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1. Introduction
Stochastic programming with recourse provides a
number of computational challenges for a sequential
decision maker; see Dantzig (1955). This class of deci-
sion problems is characterized by the possibility of a
corrective recourse action after resolution of uncertainty.
Our paper develops a simulation-based approach for
computing the first- and second-stage optimal deci-
sions. To do this, we define an augmented probability
model over the sources of stochastic uncertainty and
the decision variables. We design a Markov chain
Monte Carlo (MCMC) algorithm with a corresponding
marginal distribution on the decision that collapses on
the optimal first-stage decision. Our approach builds
on previous literature; see Bielza et al. (1999), Müller
et al. (2004), and Jacquier et al. (2007).

We focus on two-stage problems with recourse.
A stage corresponds to a point of time where a set of
decision variables is chosen. The decision maker com-
putes an optimal first-stage decision under uncertainty
and a second-stage decision after observing stochas-
tic uncertainties. The first-stage, or “here-and-now,”

decision is denoted by x. The stochastic uncertainty, �,
is drawn from a known probability distribution p4�5,
which is flexible. Optimal decisions are made by maxi-
mizing the continuation expected utility. The optimal
first-stage decision is feasible for all scenarios of the
random variable � so that the optimal expected reward
(or penalty) associated with both stages is realized.
After uncertainty is revealed, the second-stage decision,
y4x1�5, is determined by optimizing the second-stage
problem for the specific combination of first-stage
decision and the outcome value 4x1 �5. To solve this, we
have the following dynamic program, where Q4x1�5 is
the recourse function:

max
x

{

mx−E�6Q4x1�57
}

subject to Ax¶ b1x¾ 01

where Q4x1�5= min
y

q4�5y

subject to Tx+Wy ¾ h1y ¾ 00 (1)

At the first stage, we compute maxx rather than minx in
the standard formulation. This notation will help us to
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Figure 1 Decision Tree Representation of the Two-Stage Recourse
Problem

D1 R1 D1
y

Q(x, �, y)x �

define our augmented probability model. The second-
stage decision, y4x1 �5, depends on the initial decision x

and the source of uncertainty �. The recourse function
Q4x1�5 involves the minimization of 4q4�5y5 subject to
the second-stage constraints. Here, q4�5, the coefficient
of the second-stage objective function, is a function
of the random variable �, and it is assumed to be
integrable; E6�q4�5�7 <�. Although h is a deterministic
parameter, this formulation can be extended to allow h

to be a function of a random variable. The matrices W

and T have appropriate dimensions conformable with
x and y. The parameters m, A, and b are prespecified,
deterministic arrays with appropriate dimensions.

Figure 1 illustrates the sequential nature of events.
The solution involves “folding back” the decision tree
while satisfying the first- and second-stage constraints.
Specifically, if we assume Q4x1�1y5=mx− q4�5y, then
the solution at the second decision node is given by
Q4x1�5= miny q4�5y, given that y satisfies the second-
stage constraints. Taking the expectation with respect
to the probability distribution of �, p4�5, at the first
random node and maximizing with respect to x at first
decision node yields the full formulation.

1.1. Newsvendor Problem
To illustrate our methodology, we consider the classic
two-stage stochastic program with recourse known as
the newsvendor problem. See Dai et al. (2000), Parpas
et al. (2013), and Homem-de-Mello and Bayraksan
(2014) for the two-stage stochastic programming setup
of the problem. Suppose that a newsvendor can choose
the number of newspapers, x, to be purchased at
the first stage. We assume that Î= 4�11�25 represent
uncertainty with demand, d4�15, and unit sales price,
s4�25. The functions d4�15 and s4�25 are assumed to
be nonnegative. We denote the unit purchase price
of a newspaper at the first stage by c and the unit
resale (salvage) price at the second stage by r such

that c¾ r . The second-stage decisions on quantities
of newspapers sold and salvaged are denoted by y1

and y2, respectively. The newsvendor’s problem is
to determine x so that the overall expected profit is
maximized. The problem can then be formulated as

max
x

{

−cx+EÎ6Q4x1Î57
}

such that x ≥ 01

with m= −c. The recourse function, Q4x1Î5, is deter-
mined by the linear program

Q4x1Î5= max
y11y2

{

s4�25y1 + ry2

}

subject to y1 ≤ d4�151 y1 + y2 ≤ x1 y1 ≥ 01y2 ≥ 00

Once the uncertainty, Î, is revealed, the outcomes of
d4�15 and s4�25 are realized, and the optimal recourse
action from the linear program is given by

y∗

14x1Î5 = min4d4�151 x5 and

y∗

24x1Î5 = max4x− d4�15105

for s4�25¾ r and

y∗

14x1Î5= 0 and y∗

24x1Î5= x

for s4�25¶ r . The goal then is to solve the newsvendor
problem with our MCMC-based methodology.

The rest of the paper is outlined as follows. Sec-
tion 2 defines our notation and provides a literature
review. Section 3 defines our augmented probability
model for stochastic programs that we use to simulate
the optimal decisions and presents an MCMC algo-
rithm using a stylized example and the newsvendor
problem. Section 4 provides implementation of the
augmented probability simulation (APS) model to solve
the newsvendor problem for unimodal and bimodal
demand distributions and compares the performance
of our approach with the sample average approxima-
tion method. Finally, §5 concludes with directions for
further research.

2. Simulation-Based
Stochastic Programming

The main computational difficulty in solving a two-
stage problem with recourse is presented by the eval-
uation of the expected recourse function E�6Q4x1�57,
where Q4x1�5 is the optimal value function for the prob-
lem miny q4�5y, subject to constraints 4Tx+Wy ¾ h and
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y ¾ 05. When the stochastic uncertainty follows a dis-
crete distribution with a small number of scenarios, the
problem can be rewritten deterministically and solved
using the simplex or interior point methods. A common
approach for this is Benders’ algorithm (see Benders
1962, Van Slyke and Wets 1969), which uses a plane-
cutting technique also known as the L-shaped method.
With a discrete source of uncertainty, this has the advan-
tage of scalability. The basic idea is to represent the
second-stage problem by a scalar variable that cuts the
objective function. The scalar variable provides an outer
approximation to the expected recourse function, and
the cuts represent the second-stage constraints in terms
of first-stage decision variable. A variant is the multicut
L-shaped algorithm of Birge and Louveaux (1988).

