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When Hackers Err – The Impacts of False Positives on Information Security Games 

 

Abstract  

 

False positive rates and their impacts have been a focal point for information 

security research. However, most of this research investigates false positives 

exclusively from the system defender’s perspective, while in reality an attacker 

also faces the classification decision in identifying feasible targets and the 

consequences of false positive rates. In this paper, we present the first 

comprehensive analytical model that incorporates the false positives both from 

the perspective of the attacker as well as of the system defender. Our results 

show that such false positives from the attacker’s perspective have a significant 

impact on the attacker’s decision making for an attack, as well as the optimal 

protection strategy for the defender. Our results help to shed new light on a 

wide range of diverse information security phenomena such as spam emails, the 

Nigerian scams, and the design of Honeypot as a security mechanism. In addition, 

we show how an attacker’s mis-estimation of certain parameter would affect the 

defender’s strategy, and how the heterogeneity of the systems impacts the 

defender’s strategy to manipulate the attacker’s possible mis-estimation. 

 

Key words: information security game, false positive, classification, spam, 

Nigerian scam, Honeypot, mis-estimation 



2 
 

1. Introduction 

In extant information security studies, a significant research focal point has been the study of 

the impacts of false positive rates in detecting an attacker from a normal user on the 

performance of the security mechanism in place (e.g., Chivers et al. 2013, Rezk et al. 2011, 

Cavusoglu et al. 2013, Persico and Todd 2005). When designing a security mechanism for an 

information system, it is fundamental that the security mechanism contains a component that 

is able to discriminate a potential malicious attacker from a normal user, and as a result interact 

with the two types of users differently. Email spam filter is a simple example of such a 

classification component in an email system. A spam filter scans all incoming emails, and based 

on certain criteria it will classify some emails as spam emails and others as normal emails. As a 

result, the two different types of incoming emails are treated differently: the former will be 

flagged, quarantined, or even directly deleted, while the latter will be delivered directly to the 

recipient’s inbox. Another example of such security classification components is an Intrusion 

Detection Systems (IDS), which scans all incoming user traffic requesting access to the 

information system, and classifies some user traffic as malicious and the remainder as normal. 

As a result, traffic deemed malicious is terminated and usually further measures are taken to 

handle users generating that traffic, and those users whose traffic is deemed normal are 

granted access to the information system.  

No classification is perfect, and two types of classification errors arise (Trees et al. 2013): 

the false positives and the false negatives. In the IDS example, a false positive refers to the 

scenario where a normal user is incorrectly classified as an attacker, whereas a false negative 

refers to the scenario where an attacker is incorrectly classified as a normal user. By the very 



3 
 

nature of such a classification scheme, the two types of errors are inter-related in such a way 

that they must be traded off against each other (Trees et al. 2013). One critical design issue for 

the classification component is to find the optimal trade-offs between these two types of errors. 

In different fields, the related costs for false positives and false negatives vary significantly and 

thereby, the trade-off decision also varies significantly among various fields. For example, as 

described by Herley (2012), in the medical field when deciding on whether to have a surgery, 

the potential cost structure may result in the situation where a false positive (i.e. conducting an 

unnecessary surgery) is more tolerable than a false negative (i.e., not conducting a necessary 

surgery); on the other hand, in criminal justice, the potential social costs may be such that a 

false negative (i.e., letting a guilty person go free) is more acceptable than a false positive (i.e., 

punishing an innocent person). In the information security domain, the impacts of false 

positives in the classification have been a focal point of research. Extensive studies have been 

conducted to investigate how false positives affect information security investment, security 

systems design, and security systems performance (e.g. Cavusoglu et al 2005, 2009, Ulvila and 

Gaffney 2004, Guan et al 2017, Salman et al 2014, Duan et al 2012).  

In the decision analysis literature, the impact of false positives on decision making is also 

a focal point of research. Cavusoglu and Raghunathan (2004) and van Binsbergen and Marx 

(2007) had argued about the relative merits of decision analysis and game theory in attacker 

detection, and incorporated false positives as important factors in the decision making. 

Sophisticated decision models that specifically incorporate the element of false positives have 

been proposed to address the optimal decision making in a wide variety of scenarios such as 

national security (Blum and Pate-Cornell 2016), cargo security (Bakir 2008), bio-surveillance 
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(Willis and Moore 2014), breast cancer diagnosis (Alagoz et al 2013), and counter-terrorism (Ni 

et al 2013). 

Almost all studies in the information security and decision analysis domain that 

investigate the impact of false positives do so from the perspective of the primary system 

defender classification (i.e., what happens if the system defender mistakenly classifies a normal 

user as an attacker, or vice versa?). But in reality, a potential attacker also faces this 

classification issue and the trade-off problem that it entails. From the perspective of the 

attacker, not all potential targets are equal: some are feasible targets (e.g., targets with weak 

security mechanisms) that may yield a high payoff to the attacker if successfully attacked while 

the others are infeasible targets (e.g., targets with strong security mechanisms) that may result 

in a low payoff or even a severe penalty to the attacker if attacked.  

Security professionals have long advocated the importance of good security decision 

making and they promote the optimal adoption of security technology and implementation of 

security policies. However, not all entities follow these (usually excellent) pieces of advice (e.g., 

Bulgurcu et al. 2010, Liang et al. 2013, Siponen et al. 2014, Stahl and Pease 2011). Even within 

one single organization, where there is usually a centralized security team that implements 

security policies and adopts security technologies across all information systems organization-

wide, the actual usage of the security technology and adherence to security policies eventually 

falls on the shoulders of the people who are operating the individual systems. Unfortunately, 

not all of those involved in operations adhere to the established policies or use the security 

tools in the proper way (Solms and Solms 2004, Son 2011, Hannah and Roberson 2015), thus 

making such information systems more vulnerable than others within the same organization. As 



5 
 

a result, when an attacker attempts to attack information systems targets inside an 

organization, he may be motivated to endeavor to identify those weaker targets before 

engaging in the actual attack behavior.  Compounded with the fact that implementing an attack 

usually incurs a non-zero cost, it seems plausible that an attacker would classify potential 

targets before carrying out the attacks, presumably focusing on those targets classified as weak. 

One implication of this strategy is that the attacker must also face the consequences of target 

classification errors, including both false positives and false negatives. Furthermore, such 

attacker behavior will also influence the system defender’s optimal strategy in protecting the 

information assets facing possible attacks.  

