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ABSTRACT	

Imagine	 a	 situation	 where	 a	 group	 of	 adversaries	 is	 preparing	 an	 attack	 on	 the	 United	

States	or	U.S.	interests.	An	intelligence	analyst	has	observed	some	signals,	but	the	situation	

is	rapidly	changing.	The	analyst	faces	the	decision	to	alert	a	principal	decision	maker	that	

an	 attack	 is	 imminent,	 or	 to	wait	 until	more	 is	 known	 about	 the	 situation.	 This	warning	

decision	 is	 based	 on	 the	 analyst's	 observation	 and	 evaluation	 of	 signals,	 independent	 or	

correlated,	 and	on	her	updating	of	 the	prior	probabilities	of	possible	 scenarios	 and	 their	

outcomes.	 The	 warning	 decision	 also	 depends	 on	 the	 analyst's	 assessment	 of	 the	 crisis'	

dynamics	and	perception	of	the	preferences	of	the	principal	decision	maker,	as	well	as	the	

lead	time	needed	for	an	appropriate	response.	This	article	presents	a	model	to	support	this	

analyst's	dynamic	warning	decision.	As	with	most	problems	involving	warning,	the	key	is	

to	manage	the	tradeoffs	between	false	positives	and	false	negatives	given	the	probabilities	

and	 the	 consequences	 of	 intelligence	 failures	 of	 both	 types.	 The	 model	 is	 illustrated	 by	

revisiting	the	case	of	the	attack	on	Pearl	Harbor	in	December	1941.	It	shows	that	the	radio	

silence	 of	 the	 Japanese	 fleet	 carried	 considerable	 information	 (Sir	 Arthur	 Conan	 Doyle's	

"dog	 in	 the	 night"	 problem),	 which	 was	 misinterpreted	 at	 the	 time.	 Even	 though	 the	

probabilities	of	different	attacks	were	relatively	low,	their	consequences	were	such	that	the	

Bayesian	 dynamic	 reasoning	 described	 here	may	 have	 provided	 valuable	 information	 to	

key	decision	makers.	
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1.	PROJECTING	AND	WARNING	

The	problems	of	anticipating	and	predicting	the	future	moves	of	an	adversary	date	to	the	

earliest	 recorded	 military	 history.	 Mathematical	 probabilistic	 analysis	 of	 some	 of	 these	

problems	 began	 in	 the	 19th	 century	 with	 the	 work	 of	 Antoine	 Cournot	 and	 proceeded	

further	before	and	during	World	War	II,	leading	to	an	extensive	theory	of	games.	As	early	

as	1942,	the	British	secret	services	at	Bletchley	Park	used	their	ability	to	decrypt	German	

Enigma	 communications,	 newly	developed	Bayesian	methods,	 and	 the	 first	 computers	 at	

their	disposal	 to	protect	 transatlantic	 convoys	 from	U-Boat	 "wolf	 packs"	 in	 the	Northern	

Atlantic.	At	the	height	of	the	Cold	War,	Schelling	(1960),	among	others,	was	advocating	the	

use	 of	 game	 theory	 to	 conceive	 and	 implement	 deterrence	 strategies.	 The	world	 is	 now	

facing	 a	 number	 of	 problems,	 some	 related	 to	 rivalries	 among	 nationstates,	 some	 to	

terrorism	and	crime,	for	which	information	can	be	gathered	and	analyzed	to	warn	of	future	

developments	and	guide	immediate	decisions.	

The	 purpose	 of	 this	 article	 is	 to	 present	 a	 dynamic,	 Bayesian	 approach	 to	 early	

warning	 analysis	 in	 that	 intelligence	 context.	 We	 propose	 a	 formal	 model	 to	 support	 a	

probabilistic	 information	system	(Edwards	et	al.	1968)	and	guide	 intelligence	analysts	 in	

deciding	when	to	issue	warnings	of	imminent	events,	called	tactical	warning	in	the	military	

context	(Grabo	1994),	to	principal	national	security	decision	makers.	The	goal	is	to	give	the	

principals	the	lead	time	that	their	contingency	plans	require	and	minimize	the	chances	of	

false	alerts,	accounting	for	both	temporal	and	spatial	evolution	of	a	threat.	The	model	we	

propose	 represents	 an	 advance	 in	 the	 state	 of	 the	 art	 of	 intelligence	 warning	 analysis	

because	it	involves	both	dynamic	systems	and	decision	analysis.	It	includes:	

1.	Incorporation	of	geographic	specificity	of	threats	to	gain	localized	warning;	

2.	Modeling	crisis	dynamics	to	assess	lead	times;		

3.	Representation	of	probabilistic	dependencies	among	variables	and	signals;		

4.	The	analyst's	warning	decision	of	when	and	how	to	alert	a	principal.	

A	 model	 that	 addresses	 the	 first	 two	 features	 can	 be	 formulated	 using	 recursive	

Bayesian	 estimation	 (West	 and	 Harrison	 1989).	 The	 treatment	 of	 probabilistic	

dependencies	 and	 the	 time-dependent	 decision,	 however,	 are	 sources	 of	 mathematical	

complexity.	 Whereas	 the	 concepts	 are	 relatively	 straightforward,	 a	 real-world	

implementation	is	 likely	to	require	computer	software	to	aid	the	intelligence	analyst.	Our	



focus	 is	 on	 the	 individual	 analyst	 as	 the	 user	 of	 this	 model	 to	 make	 warning	 decisions.	

Reconciling	views	of	multiple	analysts	is	thus	beyond	our	scope.	For	the	same	reason,	and	

because	our	model	 is	 intended	 to	be	prescriptive	rather	 than	descriptive,	principal-agent	

preference	misalignment	 is	also	beyond	our	scope.	We	assume	that	 the	principal	and	the	

analyst	agree	on	a	 set	of	preferences.	Both	 issues	are	worthy	of	 further	 studies	 to	better	

understand	the	causes	of	some	intelligence	failures.		

The	timing	of	any	warning	must	balance	the	risk	of	a	false	alert	with	that	of	a	missed	

one,	accounting	 for	 the	 lead	 time	 that	 the	response	plans	assume	(Paté-Cornell	1986).	 In	

our	model,	how	crises	evolve	over	time,	what	we	call	crisis	dynamics,	holds	the	key	to	lead-

time	inference.	We	first	formulate	a	dynamic	model	of	warning	decisions	from	the	point	of	

view	of	an	intelligence	analyst.	We	then	illustrate	it	by	an	analysis	of	the	immediate	lead	up	

to	the	historic	Japanese	surprise	attack	on	Pearl	Harbor	on	December	7,	1941,	concluding	

with	a	discussion	of	some	issues	surrounding	real-world	implementations	of	this	model.	

	

2.	DYNAMIC	WARNING	MODEL	

The	 optimization	 of	 an	 imperfect	 warning	 system	 relies	 on	 a	 tradeoff	 between	 the	

probabilities	of	a	 false	positive	(false	alert)	and	of	a	 false	negative	that	 fails	 to	convey	an	

alert	or	to	meet	a	 lead	time	requirement	(Peterson	et	al.	1954,	Swets	and	Birdsall	1956).	

Facing	an	evolving	crisis,	an	analyst	may	employ	a	thought	process	whose	steps	involve:	

1.	Observing	new	intelligence	signals	relevant	to	the	current	unknown	threat	state	and	

updating	the	probabilities	of	different	possible	states;	

2.	Applying	beliefs	about	crisis	dynamics	to	the	probability	of	the	current	threat	state	

to	extrapolate	a	probability	distribution	of	the	threat	state	in	future	time	periods;	

3.	Utilizing	an	understanding	of	the	principal's	preferences	(i.e.,	costs	associated	with	

outcomes,	 risk	 attitude,	 and	 time	 discounting)	 and	 of	 the	 extent	 to	 which	 future	

intelligence	 could	 change	 the	 probabilities	 of	 different	 threat	 states	 to	 decide	

whether	to	issue	an	alert	of	a	given	type	(e.g.,	severity	level)	right	away	or	wait	for	

additional	signals;	then	repeating	the	process	in	the	next	time	period.		

The	model	that	supports	this	process	includes	four	submodels	(see	Table	1	and	Figure	

1).	

	



Table	1	Four	Submodels	in	Warning	Analytic	Framework	
Submodel	 Purpose	
Crisis	definition	submodel	(CDM)	 Construct	a	prior	joint	probability	distribution	of	

fundamental,	static	variables	that	affect	the	
manner	in	which	a	crisis	evolves	(e.g.,	adversary	
intentions	and	capabilities).	

Inference	submodel	(IM)	 Infer	the	probabilities	of	the	different	possible	
current	threat	states	from	available	information,	
and	update	probability	distributions	over	static	
variables	

Basic	warning	submodel	(BWM)	 Derive	a	probability	distribution	of	crisis	timing	and	
type	or	severity	in	future	time	periods.	

Disutility	submodel	(DM)	 Decide	which	type	of	alert	to	issue	now	or	whether	to	
wait,	given	the	preferences	of	the	principal	and	the	
anticipated	value	of	information	that	can	be	
gathered	in	the	future.	

	

The	 crisis	 definition	 submodel	 (CDM)	 contains	 the	 static	 elements	 relevant	 to	 a	

crisis	 situation.	 If	 some	 dynamic	 variables	 (e.g.,	 a	 potential	 change	 of	 leadership	 and	

preferences,	or	adversary's	military	capabilities)	need	to	be	included	in	order	to	streamline	

the	basic	warning	submodel	(BWM),	or	if	assumed	static	variables	change	while	the	model	

is	 running,	 the	 CDM	 can	 be	 reinitialized	 accordingly	 when	 those	 variables	 change.	 The	

BWM	 contains	 a	 Markov	 process	 that	 characterizes	 the	 dynamic	 variables	 needed	 to	

project	 ahead	 the	 system's	 state	 (e.g.,	 the	 state	 of	 an	 adversary's	 attack	 planning).	 It	 is	

linked	 to	 the	 CDM	 by	 a	 static	 joint	 random	 variable	 representing	 those	 fundamental	

uncertainties	 that	 influence	 the	 manner	 in	 which	 a	 crisis	 may	 evolve	 in	 the	 future,	 for	

example,	 an	 adversary's	 capabilities	 and	 intentions.	 We	 use	 the	 concept	 of	 conditional	

independence,	 and	 more	 precisely	 "d-separation"	 as	 defined	 in	 the	 study	 of	 Bayesian	

networks	to	describe	an	algorithm	in	which	the	influence	of	random	variable	X	on	variable	

Y	flows	exclusively	through	variable	Z	(Koller	and	Friedman	2009).	As	such,	we	refer	to	this	

joint	variable	as	the	"D-separating	joint	variable,"	or	simply	as	"D,"	because	of	its	structural	

position	between	the	CDM	and	all	that	comes	after	it	(Geiger	et	al.	1990).	

	 	



	
	
Figure	1	Relationships	Among	the	Four	Submodels	

		
	

	

	

The	inference	submodel	(IM)	is	a	modified	hidden	Markov	model	(Baum	and	Petrie	

1966,	Baum	and	Eagon	1967)	based	on	the	same	underlying	dynamic	process	as	the	BWM.	

It	 yields	 a	 probability	 distribution	 of	 the	 present	 state	 of	 the	 dynamic	 system	 given	

imperfect	 signals	 and	 performs	 the	 function	 of	 incorporating	 signals	 relevant	 to	 the	



evolution	 of	 a	 crisis	 into	 machine	 memory	 (Paté-Cornell	 and	 Fischbeck	 1995).	 The	

disutility	submodel	(DM)	defines	the	recurring	decisions	of	the	analyst	in	successive	time	

periods	of	whether	 to	 issue	one	of	 several	predefined	alerts	 to	a	principal	decision	or	 to	

allow	the	crisis	to	evolve	further	in	order	to	gather	more	information.	We	assume	that	alert	

levels	 correspond	 to	 potential	 responses	 that	 have	 already	 been	 determined	 and	

incorporated	 into	 deliberate	 plans,	 which	 may	 reflect	 means	 of	 attack,	 severity,	 or	 any	

other	salient	feature	that	will	drive	the	response.	Note	that	the	BWM	state	space	will	have	

to	be	defined	in	such	a	way	that	these	features	correspond	to	one	or	more	states.	The	lead	

time	 that	 response	 plans	 require	 for	 implementation	 and	 the	 cost	 of	 missed	 alert	 are	

exogenously	specified.	One	key	variable	of	this	model	is	the	"disutility"	(negative	expected	

consequence)	attributed	by	the	principal	to	adverse	outcomes	and	costs.	

The	 first	 three	 submodels	 yield	 a	 probability	 distribution	 of	 future	 crisis	

occurrences	and	 locations	 (if	 relevant).	The	 fourth	submodel	uses	 that	distribution	as	an	

input	to	a	decision	problem,	assuming	that	the	analyst	 is	given	the	responsibility	to	 issue	

various	 types	 of	 alerts.	 Such	 delegation	 is	 common,	 but	 not	 universal,	 in	 the	 world	 of	

intelligence	 (Belden	 1977).	 The	 problem	 is	 solved	 in	 accordance	 with	 the	 principles	 of	

decision	analysis	(Howard	and	Matheson	2005).	This	fourth	submodel	leverages	concepts	

developed	by	Peterson,	Birdsall,	and	others	in	the	1950s,	specifically	the	balancing	of	costs	

associated	with	 true	 positive	 and	 false	 positive	 detections	 of	 signals	 embedded	 in	 noise,	

together	with	 the	 costs	associated	with	 true	negative	and	 false	negative	 "nondetections."	