More generally, computation becomes more diffi-
cult for continuous sources of uncertainty. Successive
discrete approximation methods such as computing
Jensen inequalities and Edmundson–Madansky bounds
using quadrature rules (Pennanen and Koivu 2005)
have been proposed to solve these problems, as have
Monte Carlo methods. Homem-de-Mello and Bayraksan
(2014) provide an extensive survey of simulation-based
methods.

One advantage of the Monte Carlo methods is that
they are computationally tractable and applicable
to both discrete and continuous sources of uncer-
tainty. To implement direct Monte Carlo, we draw
�4g5 from p4�5, G times. Given this set of G sam-
pled scenarios, we approximate the expected recourse
function E�6Q4x1�57=

∫

Q4x1�5P4d�5 via Ê�6Q4x1�57=

41/G5
∑G

g=1 Q4x1�4g55.
Convergence in G is guaranteed by the law of large

numbers, Ê�6Q4x1 �57→ E�6Q4x1 �57, as G→ � provided
that E�6�Q4x1�5�7 <�; see, for example, Dempster et al.
(1977). Given this estimate of the expected recourse
function, the so-called master or sample average approx-
imation (SAA) problem is solved as a deterministic
program:

max
x

{

mx−
1
G

G
∑

g=1

Q4x1�4g55

}

subject to Ax¶ b1x¾ 01

where Q4x1�4g55= min
y

q4�4g55y

subject to Tx+Wy ¾ h1y ¾ 00 (2)

Direct Monte Carlo methods have the advantage that
they are straightforward to implement, but they can
be computationally expensive in high dimensions.
Various variance reduction techniques such as anti-
thetic variates, Latin hypercube sampling, quasi-Monte
Carlo methods, and control variates can also be used.
Other alternatives are importance sampling methods,
where rather than directly drawing from p4�5, one
uses an importance proposal distribution, g4�5, within
the L-shaped method. The proposal distribution is
designed to place more weight in the region of high
Q4x1�5 values, thus providing a more efficient esti-
mate of E�6Q4x1 �57. Proposals for g4�5 are described as
additive (Infanger 1993) or multiplicative (Dantzig and
Thapa 1997) functions.

Sequential or internal sampling solution methods,
where sampling is embedded within the optimization
approach, have also been proposed. This strategy aims
to avoid the cost of the sampling effort when the current
iterative solution is far from the optimal. The stochastic
decomposition (SD) method of Higle and Sen (1991,
1996) uses direct Monte Carlo methods to estimate
the expectation functions rather than computing them
exactly as in regular L-shaped methods. The cuts are
also updated within the algorithm as additional sample
points are drawn while the algorithm proceeds. One
difficulty with this approach is that the convergence to
an optimum may only occur on a subsequence and that
the existing cuts become redundant in the later stages
of the algorithm. Regularized SD algorithms attempt
to eliminate the excess cuts by adding a regularizing
term as in Higle and Sen (1996). Spall (2005) provides
an extensive review of the stochastic approximation
algorithms that are initially considered by Rubinstein
and Shapiro (1993). Ermoliev (1988) and Gaivoronski
(1988) discuss the class of stochastic quasigradient
methods, which are stochastic versions of subgradient
methods designed for optimizing convex objective
functions. Although all these methods can be effective
in low-dimensional problems, they can have poor
convergence properties in high dimensions because of
possible nonoptimal step sizes (Spall 2005).

The fundamental issue in any simulation-based
optimization approach is the assessment of quality of
the solution and asymptotic properties of the sample
estimates. If the optimal solution and objective function
values are analytically available via integration, we can
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evaluate the quality of the solution in a straightforward
manner. The difficulty arises in evaluating expectation
functions analytically for many stochastic programs
with continuous uncertainty; assessment of the quality
of the proposed solution is not trivial, and many
approaches have been proposed. For example, Higle
and Sen (1996) discuss stopping criteria based on
duality and optimality conditions. Shapiro and Homem-
de-Mello (1998) develop statistical inference for the
estimation of error and propose statistically based
stopping criteria for iterative algorithms. Bayraksan
and Morton (2009) provide a detailed discussion and
comparison of different procedures. In this paper, we
use the multiple replications procedure (MRP) that
is proposed by Mak et al. (1999) and revisited by
Bayraksan and Morton (2009). Shapiro (2003) and
Shapiro et al. (2009) discuss the theoretical properties
of sampling-based approaches comprehensively. Dai
et al. (2000), Shapiro and Homem-de-Mello (2000), and
Polson and Sorensen (2011) also provide discussions
and comparisons of the convergence rates of simulation-
based optimization methods.

3. An Augmented Probability
Simulation Approach

In this section we develop an augmented probabil-
ity model for solving the two-stage program (1) by
maximizing the objective function

mx−E�6Q4x1�57 (3)

with respect to x, where Q4x1�5= miny4x1�5 q4�5y4x1 �5

and (x, y4x1�5) satisfy the constraints 8Ax¶ b1 x¾ 01
Tx+Wy ¾ h1 y ¾ 09. In many cases such as the newsven-
dor problem, the optimal recourse action, y∗4x1�5,
is available in closed form, which in turn provides
Q4x1�5= q4�5y∗4x1�5. In such cases, finding the first-
stage solution x reduces to maximizing the expected
value of

u4x1�5=mx− q4�5y∗4x1 �5 (4)

while satisfying the first-stage constraints 8Ax ¶ b1

x¾ 09.
As proposed by Bielza et al. (1999), Müller (1999),

and Müller et al. (2004), maximization of the expected
value of u4x1�5 can be achieved by simulation from
an augmented probability distribution �4x1�5 of the

decision variable x and uncertainty shock �. Specifically,
define an auxiliary distribution

�4x1�5=
u4x1�5p4�5

Z
1 (5)

where Z =
∫

u4x1 �5p4�5dxd� is an appropriate normal-
ization constant. This leads to a marginal distribution
of x given by

�4x5=
1
Z

∫

u4x1�5p4�5d�1

which is proportional to the expected value of u4x1�5.
Then the optimal value of first-stage decision x is given
by the mode of the marginal distribution �4x5. In the
above, we assume that u4x1 �5 is a nonnegative function;
that is, mx− q4�5y∗4x1�5¾ 0. (See Jacquier et al. 2010
for transformations such as adding a positive constant
to satisfy this assumption.)