While the majority of the security literature studies the security decision making from 

the perspective of the defender, there are a number of studies that investigate the phenomena 

from the attacker’s perspective. For example, Brandt and Sandler (2010) studied how terrorists 

adjust their attack target choices based on target hardening. Hausken (2016) conducted a cost–

benefit analysis of terrorist attacks. Hausken (2017) studied the attacking and information 

sharing strategy of multiple attackers when choosing among multiple targets. Herley (2013) 

studied the behaviors of multiple attackers seeking victims among a finite population. 

However, to the best of our knowledge, few studies have been conducted to 

understand the impacts of false positives in classifying potential targets from an attacker’s 

standpoint (with the notable exception of Herley 2012) and furthermore, no current study 

(including Herley 2012) has been done to integrate this type of attacker’s behaviors into the 

optimal strategy design from the standpoint of the system defender.  
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In this paper, we fill the void of this aspect of information security decision analysis and 

provide the first analytical model that incorporates the classification components for both the 

attacker and the system defender. In our setting, the attacker-defender interaction is modeled 

as a Stackelberg game. The attacker has the option to use a classification component to identify 

weak targets and then implement the attack. The system defender optimally configures the 

classification components in her organization’s security systems to identify the attacker, taking 

into full consideration the potential attacker’s possible attacking strategy based on their 

classification, to maximize the overall expected payoffs to the organization. 

The remainder of the paper is organized as follows: in Section 2, we provide a general 

introduction delineating how to model errors in classification. In Section 3, we illustrate our 

model of the game between the attacker and the system defender, followed by Section 4, 

where we describe and analyze the decision process of both the attacker and the system 

defender, based on our model. In Section 5, we extend our model to investigate the situation 

where the attacker does not have complete information about the target systems. In Section 6, 

we extend our model to analyze the situation where there is further heterogeneity among the 

users and the systems. We summarize our findings and conclude in Section 7. 

 

2. Modeling the errors in classification  

The classification components described in Section 1 are binary classifications for decision 

making: the attacker tries to discriminate feasible targets from infeasible targets, and the 

system defender tries to discriminate attacker from normal users. The trade-offs between the 

two types of errors can be modeled by a Receiver Operator Characteristic (ROC) curve (Trees et 
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al. 2013). The ROC curve captures the inter-relationship between a classifier’s true positive rate 

and its false positive rate, and provides the foundations for the trade-offs between the two 

types of errors.  

An ROC curve depicts the classifier’s true positive rate as an increasing concave function 

of its false positive rate. Any classifier can be configured only according to the points located on 

its ROC curve. Intuitively, we want the true positive rate to be as high as possible and the false 

positive rate to be as low as possible. However, in reality, the ROC curve dictates that as one 

increases the true positive rate of the classifier, its false positive rate also increases, and one 

can only configure the classifier such that its true positive and false positive rates fall on the 

ROC curve. That is the core reason for the trade-offs between the two types of errors. It is 

reasonable to assume that any good classifier would perform better than random guessing. In 

other words, it must have its true positive rate higher than its false positive rate. This is also the 

assumption for all the classification mechanisms used in our model. 

There is a large body of literature on how to construct an ROC curve for a classifier 

either experimentally or empirically (e.g., Durst et al. 1999, Lippmann et al. 2000, McHugh 

2000). In this paper, we adopt an explicit functional form for the relationship between the true 

positive rate (tp) and false positive rate (fp) as: tp = fpw, where 0 < w <1. As derived by 

Cavusoglu et al. (2005), this power function is obtained if the risk score calculated by the 

classifier follows an exponential distribution. This functional form is theoretically rigorous, and 

widely accepted by security decision analysis researchers in their models for security detection 

(e.g., Cavusoglu et al. 2013, Zhuang and Bier 2007, Gao and Zhong 2015). 
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3. Modeling the game between system defender and users 

We now model the interaction between the system defender and users of information systems 

as a complete information1 sequential game. In our setting, we define the components of the 

game, as well as their parameters, as follows: 

Users: There are a total of N users trying to access information systems in an 

organization. All users are homogeneous in all aspects except one: λ (λ<1) proportion of the 

users are attackers (denoted as A), while the others are normal users (denoted as L). We define 

attackers as the users whose successful access to the system will cause damage d to the 

organization; we define normal users as the users whose successful access to the system will 

generate positive utility u to the organization2. We assume that any user will try to access one 

and only one information system. While any of the users’ type cannot be directly observed, the 

value of λ is assumed to be public knowledge. 

Systems: The organization has a total of M systems accessible to all users. All systems 

are assumed to be homogeneous in all aspects except one: θ (θ <1) proportion of the systems 

are weak (denoted as Sw), while the others are strong (denoted as Ss)3. We define weak systems 

as those systems whose security mechanism has not been functioning due to any reason(s); we 

define strong systems as those systems whose security mechanism is fully functioning, as 

configured by the system defender. In reality, weak systems may be caused by their operators 

not following security protocols in operating the system, not adhering to security policies when 

                                                            
1 In Section 5 we will relax this assumption of complete information and study the impact of attackers misjudging 
the model parameters. 
2 In Section 6 we will extend our model and study the situation where there are multiple priority levels of users as 
they generate different levels of utility. 
3 Again in Section 6 we will study the situation where there are multiple priority levels of the systems as they 
generate different levels of utility. 
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using the system, or not properly maintaining the security mechanism of the system. In any 

case, we assume the outcome of such negligence as the security mechanism of these systems 

not functioning, which results in any user attempting to access such systems being able to gain 

access directly. It is also assumed that while it is not directly observable which systems are 

weak, the value of θ is public knowledge. This type of assumption is quite common in the 

analytical modeling literature about information security. For example, in Cavusoglu and 

Raghunathan (2004) and Cavusoglu et al (2008), it is assumed that all parameter values in their 

analytical model for information security are public knowledge, including the firm’s investment 

in information security and the target information system’s vulnerability level. In Section 5, we 

extend our model by relaxing this assumption of θ being known by the attacker, and study how 

the attacker’s misjudgment of θ would affect his decision making, the defender’s strategy, and 

the organization’s overall expected payoffs. 

Security Mechanism: In our model, a system contains a security component that can 

monitor the incoming user traffic, and try to differentiate and thereby detect attackers from 

normal users. The performance of this detection component is, as described in Section 2, 

captured by its ROC curve. We denote the component’s detection (true positive) rate as Pd, 

which is configurable by the system defender, and its associated false positive rate as Pf. We 

assume the relationship captured by the detection component’s ROC is Pd = Pf
s, with s (0<s<1) 

as the parameter defining the shape of the ROC. 