However,	we	do	not	implement	their	optimal	signal	receiver	because	their	model	assumed	

prior	 knowledge	 of	 the	 probability	 densities	 of	 samples	 associated	 with	 noise	 and	 with	

signal	added	to	noise,	which	were	fixed	across	the	time	interval	of	analysis.	We	believe	that	

a	dynamic	Bayesian	model	is	better	suited	to	the	warning	intelligence	application	because	

it	 allows	 analysts	 to	 assess	 conditional	 probabilities	 associated	 with	 each	 signal	

individually	as	it	is	observed,	and	to	use	it	to	update	their	prior	belief	of	the	crisis'	state	in	

accordance	with	Bayes	law.	Central	Intelligence	Agency	methodologists	have	cited	this	as	a	

helpful	 feature	of	Bayesian	methods	 in	 intelligence	analysis	 (Zlotnick	1972,	Heuer	1981).	

The	 analyst	 need	 not	 assess	 the	 sample	 probability	 densities	 over	 fixed	 periods	 of	 time,	

which	 would	 be	 impractical.	 Table	 2	 summarizes	 the	 features	 and	 variables	 of	 all	 four	

submodels.	



	

2.1.	Formulation	of	the	Crisis	Definition	Submodel	

The	CDM	is	represented	by	an	influence	diagram	used	to	infer	Prob	D	O	,	where	O	is	the	set	

of	observations	relevant	to	D,	that	 is	the	set	of	 jointly	distributed	static	random	variables	

(hereafter,	 joint	variable)	relevant	to	a	crisis.	A	given	realization	of	D	implies	a	particular	

set	 of	 transition	 probabilities	 for	 the	 underlying	 dynamic	 process	 of	 the	 crisis	 that	 is	

unfolding.	 Typically,	 the	 joint	 variable	D	 represents	 the	 intentions	 and	 capabilities	 of	 an	

adversary	during	the	time	in	which	a	crisis	is	evolving.	Several	observations	comprising	the	

set	 O	 may	 be	 relevant	 to	 these	 static	 fundamentals.	 If	 necessary,	 intermediate	 random	

variables	 can	 be	 defined	 to	 facilitate	 inferring	 Prob	 D	 O	 ,	 a	 process	 called	 "knowledge	

mapping"	by	Howard	(1989).	For	example,	if	the	crisis	that	an	analyst	is	tasked	to	monitor	

involves	the	progress	of	a	foreign	nation's	nuclear	program,	D	might	refer	jointly	to	(1)	that	

nation's	nuclear	objectives	and	(2)	its	scientific	industrial	base.	An	observation	relevant	to	

these	static	fundamentals	might	include	that	a	decades-old	war	between	the	nation	and	one	

of	its	neighbors	was	terminated	by	armistice	but	never	codified	by	treaty.	The	existence	of	

threats	to	the	nation's	territorial	integrity	might	serve	as	a	useful	intermediate	variable	to	

assist	in	incorporating	this	observation.	Although	a	change	in	a	variable	that	was	assumed	

to	 be	 static	 will	 necessitate	 reinitialization	 of	 the	 model,	 this	 should	 be	 a	 relatively	

infrequent	occurrence	as	 long	as	 the	model	 is	used	 for	 tactical	warning	rather	 than	 long-

term,	 strategic	warning.	 The	 crisis	 definition	 node	 of	 Figure	 1	 illustrates	 a	 generic	 CDM	

used	 to	 assess	 the	 joint	 variable	 D	 using	 an	 intermediate	 variable	 and	 three	 relevant	

observations.	



Table	2	Summary	of	Expressions	and	Features,	Including	Inputs	and	Outputs	
Notation	 Indices	 Input	or	

feature	of	
Output	
of	

Description	

D	
joint	
random	
variable		

--	 BWM	
IM	
DM	

CDM	 The	set	of	jointly	distributed	static	random	variables	
relevant	to	state	Xt	(called	here	the	D-separating	joint	
variable).	We	use	it	to	represent	(approximately)	
static	unknowns	on	which	crisis	evolution	depends,	
such	as	the	adversary’s	intentions	and	capabilities.	
Realizations	of	D	are	indexed	by	j.	It	is	assumed	that	
D	contains	all	the	information	needed	to	derive	
transition	probabilities	among	crisis	states.	

{O}				set	 --	 CDM	 --	 Set	of	all	observed	events	relevant	to	D.	
X		
set	of	
states	

Elements	
indexed	by	k	

BWM	
IM	

--	 State	space	characterizing	all	possible	states	of	the	
dynamic	variable	driving	an	evolving	crisis.	Those	
states	k	which	are	trapping	states	comprise	set	{k}.	

P	
vector	of	
transition
matrices	

Elements	of	P	
indexed	by		j	
(for	each	
realization	of	
D)		

BWM	
IM	
DM	

--	 A	vector	of	matrices,	each	containing	transition	
probabilities	among	states	in	X	in	a	unit	of	time	given	
a	realization	j	of	D.	An	element	of	P	is	a	matrix	
corresponding	to	j	and	denoted	Pj	.	Every	matrix	Pj	
includes	one	or	more	trapping	states	k∈{k}.	 

	Xt	
random	
variable		

t	(time	period)	 BWM	
IM	

	 The	dynamic	random	variable	representing	the	state	of	
an	evolving	crisis	in	space	X at	a	particular	time	t.	 

Hk,t	
random	
variable		

{k}	(trapping	
states),	t	(time	
period)	

DM	 BWM	 A	random	variable	representing	the	future	time	of	first	
passage	to	state	k	of	an	unfolding	crisis,	beginning	at	
time	t,	i.e.	the	present	time.	

T				scalar	 --	 DM	 --	 An	arbitrary	time	horizon	in	the	future.		
St	
random	
variable	

t	(time	period)	 IM	 --	 Noisy	intelligence	signal	observed	in	time	period	t.	It	
depends	on	the	current	state	Xt	and	on	the	credibility	
R	of	available	intelligence	sources	(see	below).	

R	
random	
vector	

--	 IM	 --	 A	vector	of	random	variables	whose	elements	
correspond	to	the	veracity	(0	or	1)	or	measurement	
error	(continuous	values	between	0	and	1)	of	a	
unique	source	of	one	or	more	signals	S0	,…,	St	(source	
is	defined	broadly).	

p0	
vector	

Elements	
indexed	by	k	
(state	of	X)	

IM	 --	 Vector	of	initial	probabilities	of	the	state	of	Xt	at	the	
time	the	inference	submodel	(IM)	is	initialized.	

πt	
vector	

t	(time	period);	
elements	
indexed	by	k	
(state	of	X)	

BWM	
DM	

IM	 Vector	of	posterior	probabilities	of	state	Xt	at	time	t	
incorporating	all	signals	S0	,…,	St	gathered	up	to	time	
t.	

V	
matrix	

Elements	
indexed		by	j	
(realization	of	
D),	k	(state	of	
X)	

DM	 --	 Matrix	containing	dollar-equivalent	or	multi-attribute	
failure	costs.		Cost	vj{k}	is	incurred	when	the	analyst	
fails	to	give	a	warning	inside	of	the	minimum	lead	
time	before	the	crisis	hits	a	trapping	state	k	∈	{k}.	
For	all	transient	states	(i.e.,	states	not	in	set	{k}),	cost	
vjk	=	0.		

q	
vector	

Elements	
indexed	by	i	
(type	of	alert)	

DM	 --	 Vector	of	alert	costs,	which	are	fixed	cost	associated	
with	each	type	of	alert	i,	whether	true	or	false	(e.g.	
value	of	lost	training).	Costs	qi	use	the	same	
attributes	as	vjk.	There	may	be	up	to	as	many	types	of	
alerts	as	responses	considered.	



L	
vector		of	
matrices	

Elements	
indexed	by	i	
(type	of	alert),	
j	(states	of	D),	
k	(state	of	X)	

DM	 --	 A	vector	of	matrices	containing	the	minimum	necessary	
lead	times	for	response	options.	Lead	times	lij{k}	
represent	the	number	of	time	periods	that	the	
principal's	response	assumes	will	be	available	
between	an	alert	and	a	crisis	entering	one	of	its	
trapping	states	in	order	to	achieve	success.		If	lijk	=	0,	
then	no	warning	lead	time	is	necessary	to	avoid	
incurring	a	failure	cost.	

α	
scalar	

--	 DM	 --	 Principal’s	discount	rate.	The	present	value	at	time	t	of	
a	cost	v	incurred	in	time	t+n	is	v/(1+α)n.	

a*(p0,{S})	
function	

--	 --	 DM	 The	analyst’s	optimal	alert	decision	(time	and	type)	as	
a	function	of	initial	probabilities	of	crisis	states	and	
interpretation	of	signals	observed.	

Note.	BWM:	basic	warning	submodel;	CDM:	crisis	definition	submodel;	IM:	inference	submodel;	DM:	disutility	
submodel.	
	

2.2.	Formulation	of	the	Basic	Warning	Submodel	

The	analyst	defines	a	state	space	X	that	fully	characterizes	the	crisis	situation	as	it	unfolds,	

and	thus	the	underlying	dynamic	process	(such	as	the	status	of	an	adversary's	attack	plan).	

The	 state	 space	 X	 must	 be	 comprised	 of	 the	 same	 set	 of	 states	 given	 any	 possible	

realization	 of	 the	 joint	 variable	 D.	 Consider	 again	 a	 dynamic	 process	 characterizing	 a	

foreign	nation's	evolving	nuclear	program,	which	 includes	a	 joint	variable	D	representing	

(1)	 its	 nuclear	 objectives	 and	 (2)	 its	 scientific	 industrial	 base.	 A	 realization	 of	 that	 joint	

variable	might	be	(1a)	achievement	of	energy	 independence,	 together	with	(2a)	 lacking	a	

scientific	 industrial	base	sufficient	 to	reprocess	plutonium	to	make	a	weapon.	A	different	

realization	 of	 D	 might	 be	 (1b)	 ensuring	 territorial	 integrity	 and	 (2b)	 an	 industrial	 base	

capable	of	building	a	plutonium	reprocessing	plant.	Turning	now	to	the	state	space	X,	one	

state	 might	 involve	 the	 presence	 of	 a	 light-water	 reactor	 along	 with	 a	 small	 centrifuge	

cascade	optimized	 to	produce	 fuel	 for	 this	 reactor.	An	 analyst	might	 treat	 this	 state	 as	 a	

trapping	 state	given	 the	 realization	of	D	 (1a,	2a)	but	 transient	 given	 realization	 (1b,	2b).	

Given	 (1a,	 2a),	 the	 analyst	does	not	 consider	 any	 further	 evolution	of	 the	 system	once	 it	

reaches	 this	 state,	 but	 does	 consider	 the	 possibility	 of	 further	 crisis	 developments	 given	

(1b,	 2b),	 for	 instance,	 a	 transition	 to	 a	 state	 in	 which	 the	 nation	 possesses	 a	 nuclear	

weapon.	We	require	X	to	be	defined	so	that	given	the	state	Xt	of	the	crisis	at	time	t	and	the	

intelligence	 sources	 R,	 it	 satisfies	 the	Markov	 property	with	 a	 single	 step	 of	memory	 in	

transitions	among	states.1		



If	the	crisis	enters	a	trapping	state	belonging	to	set	k	at	some	future	time,	implying	that	

no	further	evolution	is	considered,	it	must	be	for	the	first	time.	We	can	then	compute	the	

probability	distribution	over	the	future	"first	passage	time"	from	an	uncertain	state	at	time	

t	 to	 any	 of	 the	 trapping	 states	 in	 k	 given	 the	 realization	 j	 of	 the	 joint	 variable	 D	

(representing	the	set	of	fundamental	static	variables	affecting	how	a	crisis	unfolds).		

Consider:	

• πt:	the	probabilities,	as	assessed	by	the	analyst,	of	being	in	state	Xt	=	k	(a	particular	

state)	 at	 a	particular	 time	 t.	 It	 is	 an	output	 of	 the	 IM	and	 is	 described	 in	 the	next	

section.	

• Pj:	 a	 matrix	 of	 state	 transition	 probabilities	 among	 states	 comprising	 X	 given	

realization	j	of	joint	variable	D.			

• Τ:	an	arbitrary	distant	time	horizon	beyond	time	t.		

• τ:	a	running	variable	for	future	time	at	which	the	evolving	crisis	enters	state	k.	

• The	subscript	 !:#		appended	to	a	vector,	which	we	use	to	indicate	that	the	value	0	

is	inserted	in	place	of	the	kth	element	of	vector	(𝝅𝒕𝑷𝒋𝝉*𝟏).		

• A	 second	 subscript	 k	 appended	 to	 a	 vector,	which	we	 use	 to	 represent	 the	 scalar	

value	of	the	kth	element	of	vector	((𝝅𝒕𝑷𝒋𝝉*𝟏)!:#𝑷𝒋).		

The	probability	of	first	passage	time	for	any	state	in	{k}	given	D=j,	in	each	time	period	τ	

between	t	(present	time)	and	T	(time	horizon),	is:	

𝑃𝑟𝑜𝑏 𝐻{!},5 𝜏 |𝐷 = 𝑗 = ((𝝅𝒕𝑷𝒋𝝉*𝟏)!:#𝑷𝒋)!
!∈{!}

																																																																																																															(1)	

The	sum	over	k	∈{k}	represents	adding	up	the	probabilities	that	the	process	transitions	to	

each	trapping	state.		The	results	of	Equation	(1)	are	inputs	to	the	DM.			