We simulate from the augmented probability model
�4x1�5 using MCMC. Specifically, we use a Gibbs sam-
pler. This will require simulation from the conditional
distribution �4� � x5, which is a “tilted” version of the
distribution p4�5 and depends on y∗4x1 �5, the solution
to the optimal second-stage recourse function. The con-
ditional distribution is given by �4� � x5∝ u4x1�5p4�5,
where ∝ implies that the probability density is defined
up to a constant of proportionality. We also need to
be able to simulate from the conditional distribution
�4x � �5∝ u4x1�5.

Our approach is more efficient than direct
Monte Carlo (MC), which involves first approximat-
ing E�6Q4x1�57 by Ê�6Q4x1�57= 41/G5

∑G
g=1 Q4x1�4g55

using G independent MC samples from p4�5 and then
optimizing 4mx − Ê�6Q4x1�575 over x. This is ineffi-
cient in high dimensions because the MC errors in the
approximation Ê�6Q4x1�57 can overwhelm the calcula-
tion of the optimal x.

The augmented probability simulation approach
can be extended to include the second-stage decision
functions, y4x1�5, and our approach can also be used
to obtain this optimal decision. In such cases, we then
define the augmented joint distribution as �4x1�1y5,
and sampling from the conditional distribution �4y �

x1�5 will be required. To do that, the algorithm of
Pincus (1968) is utilized. The resulting Algorithm 2 is
presented in §3.1.4.
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3.1. Algorithm for Two-Stage Stochastic Programs
Consider the optimization problem minx8Q4x5�4Ax¾
b1x ¾ 059, where Q4x5 is continuous and attains a
global unique minimum, and �4 · 5 denotes an indicator
function. Define a joint distribution where J denotes
an algorithmic augmentation parameter

�J 4x5
4
=

1
ZJ

exp8−JQ4x59�4Ax¾ b1x¾ 050 (6)

Here, ZJ =
∫

exp8−JQ4x59dx �4Ax¾ b1 x¾ 05 is the nor-
malization constant. The following simulation property
was initially proposed by Pincus (1968): the mode of
the distribution, �J 4x5, is equal to the optimal decision,
x∗ = arg minx8Q4x5�4Ax¾ b1x¾ 059, and as J → �, the
mean, E6�J 4x57→ x∗, converges to the desired mode.

For a fixed value of J , Pincus (1970) proposes a
Metropolis algorithm to simulate 4x4051x4151 0 0 0 1 x4g51
0 0 0 1 x4G55 with the equilibrium distribution, �J 4x5.
Under mild Harris recurrence conditions, given any
starting point x405, we have the limiting property
limG→� �4x4G5 ∈A � x405 = x5=�J 4A5 for any Borel set A.
See Tierney (1994), who ensures MCMC convergence in
a number of iterations, G, for �J 4x5 with a fixed value
of J . Hence, if we can perform an MCMC simulation of
�J 4x5, we can calculate the mean as an estimator of x∗.
We now provide theoretical convergence properties of
our MCMC algorithm, which adopts J = Jn, n= 1121 0 0 0 ,
where Jn → � at an appropriate rate to guarantee
convergence to the mode.

3.1.1. Convergence Properties. The limiting cases
where J = 0 or � are of particular interest. They both
lead to uniform measures but on different sets: J = 0
leads to a uniform measure on the constraint set X,
and J = � leads to a uniform measure on the set
of modes Xmin. Specifically, with � denoting a Dirac
measure, we have

lim
J→�

�J 4x5=��4x5= �Xmin�
−1�Xmin

4x53

see Geman and Geman (1987). We now let J = Jn,
n = 1121 0 0 0 1�, vary according to a cooling schedule.
This creates a time-inhomogeneous chain (see Isaacson
and Madsen 1976) of draws 4x4g51 J 4g55 that converges to
��4x5 and hence finds the optimum x?. For changing
values of n, one obtains an inhomogeneous chain since
the target density changes with n. Increasing Jn too fast
would possibly cause it to get stuck in a local mode.
General convergence properties of an inhomogeneous
Markov chain follow from Müller et al. (2004).

Our augmented probability model is defined by
using J independent and identically distributed (iid)
draws of �, ÎJ = 4�11 0 0 0 1 �J 5, where we assume bounded
utility (objective) functions; u0 ¶ u4x1�j5¶ u1 for all J .
The distribution of interest, �J 4x5, is the marginal
distribution implied from the joint distribution

�J 4x1ÎJ 5∝

J
∏

j=1

6u4x1�j5p4�j570 (7)

Equivalently, let v = 41/J 5
∑J

j=1 logu4x1�j5 be the aver-
age of log utility functions. Define the transition proba-
bilities: Pij4n5= P4xn+1 = x′1vn+1 = v′ � xn = x1vn = v5 on
the space of 4x1v5 for i = 4x1v5 and j = 4x′1v′5 with the
stationary distribution �∗

J 4x1v5. We assume there exist
constants 0 < a<� and 0 ¶ b <�, and we assume that
p4v � x5¾ � > 0 for all 4x1v5, so that pJ 4v � x5¾ �J and
that the proposal density p4x′ � x5¾ a. This allows us to
have a bound on the transition kernel, Pij4n5, which is
related to the coefficient of ergodicity:

�6P4n57= 1 − inf
i1 j

m
∑

l=1

inf4Pil4n51Pjl4n550

The convergence rate is characterized by

�6P4n57= 1 − �6P4n571

which is referred to as the delta coefficient of P4n5; see
Isaacson and Madsen (1976).