System Defender’s Decision Making: There is a system defender who will decide the 

optimal configurations of the security detection component of the systems to maximize the 

overall expected payoffs for the organization, fully aware that in θ portion of the M systems the 
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detection component will not function. When the system defender, through the functioning 

detection component of the systems, identifies a user as a normal user, she grants the user 

system access (and subsequently reaps the utility u if the user is indeed a normal user, or 

sustains the damage d if the user is actually an attacker); when she identifies a user as an 

attacker, she denies the user system access (thus avoiding the potential damage of d if the user 

is indeed an attacker, but also missing out the potential utility of u if the user is actually a 

normal user). 

Attacker’s Decision Making: The attacker’s decision is whether to randomly select a 

target system to try to gain access (i.e., randomly attack), or to detect a weak system and then 

try to gain access to that detected system (i.e., target attack). If the attacker chooses to use a 

detection mechanism to identify weak systems, the performance of such detection mechanism 

is captured by its own ROC curve. We assume such detection mechanism has detection rate of 

Qd, and false positive rate of Qf, where Qd = Qf
r, with r (0<r<1) as the parameter defining the 

ROC for the attacker’s detection mechanism. 

Normal User’s Decision Making: We assume that a normal user always randomly selects 

a target system and tries to gain access. 

Cost / Payoff Parameters: To execute the attack, it costs the attacker ca; if the attack is 

successful, the attacker gains payoff of v. To implement the detection mechanism to identify 

weak systems, it costs the attacker ct. To operate the security detection component on the 

systems, it costs the system defender z. If the attacker is correctly identified by the system 

defender, the attacker suffers a loss of h, and if the normal user is mistakenly identified as an 

attacker by system defender, the system defender suffers a loss of goodwill of l. 
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The timeline of the agent interactions is illustrated in the following Figure 1. 

 
Figure 1. The timeline of the sequence of the agent interactions 

At time t1, nature determines which user is a normal user or an attacker. At time t2, the 

actual two-period Stackelberg game starts with the system defender configuring the security 

detection mechanisms on the organization’s information systems. At time t3, the attacker 

responds with determining and implementing their attacking strategy. Finally at time t4, all 

payoff/loss are realized. 

We summarize the model notation in the following table: 

Table 1. Summary of notation used in our model. 

Notation Definition 

λ Portion of the user population that are attackers 

d The damage to the organization after a successful attack 

u The utility to the organization generated by a normal user after accessing the 
system 

θ Portion of the organization’s systems that are weak, i.e., their security detection 
mechanisms do not function 

Pd Detection (true-positive) rate of the security mechanism in detecting attacker 

Pf False-positive rate of the security mechanism in detecting attacker 

s The parameter defining the ROC curve for the security detection mechanism 

Qd Detection (true-positive) rate of the detecting mechanism attacker uses in 
detecting weak systems 

Qf False-positive rate of the detecting mechanism attacker uses in detecting weak 
systems 

r The parameter defining the ROC curve for the attacker’s detecting mechanism 

ca Attacker’s cost to execute an attack 

ct Attacker’s cost to detect weak systems 

v Attacker’s payoff after a successful attack 

z System defender’s cost of operating the security mechanism on the systems 

h Loss to the attacker if he’s been correctly detected by system 

l Loss of goodwill to the organization if a normal user is mis-identified as an 
attacker 
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4. The decision processes of the agents 

4.1. The attacker’s decision process 

The attacker will decide between two options: randomly attack versus target attack. 

If the attacker decides to randomly attack, there is a probability θ that he encounters a 

weak system, which the attacker will gain direct access to and carry out the attacks. As a result, 

the attacker will gain a payoff of v-ca. But, there is also a probability of (1- θ) he will encounter a 

strong system, and face the security detection mechanism. There is a probability of Pd that the 

attacker is correctly detected by the security detection mechanism and thereby suffers a loss of 

–ca-h; and a probability of (1-Pd) that he is mistakenly identified as a normal user and granted 

access to the system and thus obtains a payoff of v-ca. 

The attacker can also decide to target attack. In this case, his probability of encountering 

a weak system will be increased to P1. Based on Bayes’ Theorem, P1 = (target is weak | target 

detected as weak) = P(target detected as weak | target is weak) * P(target is weak) / P(target 

detect as weak) = Qd*θ / [Qd*θ+Qf*(1-θ)]. It should be apparent that the probability the 

attacker will encounter a strong system in this case is P2=1-P1.  

Thus the possible realization for attacker’s decision making setup can be illustrated by 

the following Figure 2: square A represents the attacker, square Sw represents a weak system 

and square Ss represents a strong system; the lines connecting the squares represent either the 

attacker’s decision or the probability of the decision reaching the next node. 

Therefore, the attacker’s overall expected payoff if he chooses to randomly attack is: 

dadadaa

a

r PhvcvPcvPhccvE )1)(()()1)(1)(()1)(()(   . The 



13 
 

attacker’s overall expected payoff if he chooses to target attack is: 

dta

a

d PPhvccvE )1)(()( 1 , where 
)1(1 





fd

d

QQ
Q

P , as defined earlier. 

 

Figure 2. The possible realization for attacker’s decision making  

The attacker’s decision criteria: We assume that when indifferent, the attacker will 

choose to randomly attack. Doing an algebraic comparison of the expected overall payoffs from 

the two strategies, we obtain the following result. 

Lemma 1. The attacker will target attack, instead of randomly attack, if and only 

if 
hv

c
PP t

d 
 )( 1  .   (1) 

This result implies that the attacker will be motivated to target attack if any 

combinations of the following conditions hold:  

1) The cost of detecting a weak system is low (i.e., the value of ct is low); 

2) The attacker’s payoff after a successful attack is high (i.e., the value of v is high); 
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3) The attacker’s loss after getting detected is high (i.e., the value of h is high); 

4) The probability that the attacker will be detected is high (i.e., the value of Pd is high); or  

5) The performance of the mechanisms the attacker uses in detecting weak system is good 

(i.e. the value of (P1-θ) is high). 

This result provides a theoretical explanation for some real-life attacker behaviors.  For 

example, regular email spammers seldom detect recipients’ susceptibility to spam messages 

before sending out spams. Our results show that some rationale behind their behavior in this 

case include: 1) the cost of detecting those vulnerable recipients is relatively high; and 2) since 

the spammer’s main goal is to deliver the spam messages to the recipients’ email inbox, the 

payoff consequences whether the goal is reached or not are relatively minor (i.e., a spam 

message successfully reaching a recipient’s inbox in no way implies guaranteed payoffs to the 

spammer, and a spam message detected and quarantined by the recipient’s email spam filter 

does not cause much, if at all, loss to the spammer at all). In other words, conditions 1 – 3 are 

not satisfied in this case. Therefore, email spammers seldom discriminate potential recipients 

before sending out spam emails. 