The	 nuclear	 example	 mentioned	 above	 illustrates	 how	 a	 state	 space	 might	 be	

defined	reflecting	a	crisis	whose	dynamics	are	not	 tied	 to	geography.	Crises	 in	which	 the	

adversary's	 location	 changes	and	 reflects	 the	 state	of	 the	 crisis	 are	an	 important	 class	of	

tactical	 warning	 problems.	 The	 illustration	 presented	 in	 Section	 3	 (the	 lead	 up	 to	 Pearl	

Harbor)	is	a	crisis	of	this	type.	For	this	class	of	problems,	an	appropriate	state	space	is	the	

location	 of	 the	 entity	 (here,	 the	 Japanese	 carrier	 strike	 force)	 given	 some	 static	 variable	

(here,	 the	 strike	 force's	 next	 target	 and	 the	 speed	 at	 which	 it	 is	 traveling	 to	 reach	 that	



target).	For	a	multidimensional	geographic	space,	such	as	an	entity's	movement	by	sea	or	

air,	one	might	discretize	the	space	into	a	lattice	of	triangles	called	rasters	(or	into	volumes)	

and	 define	 a	 crisis	 state	 as	 the	 raster	 inside	which	 the	 entity	 is	 located	 at	 a	 given	 time.	

Transition	 probabilities	 are	 nonzero	 only	 for	 rasters	 inside	 a	 range	 determined	 by	 the	

entity's	maximum	 speed.	When	 the	 entity's	motion	 is	 constrained	 to	 one	 dimension,	 for	

instance	 by	 movement	 along	 known	 roads,	 one	 might	 define	 a	 network	 of	 permissible	

travel	 routes	 and	 a	 state	 as	 a	 node	where	 the	 entity	may	 be	 located	 at	 a	 given	 time.	 All	

transition	probabilities	to	nonadjacent	nodes	are	equal	to	zero.2	

	

2.3.	Formulation	of	the	Inference	Submodel	

A	 modified	 hidden	 Markov	 model	 is	 constructed	 from	 the	 random	 variables	 Xt	 and	 St	

(representing	 observed	 signals	 relevant	 to	 Xt),	 and	 the	 random	 vector	 R	 (representing	

signal	 source	 credibility),	 as	 shown	 in	 the	 inference	 node	 of	 Figure	 1,	 given	 the	 initial	

probability	distribution	p0	 over	X0.	The	process	 is	 "hidden"	because	 the	analyst	does	not	

observe	the	state	but	does	observe	noisy	signals	that	are	relevant	to	the	state,	following	the	

Markov	property	as	in	the	BWM.	

A	 random	 vector	 R	 contains	 m	 elements	 reflecting	 the	 credibility	 of	 m	 unique	

intelligence	sources,	each	common	to	one	or	more	signals.	The	realizations	of	R	might	be	

binary	in	cases	where	a	source's	credibility	is	measured	solely	by	whether	or	not	it	reports	

truthfully	(e.g.,	a	specific	spy).	Alternatively,	the	credibility	levels	might	take	on	continuous	

values	between	0	and	1	in	cases	where	a	source	is	graded	based	on	its	measurement	error,	

which	may	 be	 appropriate	 for	 technical	 sensors.	 In	 subsequent	 calculations,	 we	 assume	

discrete	 realizations	 of	 elements	 of	 R,	 which	 implies	 discrete	 measurement	 errors	 of	

arbitrary	granularity,	but	the	model	can	be	easily	extended	to	the	continuous	case.	

Sources	 whose	 credibility	 is	 represented	 by	 a	 single	 element	 of	 the	 vector	 R	 are	

assumed	to	be	conditionally	 independent	of	one	another	given	the	crisis	state.	Therefore,	

the	quality	of	the	signal	or	message	from	each	source	can	be	assessed	in	isolation	prior	to	

any	 signal	 observations,	 then	 updated	 using	 Bayes	 rule	 as	 new	 signals	 are	 observed.	

Dependent	sources	are	treated	as	a	single	source	whose	corresponding	element	in	R	has	an	

appropriate	number	of	 realizations	 to	 reflect	 the	 credibility	of	 the	 "subsources."3	 If	 all	of	

the	m	elements	of	R	are	binary	and	contain	no	dependent	subsources,	the	vector	R	has	2m	



possible	realizations.	If	a	source	or	set	of	subsources	is	represented	as	a	distinct	element	of	

R,	 it	 is	 assumed	 that	 this	 source	 or	 set	 does	 not	 overlap	with	 any	 others	 represented	 in	

other	elements.	All	dependencies	are	captured	within	the	credibility	levels	of	each	element.	

If	the	source	of	a	signal	is	not	identified,	or	might	be	one	of	several	sources,	this	may	prove	

impossible	without	 assuming	 that	 the	 unidentified	 source	 is	 a	 unique	 source	 (possibly	 a	

dubious	assumption).		

This	formulation	of	R	as	the	sources'	credibility	allows	assessment	of	the	quality	of	a	

signal	 given	 the	 state	 of	 a	 crisis	where	 signal	 dependence	 is	 due	 to	 common	 sources.	 If,	

however,	 signal	 dependence	 is	 thought	 to	 have	 a	 more	 nuanced	 meaning,	 the	 relevant	

elements	 of	 R	 may	 require	 a	 different	 specification	 based	 on	 the	 analyst's	 beliefs.	 For	

example,	 reports	 derived	 from	 radio	 intercepts	 of	 conversations	 might	 require	 a	

specification	 of	 R	 that	 reflects	 both	 the	 likelihood	 that	 the	 conversing	 individuals	 are	

specific	 known	 actors	 (e.g.,	 scientists	 who	 work	 at	 a	 centrifuge	 facility)	 as	 well	 as	 the	

likelihood	 that	 those	 known	 actors	 have	 knowledge	 of	 ground	 truth	 (e.g.,	 the	 size	 and	

arrangement	of	the	centrifuge	cascade).	

For	a	classic	hidden	Markov	model,	the	usual	approach	to	incorporating	signals	S0	,	

…	,	St	into	one's	probability	of	the	present	state	Xt,	is	referred	to	as	the	forward	algorithm	

(Baum	 and	 Eagon	 1967).	 That	 algorithm	 involves	 applying	 Bayes'	 rule,	 using	 the	 signal	

observed	at	 time	0	to	update	the	prior	belief	of	 the	dynamic	process,	 then	applying	tran-

sition	probabilities	 to	obtain	a	new	probability	 for	 the	state	of	 the	process	at	 time	1,	and	

iterating.	This	algorithm	is	applied	here	with	minor	modifications	to	solve	for		

Prob	{Xt	 |	D	=	 j,	p0	 ,	S0,	…	 ,	St}	 ,	where	we	have	added,	 through	R,	a	variable	representing	

dependence	among	common,	imperfect	sources.	

Let	 Prob{R}	 be	 the	 probability	 distribution	 of	 the	 random	 vector	 R	 (credibility	 of	

sources).	 We	 then	 substitute	 (Prob RC Prob{SE|R, XE})	in	 place	 of	 Prob{St|Xt}	 in	 the	

forward	 algorithm	 and	 also	 update	 Prob{R|St}	 using	 Bayes	 rule	 after	 observing	 each	

successive	 signal.	 This	 is	 possible	 because	 future	 signals	 still	 do	 not	 contain	 any	

information,	as	demonstrated	by	the	application	of	Shachter's	Bayes	Ball	algorithm	to	the	

network	shown	inside	the	inference	node	of	Figure	1	(Shachter	1998).	The	analyst's	belief,	

Prob{R},	 must	 contain	 all	 necessary	 information,	 and	 thus	 includes	 the	 validity	 of	 all	

signals.	Using	the	modified	



	

	

forward	algorithm,	we	update	the	probabilities	of	the	crisis	states	given	the	signals	to	date.	

We	 then	 multiply	 these	 terms	 and	 sum	 over	 the	 static	 realizations	 of	 D	 to	 obtain	 the	

distribution	of	the	crisis	states	at	time	t,	and	we	organize	the	distribution	into	a	vector	of	

posterior	probabilities	assessed	at	time	t:		

	
𝝅𝒕 = 𝑃𝑟𝑜𝑏{𝑋5|𝒑𝟎, 𝐷 = 𝑗, 𝑆#, … , 𝑆5}𝑃𝑟𝑜𝑏 𝐷 𝑆#, … , 𝑆5 	L 																																																																																																(2)		

	

Recall	that	the	node	R	is	updated	whenever	a	new	signal	St	is	observed.	For	example,	new	

intelligence	 from	 a	 source	 allows	 an	 analyst	 to	 reevaluate	 the	 validity	 of	 past	 reporting	

from	the	same	source.	To	account	for	this,	whenever	a	new	signal	is	observed	from	a	source	

with	a	reporting	history,	one	must	iterate	the	Forward	Algorithm	between	the	first	time	the	

source	 reported	 and	 time	 t	 using	 the	 updated	 probabilities	 for	 R.	 Dependencies	 among	

signals	thus	complicate	significantly	the	analysis	of	a	warning	model.	

	

2.4.	Formulation	of	the	Disutility	Submodel	(Costs	and	Risk	Attitude)	

Besides	 the	 correspondence	 of	 warnings	 to	 planned	 responses,	 we	 make	 here	

several	assumptions.	First,	the	principal	must	be	a	rational	decision	maker	in	the	classical	

(von	Neumann)	 sense.	 Second,	 the	 analyst	 knows	 and	 has	 adopted	 the	 principal's	 costs,	

meaning	willingness	 to	pay	 for	different	outcomes	resulting	 from	true	alerts,	 false	alerts,	

and	missed	 alerts,	which	 include	 alerts	 given	 after	 the	minimum	necessary	 lead	 time,	 as	

well	as	the	principal's	risk	attitude	and	time	preference.	We	make	this	assumption	because	

this	warning	model	is	intended	to	be	normative,	and	analysts	are	not	supposed	to	express	

their	 own	 preferences.	 Third,	 the	 disutility	 function	 U,	 common	 to	 the	 analyst	 and	 the	

principal,	reflects	a	constant	absolute	risk	aversion,	which	implies	a	 linear	or	exponential	

disutility	function.	The	time	preference	common	to	principal	and	analyst	is	represented	by	

a	constant	discount	factor	α.	Costs	might	be	assessed	in	monetary-equivalent	terms	if	it	is	

convenient,	or	they	might	involve	multiple	attributes.	In	that	case,	we	use	a	multi-attribute	

value	 function.	 The	 principal's	 indifference	 curves	 must	 be	 specified,	 to	 form	 a	 value	

function,	and	his	or	her	risk	attitude	must	be	expressed	over	that	value	function	(Matheson	



and	Abbas	2005).	Fourth,	by	convention,	we	assess	the	cost	of	the	expected	outcome	of	a	

true	alert	to	be	0	plus	the	cost	q	of	issuing	the	alert	(i.e.,	the	cost	of	response),	and	we	make	

the	simplifying	assumption	that	q	will	be	the	same	whether	the	alert	is	true	or	false.	

This	 fourth	 assumption,	 although	 perhaps	 unconventional,	 has	 little	 effect	 on	 the	

model's	results	because	we	have	already	assumed	the	existence	of	a	crisis	trapping	state,	

meaning	that	crises	will	occur	eventually	with	certainty.	An	analyst	 is	 incentivized	to	put	

off	 telling	 the	 principal,	 "The	 crisis	 is	 imminent,	 and	 the	 time	 to	 act	 is	 now	 or	 never,"	

because	 time	 discounting	 reflects	 a	 general	 desire	 of	 principals	 to	 delay	 commitment	 to	

action	 until	 it	 is	 absolutely	 essential.	 No	 alert	 is	 ever	 truly	 false	 in	 this	 model,	 only	

premature!	This	assumption	implies	that	a	correct	nonalert	has	a	zero	cost.	It	also	implies	

that	fixed	alert	costs	must	be	greater	than	0.	A	willingness	to	give	away	some	value	beneath	

a	 specified	 threshold	 (in	 football,	 a	 "prevent	 defense")	 is	 not	 possible	 if	 any	 alert	 cost	 is	

beneath	that	threshold.	If	it	were,	the	analyst's	incentive	would	be	to	ignore	the	possibility	

of	a	false	alert	and	immediately	issue	a	"free"	alert	corresponding	to	the	worst	crisis	state	

whose	alert	cost	is	beneath	the	threshold.	

The	 analyst's	 decision	 problem	 is	 formulated	 as	 a	 particular	 Markov	 decision	

process,	 a	minimization	 of	 expected	 disutilities,	 in	which	 the	 analyst's	 actions	 affect	 the	

rewards	 for	 each	 state	 but	 not	 the	 transition	 probabilities	 (Howard	 1960).	 Bellman's	

implementation	 of	 value	 iteration	 for	 Markov	 decision	 processes	 is	 used	 to	 solve	 the	

decision	problem	(Bellman	1953).	This	approach	requires	considering	outcomes	at	a	future	

time	horizon	T	,	beyond	which	one	is	not	concerned	with	the	same	problem.	