As pointed out by Müller et al. (2004), to show
weak ergodicity to the desired stationary distribution,
�∗

�
4x1v5, we pick Jn to ensure that

∑�

n=081−�6P4n579= �

for our sequence of stationary distributions. For a
fixed Jn, a bound is also established, Pij4n5¾ aexp8−bJn9,
that results with geometric convergence with a rate
characterized by �6P4n57. By setting b = log4u1/4u0�55

and using the assumptions on the utility, we have

Pij4n5¾ a4u0�/u15
Jn = aexp8−bJn90

If we pick the cooling schedule, Jn = 41/�5 log4n+ c5,
then

�
∑

n=0

61−�4P4n557¾a
�
∑

n=0

exp8−bJn9=a
�
∑

n=0

1/4n+c5b/� =�1

which holds for c > 0 and � ¾ b. Therefore we have
weak ergodicity of our chain. Strong ergodicity follows
from the Theorem A.1 of Müller et al. (2004).
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For practical purposes, instead of a formal implemen-
tation, we rather recommend a diagnostic approach
that increases J 4g5 until the MCMC draws stabilize (see
Gelman and Rubin 1992). The geometric rate of conver-
gence depends on b, a function of the bounds of the
utility, u0 and u1. Practically speaking, these bounds can
be chosen with respect to the maximum and minimum
values of the utility function, maxQ4x5 and minQ4x5,
respectively. It is then enough to sample from the joint
density and calculate the ergodic mean 41/G5

∑G
g=1 X

4g5

along the chain for a value of J on a given schedule.
Figure 2 presents evidence for numerical convergence
rate that is geometric for increasing values of J . Practi-
cal convergence in J is also assessed for reasonable
values of J such as 5, 10, 25, 50, or 100 in most applica-
tions (Jacquier et al. 2007). The Brooks-Gelman-Rubin
(BGR) statistic, which is an analysis-of-variance-type
diagnostic that compares within- and among-chain
variance (Brooks and Roberts 1998), is used as the
practical MCMC convergence diagnostic in this paper.
BGR values around 1 indicate convergence.

3.1.2. Modified Augmented Probability Model.
Given these convergence results, we modify our APS
by defining the augmented probability model with J
iid draws of � as

�J 4x1ÎJ 5 ∝

J
∏

j=1

[

4mx− q4�j5yj5p4�j5�4Ax¶ b1x¾ 01

Tx+Wyj ¾ h1yj ¾ 05
]

1 (8)

where for each x, J unique draws of 4�j5 are generated
and y∗

j = y∗4x1�j5 are computed for each pair. We

Figure 2 (Color online) Optimality Gaps for Different Values of J
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assume that 4mx − q4�j5y
∗
j 5 ¾ 0 for all J terms, and

ÎJ = 4�11 0 0 0 1 �J 5 are J independent draws from p4�5.
The key feature of this distribution is that the mean

of its marginal distribution �J 4x5 for the first-stage
variable converges to the optimum for a sufficiently
large enough value of J . Since �j ’s are iid draws, the
marginal distribution is given by

�J 4x5 ∝ E�64mx− q4�5y5�4Ax¶ b1x¾ 01

Tx+Wy ¾ h1y ¾ 057J 1

where

E�64mx− q4�5y57J =

[

∫

4mx− q4�5y5p4�5d�
]J

0

This corresponds to our previous discussion. The
marginal distribution �J 4x5∝ eQ4x5, where

Q4x5 = lnE�64mx− q4�5y5�4Ax¶ b1x¾ 01

Tx+Wy ¾ h1y ¾ 057J 0

Therefore by computing the mean of the samples from
�J 4x5, we can find the optimal first-stage decision x∗.

To sample from �J 4x1ÎJ 5, we use MCMC. A Gibbs
sampler can be constructed using conditional distribu-
tions �J 4x � ÎJ 5 and �J 4ÎJ � x5. Samples from the joint
conditional distribution �J 4ÎJ � x5 can be obtained by
independent draws from the conditionals �J 4�j � x5 for
j = 11 0 0 0 1 J . Specifically, for j = 11 0 0 0 1 J , we use

�J 4x � ÎJ 5 ∝

J
∏

j=1

4mx− q4�j5y
∗

j 5 �4Ax¶ b1x¾ 051 (9)

�J 4�j � x5 ∝ 4mx− q4�j5y
∗

j 5p4�j50

By starting at initial values 4x4051Î
405
J 5 and sampling

through the conditionals, we define a Markov chain

where 4x4g51Î
4g5
J 5

D
−→ 4x4�51Î

4�5
J 5 as g → �, with the

pair 4x4�51Î
4�5
J 5 having distribution �J 4x1ÎJ 5, where

D
−→ represents convergence in distribution. Then the
marginal draws x4g5 will have distribution �J 4x5. Hence,
we can use the Monte Carlo average of our draws to
estimate the mean of �J 4x5, which in turn provides
us with an estimate of x∗. One of the advantages of
jointly simulating decision variable x and sources of
uncertainty � is that we take draws with high objective
function values.

In many cases, the full conditional distributions may
not be standard distributions, and in such cases, as
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proposed in Bielza et al. (1999), we use the Metropolis
algorithm to draw samples. During the implementation
of the Metropolis algorithm, the choice of the proposal
distribution requires that we have an irreducible and
aperiodic Markov chain. A standard choice is a sym-
metric distribution such as normal or heavy-tailed t
with appropriate scaling. Bielza et al. provides further
discussion regarding the specification of the proposal
distribution. The details of our algorithm can now be
summarized as follows.

3.1.3. Algorithm 1. Here, the augmented probabil-
ity space is constructed on 4x1ÎJ 5. We assume that the
optimal recourse action y∗

j 4x1 �j5 for each jth scenario
is available (or can be obtained numerically) from the
second stage as in the newsvendor problem.

Step 1. Start with initial values: 4x4051 �405
j 1 j = 11 0 0 0 1 J 5,

where x405 satisfies the constraints 8x �Ax405 ¶ b1 x405 ¾ 09.
Set i = 1.

Step 2. Compute y∗
j 4x

4i−151 �
4i−15
j 5 for all J scenarios.

Step 3. Let u14x
4i51�

4i−15
j 5=mx4i5−q4�

4i−15
j 5yj4x

4i51�4i−155,
and draw x4i5 from the full conditional distribution

�4x4i5
� Î

4i−15
J 5∝

J
∏

j=1

u14x
4i51 �

4i−15
j 5�4Ax4i5 ¶ b1x4i5 ¾ 050

To draw x4i5, generate a candidate x
4i5
∗ from the

proposal distribution g14x
4i5
∗ � x4i−155 and evaluate

u14x
4i5
∗ 1 �

4i−15
j 5.

Assuming g1 is a symmetric proposal density,
compute

a1 = min
{

11
J
∏

j=1

u14x
4i5
∗ 1 �

4i−15
j 5

u14x
4i51 �

4i−15
j 5

}

0

With probability a1, set x4i5 = x
4i5
∗ ; otherwise, keep

x4i5 = x4i−15.
Step 4. Let u24x

4i51�
4i5
j 5 = mx4i5 − q4�

4i5
j 5y∗

j 4x
4i51�

4i5
j 5.