On the other hand, this result also provides an explanation for the phenomenon that 

spam messages are used by the attacker as a useful tool to detect targets that are vulnerable to 

the real attacks the attacker is conspiring. For years, people have been continuously receiving 

spam messages involving scams such as recovering lost funds in Nigeria, transferring 

inheritance for a West African prince, or wiring money for a friend stuck in London. Usually the 

wording of these scam messages is so over-the-top, ridiculous, and outlandish that in reality 

quite possibly only those recipients who are the most naïve and gullible would fall for these 
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type of scams. People would wonder why the scammers are creating spam messages in this 

seemingly unreasonable way.  

Our result provides some insights into the rationale behind this behavior. For these 

types of scammers, a successful implementation of the full scam would yield significant payoff, 

and if they get caught, the punishment will also be harsh. Furthermore, the implementation of 

the whole scam is such a complicated process that at any point of the process the scam may be 

derailed and the scammers may get caught. Based on our results, this implies that conditions 2 

– 4 are all satisfied. Therefore, the scammers are highly motivated to detect the feasible targets 

before implementing the scam.  

BBC (2016) reported such a case, in which a scammer mastermind known as “Mike” was 

“alleged to head a network of 40 individuals behind global scams worth more than $60 million” 

(satisfying condition 2); the criminals also “allegedly ran a money laundering network” that 

spanned across three continents (satisfying condition 3); and they were arrested, facing charges 

“including hacking, conspiracy and obtaining money under false pretences” (satisfying condition 

4). Our results indicate that these types of scammers would be highly motivated to detect the 

feasible targets before implementing the scam. 

Preferably, the detection mechanism the scammers use should be of low cost (condition 

1) and high discriminating power in differentiating feasible targets from infeasible ones 

(condition 5). The “Nigerian fund transfer” types of spam messages as described earlier serve as 

an excellent mechanism for the scammers to detect the feasible targets. First of all, sending out 

spam messages cost almost nothing (satisfying condition 1). Furthermore, by wording the spam 

message in such an outrageous way, the scammers are ensuring that the only targets who will 
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respond positively to these messages are the ones who are not sophisticated enough to see 

through this thin facade of conspiracy. In other words, those are exactly the type of targets the 

scammer wants to attack. So these types of spam messages have high discriminating power in 

identifying those feasible targets (satisfying condition 5). 

Therefore, these seemingly preposterously-worded emails are actually a very rational 

decision made by the attacker designed to serve as a low-cost, high-accuracy detection 

mechanism in identifying viable targets for the attacks. Our result complements the findings of 

Herley (2012) who showed that these spam messages can be used to filter out the infeasible 

targets.  

Impact of the portion of weak systems: Now we rewrite the result in Equation (1) as  

))(( 1 
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P t
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and denote its RHS as Ω. Taking the first order derivative of Ω w.r.t. θ, we obtain 
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result. 

Proposition 1. There exists a threshold value for the proportion of weak systems 

in the organization (denoted as θ’) that if surpassed, the value of Ω will increase 

(i.e., the attacker will be more likely to randomly attack) with the increase of θ; 

and that if not surpassed, the value of Ω will decrease (i.e., the attacker will be 

more likely to target attack) with the increase of θ.  
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The implication of this result provides some theoretical basis for an attacker’s behavior 

with regard to the number of weak systems in the organization. When the portion of weak 

systems in the organization is higher than the threshold value θ’ (e.g., because the information 

security education of the employees is insufficient), our result shows that the value of Ω will 

increase with the increase of the portion of the weak systems. That means it becomes more 

likely (1) will not hold, and thus the attacker will decide to randomly select a system to attack. 

The rationale behind this behavior is that there are a lot of weak systems in the organization, 

and the attacker doesn’t need to take additional efforts (beyond randomly selecting a system) 

to detect weak systems to be able to successfully gain access to the weak systems. On the other 

hand, when the portion of the weak systems in the organization falls below the threshold value 

θ’ (e.g., because the information security culture is well established in the organization), even 

as the portion of the weak systems increases, the value of Ω still drops, making the likelihood 

higher for (1) to hold. That is, the attacker has to make more efforts to try to identify weak 

systems to attack, simply because there are not many weak systems in the organization. 

Impacts of the false positives by attacker: Next we rewrite the result in Equation (1), as 

𝑄𝑓 < [
(𝑣+ℎ)𝜃𝑃𝑑(1−𝜃)−𝜃𝑐𝑡

(𝑣+ℎ)𝜃𝑃𝑑(1−𝜃)+(1−𝜃)𝑐𝑡
]

1

1−𝑟, and denote the RHS as 𝛤. It is noticed that 
𝑑Γ

𝑑𝑟
<0, which means 

as the value r increases, it becomes less likely Equation 1 would hold (i.e., less likely the 

attacker will target attack, instead of randomly attacking). Remember that for the attacker’s 

detection mechanism for weak systems, we have 𝑄𝑑 = 𝑄𝑓
𝑟, which implies that as the value r 

increases, the values of Qd and Qf converge more, which in turn means that the detection 

mechanism’s discriminating power is not very high. Combining these two results, we gain some 

insight on the role the attacker’s false positive rates play in the attacker’s strategic decision of 
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attacking. Intuition suggests that if the attacker’s detection mechanism is of high quality, the 

attacker should be more likely to decide to target attack. Our results not only confirm this 

intuition, but also illustrate the underlying mechanism through which the attacker makes such a 

decision: the attacker wants to detect the weak systems with a certain detection rate, and with 

a lower r value, he can assure a lower false positive rate at the same detection rate level, which 

makes it more likely Equation 1 would hold, which in turn makes it better off for the attacker to 

target attack. Our results suggest that for the attacker, the ideal mechanism for detecting weak 

systems should provide not only a high detection rate (i.e., high value for Qd), but also high 

discriminating power (i.e., low value for r). Our earlier illustration of attacker using Nigerian 

scam as a detection mechanism to identify feasible targets for attacking is a good example of 

the attacker’s strategic behavior in handling the false positives in identifying weak targets. 

One important implication of the above analyses of the attacker’s decision-making 

process and behavior is that to protect the organization’s information systems, the system 

defender’s decision making and strategic planning must take into account the attacker’s 

potential behavior of detecting weak systems before attacking. This is what we will analyze next. 

 

4.2. The system defender’s decision process. 

We now investigate how the system defender can configure its security detection mechanism 

to optimize the organization’s overall expected payoffs. 