Consider	the	probability	Prob{H{k},t(τ)|D=j,	p0,	S0	,…,	St},	assessed	at	time	t,	that	the	

crisis	 first	 hits	 any	 trapping	 state	 in	 set	 k	 in	 time	 periods	 in	 the	 future	 given	 the	 static	

fundamental	variables	(D)	relevant	to	a	crisis	unfolding	and	the	set	of	signals	observed	so	

far	{S0	,…,	St}.	Extending	Equation	1	to	incorporate	signals	observed	so	far	yields:		

𝑃𝑟𝑜𝑏 𝐻{!},5 𝜏 |𝐷 = 𝑗, 𝒑𝒐, 𝑆#, … , 𝑆5 = 𝝅𝒕|𝒑𝒐, 𝑆#, … , 𝑆5 𝑷𝒋𝝉*𝟏 !:#
𝑷𝒋

!!∈{!}

																																																														(3)	

Let	CE(ati	|D=j,	p0,	S0	,…,	St)	denote	the	certain	equivalent,	common	to	analyst	and	principal,	

of	 the	overall	cost	associated	with	an	alert	of	 type	 i	given	at	time	period	t,	 in	which	their	

common	 disutility	 function	 is	 represented	 as	 U	 (with	 inverse	 U-1).	 Here	 t	 represents	 a	

particular	time	 period	 at	which	 the	 alert	 is	 given	 and	 the	 index	 τ	 functions	 as	 a	 running	



variable	 for	 future	 time	at	which	 the	evolving	crisis	enters	state	k.	 It	 is	assumed	that	 the	

decision	 to	 give	 an	 alert	 is	made	 at	 time	 t	 after	 observing	 all	 signals	 by	minimizing	 the	

certain	equivalent	of	the	disutility	associated	with	each	alert	type	if	it	were	issued	at	time	t.	

𝐶𝐸(𝑎5S 𝐷 = 𝑗, 𝒑𝒐, 𝑆#, … , 𝑆5 = 𝑃𝑉U5 𝑞S + 𝑈*Y 𝑃𝑟𝑜𝑏 𝐻{!},5 𝜏 |𝐷 = 𝑗, 𝒑𝒐, 𝑆#, … , 𝑆5 𝑈 𝑃𝑉UZ v\{!}

5]^_`{a}

Zb5

			(4)	

Equation	(4)	reflects	the	fact	that	the	certain	equivalent	CE(ati	 |D=j,	p0,	S0	,…,	St)	 the	fixed	

cost	associated	with	an	alert	at	time	t	(i.e.,	𝑃𝑉U5 𝑞S 	),	and	an	uncertain	cost	that	depends	on	

whether	the	alert	comes	too	late	for	a	meaningful	response,	𝑃𝑉UZ v\{!} .	Because	the	cost	vj	

for	entering	any	transient	state	not	belonging	to	k	is	0,	only	the	trapping	states	contribute	

to	 the	 uncertain	 portion	 of	 CE(ati	 |D=j,	 p0,	 S0	 ,…,	 St).	 The	 summation	 yields	 the	 certain	

equivalent	 of	 the	 failure	 costs	 and	 reflects	 the	 uncertainty	 regarding	 whether	 the	 crisis	

enters	a	trapping	state	within	the	minimum	lead	times	for	planned	responses.	The	analyst's	

decision	problem	of	the	best	alert	and	best	time	to	issue	that	alert	a	can	then	be	written	as:	

𝑎∗(𝒑𝒐, 𝑆#, … , 𝑆5) = argmin
S,Z:[5,k]

𝑃𝑟𝑜𝑏(𝐷|𝑆#, … , 𝑆5)𝑈 𝐶𝐸 𝑎ZS|𝐷 = 𝑗, 𝒑𝒐, 𝑆#, … , 𝑆5
L

																																																		(5)	

Equation	 (5)	 states	 that	 the	 analyst	must	 find	 the	 type	 and	 time	 of	 alert	 that	 yields	 the	

lowest	 expected	 disutility	 to	 the	 principal,	 for	 all	 alert	 types	 i	 and	 at	 all	 time	 periods	

between	the	present	time	t	and	the	time	horizon	T	.	

The	objective	function	to	be	minimized	is	not	convex.	Therefore,	no	attempt	is	made	

to	perform	this	minimization	analytically.	 In	practice,	however,	 it	 is	 simple	 to	 implement	

the	optimization	numerically	by	simulation,	although	the	speed	of	computations	depends	

on	the	extent	of	dependencies	among	signal	sources	(it	runs	in	linear	time	with	respect	to	t	

in	 the	 special	 case	 where	 there	 are	 no	 dependencies).	 If	 the	 time	 τ	 that	 minimizes	 the	

objective	 function	 for	 alert	 type	 i	 is	 the	present	 time,	 an	 alert	 of	 type	 i	 should	be	 issued	

right	away	to	the	principal.	If	the	time	that	minimizes	the	disutility	is	beyond	the	present,	it	

is	 better	 to	wait,	 observe	 the	 next	 signal,	 and	 repeat	 the	 optimization	 rather	 than	 risk	 a	

false	positive.	

	

3.	RETROSPECTIVE	ILLUSTRATION:	THE	CRISIS	IN	THE	PACIFIC	IN	NOVEMBER,	1941	

We	 illustrate	 this	 analytic	 framework	 by	 considering	 the	 historical	 warning	 decision	

problem	faced	by	analysts	in	the	US	Navy’s	War	Plans	Division	(WPD),	beginning	ten	days	



before	 Japan	attacked	Pearl	Harbor	on	December	7,	1941.	At	 that	 time	WPD	perceived	a	

need	to	warn	its	principals	of	a	potential	Japanese	carrier-borne	attack	somewhere	in	the	

Pacific	 theater.	 For	 an	 account	 of	 the	 signals	 observed	 and	 background	 on	 how	 those	

signals	were		assessed,	see,	for	example,	the	book	by	Wohlstetter	(1962).	

	

3.1.	Illustration	of	the	Crisis	Definition	Sub-Model	

We	 define	 the	 dynamic	 states	 as	 the	 geographic	 position	 of	 the	 Imperial	 Japanese	 Navy	

(IJN)	carrier	strike	force,	a	consolidated	element	of	the	combined	fleet	to	which	the	Office	

of	 Naval	 Intelligence	 believed	 all	 Japanese	 aircraft	 carriers	 were	 assigned	 beginning	 on	

October	 30,	 1941.	 Specifically,	 we	 consider	 its	 position	 at	 a	 particular	 time,	 binned	 into	

discrete	regions	as	described	in	detail	 in	Section	3.2	and	depicted	in	Figure	2,	conditional	

upon	our	assessment	of	the	strike	force's	next	target	and	on	the	immediacy	with	which	its	

orders	direct	it	to	proceed	to	that	target.	These	two	aspects	of	the	strike	force’s	intentions,	

target	 and	 immediacy,	 constitute	 the	 static	 joint	 variable	 D	 and	 are	 defined	 below.	 	 The	

analyst	 will	 reinitialize	 the	 sub-model	 if	 any	 significant	 development	 occurs	 that	 would	

change	her	prior	assessment	of	the	carrier	strike	force’s	target	or	the	nature	of	its	orders.		

	

Figure	2:	State	space	of	pre-attack	crisis	representing	possible	locations	of	the	IJN	carrier	

strike	force.	Triangular	areas	as	plotted	on	a	Gnomonic	projection	have	648	nm	sides.	

Outlined	regions	refer	to	trapping	states	for	the	possible	targets	(see	further,	in	Table	3).	



		
Figure	3:	Influence	diagram	representing	the	Crisis	Definition	Sub-Model	for	warning	of	a	

Japanese	attack	(notations	from	Howard	&	Matheson	2005).	

	
	

Figure	 3	 illustrates	 the	 Crisis	 Definition	 Model,	 depicting	 the	 IJN	 carrier	 strike	

force’s	uncertain	intentions,	given	two	observations	and	four	intermediate	variables.	Based	

on	 an	Army	 analysis	 from	 July	 1941	 addressed	 to	WPD	 and	 echoed	 in	 subsequent	WPD	

memos,	 we	 consider	 five	 possible	 “objectives”	 for	 the	 IJN	 carrier	 strike	 force,	 i.e.	 land	

masses	 that	 the	 Japanese	 high	 command	might	 attempt	 to	 occupy	 using	 force	 projected	



from	 the	 carriers	 (US	 Army	 G-2	 1946).	 Those	 objectives	 are	 MANILA	 BAY,	

SINGAPORE/KRA,	 BORNEO,	 THAILAND,	 and	 the	 KURILES	 (this	 report	 does	 not	mention	

Hawaii).	However,	this	and	other	intelligence	reports	and	memos	passing	through	WPD	in	

November,	1941,	cautioned	that	the	Japanese	might	act	“unpredictably”,	and	in	one	report	

the	term	“unpredictably”	is	clearly	used	as	a	euphemism	for	attacking	the	US	Pacific	Fleet	

and	 nearby	 land-based	 aircraft,	 either	 in	 the	 Philippines	 or	 Hawaii.	 For	 that	 reason,	 we	

distinguish	the	IJN	strike	force’s	“objective”	from	its	“target”,	i.e.	land	masses	to	which	the	

IJN	 might	 be	 ordered	 to	 proceed	 and	 strike.	 Targets	 include	 the	 same	 five	 possible	

objectives	plus	OAHU.	While	the	historical	record	validates	US	Navy	assessments	that	the	

IJN	 carrier	 strike	 force	 was	 operating	 as	 a	 single	 unit,	 and	 as	 such,	 could	 not	 attack	

simultaneous	 targets,	 the	 IJN	 as	 a	whole	proved	 capable	of	 exactly	 that,	with	 some	units	

operating	 without	 support	 from	 Japan's	 large-deck	 carriers.	 Therefore,	 this	 model	

illustration	 will	 be	 limited	 by	 the	 same	 failure	 of	 imagination	 as	 that	 of	 US	 naval	

intelligence	in	1941,	and	focus	exclusively	on	the	whereabouts	of	the	aircraft	carriers	based	

on	their	presumed	ability	to	mount	a	single	attack	at	a	time.		

In	addition	to	“target,”	D	(the	underlying	static	fundamentals	comprising	the	carrier	

strike	 force’s	 intentions)	 includes	 two	degrees	of	what	we	call	 "immediacy,"	or	degree	of	

urgency	on	the	part	of	the	Japanese	fleet:	IMMEDIATE	and	DELAYED.	IMMEDIATE	refers	to	

orders	 to	proceed	to	 the	 target	with	haste.	 	DELAYED	refers	 to	orders	 that	would	permit	

the	carrier	strike	force	to	make	port	calls,	steam	at	slow	speed,	or	undertake	other	missions	

before	attacking	its	specified	target.	

Other	 intermediate	 variables	 in	 Figure	 3	 include	 “Japan	 perceives	 US	 air/naval	

threat”,	 “Japanese	 action	 unpredicted”,	 and	 “Priority.”	 Given	 an	 objective,	 WPD	 analysts	

were	uncertainty	whether	the	Japanese	strike	force	commander	would	have	perceived	that	

the	 US	 Pacific	 Fleet	 and	 nearby	 land-based	 aircraft	 could	 threaten	 the	 conquest	 of	 his	

objective	 (YES	 or	 NO).	 We	 introduce	 a	 deterministic	 variable	 that	 we	 call	 “Priority”	 to	

simplify	the	conditional	dependencies	entering	D.	If	“Japan	perceives	US	air/naval	threat”	is	

NO,	then	“Priority”	stores	the	same	probability	distribution	as	“Next	major	IJN	objective”,	

and	 if	 it	 is	 YES,	 “Priority”	 stores	 non-zero	 probability	 on	 MANILA	 BAY	 and	 OAHU,	

representing	 an	 attack	 on	 the	 US	 Pacific	 Fleet	 to	 defeat	 the	 threat.	 The	 target	 selected	

depends	 on	 which	 locations	 are	 contained	 in	 “Priority”,	 along	 with	 “Japanese	 action	



unpredicted”.	All,	except	OAHU	and	MANILA	BAY,	are	assigned	a	probability	0	if	“Japanese	

action	unpredicted”	is	YES.	Otherwise	OAHU	is	assigned	a	probability	0.			

Lastly,	based	on	their	written	assessments,	two	observations	apparently	influenced	

the	beliefs	of	WPD	analysts	about	Japanese	strike	force	intentions	at	that	time,	a	US-Japan	

diplomatic	breakdown	on	November	24,	and	a	report	of	 the	 formation	of	 two	task	 forces	

concentrating	 in	 the	 South	 China	 Sea	 and	 the	 Mandates	 (US	 Chief	 of	 Naval	 Operations	

1946a).	 A	 total	 of	 103	 assessments	 were	 performed	 in	 the	 Crisis	 Definition	 Sub-Model,	

although	more	than	half	were	repetitions	necessary	to	implement	the	logic	of	the	PRIORITY	

deterministic	variable.		

	

3.2.	Illustration	of	the	Basic	Warning	Sub-Model	

On	a	Gnomonic	projection	where	great	 circles	appear	as	 straight	 lines,	 triangular	 rasters	

define	possible	positions	of	the	Japanese	carrier	strike	force	and	represent	the	state	space	

X,	 as	 shown	 in	 Figure	 2	 in	 the	 preceding	 section.	 	 Their	 edge	 lengths	 are	 equal	 to	 the	

distance	 covered	 in	 two	 periods,	 and	 they	 cover	 the	 portion	 of	 the	 Pacific	 Ocean	 inside	

which	the	fleet	might	travel	to	strike	any	of	its	potential	targets.	A	time	unit	is	set	as	one-

half	day	(12	hours).	Assuming	a	speed	of	27	knots,	the	edges	of	these	triangular	rasters	are	

27	x	12	x	2	=	648	nautical	miles	(nm)	in	length.		We	assume	that	the	crisis	will	occur	with	

certainty	 if	 and	when	 the	 fleet	 arrives	within	 striking	 range	 of	 its	 target,	 conservatively	

assessed	to	be	300	nm	(US	Cdr.	Hawaiian	Air	Force	1946).	

To	specify	the	adjacency	matrices	Pj	for	each	possible	realization	of	D=j	(target	and	

immediacy),	only	 transition	probabilities	between	adjacent	 states	are	non-zero	and	must	

be	assessed.	Yet	 this	 still	 requires	about	776	subjective	assessments.	A	heuristic	 reduces	

the	task,	for	example:	
The	transition	probability	from	state	k	to	m	given	D=j	is	inversely	proportional	to	an	

exponential	 of	 the	 shortest	 path	 from	 state	m	 to	 the	 target	 (minimum	number	 of	

rasters	between	m	and	the	target).	