Draw �
4i5
j for j = 11 0 0 0 1 J from the full conditional

distribution

�4�
4i5
j � x4i55∝ u24x

4i51 �
4i5
j 5p4�

4i5
j 50

To draw �
4i5
j , generate a candidate �

4i5
j∗ from the proposal

distribution g24�
4i5
j∗ � x4i55 and evaluate u24x

4i51 �
4i5
j∗ 5.

Assuming g2 is a symmetric proposal density,
compute

a2 = min
{

11
u24x

4i51 �
4i5
j∗ 5

u24x
4i51 �

4i5
j 5

}

0

With probability a2, set �
4i5
j = �

4i5
j∗ ; otherwise, keep

�
4i5
j = �

4i−15
j .

Step 5. Set i = i+1. Repeat Steps 2–4 until the Markov
chain is judged to have practically reached convergence.

In implementation of the algorithm, we check for
convergence at every so many iterations. When conver-
gence is achieved, we calculate the mean (or mode) of
x and compute the optimality gap. If the mean of x is
feasible for all scenarios in the second stage and the
optimality gap is smaller than the tolerance level, we
stop and decide that this value is the estimate of the
optimal decision. To evaluate the optimality gap, we
use the MRP of Bayraksan and Morton (2009) that will
be discussed in the next section. If the optimality gap
is not smaller than the tolerance, then our strategy is
to increase the value of J and to rerun the algorithm as
to be implemented in §4.

3.1.4. Algorithm 2. When the optimal recourse
action y∗4x1�5 is not available in closed form, the
augmented probability model can be written as

�J 4x1ÎJ 1yJ 5 ∝

J
∏

j=1

64mx− q4�j5yj5p4�j5�4Ax¶ b1x¾ 01

Tx+Wyj ¾ h1yj ¾ 0571 (10)

where yJ = 4y11 0 0 0 1 yJ 5.
We need to draw samples from �J 4x1ÎJ 1yJ 5 using the

Gibbs sampler, and in turn, this requires samples from
the conditional distribution �4yJ � x1ÎJ 5. Draws from this
joint conditional distribution can be obtained from the
independent conditionals �4yj � x1�j5 for j = 11 0 0 0 1 J .
We can recognize that y∗

j = y4x1�j5 is the optimal solu-
tion of the minimization problem at the second stage
under scenario �j . Specifically, y∗

j is the minimum of the
problem miny q4�j5yj subject to 4Tx+Wyj ¾ h1yj ¾ 05,
and following Pincus (1968), we can use the conditional
distribution of yj as

�4yj � x1�j5 ∝ exp8−Jq4�j5yj9�4Tx+Wyj ¾ h1yj ¾ 051

for j = 11 0 0 0 1 J 0 (11)

Algorithm 1 then needs to be modified to incorporate
drawing samples from the conditional distribution
of yj ’s. The modified algorithm is discussed in the
appendix, and an implementation is presented.
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3.2. Related Literature
Our approach for finding the first-stage solution x

and maximizing u4x5= E�6u4x1 �57 without resorting to
gradient methods is related to the simulated annealing
algorithm. Pure simulated annealing also powers up a
function to be maximized in order to find its optimum
(Kirkpatrick et al. 1983). Aarts and Korst (1988) pro-
vide a detailed discussion about the use of simulated
annealing for optimization. Pincus (1968) proposes a
solution for deterministic optimization problems by
analytically computing the ratio of annealed integrals.
However, as noted by Müller et al. (2004), standard
simulated annealing algorithms (see van Laarhoven
and Aarts 1987 for a review) assume availability of
u4x5 for direct evaluation.

Pincus (1970) presents the use of the Metropolis algo-
rithm to approximate the ratio of integrals. Similarly,
APS evaluates u4x5 in an iterative manner that simulta-
neously addresses maximization and integration by
using MCMC. When the utility (objective) function u4x5

can be evaluated exactly, the APS chain reduces to a
standard simulated annealing algorithm as described
by Müller (1999). Bielza et al. (1999) utilize APS to solve
decision problems and describe the procedure while
fixing J = 1. Müller et al. (2004) extend it to the solution
of decision problems where the utility function may
not be evaluated exactly and might have complex, high-
dimensional decision spaces by using higher values
of the augmentation parameter, J . Similar ideas have
been utilized to solve maximization of expected utility
problem (Jacquier et al. 2010), to compute maximum
likelihood estimates in latent state variable models
(Jacquier et al. 2007), and to solve stochastic dynamic
programs (Polson and Sorensen 2011).

Our first algorithm extends the proposed APS
approach to stochastic programs, particularly to two-
stage stochastic programs with recourse within con-
strained domains, which is our main difference from
the approach of Müller et al. (2004). We also pro-
vide performance comparisons with sample average
approximation method that is widely used in stochastic
programming literature. In addition to that, Algorithm 2
(see the appendix) utilizes the deterministic optimiza-
tion approach of Pincus (1968) to provide a distribu-
tional form of the second-stage decision in a two-stage
sequential decision setting. In doing that, our paper
provides a connection between Pincus (1968) and the

APS algorithm of Bielza et al. (1999). The latter did
not consider constrained domains, and the former
dealt with only one-stage problems where the objective
function was not analytically available.

3.3. APS Formulation of the Newsvendor Problem
In this section, we consider the two-stage stochastic
programming formulation of the newsvendor problem
presented in §1.1. More specifically, we have

max
x

{

−cx+EÎ6Q4x1Î57
}

such that x ≥ 01

where Î= 4�11 �25, and Q4x1Î5= s4�25y
∗
1 4x1Î5+ry∗

2 4x1Î50

The optimal recourse actions are given by y∗
14x1Î5=

min4d4�151 x5, y∗
24x1Î5= max4x− d4�15105 for s4�25¾ r ,

and y∗
14x1Î5= 0, y∗

24x1Î5= x for s4�25¶ r .
Following our development in the above, using J iid

copies of the random vector 4�11 �25, we can write the
augmented distribution, �J 4x1Î1J 1Î2J 5, as

�J 4x1Î1J 1Î2J 5∝

J
∏

j=1

4−cx+ s4�2j5y
∗

1j + ry∗

2j5p4�1j1 �2j51

where �i1 j is the jth draw of �i, ÎiJ = 8�i111 0 0 0 1 �i1 J 9 for
i = 112, Îj = 8�1j1 �2j9, y∗

1j = y∗
14x1Îj5, and y∗

2j = y∗
24x1Îj5.