From the perspective of the system defender, nature determines whether the user is an 

attacker or a normal user. Then the user tries to gain access to the system. The normal user 
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always randomly selects a system to access. The attacker will target attack if Equation (1) or (2) 

holds, and randomly attack otherwise. 

When a normal user accesses the system, there is a probability of θ that he will 

encounter a weak system and directly gain access, thus generating a payoff of u to the 

organization. There is also a probability of (1-θ) that he will encounter a strong system, whose 

detection mechanism will try to identify the user’s type. There is a probability of Pf that the 

detection mechanism will mistakenly identify the user as an attacker, deny access to the user 

and thus result in the organization suffering a loss of (z+l). There is also a probability of (1-Pf) 

that the detection mechanism correctly identifies the normal user, grants access, and results in 

the organization obtaining a payoff of (u-z). 

Similar analyses can be conducted on cases where an attacker randomly attacks, as well 

as where an attacker target attacks. In the case of attacker target attacking, the probability of 

encountering a weak system is increased from θ to P1, as described earlier. 

To summarize, the possible realization of the system defender’s decision making can be 

illustrated by Figure 3: square User represent the system’s user, who may be a normal user 

(represented by square L) or an attacker (represented by square A); the lines connecting the 

squares represent either attacker’s decision or the probability of reaching the next node. 

When the attacker decides to randomly attack (i.e., Equation (1) does not hold), the 

organization’s overall expected payoff is: 
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Figure 3. The possible realization for system defender’s decision making 

When the attacker decides to target attack (i.e., (1) holds), the organization’s overall 

expected payoff is: 
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Payoff functions (3) and (4) are the objective functions the system defender wants to 

maximize. 

Therefore, the system protector’s decision making would involve solving the following 

two constrained optimization problems: 
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Since we assume that the attacker will decide to randomly attack when indifferent 

between the two strategies, the constraint in problem 1 is a strict inequality. 

Solving the optimization problems yields the following solutions: 

1. For problem 1, considering that in this optimization problem the constraint is not 

binding, we obtain the global maximum as 𝑃𝑑
∗ =  [

𝑑𝑠𝜆

(𝑙+𝑢)(1−𝜆)
∗

𝑄𝑓

𝑄𝑑𝜃+𝑄𝑓(1−𝜃)
]

𝑠

1−𝑠
; 

2. For problem 2, we obtain the following two solutions: 

a. If the constraint is not binding, we have the global maximum 𝑃𝑑
∗∗ =

[
𝑑𝑠𝜆

(𝑙+𝑢)(1−𝜆)
]

𝑠

1−𝑠
; and  

b. If the constraint is binding, we have 𝑃𝑑
∗∗∗ =  

𝑐𝑡

(𝑣+ℎ)(𝑃1−𝜃)
= 𝛺 

We thus obtain the system defender’s optimal configuration of the security detection 

mechanism on the systems under various conditions.  

One important observation directly obtained from this result is that 
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of this inequality as Ψ. Therefore, we have ***

dd PP  .  

As a result, the defender’s decision making process would be: 1) based on the 

parameter values, she calculates the values of Pd
*, Pd

**, and Ω; 2) based on the ordinal 

relationships among the values of Pd
*, Pd

**, and Ω, she determines the optimal configuration of 

the detection mechanism. 
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More specifically, the defender’s decision making and the attacker’s corresponding 

strategy can be summarized as the following Proposition. 

Proposition 2: The equilibria of the defender’s optimal configurations for the 

security mechanism’s detection rate and the attacker’s corresponding attacking 

strategy are given as the following table 2: 

Table 2. The system defender’s optimal configuration and attacker’s respective 
strategy under different scenarios. 

Scenario Defender’s optimal 
configuration 

Attacker’s attacking 
strategy 

1.  ***

dd PP  **

dP  Randomly attack 

2. ***

dd PP    Randomly attack 

3. ***

dd PP   *

dP  Target attack 

This surprising result seems to be counter-intuitive: we obtain the optimal detection 

rate Pd
* if the attacker tries to target attack, while we obtain the optimal detection rate Pd

** 

when the attacker tries to randomly attack. Why is Pd
* lower than Pd

**?  

The intuition behind this result can be explained as follows. When all parameter values 

are public knowledge, as in our case, the system defender can determine, a priori, whether the 

threshold has been surpassed for the attacker to detect weak systems before attacking. If that 

threshold has already been surpassed with the configuration of Pd
*, increasing the detection 

rate on the strong systems would incur more detection costs, would further encourage attacker 

to target attack, and would not alleviate any loss from the attacked weak systems. Thus overall 

the system defender may be worse off if they increase the detection rate on the security 

mechanisms. On the other hand, if the threshold won’t be surpassed with the configuration of 

Pd
**, the attacker will randomly attack, and in this case configuring the system’s detection rate 

at a high level of Pd
** would catch the attacker more effectively. 
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Therefore, for any given set of parameter values, the value of Ω can fall into one of the 

three regions as illustrated in the following figure: 

 

Figure 4. The different value regions for Ω 

The different regions correspond to the scenario 1 – 3 as described in Proposition 2. 

The “Nigerian Scammer” types of attacks described in Section 4.1 are good examples for 

scenario 3. As illustrated by the real world case of BBC (2016), the attacker is highly motivated 

to target attack. In response, the system defender would set the optimal detection rate of the 

security mechanism as Pd
* instead of Pd

**. In the above example that means the defender’s best 

strategy would be to implement the defense mechanism that is just sufficient in identifying the 

potential scammers (e.g., basic information security training of the danger of online scams, and 

principles of handling suspicious email messages, etc.), instead of a highly accurate detection 

system (e.g., additional hardware/software that can automatically identify the Nigerian 

scammers). 

A good example for scenario 1 would be the design and deployment of Honeypot 

technology. A Honeypot can be understood as a decoy information system that appears to be 

an easy target that “tends to provide the attacker with all the necessary resources needed for a 

successful attack” (Kuwatly, et al. 2004). System defender often builds a Honeypot network that 

attracts attacker’s attention and lures them into interacting with the systems. The system 

defender can then study “the methods and tools used by the intruders” to better deter them. 

In this case, Honeypot systems are usually designed to be easily accessible to the attacker as 

weak systems, thus the attacker usually won’t make extra efforts in detecting true weak 

Pd
* Ω 

3 1 2 

1 0 Pd
** 
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systems. As a result, the system defender should configure the detection rate to be sufficiently 

high (Pd
** instead of Pd

*) to ensure that they are interacting with real attacker. This is exactly 

what has been advocated by both Honeypot researchers and industry practitioners. For 

example, Spitzner (2003) has pointed out that Honeypots must be designed to attract real 

hackers (i.e., implementing detection mechanism with a high true positive detection rate). 