This	heuristic	 is	an	application	of	the	concept	of	bounded	rationality	and	is	 formalized	in	

Equation	6.	The	carrier	strike	 force	 is	more	 likely,	but	not	certain,	 to	 travel	 to	states	that	

are	 closer	 to	 its	 target.	 Implementing	 the	 following	 algorithm,	 which	we	 refer	 to	 as	 the	

inverse-proportionality	 algorithm,	 allows	 the	 analyst	 to	 completely	 and	 automatically	



populate	 the	 transition	 matrices	 comprising	 P	 without	 performing	 any	 manual	

assessments	except	for	the	probability	of	holding	(rasters	including	land	masses	that	would	

block	the	passage	of	ships,	such	as	rasters	85	and	86,	are	treated	as	non-adjacent).		
1. Given	state	k	and	D=j,	for	all	states	m	that	are	adjacent	to	k	and	for	the	set	of	states	is	set	{k}	

that	 constitute	 trapping	 states	 (listed	 in	 Table	 3),	 find	 the	 length	 of	 the	 shortest	 path	

(number	of	rasters)	from	m	to	any	state	in	{k}	and	store	as	length(m)	

2. popq~
Y

stu	(vswxEy q ]Y)
																																																																																																																																		(6)	

3. Assess	holding	probabilities	pjk	and	renormalize	P	accordingly.	

Holding	within	a	 raster	occurs	 if	 the	 strike	 force	were	 to	make	a	port	 call	or	 slow	 its	

speed	 for	other	reasons.	We	assume	a	holding	probability	of	0.05	 for	all	 rasters	given	an	

IMMEDIATE	 target,	 or	 0.4	 for	 all	 rasters	 given	 a	 DELAYED	 target.4	 Using	Pj,	 and	πt	 (as	

described	 in	 the	 next	 section	 3.3),	 we	 calculate	 the	 probability	 distribution	 of	 the	 first	

hitting	time	H{k},t	of	the	IJN	carrier	strike	force	to	its	target	by	applying	Equation	1.	

	

3.3.	Illustration	of	Inference	Sub-Model	
On	26	November	1941	COM	16	sent	a	cable	stating:	“Our	best	indications	are	that	all	First	

and	 Second	Fleet	 carriers	 still	 in	 Sase-Bo-Kure	 area”	 (US	Cmdt.	 16th	Naval	District	 1946,	

p.16).	ONI	and	G2	both	interpreted	this	as	indicating	that	the	carriers	were	at	Sase-Bo	with	

certainty.	Therefore,	for	p0,	a	probability	1	is	assigned	to	raster	191	and	a	probability	0	to	

all	 other	 rasters.	 In	 fact,	 November	 26	 was	 the	 last	 time	 where	 any	 radio	 signals	 were	

intercepted	and	attributed	to	the	carrier	strike	force.	Radio	silence	followed	in	all	periods	

beginning	on	the	morning	of	November	27	and	ending	with	the	attack	of	Pearl	Harbor.	As	

long	as	radio	silence	was	not	interpreted	as	white	noise	(equally	likely	for	all	 locations	of	

the	 strike	 force,	 its	potential	 targets,	 and	 its	 level	 of	urgency),	 it	 contained	at	 least	 some	

new	information.			

We	assess	the	likelihood	of	radio	silence	for	each	fleet	position	and	objective	and	we	

use	it	to	update	πt	based	on	Equation	2,	using	a	set	of	likelihoods	that	are	consistent	with	a	

March	 1941	 study	 (US	 Cdr.	 Naval	 Base	Defense	 Air	 Force	&	US	 Cdr.	 Hawaiian	 Air	 Force	

1946),	and	with	various	other	reports.	 	Regarding	an	attack	on	Oahu,	the	approach	under	

radio	 silence	 was	 deemed	 likely.	 The	 study	 authors,	 Major	 General	 Martin	 and	 Rear	

Admiral	Bellinger,	wrote,	 “It	 appears	possible	 that	Orange	submarines	and/or	an	Orange	



fast	 raiding	 force	 might	 arrive	 in	 Hawaiian	 waters	 with	 no	 prior	 warning	 from	 our	

intelligence	service.”	 In	a	subsequent	report,	MG	Martin	stressed	 that	any	 force	attacking	

the	Hawaiian	Islands	would	make	a	maximum	effort	to	avoid	detection	in	its	approach	(US	

Cdr.	Hawaiian	Air	Force	1946).	 	Yet,	intelligence	analysts	in	Hawaii	and	the	Philippines	in	

receipt	of	radio	intercepts	issued	reports	on	several	instances	between	November	27	and	

December	7	that	read,	“No indications of any movement any Fleet units,” or, “Nothing	to	

indicate	 Fleet	 out	 of	 home	 waters.	 ”	 These	 analysts	 may	 have	 intended	 to	 express	 no	

assessment	 at	 all	 regarding	 fleet	movement.	 	 If	 so,	 their	 vague	 language	was	misleading		

(US	Cmdt.	14th	Naval	District	1994).	

On	the	other	hand,	US	analysts	believed	that	a	high	degree	of	radio	chatter	was	the	

norm	in	the	Mandate	 islands.	 	 In	the	same	report	MG	Martin	and	RADM	Bellinger	argued	

that	 the	 IJN	would	 likely	place	a	 low	priority	on	making	a	 stealthy	getaway	 following	an	

attack,	 and	would	be	willing	 to	 accept	whatever	 casualties	were	necessary	 to	 ensure	 the	

success	 of	 a	 surprise	 attack.	 Radio	 silence	would	 be	 lifted	 once	 combat	 operations	were	

underway	 and	 operational	 security	 compromised.	 	 Applying	 this	 logic,	 we	 assess	 the	

conditional	probabilities	associated	with	radio	silence	and	the	validity	of	the	observations	

in	Table	3.		

The	US	Navy	possessed	two	independent	sources	for	fleet	radio	intercepts	in	the	West	

and	Central	Pacific,	stations	denoted	COM14	and	COM16,	either	of	which	may	be	functional	

or	not.	It	is	thus	appropriate	to	define	random	vector	R	as	comprised	of	two	elements,	each	

with	two	possible	realizations,	for	a	total	of	four	possible	realizations:		
COM14	FUNCTIONAL,	COM16	FUNCTIONAL	

COM14	FUNTIONAL,	COM16	NON-FUNCTIONAL	

COM14	NON-FUNCTIONAL,	COM16	FUNCTIONAL	

COM14	NON-FUNCTIONAL,	COM16	NON-FUNCTIONAL	

	

Table	3:	Coding	of	the	probabilities	of	radio	silence	signals	given	the	location	of	the	IJN	

carrier	strike	force	and	at	least	one	functioning	antenna	station,	either	COM14	or	COM16.	

Location	 Consistency	

of	 radio	

silence	 with	

Probability	

of	 radio	

silence	given	

Rasters	 comprising	 locations	 {k},	 see	

outlined	regions	in	Figure	2	



US	beliefs	 location	 and	

functional	

station	

near	Philippines	 partial	 0.5	 90,	91,	92,	93,	94,	95,	158	

near	Borneo	 partial	 0.5	 2,	3,	22,	23,	27,	54,	55,	56,	94,	95	

near	Kra	 partial	 0.5	 17,	18,	52,	53,	56,	57,	86,	87,	88	

near	Oahu	 partial	 0.5	 204,	205,	206,	207,	208,	209,	229,	230,	233,	

238,	258,	259,	260	

near	Kuriles	 partial	 0.5	 215,	216,	220,	240	

near	Thailand	 partial	 0.5	 85,	86,	87	

near	 	 Mandate	

Islands	 and	 SE	

Pacific	Ocean	

inconsistent	 0.2	 7,	 8,	 9,	 10,	 11,	 12,	 28,	 29,	 30,	 31,	 32,	 33,	 34,	

35,	36,	37,	38,	39,	64,	65,	66,	67,	68,	69,	70,	

71,	 72,	 73,	 74,	 75,	 96,	 97,	 98,	 99,	 100,	 101,	

102,	105,	106,	107,	128,	129,	135,	136,	137	

near	China	 inconsistent	 0.2	 122,	155,	156,	159	

home	waters	 consistent	 0.8	 186,	187,	188,189,	190,	191	

elsewhere	 in	 the	

Pacific	&	beyond	

range	of	targets	

consistent	 0.8	 all	others	

	

The	Office	of	Naval	Intelligence	considered	both	sources	to	be	reliable,	but	COM16	

more	so	than	COM14	(US	ONI	1946c).	Therefore,	we	assess	 the	probabilities	 that	COM14	

and	COM16	are	reliable	to	be	0.7	and	0.9	respectively.	In	the	case	where	both	stations	are	

not	 functional,	we	 consider	 the	probability	 that	 radio	 silence	 is	observed	 from	 the	 strike	

force	 in	any	raster	 to	be	uniform,	 thus	containing	no	 information.	 	 In	all,	276	x	4	=	1104	

probability	assessments	are	performed	(most	via	automatic	routine)	in	every	time	period.		

	

3.4.	Illustration	of	the	Disutility	Sub-Model	

The	Disutility	 Sub-Model	 assumes	 costs,	 risk	 attitude,	 and	 other	 preferences	 belong	 to	 a	

single	 principal	 decision	 maker.	 Until	 the	 1986	 Goldwater-Nicols	 Act,	 the	 US	 military	

operated	 under	 a	 split	 command	 paradigm	 whereby	 the	 Army,	 Navy,	 and	 later	 the	 Air	

Force	each	fought	as	three	distinct	forces.	Therefore,	in	our	illustration,	we	violate	our	own	



assumption	regarding	a	single	principal,	since	it	would	be	wrong	to	consider	either	Admiral	

Stark	or	General	Marshal	as	the	sole	principal.	Incoherent	decisions	can	arise	in	situations	

involving	group	decision	making,	and	so	too	in	war.	The	1986	reform	had	the	objective	of	

fixing	this	situation,	and	by	many	accounts,	it	succeeded.	Illustrations	of	the	sub-models	in	

the	 warning	 framework	 have,	 to	 this	 point,	 assumed	 probability	 assessments	 that	 are	

loosely	 based	 on	 the	 contemporaneous	 writings	 of	 the	 principals	 and	 their	 staffs.	

Unfortunately,	 even	 after	 reviewing	 the	 Foreign	 Relations	 of	 the	 United	 States	 and	 the	

papers	 and	 memos	 of	 senior	 officials	 in	 the	 White	 House,	 Army,	 Navy,	 and	 State	

Department,	we	find	it	 is	 impossible	to	base	an	illustration	of	the	Disutility	Sub-Model	on	

the	 beliefs	 and	 preferences	 expressed	 in	 such	 writings.	 Whereas	 one	 can	 justify	 (with	

several	caveats)	the	discount	rate	that	is	used	here,	the	costs	assigned	to	the	q	vector	and	V	

matrix,	and	the	lead	times	assigned	to	the	L	matrix,	are	not	documented,	and	are	justified	

only	by	the	authors'	sense	of	history.		

The	studies	authored	by	MG	Martin	and	RADM	Bellinger	on	March	31,	1941,	and	by	

MG	Martin	on	August	20,	shed	some	light	on	perceptions	of	the	costs	of	a	missed	alert	and	a	

false	alert.	 In	 the	 former	 the	authors	wrote,	 “A	successful,	 sudden	raid,	 against	our	 ships	

and	Naval	 installations	on	Oahu	might	prevent	effective	offensive	action	by	our	 forces	 in	

the	Western	Pacific	for	a	long	period.”		In	the	latter,	MG	Martin	argued	that	Pearl	Harbor’s	

defenses	were	not	impregnable,	and	that	successful	defense	required	finding	the	Japanese	

aircraft	carriers	before	they	 launched	an	attack	on	Oahu	(US	Cdr.	Naval	Base	Defense	Air	

Force	and	US	Cdr.	Hawaiian	Air	Force	1946;	US	Cdr.	Hawaiian	Air	Force	1946).	It	was	also	

noted	 that	 moving	 the	 fleet	 out	 to	 sea	 would	 negatively	 impact	 training.	 We	 could	 not,	

however	find	any	discussion	of	the	relative	costs	of	various	Japanese	operations	against	US	

interests	versus	placing	US	fleet	on	a	high	state	of	alert	or	moving	its	ships	out	to	sea.		

It	is	assumed	that	there	is	a	unique	alert	type	for	every	target.		Table	4	shows	alert	

costs	 and	 the	 costs	 of	 different	 outcomes	 in	 case	 of	 a	 Japanese	 strike	 in	 the	 absence	 of	

timely	warning.	Costs	vectors	v	and	q	reflect	some	aggregate	measure	of	military	cost	that	

incorporates	 lives	 lost,	 dollars	 spent,	 resources	 expended,	 and	 strategic	 loss.	 Because	 by	

that	 time	war	with	 Japan	was	 considered	 inevitable,	 the	 total	 cost	 of	 war	would	 not	 be	

"built	 into"	 the	 failure	 costs.	 Failure	 costs	 vj{k}	 are	 interpreted	 as	 the	 Joint	 Chiefs’	

willingness	to	pay	some	cost	to	avoid	the	expected	losses	arising	from	an	attack	launched	



by	the	IJN	carrier	strike	force.		qi	is	interpreted	as	the	Joint	Chiefs’	willingness	to	pay	some	

expected	cost	to	avoid	the	specific	measures	they	would	undertake	in	response	to	a	given	

warning.		The	cost	of	a	successful	strike	on	Oahu	on	November	27	is	normalized	to	1.	