We use Gibbs sampling and draw from the full con-
ditional distributions, �J 4x � Î1J 1Î2J 5 and �J 4�1j1 �2j � x5

for j = 11 0 0 0 1 J . If �1j and �2j are independent, we can
sample from their marginal conditionals. However, for
any choice of the p4�1j1 �2j5, one cannot directly draw
samples from these distributions. We use a Metropo-
lis algorithm as presented in the Algorithm 1, using
Gaussian proposal distributions in both cases.

In §4 we assume the functions d4�1j5 = c1 exp4�1j5

and s4�2j5= c2 exp4�2j5. In this case it can be shown that
the full conditionals of �1j and �2j are both mixtures
that still require the use of the Metropolis method.

As pointed out by Parpas et al. (2013), samples from
multimodal distributions often preclude the application
of stochastic programming. Our realizations of the
random variable being dependent on the incumbent
candidate solution and the use of J realizations in
each iteration make our algorithm a viable candidate
for dealing with multimodal distributions. In §4 we
consider the newsvendor problem with a bimodal
demand distribution. More specifically, we assume
that d4�15’s distribution is a mixture of two gamma
densities.
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4. Performance of the APS Algorithm
In this section, we evaluate performance of APS algo-
rithm using the newsvendor problem and compare it
with the SAA algorithm. The SAA algorithm is chosen
because it was adopted as the benchmark in related
influential works (Higle and Sen 1996) and has been
widely used to solve similar stochastic programs (Birge
and Louveaux 2011). Evaluation of optimality gap plays
an important role in our assessment of the algorithm’s
performance. To do this, we use the MRP of Mak et al.
(1999) and Bayraksan and Morton (2009) to assess the
quality of the candidate solution. In what follows, we
give an overview of the MRP.

4.1. Assessment of the Optimality Gap
To assess the optimality, the optimal objective function
value is either computed using the optimal solution x∗

or estimated using a Monte Carlo average (as in SAA)
when x∗ is not analytically available. The optimality
gap of a candidate solution, x∗, is found using ng

replications with sample size n in each case. A summary
of the MRP procedure is provided below:

• For every replication, k = 1121 0 0 0 1ng ,
—Sample n iid observations �k = 8�k11 �k21 0 0 0 1 �kn9

from p4�5.
—Solve the stochastic program for the sample of �k

to compute x∗

k , an estimate for the optimal solution x∗.
—Compute the optimal objective function value

for the sample �k as Q4x∗

k1 �
k5.

—Compute the objective function value for the
candidate solution x∗ for the sample �k as Q4x∗1 �

k5.
—Compute the gap estimate, Dk

n4x∗5 = 41/n5 ·
∑n

j=16�Q4x∗1 �
kj5−Q4x∗

k1 �
kj5�7.

• Compute the average and sample variance of the
gap estimate as

D̄ng
4x∗5 =

∑ng
k=1 D

k
n4x∗5

ng

1 and

s2
ng
4x∗5 =

1
ng − 1

ng
∑

k=1

4Dk
n4x∗5− D̄ng

4x∗55
20

For large values of ng , because of the central limit
theorem, the confidence interval for the optimality gap
can also be obtained.

4.2. Performance Results
In this section, we present the solution of the newsven-
dor problem with unimodal and bimodal demand

distributions using the APS algorithm with different
augmentation parameter values J and the SAA algo-
rithm. We present evidence of the effectiveness of APS
versus SAA for both cases.

We first consider the unimodal case with d4�15 =

c1 exp4�15 and s4�25= c2 exp4�25 as the demand and sales
price functions, respectively. As defined before, the
random vector � = 8�11 �29 follows a normal distribution
that results in demand and sales price functions having
lognormal distributions. We assume that c1 = 100, c2 =

105, and �1 and �2 are independent normally distributed
random variables with �i = 0 and �2

i = 1 for i= 112.
Furthermore, the unit cost and the salvage values are
set as c = 1 and r = 001, respectively. In this particular
case, the actual optimal solution x∗ can be computed
numerically.

The APS is run with J values of 25, 50, and 100. The
SAA is run for 25 replications. Candidate solutions are
computed every 100 iterations. We draw a sample of Î
of size 150,000 to estimate the continuous distribution,
p4Î5. The optimality gap is computed using mean
absolute percentage error (MAPE). It is a function
of the difference between the objective function value
for the candidate solution of a particular approach and
the objective function value for the optimal solution;
both are computed using the same sample with 150,000
realizations.

Figure 2 presents numerical evidence of geometric
convergence by providing optimality gaps for J values
of 81012515011009 and cases of 10,000, 20,000, 30,000,
and 40,000 realizations where the number of realizations
is given by J ×G, where G is the number of MCMC
iterations in each case.

In Figure 3, we present the MAPE for both SAA
and APS algorithms. The results are presented for
increments of 5,000 realizations for the SAA and for the
APS with J = 25 and J = 50. For the case of APS with
J = 100, we present results for increments of 10,000
realizations. For example, in the case of APS with J =

100, a sample of 10,000 implies G= 100 MCMC draws.
It is important to note that Figure 3 does not show the
MAPE for the APS with J = 25 and J = 50 for 10,000
realizations. This is due to the lack of convergence of
the MCMC algorithm with G= 400 draws for J = 25
and G= 200 draws for J = 50. For 20,000 realizations,
the MCMC chains are observed to have practically
reached convergence using evidence of BGR values
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Figure 3 (Color online) Optimality Gap for SAA and APS with the Same
Unimodal Demand Sample
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of 10020, 10021, and 10027 for simulations with J = 25,
J = 50, and J = 100, respectively. We note that the APS
with J = 100 performs better than the SAA algorithm
at any sample size. Even the APS with J = 25 becomes
superior to the SAA algorithm with 20,000 realizations.
The SAA recovers and performs as well as or better
than the APS with J = 25 or J = 50 for a larger number
of realizations, but it does not perform as well as the
APS algorithm with J = 100.