Similarly, Antonopoulos (2010) also pointed out that in industry practices, Honeypots are often 

used in conjunction with other technological tools to enhance hacker detection (i.e., to achieve 

high true positive detection rate). 

Another important insight resulted from the Proposition 2 is that algebra directly shows 

that 
𝑑Ψ

𝑑𝑄𝑓
> 0. Therefore, we obtain the following result: 

Corollary 1. The value of Pd
* is increasing in the value of Qf. 

Under scenario 3, the defender will configure the detection rate at Pd
* and the attacker 

will target attack. This corollary shows that if the attacker’s detection mechanism is not very 

good (i.e., higher value for Qf), the defender’s optimal detection rate configuration should be 

higher. Intuitively, the higher the value is for attacker’s false positive rate in his detection of 

weak systems, the more likely he will classify a strong system as a weak one and choose to 

attack. In that case, it is beneficial for the defender to configure a higher detection rate for 

detecting the attacker to capitalize on the attacker’s mistakes. 

Next, we investigate the properties of the optimal configurations of the detection 

systems, as well as those of the overall expected payoffs for the defender. 

 

4.3. Sensitivity Analysis 
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Differentiating the system defender’s optimal detection rate for attacker under scenario 3 with 

respect to the attacker’s detection rate for weak systems, we obtain that  
𝑑𝑃𝑑

∗

𝑑𝑄𝑑
> 0. 

Differentiating the system defender’s optimal detection rate for attacker under scenario 3 with 

respect to the portion of the weak systems in the organization, we obtain that 
𝑑𝑃𝑑

∗

𝑑𝜃
< 0.  

Substituting the optimal detection rate of the defender into the overall expected payoff 

functions for both the randomly-attack scenario and the detect-and-attack scenario, and 

differentiating the overall expected payoffs with respect to λ, we get that 0



d
d for both πr and 

πd. Differentiating the defender’s optimal expected payoff when attacker target attacks (i.e., πd) 

with respect to Qd, we get that 
𝑑𝜋𝑑

𝑑𝑄𝑑
< 0.  

We summarize the above results in the following Proposition 3: 

Proposition 3:  

a. When the attacker’s accuracy in detecting weak systems increases, the 

optimal configuration of the security detection mechanism by the 

defender should also increase, and the overall expected payoffs to the 

organization decrease;  

b. The optimal payoff to the organization is decreasing in the proportion of 

attackers among the users; and  

c. The defender’s optimal detection rate decreases with an increase in the 

proportion of weak systems in the organization. 

Proposition 3 directly illustrates the impact of an attacker’s strategic behavior of 

detecting weak systems. Part a and b indicate that if the attacker is able to increase their 
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accuracy in detecting weak systems, the organization is worse off, and the system defender 

must also increase her accuracy in detecting the attacker to protect the organization. The more 

attackers there are in the user population, the worse off the organization is. These results 

conform to our intuition about the impacts of the number of attackers in the user population 

and their capability in identifying weak systems on the organization’s overall payoffs and the 

system defender’s optimal configurations for the security detection mechanism.  

One implication from Proposition 3 that is not immediately obvious is the relationship 

between the optimal detection rate and the proportion of weak systems in the organization 

(i.e., part c of the Proposition). As the proportion of weak systems in the organization increases, 

it becomes more likely for the attacker to encounter weak systems. Our result shows that one 

approach for the system defender for handling this is to adjust the detection rate downward for 

the security detection mechanism to deter the attacker from targeting the (now more) weak 

systems. Again, the ability of attacker detecting the weak systems has significant impacts on the 

system defender’s optimal strategy. Sometimes, the system defender would rather lower the 

security detection rate to deter attacker from target attacking and thereby steer the attacker in 

the direction of random attacks. 

 

5. The Impact of Incomplete Information 

In this section, we relax the assumption that the attacker is able to obtain the accurate value of 

θ, and consider the scenario under which the attacker will overestimate or underestimate the 

value of θ. We investigate how such mis-estimation would impact the attacker’s behavior, the 

defender’s strategy, and the organization’s overall payoffs. 
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5.1 The Impact of Mis-estimation on the Attacker’s Decision Making 

For the attacker, his decision-making is based on comparing his expected payoff from randomly 

attacking (Er
a) and detecting the weak systems before attacking (Ed

a). We first notice that Er
a is 

linearly increasing in θ, and Ed
a is concave and increasing in θ (i.e.,  

𝑑𝐸𝑑
𝑎

𝑑𝜃
> 0,

𝑑2𝐸𝑑
𝑎

𝑑𝜃2 < 0). Algebra 

shows that Er
a > Ed

a if and only if 𝜃 > 𝜃, or 𝜃 < 𝜃, where ]1[
)(2

1 
vhP

c

d

t , and 

]1[
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Therefore, for any given detection rate Pd configured by the defender, there is a 

corresponding pair of 𝜃 and 𝜃̅ values such that the value of θ can fall into one of the three 

regions (A, B, or C) as illustrated in the following Figure 5. 

When the value of θ falls in region A or C (i.e., the proportion of weak systems in the 

target organization is either very high or very low), the attacker should choose to randomly 

attack. When the value of θ falls in region B (i.e., the proportion of weak systems in the target 

organization is moderate), he should choose to target attack. 

But if the attacker mis-estimate the value of θ as 𝜃, he may change his attacking 

strategy. If the value of 𝜃 deviates from the true value of θ, but both values remain in the same 

region as depicted in Figure 5, the mis-estimation does not impact the attacker’s decision-

making or resultant payoffs. However, if this deviation is sufficient to make the two values 

belong to two difference regions, the mis-estimation will change attacker’s decision and thus 

impact the attacker’s payoffs. This result can be illustrated by the following Lemma 2. 
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Figure 5. The different value regions for the value of θ 

Lemma 2: If the value of 𝜃 deviates from the true value of θ, the resultant 

attacker’s decision and payoff impacts (shown in parenthesis) can be 

summarized as the following table 3: 

Table 3. The attacker’s decision (attacker payoff impacts) under different 
scenarios of estimation of θ 

 The region the value of 𝜃 falls into: 

A B C 

Th
e 

re
gi

o
n

 t
h

e 

tr
u

e 
va

lu
e 

o
f 

θ
 

fa
lls

 in
to

: 

A Randomly attack 
(same payoffs) 

Target attack 
(Lower payoffs) 

Randomly attack 
(same payoffs) 