	

Table	4:	Joint	Chiefs’	expected	costs	given	target/alert	type,	normalized	to	attack	on	Oahu.	

	 vj{k}	(failure	 cost	of	 Japanese	

strike	absent	warning)	

qi	 (expected	 cost	 of	 alert,	 including	

certain-equivalent	of	response)	

Oahu	 1	 0.00001	

Kuriles	 0.001	 0.0000001	

Manila	Bay	 0.1	 0.00001	

Thailand	 0.0001	 0.0000001	

Singapore/Kra	 0.01	 0.000001	

Borneo/NEI	 0.01	 0.000001	

	

Table	 5	 shows	 the	 minimum	 lead	 times	 required	 to	 carry	 out	 interventions	 and	 avoid	

incurring	 failure	 costs	 vj{k},	 expressed	 in	 12-hour	 periods	 (i.e.	 2	 periods	 per	 day).	 They	

reflect	military	plans	to	put	ships	to	sea,	bring	in	reinforcements,	etc.		

	

Table	5:	Minimum	lead	times	for	alert	type	i	to	avoid	incurring	cost	vj{k}	in	12-hour	periods.	
	 lij{k},(minimum	lead	time	

for	planned	response)	

Oahu	 4	

Kuriles	 1	

Manila	Bay	 4	

Thailand	 1	

Singapore/Kra	 14	

Borneo	/NEI	 14	

	

We	 introduce	 a	 discount	 rate	 α	 to	 represent	 the	 Chiefs’	 perception	 that	 America	

would	 have	 been	 be	 better	 off	 the	 longer	 the	 outbreak	 of	 war	 was	 pushed	 off.	 It	 is	

impossible	to	disentangle	the	general	perception	that	delaying	war	would	be	good	because	it	

would	allow	military	 forces	 to	continue	 to	 train	and	prepare	 to	 fight	 (as	discussed	 in	 the	



Bellinger	and	Martin	reports	and	associated	memos),	with	particular	preparations	for	war	

whose	 effect	 on	 the	 outcome	of	war	 is	 estimated	 in	 reports.	We	model	 the	 time	 varying	

costs	using	this	constant	discount	rate,	fitted	using	two	points	estimated	by	analyzing	one	

specific	thread	of	military	preparations.	We	do	this	for	three	reasons:	first,	it	was	thought	

Japan	 might	 commit	 an	 act	 of	 war	 at	 any	 time;	 second,	 all	 reports	 and	 memos	 that	

commented	 on	war	 preparation	 contained	 the	 opinion	 that	 later	 is	 better;	 and	 third,	we	

believe	 that	 it	 is	nearly	as	 important	 that	alerts	 that	drive	contingency	operations	not	be	

premature	as	it	is	that	they	be	timely.	The	Joint	Board	estimated	that:	
“Strong	 diplomatic	 and	 economic	 pressure	 may	 be	 exerted	 from	 the	 military	

viewpoint	at	the	earliest	about	the	middle	of	December,	1941,	when	the	Philippine	

Air	 Force	 will	 have	 become	 a	 positive	 threat	 to	 Japanese	 operations.	 It	 would	 be	

advantageous,	if	practicable,	to	delay	severe	diplomatic	and	economic	pressure	until	

February	 or	 March,	 1942,	 when	 the	 Philippine	 Air	 Force	 will	 have	 reached	 its	

projected	 strength,	 and	 a	 safe	 air	 route,	 through	 Samoa,	 will	 be	 in	 operation	 (US	

Joint	Board	1946).	

In	 their	November	27	memo	 to	 the	President,	General	Marshal	 and	Admiral	 Stark	

advised	 that	 delaying	 war	 until	 at	 least	 March	 1942	 would	 be	 advantageous.	 They	

mentioned	 reinforcements	 being	 sent	 east	 to	 the	 Philippines,	 including	 21,000	 troops	

whose	 ships	would	depart	 from	 the	West	Coast	on	8	December.	Los	Angeles	 is	6339	nm	

from	Manila,	 so	 at	 a	 relatively	 fast	 cruising	 speed	of	13	knots,	 the	 reinforcements	would	

have	arrived	on	or	about	December	28.	That	date	can	serve	as	one	anchor,	with	war	any	

earlier	 perceived	 as	 costly,	while	war	 after	 about	March	 1,	 1942,	was	 perceived	 to	 have	

lesser	cost,	reflecting	the	effect	of	ongoing	buildup	and	training	of	forces	(Chief	of	Staff	and	

Chief	of	Naval	Operations	1946.)	A	daily	discount	rate	between	1%	and	2%	compounded	

twice	daily	seems	consistent	with	these	statements.		Normalizing	the	cost	of	war	at	the	time	

of	the	decision	to	1,	with	a	1%	daily	discount	rate,	the	cost	of	war	on	December	28	has	a	

present	value	of	0.73,	and	on	March	1,	1942,	of	0.39.	With	a	2%	discount	rate,	those	present	

value	costs	are	0.54	and	0.15	respectively.		A	daily	discount	rate	of	1.5%	is	used	further	in	

this	paper,	thus	splitting	the	difference	between	these	present	values.		

For	simplicity,	the	principals’	expected	disutility	curve	is	assumed	to	be	linear	(risk	

neutral).	 Consistent	 with	 the	 illustration	 of	 the	 Inference	 Sub-Model	 in	 Section	 3.3,	 the	



analyst	observes	radio	silence	in	each	period,	which	is	incorporated	into	the	analyst’s	belief	

regarding	 the	 current	 state	 of	 the	 IJN	 carrier	 task	 force.	 In	 every	 period	 beginning	

November	 27,	 1941,	 the	 analyst	 will	 use	 her	 latest	 beliefs	 regarding	 D	 (the	 adversary’s	

capabilities	and	intentions)	and	the	current	state	of	the	strike	force	to	scan	ahead	using	the	

three-step	procedure	described	Section	2.			

	

3.5.	Illustration’s	Analytic	Results	

3.5.1.	Illustrative	Results	of	the	Crisis-Definition	Sub-Model	

Table	 6	 shows	 the	 prior	 probabilities	 associated	with	 the	 IJN’s	 next	major	 objective	 and	

carrier	 strike	 force	 target	 at	 the	 end	 of	November,	 as	well	 as	 the	 posterior	 probabilities	

after	observing	the	diplomatic	breakdown	and	task	force	formation.	The	priors	reflect	the	

authors’	assessment	of	the	subjective	beliefs	held	by	the	principals	based	on	the	documents	

previously	 cited.	 	 The	 probability	 that	 a	 location	 is	 the	 next	 target	 is	 distributed	 evenly	

between	 IMMEDIATE	and	DELAYED	degrees	of	urgency.	While	 the	 Joint	Chiefs'	posterior	

beliefs	that	the	IJN	strike	force	would	target	US	forces	should	have	exceeded	94	percent	by	

the	inferential	logic	described	above	and	using	our	probability	assessments,	it	appears	that	

the	analysts	working	for	them	did	not	perform	this	updating	since	successive	analyses	still	

identified	Thailand,	Malaya,	or	the	Netherlands	East	Indies	as	most	likely	Japanese	targets.			

	

Table	6	Probabilities	(in	percentages)	of	IJN	objective	versus	carrier	strike	force	target.	

	 IJN's	next	major	objective	 IJN	carrier	strike	force	target	

Objective	/	target	 Prior	 Posterior	 Prior	 Posterior	

OAHU	 N/A	 N/A	 6.2	 9.51	

KURILES	 15	 0.069	 14.5	 0.1	

MANILA	BAY	 15	 25.7	 55.3	 85.5	

THAILAND	 30	 12	 17.6	 1.61	

SINGAPORE/KRA	 15	 23.3	 2.49	 1.24	

BORNEO	 25	 38.9	 3.85	 1.99	

	

3.5.2.		Illustrative	Results	of	the	Basic	Warning	Sub-Model	



Figures	 4	 and	 5	 represent	 the	 first	 passage	 time	 distributions	 Hk,t=Nov.	27(τ),	 obtained	 by	

applying	Equation	1	to	the	vector	of	transition	matrices	P	specified	in	Section	3.2,	 for	the	

time	at	which	the	 IJN	carrier	strike	 force	arrives	within	striking	range	of	 its	 target	under	

IMMEDIATE	and	DELAYED	conditions.	The	series	of	zero	probabilities	at	the	beginning	of	

each	 graph	 reflects	 the	 fact	 that	 too	 little	 time	 has	 elapsed	 to	 permit	 the	 Japanese	 fleet	

arrive	 at	 its	 striking	 range	 of	 each	 possible	 target.	 Using	 the	 results	 of	 Section	 3.5.1	 to	

marginalize	 the	strike	 force’s	 target	and	 immediacy,	Figure	6,	shows	the	 joint	cumulative	

distribution	over	the	target	and	the	first	passage	time	into	the	various	crisis	states.		

	

Figure	4:	Cumulative	conditional	probability	H(τ)	that	the	IJN	carrier	strike	force	reaches	

its	target’s	location	given	each	target	and	IMMEDIATE	mode.	Authors’	assessments	based	

on	information	available	on	Nov.	27,	1941.	

	
Figure	5:	Cumulative	conditional	probability	H(τ)	that	the	IJN	carrier	strike	force	reaches	

its	target’s	location	given	each	target	and	DELAYED	mode.	Authors’	assessments	based	on	

information	available	on	Nov.	27,	1941.	



	

Figure	6:	Cumulative	joint	probability	distribution	over	the	IJN	carrier	strike	force’s	target	

and	time	it	reaches	its	target’s	location,	in	half-day	time	periods	beginning	Nov.	27,	1941.	

	

		
	



These	 distributions,	 if	 they	 had	 been	 available,	 could	 have	 conveyed	 to	 the	

principals	on	November	27,	1941,	the	likelihood	that	Japan	strike	each	of	the	six	targets	on	

or	 before	 any	 given	 12-hour	 period	 in	 the	 future.	 	 If	 RADM	Turner,	 then	 director	 of	 the	

Navy’s	War	Plans	Division,	had	told	his	superior,	Admiral	Stark,	“It	will	take	30	days	for	the	

Army	 to	 send	 reinforcements	 to	 the	 Philippines,	 and	 without	 those	 reinforcements	 the	

Asiatic	Fleet	is	gravely	vulnerable,”	Admiral	Stark	could	have	looked	at	the	probability	of	an	

attack	 on	 Manila	 at	 t=60	 time	 units,	 and	 decided	 whether	 he	 was	 willing	 to	 accept	 the	

probability	 of	 0.85	 that	 the	 Japanese	would	 have	 struck	 by	 that	 date.	 	 Courses	 of	 action	

might	 have	 included	 ordering	 the	 Asiatic	 Fleet	 to	 sea.	 Similarly,	 the	 distribution	

corresponding	to	an	attack	on	Oahu	could	have	helped	a	principal	 in	deciding	whether	to	

intervene,	for	instance	by	ordering	the	US	Pacific	Fleet	to	sea,	based	on	an	estimate	of	the	

time	 required	 for	 a	 delivery	 of	 the	 full	 complement	 of	 B-17	 bombers	 that	 MG	 Martin	

believed	he	would	need	to	adequately	secure	Oahu	from	a	Japanese	surprise	attack.		

	

3.5.3.	Illustrative	Results	of	the	Inference	Sub-Model	

The	 analysis	 of	 the	 Inference	 Sub-Model	 was	 made	 using	 Murphy’s	 Bayesian	 Network	

Toolbox,	 written	 for	 Matlab	 (Murphy	 2002).	 	 Distributions	 similar	 to	 those	 shown	 in	

Figures	4,	5,	and	6	were	computed	for	the	beginning	of	each	half-day	time	period	between	

November	27	and	December	6	(inclusively),	where	in	each	time	period,	πt	is	updated	by	a	

RADIO	 SILENCE	 signal.	 Results	 are	 shown	 in	 Figures	 7	 through	 10.	 Figures	 7	 and	 8	

illustrate	how	an	analyst’s	belief	regarding	the	D-separating	joint	variable	(the	IJN	carrier	

task	 force’s	 target	 and	 sense	 of	 urgency)	 is	 updated	 following	 each	 radio	 silence	

observation.		For	clarity,	the	data	are	displayed	as	two	figures	instead	of	one.		

Figure	7:	Probability	that	the	IJN	strike	force	is	moving	towards	a	target	in	an	IMMEDIATE	

mode	given	radio	silence	is	observed	in	each	time	period.	



	
	

Figure	8:	Probability	that	the	IJN	strike	force	is	moving	towards	a	target	in	a	DELAYED	

mode	given	radio	silence	is	observed	in	each	time	period.	

	

	

According	 to	 the	 Office	 of	 Naval	 Intelligence	 reports	 published	 on	 December	 1,	

intelligence	analysts	had	concluded	that	the	IJN	carrier	task	force	was	still	in	home	waters	

(US	ONI	 1946a,	 1946b).	 This	 conclusion	 is	 consistent	with	 the	 increasing	 likelihood	 that	



Manila	 Bay	 was	 a	 DELAYED	 target	 and	 with	 increasing	 likelihood	 that	 Oahu	 was	 an	

IMMEDIATE	target.		