We provide the box plots of optimality gaps for
SAA and APS with J = 25 and J = 100 for 20,000,
30,000, 40,000, and 50,000 realizations (see Figure 4) to

Figure 4 Box Plots of the Optimality Gap with the Same Unimodal Demand Samples
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understand the evolution of the performance and pro-
vide further comparisons. Box plots of APS with J = 25
do not exhibit any significant performance increase in
the mean optimality gap but results show a reduced
variance for increased sample sizes compared with
the SAA. However, APS with J = 100 provides smaller
mean optimality gaps as well as smaller standard
deviation values for any sample size.

Figure 5 elaborates on the visualization of the per-
formance comparisons for a given sample size by
presenting the box plots of the optimality gaps for all
the approaches with 30,000 realizations. It can be seen
that APS runs result in better mean absolute percentage
optimality gaps, and their standard deviations are also
smaller. Among the APS runs, those with larger values
of J provide better performance. Figure 6 provides the
box plots of the first-stage decision variable x compared
with the optimal solution x∗. The standard deviation
of the draws for a higher value of J is smaller, which
presents evidence for faster convergence.

Overall, these practical simulation runs are in line
with our expectations from the theoretical results.
The APS algorithm converges faster and performs
consistently better than the SAA algorithm for large
values of J . Thus, as an implementation strategy, once
the MCMC convergence is achieved, it is better to
increase J rather than the number of MCMC iterations
G to improve the optimality gap of the APS algorithm.
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Figure 5 Box Plots of the Optimality Gap for SAA and APS with the
Same Unimodal Demand Sample of 30,000 Draws
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Another analysis is done to compare the samples of
the random vector Î drawn by SAA and APS methods.
An expected advantage of the APS approach is smarter
sampling from the state space, which leads to better
objective function values. In Figure 7, we present
the comparison of SAA and the APS with J = 25.
Similar results can be obtained for other values of J .
We have used the samples of Î that are drawn from
each particular algorithm rather than the common
independent sample. Objective function values are
computed for the candidate solutions using the own
samples of each algorithm and compared to the optimal
objective function value that is computed for the exact
optimal solution based on a large sample of 150,000
realizations. As we can see from Figure 7, the standard

Figure 6 (Color online) Box Plots of the First-Stage Decision x for
J = 25, J = 50, and J = 100 with the Same Unimodal
Demand Sample
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Figure 7 (Color online) Standard Deviation and Optimality Gap for SAA
and APS with Individual Unimodal Demand Samples
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deviations of the objective functions are smaller for
APS samples, which is in line with the importance
sampling results of Parpas et al. (2013) and Infanger
(1993). Furthermore, based on the MAPE, the optimality
gap for APS approach is also consistently found to be
smaller compared with the SAA approach.

Next, we consider the newsvendor problem with a
bimodal demand distribution. Specifically, we assume
that the distribution of d4�15 is a mixture of gamma
densities as

p4d4�155 = 005 · Gamma4a= 1501 b = 15

+ 005 · Gamma4a= 1501 b = 351

where Gamma4a1 b5 denotes a gamma density with a
shape parameter a and scale parameter b. We have
s4�25 = c2 exp4�25 with a c2 value of 105, and �2 is a
normally distributed random variable with mean �2 = 0
and variance �2

2 = 1.
In this case, the optimal solution cannot be computed

easily via numerical methods. Thus, we have found
the optimal solution and optimal objective function
value using sample average approximation methods
for a large enough sample of 150,000 realizations. This
is used to estimate the optimal solution of the original
problem.

The APS algorithm was implemented with J values
of 25, 50, and 100. The SAA algorithm was run for
25 replications. We will not provide a detailed analy-
sis and figures to keep the paper parsimonious. The
MAPEs for the optimality gaps are reported in Figure 8.
As can be clearly seen from the figure, APS with J
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Figure 8 (Color online) Optimality Gap for SAA and APS with the Same
Unimodal Demand Sample
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values of 50 and 100 is found to be superior for all
number of samples. The box plot of the first-stage
decision variable x for the first 20,000 iterations also
provides similar insights (see Figure 9). Increasing the
J values results in a smaller error from the optimal
solution and a smaller standard deviation.

Similar to the analysis with unimodal demand,
APS samples are found to be superior than the SAA
Monte Carlo samples, as shown in Figure 10. APS pro-
vides objective function values with smaller standard
deviations and smaller optimality gaps for all sample
sizes. Overall, the efficiency of APS can be concluded

Figure 9 (Color online) Box Plots of the First-Stage Decision x for
J = 25, J = 50, and J = 100 with the Same Unimodal
Demand Sample
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Figure 10 (Color online) Standard Deviation and Optimality Gap for
SAA and APS with Individual Samples of Bimodal Demand
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to increase especially when used with its own samples
and large enough J values.

The performance results are generally robust with
respect to increasing the standard deviation of the
random variables. As expected, for major increases of
the standard deviation, both our algorithm and the
SAA algorithm result in higher optimality gaps and
variances when run with the same number of samples.

5. Discussion
Solving two-stage stochastic programming with
recourse requires optimization and calculation of the
expected recourse function, Q4x5. In this paper, simula-
tion from the proposed augmented probability model,
where both decision variables and uncertainty shocks
are treated as stochastic, allows us to perform both
simultaneously. In doing so, we sample more frequently
from the augmented decision and state space in that the
objective function has higher values. This avoids ineffi-
cient samples that otherwise would have been drawn
without considering the optimization perspective. We
also avoid having to use gradient-based approaches.

For performance comparison, the newsvendor prob-
lem is formulated as a two-stage stochastic program
with recourse and solved by both the APS and SAA
algorithms. It is shown that APS provides smaller opti-
mality gaps for the same number of samples compared
with SAA. APS also results in samples with reduced
variance. In an APS algorithm, faster convergence can
be achieved by increasing J .
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Markov chain Monte Carlo methods are used to
sample from resulting nonstandard distributions and
compute the optimal solution. We use the Metropolis
algorithm to sample from the complete conditionals.
However, sampling may not be straightforward, and the
convergence may not be fast enough for some specific
cases. When the objective function is flat and the optimal
decision is not significantly better than its alternatives,
the mode of the pseudo-distribution may not be distinct.
Increasing the value of the augmentation parameter J
resolves this problem, since the mean converges to the
optimal solution for high values of J .