B Randomly attack 
(lower payoffs) 

Target attack 
(same payoffs) 

Randomly attack 
(lower payoffs) 

C Randomly attack 
(same payoffs) 

Target attack 
(Lower payoffs) 

Randomly attack 
(same payoffs) 

From Lemma 2, it is noticed that mis-estimating the value of θ never makes the attacker 

better off. Next, we investigate the impact of such mis-estimation on the defender’s strategy 

and organization’s overall payoffs. 
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5.2 The Impact of Mis-estimation on the Defender Strategy and Organization Payoffs 

Once the defender decides on the optimal configuration of the security mechanism’s detection 

rate based on Proposition 2, the attacker will respond accordingly. For example, under scenario 

1 and 2 as specified in Proposition 2, the defender configures the optimal detection rate as Pd = 

Pd
**, or Pd = Ω, and the optimal strategy for the attacker will be to randomly attack, resulting in 

the organization’s overall expected payoff being πr. However, if the attacker misjudges the 

value of θ to such a degree that he decides to target attack instead of randomly attack, then the 

organization’s overall expected payoff becomes πd. Similarly, under scenario 3, the defender 

configures the optimal detection rate as Pd = Pd
*, and the optimal strategy for the attacker will 

be to target attack, resulting in the organization’s overall expected payoff being πd. However, if 

the attacker misjudges the value of θ to such a degree that he decides to randomly attack in 

this scenario, then the organization’s overall expected payoff becomes πr. 

Comparing πr and πd, we obtain that for any given value of the defender’s optimal 

detection rate (denoted as Pd
’), πr > πd if and only if Pd

’
 > z/d. We denote the RHS of this 

inequality as Σ. 

If Σ < Ω, then there are three regions of the possible value of Pd, as illustrated in the 

following Figure 6a. 

 

Figure 6a. The different value regions for the defender’s optimal configuration of the 
detection rate Pd

’ when Σ < Ω 

When Pd
’ falls in region I, since Pd

’
 < Ω, based on result in Equation (2), we have Er

a > Ed
a.  

That is, the true value of θ is in Region A or C as depicted in Figure 5, and thus the attacker 

should randomly attack. On the other hand, when Pd
’ falls in region I, since Pd

’
 < Σ, we have πr < 

0 Σ Ω 1 Pd 

I II III 
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πd. Thus the defender has incentive to encourage the attacker to target attack. The attacker 

would randomly attack if he accurately estimates the value of θ, and would target attack if he 

mis-estimates the value of θ sufficiently (i.e., the value of 𝜃 falls in Region B while the value of θ 

falls in Region A or C, as depicted in Figure 5). Therefore, the defender has incentive to make 

the attacker mis-estimate the value of θ.  

Similarly, when Pd
’ falls in region II, since Pd

’
 < Ω, we have Er

a > Ed
a.  That is, the true value 

of θ is in Region A or C, and thus the attacker should randomly attack. On the other hand, when 

Pd
’ falls in region II, since Pd

’
 > Σ, we have πr > πd. Thus the defender has incentive to encourage 

the attacker to randomly attack. The attacker would randomly attack if he accurately estimates 

the value of θ, and would target attack if he mis-estimates the value of θ sufficiently. Therefore, 

the defender has incentive to make the attacker accurately estimate the value of θ. 

If Pd
’ falls in region III, the true value of θ is in Region B, and thus the attacker should 

target attack. We also have πr > πd, and thus the defender has incentive to encourage the 

attacker to randomly attack. The attacker would target attack if he accurately estimates the 

value of θ, and would randomly attack if he mis-estimates the value of θ sufficiently. Therefore, 

the defender has incentive to make the attacker mis-estimate the value of θ. 

Similarly, if Σ > Ω, then there are also three regions of the possible value of Pd, as 

illustrated in the following Figure 6b. 

 

Figure 6b. The different value regions for the defender’s optimal configuration of the 
detection rate Pd when Σ > Ω 

If Pd
’ falls in region IV, the situation is the same as in region I. 

0 Ω Σ 1 Pd 

IV V VI 
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If Pd
’ falls in region V, the true value of θ is in Region B and thus the attacker should 

target attack. We also have πr < πd, and thus the defender has incentive to encourage the 

attacker to target attack. The attacker would target attack if he accurately estimates the value 

of θ, and would randomly attack if he mis-estimates the value of θ sufficiently. Therefore, the 

defender has incentive to make the attacker accurately estimate the value of θ. 

If Pd
’ falls in region VI, the situation is the same as in region III. 

 

5.3 The Defender’s Strategy in Influencing the Attacker’s Estimation of θ 

Obviously, if the attacker mis-estimates the value of θ, but remains within the same region as 

the true θ value, as illustrated by Figure 5, the mis-estimation has no impact on the defender’s 

strategy. Only when the attacker mis-estimates the value of θ in such a way that the value of 𝜃 

moves across different regions from the true θ value will such mis-estimation have an impact 

on the organization’s overall expected payoff. In Section 5.2 we show that such impact can be 

either positive or negative in terms of the organization’s overall payoffs. 

The above analyses in Section 5.1 and 5.2 can therefore be summarized as Proposition 4. 

From the defender’s perspective, based on all the parameter values, she first 

calculates the potential configuration values Pd
*, Ω, and Pd

**, and makes the optimal choice 

Pd based on Proposition 2. Then she calculates the threshold values Σ, 𝜃 and  , and chooses 

the correct strategy based on Proposition 4 to influence the attacker’s estimation of the 

value of θ. 

One significant observation from this result is that the attacker’s mis-estimation of θ 

does not automatically lead to benefits for the organization. There are three scenarios, as 
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identified in Table 4, under which the attacker’s mis-estimation will result in a lower overall 

expected payoff to the organization, and as a consequence, the defender should endeavor such 

that the attacker would be able to accurately estimate the value of θ. 

Proposition 4: The defender’s strategies in influencing attacker’s estimation of 

the value of θ can be summarized in the following table: 

Table 4. The defender’s strategies in influencing attacker’s estimation of the 
value of θ under various scenarios 

 The Region the True Value of θ Falls Into: 

A B C 

Th
e 

R
eg

io
n

 t
h

e 
O

p
ti

m
al

 

D
et

e
ct

io
n

 R
at

e 
(P

d
) 

Fa
lls

 In
to

: I or 
IV 

Encourage attacker 
to over-estimate 

N/A 
Encourage attacker 
to under-estimate 

II 
Encourage attacker 

to estimate 
accurately 

N/A 
Encourage attacker 

to estimate 
accurately 

III or 
VI 

N/A 
Encourage attacker 

to mis-estimate 
N/A 

V N/A 
Encourage attacker 

to estimate 
accurately 

N/A 

If the defender’s optimal detection rate falls in region I, the real value of θ would be 

either very high or very low, and the attacker will randomly attack. However, in this case, it will 

result in a higher overall expected payoff to the organization if the attacker target attack 

instead of randomly attacking. Therefore, the defender should endeavor to encourage the 

attacker to over-estimate θ if its real value is very low, and to encourage the attacker to under-

estimate if its real value is very high, in order to nudge the attacker to target attack. 