Figures	9	and	10	apply	Equation	3	 to	 illustrate	how	the	analyst	would	have	made	

projections	 ahead	 in	 time	 after	 updating	 her	 beliefs	 based	 on	 observed	 radio	 silence	

beginning	on	November	27.	 	They	show	2-day,	4-day,	and	7-day	projections	for	an	attack	

on	Oahu	and	Manila	Bay	respectively.	The	former	shows	low	probabilities	of	a	future	attack	

on	Oahu,	even	based	on	a	7-day	projection,	although	the	probabilities	 increase	with	each	

passing	period	(still	2.5%	by	December	6).	The	latter	shows	significant	probabilities	of	an	

attack	 on	 Manila	 Bay,	 even	 projecting	 ahead	 only	 two	 days	 into	 the	 future.	 Those	

probabilities	peak	in	the	first	period	(evening	November	27)	and	steadily	drop	with	each	

passing	day	because	 the	 longer	radio	silence	persists,	 the	more	 likely	 it	 is	estimated	 that	

the	strike	force	has	gone	elsewhere.	

	

Figure	9:	Probability	of	an	attack	on	Oahu	2	days,	4	days,	and	7	days	after	each	period	

beginning	November	27,	1941,	given	radio	silence	observed	prior	to	each	period.		

	
	

Figure	10:	Probability	of	an	attack	on	Manila	Bay	2	days,	4	days,	and	7	days	after	each	

period	beginning	November	27,	1941,	given	radio	silence	observed	prior	to	each	period.	



	

	

3.5.4.	Illustrative	Results	of	the	Disutility	Sub-Model	

Applying	Equation	4	to	find	expected	disutilities	yields	results	shown	in	Figures	11	and	12	

(note	that	smaller	expected	disutilities	are	displayed	above	larger	expected	disutilities	on	

the	vertical	axis).	Using	our	illustrative	probabilities	and	costs,	the	model	generates	an	alert	

for	an	attack	on	Oahu	on	December	2,	thirteen	periods	after	the	model’s	initialization.		

	

Figure	11:	Scan-ahead	on	November	27,	1941,	for	the	expected	disutility	of	an	alert.	

		



From	Sase-bo,	Japan	(raster	191),	the	minimum	transit	time	implied	by	P	to	Oahu	is	

9	periods,	or	4.5	days,	as	represented	 in	Figure	4.	Recall	 the	minimum	lead	 time	that	we	

assume	 for	 an	 attack	 on	 Oahu	 is	 4	 periods,	 or	 2	 days.	 On	 December	 2,	 the	 probability	

inferred	 from	 radio	 silence	 of	 an	 attack	 on	 Hawaii	 does	 not	 even	 register	 on	 Figure	 9!	

However,	 the	 extreme	 expected	 cost	 that	 we	 have	 adopted	 implies	 that	 an	 alert	 for	 an	

attack	on	Oahu	on	that	date	is	optimal.	Beginning	on	November	27,	the	very	slight	increase	

in	expected	disutility	with	successive	periods	(until	the	13th	period),	as	seen	in	Figure	11,	

occurs	because	the	cost	of	warning	is	discounted	for	every	period	where	the	analyst	waits	

to	issue	an	alert.	Given	the	time	of	the	crisis,	the	Disutility	Sub-Model	reflects	no	benefit	to	a	

warning	that	is	earlier	than	the	minimum	lead-time.	As	one	might	expect,	with	each	passing	

period,	after	updating	by	inference	given	the	radio	silence,	the	minimum	expected	disutility	

slides	 one	 period	 closer	 to	 the	 present	 and	 remains	 associated	with	 an	 Oahu	 alert.	 	We	

discuss	the	sensitivity	of	this	alert	to	the	various	probabilities	and	costs	in	the	next	section.	

	

Figure	12:	Scan-ahead	showing	expected	disutility	of	an	alert	on	December	2,	1941.	

	
Again,	the	analysis	presented	in	this	section	is	based	on	a	past	known	crisis	and	is	

entirely	illustrative.	Only	the	slightest	evidence	exists	to	suggest	that	US	principals	or	their	



staffs	would	have	held	 the	values	and	preferences	we	used	as	 inputs.	The	objective	 is	 to	

present	a	framework	for	information	gathering	and	decision	reasoning,	understanding	that	

we	cannot	know	now	what	values	the	principals	held	at	that	time.	Clearly,	the	decision	to	

warn	of	an	attack	on	Oahu	on	December	2,	 like	 the	results	of	a	 typical	decision	model,	 is	

strongly	 sensitive	 to	 the	 expected	 costs	 associated	 with	 each	 potential	 outcome	 and	

necessary	 lead	 time	 (i.e.	 v,	 q,	 and	 l).	 Within	 certain	 intervals	 for	 two	 of	 these	 three	

parameters,	the	model	will	be	highly	sensitive	to	the	third	input,	and	in	other	intervals,	it	is	

not.	 Around	 the	 input	 values	 used	 in	 this	 illustration,	 the	 model	 was	 more	 sensitive	 to	

failure	costs,	but	less	sensitive	to	fixed	alert	costs	and	the	necessary	lead	times.	That	said,	if	

one	 accepts	 that	 the	 fixed	 costs	 associated	 here	 with	 an	 alert,	 and	 the	 failure	 costs	

associated	with	attacks	on	the	various	targets	are	roughly	in	the	right	orders	of	magnitude	

relative	to	one	another,	an	attack	on	Oahu,	which	has	considerably	lower	probability	than	

an	attack	on	Manila	Bay	in	any	time	period,	is	shown	to	be	of	much	greater	concern.		

	

3.6.	Discussion	of	Illustrative	Results	

Figures	4	and	5	provide	a	window	into	the	modeling	framework’s	sensitivity	to	transition	

probabilities.	Whether	 the	 IJN	 carrier	 strike	 force	 is	 in	 an	 IMMEDIATE	 versus	DELAYED	

mode	 of	 urgency	 affects	 the	 probability	 that	 it	 remains	 in	 the	 same	 raster	 for	 two	

consecutive	time	periods	(0.05	for	IMMEDIATE,	0.4	for	DELAYED).	The	latter	implies	that	

attacks	on	all	potential	targets	are	slower	to	develop.	This	does	not	substantially	affect	the	

rate	at	which	the	likelihood	of	an	attack	increases	on	nearby	targets	(e.g.	Manila	Bay),	but	it	

does	impact	the	rate	at	which	the	likelihood	of	an	attack	increases	on	a	distant	target	(e.g.	

Oahu).	 	 Given	 that	 Oahu	 is	 an	 IMMEDIATE	 target,	 on	 November	 27	 the	 likelihood	 of	 an	

attack	on	or	before	December	11	(period	30)	exceeds	0.57,	while	 it	 is	 just	0.03	if	Oahu	is	

considered	 a	 DELAYED	 target.	 In	 other	 words,	 the	 Basic	 Warning	 Sub-Model	 is	 quite	

sensitive	 to	 this	 “holding	probability”,	 and	 to	 the	 transition	probabilities	 in	 general.	 This	

sensitivity,	 in	 fact,	 led	to	our	decision	to	employ	an	 inverse-proportionality	heuristic	 that	

depended	 on	 the	 exponential	 of	 the	 remaining	 time	 of	 travel,	 rather	 than	 simply	 the	

remaining	time	of	 travel.	The	alert	of	an	attack	on	Oahu	discussed	 in	Section	3.5.4	would	

have	 occurred	 after	 December	 2	 given	 a	 higher	 “holding	 probability”	 (especially	 in	 the	

IMMEDIATE	operating	mode).	However,	 the	 operating	modes	 are	 intended	 to	 reflect	 the	



nature	of	orders	given	to	the	commander	of	 the	strike	 force.	 It	seems	difficult	 to	 imagine	

that	WPD	would	have	assigned	its	adversary	any	significant	likelihood	of	staying	put	in	one	

place	for	12	hours	while	under	orders	to	proceed	directly	to	attack	a	target.	

The	framework	is	also	sensitive	to	the	initial	distribution	over	the	D-separating	joint	

variable	 (the	 INJ	 carrier	 strike	 force’s	 target	 and	 sense	 of	 urgency).	 The	 posterior	

distribution	of	D	that	is	shown	in	Figures	7	and	8	places	far	more	likelihood	on	an	attack	

against	Manila	Bay	than	it	does	on	Thailand	(in	period	1,	0.885	on	Manila	Bay	and	0.016	on	

Thailand).	While	 these	 initial	 values,	which	were	 derived	 from	 the	 Crisis	Definition	 Sub-

Model	described	in	Section	3.1,	drove	all	subsequent	probability	distributions	of	an	attack,	

a	 uniform	 distribution	 over	 D	 would	 have	 produced	 a	 somewhat	 different	 probability	

distribution	over	the	time	and	place	of	a	future	attack.	The	distribution	on	D	constructed	in	

the	sub-model	yielded	an	attack	on	Manila	Bay	on	or	before	December	11	(period	30)	with	

a	0.71	probability	and	on	Thailand	with	a	0.01	probability.	A	uniform	distribution	would	

have	yielded	0.16	and	0.06	respective	probabilities	of	attack	by	December	11.	Although	the	

extreme	 disparities	 in	 the	 probabilities	 of	 attacks	 shown	 in	 Figure	 6	 follow	 from	 this	

particular	distribution	over	D,	even	in	the	case	of	a	uniform	initial	distribution,	there	would	

still	have	been	a	2	⅔	fold	disparity.		

By	contrast,	while	a	signal	 that	 is	assessed	to	express	near-certainty	will	drive	the	

results	 produced	 by	 the	 Inference-Sub-Model,	 these	 results	 are	 rarely	 sensitive	 to	

uncertainties	 in	 signal	 assessments	 given	 the	 state	 of	 the	 crisis.	 	 To	 illustrate	 this	 point,	

suppose	 that	 COM16	 had	 intercepted	 a	 radio	 signal	 from	 the	 carrier	 strike	 force	 on	

December	1,	indicating	that	it	was	more	likely	to	have	originated	from	the	northern	Pacific	

than	the	South	China	Sea	or	elsewhere.	The	projections	corresponding	 to	probabilities	of	

attacks	 on	 Oahu	 and	 the	 Kuriles	 would	 have	 increased	 and	 the	 projections	 for	 attacks	

elsewhere	would	 have	 decreased	 to	 some	 degree.	 However,	 subsequent	 observations	 of	

radio	silence	would	have	restored	the	probability	projections	that	preceded	a	single	radio	

intercept	because	 they	would	have	 informed	an	analyst	 that	 the	strike	 force	was	moving	

toward	its	target.		This	means	that	prior	beliefs	still	contribute	substantially	to	the	updated	

probability.	 	 Nonetheless,	 a	 steady	 sequence	 of	 such	 signals,	 or	 a	 single	 signal	 that	 is	

assessed	 to	 be	 highly	 diagnostic	 and	 thus	 overwhelming	 the	 priors,	 would	 have	 a	 great	

impact	 on	 the	 results.	 Analysts	 should	 thus	 avoid	 attributing	 certainty	 to	 signals,	 and	



expressions	of	near-certainty	should	be	subjected	to	scrutiny	by	“red-team”	analysis.	By	the	

same	 token,	had	we	assumed	 that	 radio	 silence	had	a	probability	 less	 than	0.8	given	 “all	

other	 locations”	 than	 those	 listed	 in	Table	3,	 inference	 that	 in	each	successive	period	 the	

fleet	 was	 increasingly	 likely	 to	 attack	 Oahu	 would	 have	 proceeded	 more	 slowly,	 again	

delaying	an	alert.	

In	 reality,	 the	 Office	 of	 Naval	 Intelligence	 interpreted	 the	 radio	 silence	 as	 an	

indication	 that	 the	 carriers	 were	 in	 their	 homeports	 (US	 ONI	 1946b)	 and	 did	 not	

sufficiently	considered	other	possibilities.	This	is	a	result	of	what	Tversky	and	Kahneman	

(1974)	 called	 “availability	 bias”	 and	 which	 has	 become	 popularly	 referred	 to	 as	

“confirmation	bias”.	Assuming	 that	our	analytic	 framework	had	been	 in	use,	 this	analysis	

and	in	particular	the	results	from	Figures	9	and	10	suggest	that	an	analyst	would	not	have	

put	a	high	probability	on	a	Japanese	surprise	attack	on	Pearl	Harbor	by	December	7,	1941	

precisely	because	the	prior	for	an	attack	on	Oahu	was	so	low.	It	is	this	prior	that	accounts	

for	the	substantial	discrepancy	between	reality	and	the	posterior	probabilities	of	an	attack	

on	Oahu	and	on	Manila	Bay	after	observing	days	of	radio	silence.	Based	such	observation,	

the	posteriors	slowly	approach	each	other	and	might	eventually	cross,	but	with	priors	that	

differ	 so	 substantially	 from	 the	 reality	 of	 Japanese	 intent,	 this	 would	 take	 substantially	

longer	 than	 20	 periods	 (10	 days).	 These	 prior	 probabilities	 represent	 the	 authors’	 best	

efforts	to	reflect	the	state	of	information	of	US	principals	and	analysts	expressed	in	writing	

in	the	historical	records.		That	information	was	clearly	incomplete.	

One	therefore	sees	both	the	value	and	the	limits	of	a	probabilistic	warning	model.	It	

allows	 an	 analyst	 to	 make	 inferences	 based	 on	 noisy	 signals	 and	 to	 project	 the	 results	

ahead	to	generate	warnings,	bringing	consistency	in	the	incorporation	of	new	information	

to	 generate	 posterior	 probabilities.	 	 However,	 it	 will	 never	 inform	 an	 analyst	 that	 those	

probabilities	(both	the	priors	and	the	signal	likelihoods)	are	incorrect.	If	the	analyst	has	a	

prior	belief	that	a	Japanese	attack	on	Manila	Bay	is	far	more	likely	than	an	attack	on	Oahu,	

it	will	be	carried	forward	in	the	analysis.	 	What	this	model	does	is	to	provide	a	method	of	

systematically	processing	information,	but	it	cannot	assess	the	accuracy	of	the	input.	