During the implementation of the algorithm, a user
may need to deal with certain issues. First, the objective
function is assumed to be positive within the APS algo-
rithm. For negative objective functions, certain transfor-
mations can be used to achieve nonnegativity (Jacquier
et al. 2010). Second, sampling from constrained domains
with an MCMC algorithm remains a challenge. The use
of Lagrangian penalty parameters can be considered.

There are a number of directions for future research.
The proposed approach can be extended to solve other
multistage stochastic problems. It may be worthwhile
to explore how it applies to various nonlinear stochas-
tic programming problems and dynamic stochastic
programs. Another interesting area for work is recourse
problems where probability distribution of source of
uncertainty is dependent on the first-stage decision
variable; see, for example, Jonsbråten et al. (1998).
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Appendix. Algorithm 2
In cases where the optimal recourse action is not easy to
evaluate, the Algorithm 1 of §3.1 needs to be modified. In this
case, the augmented probability space is constructed on
4x1ÎJ 1yJ 5, and the full conditional distribution of yj ’s can be
constructed using the Pincus (1968) result. The details of our
algorithm can be summarized as follows.

Step 1. Start with initial values: 4x4051�
405
j 1y

405
j 1 j = 11

0 0 0 1 J 5, where x405 ∈ S = 8Ax405 ¶ b1 x405 ¾ 01 y405
j ¾ 01 Tx405+

Wy
405
j ¾ h59. Set i = 1.
Step 2. Let u14x

4i51 �
4i−15
j 1y

4i−15
j 5=mx4i5 − q4�

4i−15
j 5y

4i−15
j and

draw x4i5 from the full conditional distribution

�4x4i5 � Î
4i−15
J 1y4i−15

J 5 ∝

J
∏

j=1

4u14x
4i51 �

4i−15
j 1y

4i−15
j 5

·�4Ax4i5 ¶ b1x4i5 ¾ 0550

While using MCMC, generate a candidate x
4i5
∗ ∼ g14x

4i5
∗ � x4i−155

and evaluate u14x
4i5
∗ 1�

4i−15
j 1y

4i−15
j 5, where g1 is a symmetric

proposal density. Compute

a1 = min
{

11
J
∏

j=1

u14x
4i5
∗ 1 �

4i−15
j 1y

4i−15
j 5

u14x
4i51 �

4i−15
j 1y

4i−15
j 5

}

0

With probability a1, set x4i5 = x
4i5
∗ ; otherwise, keep x4i5 = x4i−15.

Step 3. Let u24x
4i51�

4i5
j 1y

4i−15
j 5=mx4i5 − q4�

4i5
j 5y

4i−15
j . Draw

�
4i5
j for j = 1121 0 0 0 1 J from the full conditional distribution

�4�
4i5
j � x4i51y

4i−15
j 5∝ 4u24x

4i51 �
4i5
j 1y

4i−15
j 55p4�

4i5
j 50

In so doing, generate a candidate �
4i5
j∗ ∼ g24�

4i5
j∗ � x4i51y

4i−15
j 5

from the symmetric proposal density g2 and evaluate
u24x

4i51 �
4i5
j∗ 1y

4i−15
j 5. Compute

a2 = min
{

11
u24x

4i51 �
4i5
j∗ 1y

4i−15
j 5

u24x
4i51 �

4i5
j 1y

4i−15
j 5

}

0

With probability a2, set �4i5
j = �

4i5
j∗ ; otherwise, keep �

4i5
j = �

4i−15
j .

Step 4. Let u34x
4i51�

4i5
j 1y

4i5
j 5=mx4i5 − q4�

4i5
j 5y

4i5
j . Draw y

4i5
j

for j = 1121 0 0 0 1 J from the full conditional distribution

�4y
4i5
j � x4i51 �

4i5
j 5∝ exp8−Jq4�

4i5
j 59�4Tx4i5 +Wy

4i5
j ¾ h50

In so doing, generate a candidate y
4i5
j∗ ∼ g34y

4i5
j∗ � x4i51�

4i5
j 5

and evaluate u34x
4i51�

4i5
j 1y

4i5
j∗ 5. Assuming g3 is a symmetric

proposal density, compute

a3 = min
{

11
u34x

4i51 �
4i5
j 1y

4i5
j∗ 5

u34x
4i51 �

4i5
j 1y

4i5
j 5

}

0

With probability a3, set y4i5
j = y

4i5
j∗ ; otherwise, keep y

4i5
j = y

4i−15
j .

Step 5. Set i = i+ 1. Repeat Steps 2–4 until the Markov
chain is judged to have practically converged.

In what follows we illustrate an implementation of Algo-
rithm 2. Consider the following simple two-stage stochastic
program:

max
x

{

3x−E6Q4x1�57
}

subject to x¶ 31x¾ 01

where Q4x1�5= min
y

�y

subject to 005x+ y ¾ 51y ¾ 01 (12)

where � has a lognormal distribution with parameters �= 0
and �2 = 001. It is easy to see that the optimal solution for
the first-stage problem is x∗ = 3. The optimal value for the
decision variable is 3, no matter the number of scenarios
sampled, whereas the objective function value can change
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Figure A.1 (Color online) Trace Plots for the Decision Variable x for Different Values of J
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with the realizations of the random variable. Our augmented
probability distribution is given by

�J 4x1ÎJ 1yJ 5 ∝

J
∏

j=1

43x− �jyj5p4�j5

·�40 ¶ x¶ 31yj ¾ 5 − 005x1yj ¾ 050

In implementing Algorithm 2, we use a Gibbs sampler where
the conditional distributions are given by

�4x � ÎJ 1yJ 5 ∝

J
∏

j=1

43x− �jyj5p4�j5�40 ¶ x¶ 351

�4�j � x1yj5 ∝ 43x− �jyj5p4�j51

�4yj � x1�j5 ∝ exp8−J�jyj9�4yj ¾ max4015 − 005x551

for j = 11 0 0 0 1 J , where we use the Pincus (1968) result
to obtain the conditional distribution for �j . We use our
algorithm and the Metropolis method with normal proposal
distributions to draw from the above distributions.

We run 5,000 iterations of our Gibbs sampler after an initial
500 burn-in samples. In Figure A.1, we present the trace
plots from the simulations of decision variable x for values

J = 21101201 and 100. The plots show that the algorithm
converges to the true value of x as J increases. For J = 20, we
estimate the true value of the first-stage decision variable to
be 20998, with a Monte Carlo error of 0006%.
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