2
�a�n0 −n�− 2b�

∝ −a�n0 +n�− 3a�n0 −n�+ 6b

∝ an− 2an0 + 3b�

Convexity of k�n� requires an+3b−2an0 ≥ 0 for all n, which,
setting n = 0 amounts to n0 ≤ 3b/2a. We show that this is
equivalent to the right-hand side of (7):

n0 ≤
3b
2a

= 3�n2
0

4�n0 + 2�− 2
�

The left-hand side of (7) implies 4�n0+2�−2≥ 0. Thus, we
can multiply through to obtain

4�n2
0 + 2n0�− 2n0 ≤ 3�n2

0

⇔ �n0 + 2�− 2≤ 0

⇔ �≤ 2
n0 + 2

�

Hence f �n� is concave and increasing in n. �

Proof of Proposition 3. (i)↔ (ii).
Equation (10) implies that

L
∗
m
�x1� � � � � xk�= E��̃2

m
� X̃1 = x1� � � � � X̃k = xk�� ∀m≥ k�

Applying this identity to (11) establishes that (i) if and only
if (ii).

(i)↔ (iii). Analogous to (5), we have,

Var��̃ � X̃1� � � � � X̃n�−E
�
Var��̃ � X̃1� � � � � X̃n+1� � X̃1� � � � � X̃n

�

=Var
�
E��̃ � X̃1� � � � � X̃n+1� � X̃1� � � � � X̃n

�
�

Thus, for all n,

L
∗
n
�X̃1�����X̃n�−L

∗
n+1�X̃1�����X̃n�

=L
∗
n
�X̃1�����X̃n�−E

�
L
∗
n+1�X̃1�����X̃n+1� � X̃1�����X̃n

�

=Var��̃ � X̃1�����X̃n�−E
�
Var��̃ � X̃1�����X̃n+1� � X̃1�����X̃n

�

=Var
�
E��̃ � X̃1�����X̃n+1� � X̃1�����X̃n

�

=Var
�
�̃n+1 � X̃1�����X̃n

�
�

The definition of ex post DMVOI in (11) implies that (i) if
and only if (iii). �

The proof of Proposition 4 requires the following result
from the electrical engineering literature. It implies that
under the hypothesis of this proposition, the expected-loss
minimizing action is the posterior mean �̃n. We provide a
proof for completeness.

Lemma A (van Trees 2001, pp. 60–61). Assume that:

(i) The loss function L���d�= l��− d�, where l� �→ �+ is

convex with l�0�= 0, l�x�≥ 0, and l�x�= l�−x� for all x.

(ii) The density f �� � X̃1� � � � � X̃n� exists and is unimodal and

symmetric (about the mode).

Then for any d

E�L��̃� �̃n� � X̃1� � � � � X̃n�≤ E�L��̃� d� � X̃1� � � � � X̃n��

Proof. Let
z̃= �̃− �̃n�

Let the density of z̃ be fz (where we drop the dependence
of fz on X̃1� � � � � X̃n for simplicity). Then, hypothesis (ii)
implies that

fz�z�= fz�−z��

Next,

E�L��̃�g̃� � X̃1=x1�����X̃n=xn� =
� �

−�
l��−d�f �� �x1�����xn�d��

[symmetric l] =
� �

−�
l�d−��f �� �x1�����xn�d��

[change of variable] =
� �

−�
l�d−�n−z�fz�z�dz�

[symmetric l] =
� �

−�
l��n−d+z�fz�z�dz� (12)

[symmetric fz] =
� �

−�
l��n−d−z�fz�z�dz�

[symmetric l] =
� �

−�
l�d−�n+z�fz�z�dz� (13)

Next, using (12) and (13) we have

E
�
L��̃� d� � X̃1 = x1� � � � � X̃n = xn

�

=
� �

−�

� 1
2 l��n − d+ z�+ 1

2 l�d−�n + z�
�
fz�z� dz

≥
� �

−�
l�z�fz�z� dz

= E
�
L��̃� �̃n� � X̃1 = x1� � � � � X̃n = xn

�
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where the inequality follows from the convexity of l. �

Proof of Proposition 4. Because l is a real analytic
function, it agrees with its Taylor series. Thus,

l��− d� = l�0�+ ��− d�l
�1�
�0�+ ��− d�

2

2
l
�2�
�0�

+ ��− d�
3

3! l
�3�
�0�+ ��− d�

4

4! l
�4�
�0�+ · · ·

or
l��− d�=

��

i=1

��− d�
i

i! l
�i�
�0�� (14)

The distribution of X̃i is normal with mean �̃ and vari-
ance 1/� and the distribution of �̃ is normal with mean �

and variance 1/� . Conditional on observations X̃1� � � � � X̃n,
the posterior distribution of �̃ is normal with mean �̃n =
���+ �

�
i
X̃i�/�� + n�� and variance �̃

2
n
= 1/�� +n��. This

distribution is unimodal and symmetric and Lemma A
implies that �̃n is the optimal action. The challenge is to
show that (11) is satisfied with this more general loss func-
tion. That is, with L̄

∗
n
�X̃1� � � � � X̃n�= E�l��̃− �̃n� � X̃1� � � � � X̃n�,

etc. Hence, setting d = �̃n in (14) and taking expectations
we have

E�l��̃− �̃n� � X̃1� � � � � X̃n�

= E
� ��

i=1

��̃− �̃n�
i

i! l
�i�
�0�

���� X̃1� � � � � X̃n

�

= E
�
lim
N→�

N�

i=1

��̃− �̃n�
i

i! l
�i�
�0�

���� X̃1� � � � � X̃n

�

=
��

i=1

l
�i�
�0�
i! E���̃− �̃n�

i � X̃1� � � � � X̃n�� (15)

Observe that �l�i��0��<M implies that for all N
����
N�

i=1

��̃− �̃n�
i

i! l
�i�
�0�

���� ≤
N�

i=1

��̃− �̃n�i
i! �l�i��0��

≤
��

i=1

��̃− �̃n�i
i! �l�i��0�� ≤Me

��̃−�̃n��

The rightmost expression mentioned previously has finite
expectation. Thus, the interchange of limit and expectation
in (15) is justified by the dominated convergence theorem.

Standard formulas establish that moments of odd order
E���̃− �̃n�

2k−1 � X̃1� � � � � X̃n�= 0 and even moments are

E���̃− �̃n�
2k � X̃1� � � � � X̃n� = ��̃n�

2k
�2k− 1�!!

=
�

1
� +n�

�k

�2k− 1�!!

where m!! = m�m − 2��m − 4� · · · �1�. Thus, we can
rewrite (15) as

E
�
l��̃− �̃n� � X̃1� � � � � X̃n

�
=

��

k=1

�
1

� +n�

�k
�2k− 1�!!
�2k�! l

�2k�
�0�

which is well defined because �l�2k��0��<M . Further, observe
that E�l��̃− �̃n� � X̃1� � � � � X̃n� does not depend on X̃1� � � � � X̃n.
The marginal value of the nth observation is

L
∗
n−1�X̃1� � � � � X̃n−1�−L

∗
n
�X̃1� � � � � X̃n−1�

= E
�
l��̃− �̃n−1� � X̃1� � � � � X̃n−1

�
−E

�
l��̃− �̃n� � X̃1� � � � � X̃n−1

�

= E
�
l��̃− �̃n−1� � X̃1� � � � � X̃n−1

�

−E
�
E�l��̃− �̃n� � X̃1� � � � � X̃n�X̃1� � � � � X̃n−1

�

=
��

k=1

�
1

� + �n− 1��

�k
�2k− 1�!!
�2k�! l

�2k�
�0�

−E
� ��

k=1

�
1

� +n�

�k
�2k− 1�!!
�2k�! l

�2k�
�0�

���� X̃1� � � � � X̃n−1

�

=
��

k=1

��
1

� + �n− 1��

�k

−
��

k=1

�
1

� +n�

�k�
�2k− 1�!!
�2k�! l

�2k�
�0��

The last expression is nonincreasing because l
�2k�

�0�≥ 0. �
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