The	key	 to	understanding	 the	 results	 is	 that	warnings	must	 involve	 the	prospects	

associated	 with	 different	 scenarios	 in	 a	 crisis	 and	 not	 be	 restricted	 to	 the	 most	 likely	

hypothesis.	Decision	makers’	actions,	and	those	of	their	analysts,	will	reflect	the	costs	they	



associate	with	each	possible	outcome	and	the	other	priorities	that	they	have	to	deal	with.	

General	Marshal	 and	Admiral	 Stark	 are	 likely	 to	have	 realized	 in	 the	Fall	 of	 1941,	 that	 a	

Japanese	 surprise	 air	 attack	 on	 Pearl	 Harbor	would	 be	 absolutely	 devastating	 to	 the	 US	

Pacific	 Fleet,	 and	 by	 extension	 to	 the	United	 States	 as	 a	 nation.	 Distributions	 of	 the	 sort	

shown	 in	 Figure	 9	 could	 have	 highlighted,	 for	 instance,	 that	 on	 December	 5	 even	 a	 ½	

percent	chance	 that	 the	 IJN	carrier	 task	 force	would	attack	 the	US	Pacific	Fleet	at	anchor	

within	4	days	posed	a	significant	risk,	especially	in	light	of	the	increasing	trend.	Depending	

on	whether	they	thought	that	the	relative	cost	of	ordering	the	fleet	to	sea	was	low	enough,	

maybe	it	would	have	been	worthwhile	despite	the	small	probability	of	an	attack	on	Oahu.		

As	widely	recognized,	risk	cannot	be	measured	by	probability	alone,	and	the	costs	

associated	 with	 crisis	 outcomes,	 true	 alerts,	 false	 alerts,	 and	 missed	 alerts,	 are	 integral	

elements	 of	 the	 value	 of	 a	warning.	 	 Someone	must	 be	 responsible	 for	 integrating	 these	

factors.	Traditionally	the	responsible	individual	is	the	policy	maker,	but	given	she	expects	

warnings	from	her	analyst,	it	is	clear	that	the	analyst	must	help	in	this	integration	in	order	

to	fulfill	the	warning	task.	This	will	work	provided	that	she	understands	and	can	adopt	the	

preferences	 of	 the	 decision	maker,	 and	 also	 properly	 communicates	 uncertainties	 in	 the	

priors	and	in	the	evaluation	of	the	signals.	

Figures	11	and	12	show	the	effects	of	both	errors	of	Type	I	(missed	alert)	and	Type	

II	 (false	alert)	on	an	analyst’s	decision.	The	costs	of	Type	 I	errors	drive	 the	 low	expected	

disutility	of	warning	of	an	attack	on	OAHU	despite	its	 low	probability.	On	the	other	hand,	

because	 the	 principal	 is	 assumed	 to	 discount	 all	 future	 costs	 to	 their	 present	 value	 at	 a	

constant	discount	rate,	the	fixed	cost	associated	with	an	earlier	warning	(true	or	false)	may	

be	greater	than	that	of	a	later	one.	This	fixed	cost	associated	with	both	false	and	true	alerts	

provides	 an	 incentive	 to	 the	 analyst	 to	 postpone	 a	 warning	 until	 he	 or	 she	 has	 some	

confidence	that	the	alert	has	merit;	but	it	should	not	be	to	the	point	that	it	misses	the	lead	

time	requirements	and	inflicts	the	cost	of	missing	an	alert.	The	tipping	point	was	shown	in	

this	illustration	to	have	occurred	on	December	2.		

Finally,	 considering	 only	 the	 final	 model	 result,	 any	 given	 warning	 recommendation	

may	 seem	 opaque.	 Viewed	 separately,	 however,	 the	 results	 of	 the	 Crisis	 Definition	 Sub-

Model,	Inference	Sub-Model,	Basic	Warning	Sub-Model,	and	Disutility	Sub-Model	are	more	

intuitive,	 and	 the	 sub-models	 are	 substantially	 more	 transparent	 individually	 and	 for	 a	



single	time	unit	than	collectively.	For	example,	 in	the	Inference	Sub-Model,	we	found	that	

changing	the	 likelihood	of	radio	silence	given	various	possibilities	at	a	given	time	yielded	

intuitive	changes	in	the	probability	distributions	of	the	present	state	of	the	crisis	and	of	the	

IJN	carrier	task	force's	target.	 	As	in	any	complex	argument,	effective	communication	of	a	

model’s	results	to	a	stake-holder	requires	breaking	that	argument	into	its	components,	 in	

this	case,	each	of	the	sub-models	and	their	results.	

	

3.7.	Discussion	of	Implementation	

Our	model	considers	a	single	analyst	who	works	directly	for	a	single	principal	and	is	able	to	

communicate	an	alert	without	 impedance	of	any	kind.	While	 this	arrangement	accurately	

represents	how	certain	principals	communicate	with	their	analysts	–	typically	principals	in	

command	of	tactical	echelons	–	it	may	not	represent	realities	in	many	organizations.		As	in	

all	 efficient	 “organizational	 warning	 systems”	 (Lakats	 and	 Paté-Cornell	 2004),	

communications	from	individual	analysts	to	principals	must	be	screened	through	multiple	

layers	 of	 review.	 	 Absent	 this	 arrangement,	 national-level	 principals	 would	 be	

overwhelmed	by	communications	from	throngs	of	analysts.			

According	 to	 the	 Defense	 Strategies	 Institute	 (2014),	 “With	 ever	 increasing	

technology	 and	 sophistication	 of	 sensors,	 the	 amount	 of	 information	 being	 collected	 has	

overwhelmed	analysis	systems	and	current	processes.”		We	suggest	that	one	of	the	keys	to	

making	 this	model	 useful	 in	 the	 real	world	will	 be	 encoding	 early	 assessments	 of	 entire	

classes	of	signals	that	are	common	to	different	types	of	crises,	or	at	least	grouping	them	by	

sets	of	features	characteristic	of	certain	classes	of	signals.	These	classes	of	signals	that	are	

observed	 repeatedly	 should	 be	 characterized	 according	 to	 their	 key	 technical	 and	

circumstantial	 features.	 Each	 signal	 class,	 given	 its	 main	 features,	 can	 then	 be	 assessed	

according	to	the	extent	to	which	it	conveys	the	presence	or	movement	of	certain	classes	of	

entities,	from	which	one	can	derive	a	signal’s	likelihood.	This	categorization	will	avoid	the	

need	 for	an	analyst	 to	perform	a	set	of	assessments	 for	each	 individual	observation	 from	

the	myriad	 of	 sensors	 that	 the	 US	 intelligence	 community	 deploys.	 	 Instead,	 the	 system	

allows	 integration	of	data	 in	bulk,	which	we	believe	 is	what	Ward	Edwards	et	 al.	 (1968)	

envisioned	nearly	50	years	 ago.	The	 feature	 identification	and	assessment,	 however,	 still	

involves	important	analytic	judgment.	No	amount	of	“pre-assessment”	will	replace	a	good	



analyst	 in	 performing	 early	 warning	 analysis.	 	 Additionally,	 “pre-assessment”	 could	

increase	the	risk	already	present	in	the	model	that	the	crisis	dynamics	may	not	be	wholly	

identified	and	defined	a	priori.	Alerts	are	generated	only	with	 respect	 to	 crises	 that	have	

already	 been	 imagined	 and	 are	 reflected	 in	 the	 Basic	Warning	 Sub-Model’s	 state	 space,	

again	making	the	model	more	appropriate	for	tactical	than	strategic	warning.	

Several	 authors	 have	 written	 that	 the	 chief	 drawback	 of	 Dynamic	 Bayesian	

Networks	 and	 Partially	 Observable	 Markov	 Decision	 Processes	 is	 the	 "curse	 of	

dimensionality."	In	our	Pearl	Harbor	example,	we	performed	a	total	of	12	x	1104	=	13,248	

assessments	in	the	Inference	Sub-Model	before	arriving	at	a	decision	to	warn	on	December	

2,	 along	 with	 103	 assessments	 in	 the	 Crisis	 Definition	 Sub-Model	 and	 776	 assessments	

(derived	from	a	heuristic)	in	the	Basic	Warning	Sub-Model.	Twelve	values	were	assessed	in	

the	 Disutility	 Sub-Model.	 	 These	 14,000-odd	 assessments	 do	 indeed	 reflect	 a	 curse	 of	

dimensionality.	But	they	do	not	have	to	be	performed	for	each	time	unit,	and	many	of	these	

data	are	 likely	 to	remain	unchanged	after	an	 initial	assessment.	Therefore,	 the	number	 is	

not	so	large	as	to	make	this	analysis	infeasible	in	light	of	the	heuristics	that	were	used	to	

derive	 some	 probabilities	 and	 the	 repetitive	 nature	 of	 generating	 others.	 Still,	 this	 data	

requirement	 does	 convey	 the	 importance	 of	 assessing	 conditional	 probabilities	 in	 bulk,	

both	to	reduce	the	workload	to	something	manageable	and	to	reduce	the	data	demand	to	a	

level	that	would	not	overwhelm	a	principal	decision	maker	trying	to	obtain	insight	from	the	

model.	The	alternative	is	to	analyze	the	crisis	across	fewer	dimensions,	with	the	increasing	

possibility	of	missing	an	 important	 factor.	The	ultimate	alternative	 is	 a	mere	 seat-of-the-

pants	assessment	and	decision,	reflecting	experience	but	perhaps	missing	some	logic	and	

new	circumstance.	

	

4.	CONCLUSIONS	

In	 this	paper,	we	argued	 in	 favor	of	using	dynamic,	probabilistic	 (Bayesian)	 reasoning	 to	

perform	 early	 warning	 analysis.	 We	 presented	 a	 formal	 approach	 for	 doing	 so,	 using	

iterative	probabilistic	inference,	projection	in	time,	and	decision	analysis.	Maintaining	this	

kind	 of	model	may	 be	 time-consuming.	 Therefore,	we	 envision	 an	 early	warning	 system	

where	 individual	 analysts	 can	 use	 computer	 software	 to	 assist	 them	 in	 structuring	 their	



views	 of	 the	 nature	 of	 evolving	 threats,	 in	 addition	 to	 entering	 probability	 assessments	

derived	from	intelligence	information	in	near-real	time.		

Some	principals	may	view	with	some	degree	of	distrust	the	kind	of	modeling	results	

presented	 to	 them	 as	 if	 from	 a	 black	 box.	 This,	 however,	 is	 no	 different	 from	 how	 they	

might	have	felt	about	assessments	derived	from	traditional	indications	&	warning	that	omit	

discussion	 of	 trends	 (Belden	 1977).	 The	 system	will	 only	 be	 as	 credible	 as	 the	 analyst's	

mental	model	of	evolving	threats	and	her	willingness	to	consider	carefully	the	implications	

of	 these	mental	models	 through	 the	 system.	 Given	 that	willingness,	 our	model	 offers	 an	

advantage	over	traditional	indications	&	warning	methods	in	that	it	consistently	applies	an	

analyst’s	 logic	 with	 regard	 to	 crisis	 dynamics,	 regardless	 of	 the	 amount	 of	 intelligence	

information.	

The	 illustration	 presented	 here	 is	 based	 on	 a	 historic	 national	 security	 (and	

geographic)	 problem.	 	 Crisis	 dynamics	 and	 warnings	 are	 also	 important	 in	 many	 other	

domains	such	as	medicine,	or	in	business	and	finance	such	as	when	facing	a	propagation	of	

failures	among	globally	connected	banks.	Processing	information	about	signals	to	estimate	

the	 progress	 of	 a	 crisis	 and	 to	 evaluate	 the	 need	 to	 warn	 a	 principal	 of	 an	 impending	

disaster	 allows	 analysts,	 nurses,	 or	 bankers	 to	 structure	 and	 strengthen	 their	 mental	

models	for	a	wide	variety	of	crises	and	possibilities.		Analysts,	and	anybody	close	enough	to	

the	system	to	observe	its	evolution,	will	then	be	free	to	spend	their	time	assessing	signals	

(their	meanings	and	their	dependences)	and	updating	priors,	with	confidence	in	their	logic	

and	consistency.		

	

NOTES	

1.	Formally,	the	Markov	Property	may	be	written	as:	

𝑃𝑟𝑜𝑏 𝑋5]Y = 𝑥5]Y|𝑋5 = 𝑥5 = 𝑃𝑟𝑜𝑏 𝑋5]Y = 𝑥5]Y|𝑋5 = 𝑥5, 𝑋5*Y = 𝑥5*Y, … , 𝑋# = 𝑥# 	

The	state	space	X	may	be	expanded	to	incorporate	any	finite	amount	of	historical	memory.	

2.	 For	 an	 analysis	 of	 a	 real-world	 crisis	 warning	 problem	 involving	 a	 transportation	

network	used	to	define	the	state	space,	see	Blum	(2012).	

3.	 Assessing	 source	 validity	 is	 beyond	 the	 scope	 of	 this	 research.	 The	 basic	 method	 of	

intelligence	source	reliability	assessment	can	be	found	in	Chapter	12	of	Field	Manual	2-22.3	

(U.S	Army	2006)	and	in	Intelligence	Analysis:	A	Target	Centric	Approach	(Clark	2009).	



4.	 Each	 transition	 matrix	 Pj	 requires	 85	 pages	 of	 description,	 and	 there	 are	 12	 such	

transition	matrices	corresponding	to	the	12	realizations	of	the	D-separating	joint	variable.	

They	are	not	included	here	but	will	be	made	available	electronically	upon	request.	
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