If the optimal detection rate falls in region II, the real value of θ would also be either 

very high or very low, and the attacker will randomly attack. In this case, the organization yields 

higher expected payoff if the attacker randomly attacks. So it is to the best interest of the 

organization that the defender endeavors such that the attacker can estimate the value of θ 
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more accurately to ensure that the value of 𝜃 remains in the same region of the true value of θ, 

and attacker will indeed randomly attack4. 

If the optimal detection rate falls in region III, the real value of θ would be moderate, 

and the attacker will target attack. In this case, the organization yields higher expected payoff if 

the attacker randomly attack. Therefore, the defender should endeavor to encourage the 

attacker to either over-estimate the value of θ if its true value is close to  , or under-estimate 

the value of θ if its true value is close to 𝜃. If the defender can make the value of 𝜃 move to 

region A and C, it will result in a higher expected payoff to the organization.  

If the optimal detection rate falls in region IV, the defender’s best strategy would be 

similar to that when the detection rate falls in region I. 

If the optimal detection rate falls in region V, the real value of θ would be moderate, 

and the attacker will target attack, and it will yields higher payoff to the organization. Thus the 

defender should endeavor such that the attacker can accurately estimate the value of θ and 

thus will indeed target attack. 

Finally, if the optimal detection rate falls in region VI, the defender’s best strategy would 

be similar to that when the detection rate falls in region III. 

Next, we extend our model to investigate the situation where there are further 

heterogeneity among the normal users and the organization’s systems. 

 

6.  The Impact of Heterogeneous Users and Systems 

                                                            
4 Obvious, in this scenario, there is another possibility. If the true value of θ is in region A (C), defender can 
theoretically endeavor to make the attacker grossly over-estimate (under-estimate) the value of θ such that the 

value of 𝜃 falls into region C(A). That way, it is also ensured that the attacker will indeed randomly attack.  
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In this section, we extend our model to analyze the situation in which there are multiple levels 

of normal users or systems as they may generate different levels of utility to the organization. 

We study how this heterogeneity impacts the defender’s strategy and organization’s payoffs. 

 

6.1. The Impact of Heterogeneous Users 

We now consider the situation in which different normal users generate different levels of 

payoffs to the organization by using the information system. We denote the overall expected 

payoff from a single user as E(u). Since the normal users will always randomly select a target 

system to access, from the defender perspective, her decision making will still be realized based 

on Figure 4, with the sole exception that the payoff to the organization will be E(u) instead of u, 

if the normal user is granted access to the system. 

As a result, the analyses and analytical results from Section 4 and 5 would remain intact 

(except for the notation where u would be replaced by E(u). 

 

6.2. The Impact of Heterogeneous Systems 

In our original model, all the information systems in the organization are homogeneous in every 

aspect except that θ proportion of the systems is considered weak due to their security 

mechanism not functioning.  But in reality, an organization’s information systems may also be 

differentiated by their values to the organization: some systems may generate more utility to 

the organization than other systems when accessed by a normal user; or some may result in 

more severe damages if attacked than other systems. For example, an organization may have 

information systems to keep records of business transactions, and also systems to process 
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business transactions. While both systems are important to the organization, it is reasonable to 

think that the transaction processing systems would generate more utility to the organization; 

it is also reasonable to think that compromised transaction processing systems would cause 

more severe loss than compromised record keeping systems. Such heterogeneity would affect 

the defender’s optimal strategy to protect the systems.  

In this paper, we consider two scenarios in which this heterogeneity would impact the 

security level of the systems. In scenario 1, we can assume that the security levels of the 

information systems are completely dependent on their values. In other words, the difference 

between strong and weak security levels among systems is the direct outcome of the difference 

between high and low expected payoffs (or losses) of those systems. That is, the organization 

allocates resources differently according to the value of the systems to the organization: 

systems with higher value (i.e., systems with higher payoffs/losses to the organization) will 

become strong systems, and systems with lower value (i.e., systems with lower payoffs/losses 

to the organization) will become weak systems. A huge body of literature exists that investigate 

this scenario (e.g., Bier at al. 2007 and Levitin et al, 2012). In scenario 2, we can assume that 

that the security levels of the information systems are completely independent on their values. 

In other words, the difference between high and low values of the systems would be another 

independent dimension, in addition to the difference between strong and weak security levels, 

in differentiating the systems. That is, among all the organization’s information systems, some 

have strong security while others have weak security; and some have low values to the 

organization while others have high values. In addition, in this scenario, the security level of the 

systems is assumed to be independent of the value of the systems to the organization. Next 
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we’ll analyze both scenarios to study the impacts of system heterogeneity on the security game 

and its outcome.5 

 

6.2.1. Scenario 1 

In this scenario, the heterogeneity of the system values directly results in the different security 

level of the systems. Thus we re-define the parameter θ in our original model as follows.  

We now assume among all the information systems in the organization, there is a 

portion of θ that would generate low utility (or cause less severe loss) to the organization if 

accessed by normal user (or attacker) than the other (1- θ) portion6. As a result of low utility, 

this θ portion of the information systems become Sw type and the other (1- θ) portion become 

Ss type. As in our original model, we assume that other than this dimension, all other aspects of 

the information system are identical among all systems. The attacker still decides on whether to 

randomly attack or target attack the weak system (i.e., the low utility system), and the defender 

still optimizes the detection rate to maximize the organization’s overall expected payoffs. 

For the attacker, since his payoff parameters, as well as the probability parameters, do 

not change, the realization of his decision making would remain the same as was illustrated in 

Figure 2. All our analyses and results presented in Section 4.1 remain unchanged. Similarly, for 

the defender, the realization of her decision making will be the same as illustrated in Figure 3. 

All our analyses in Section 4.2 to 5 remain unchanged.  

                                                            
5 An interesting future research avenue would be to consider the scenario where the security levels of the 
information systems are partially dependent on their values. 
6 Here we make the implicit assumption that the systems that generate higher payoffs if accessed by normal user 
would also cause worse damages if attacked, though no further assumptions are made about the nature of this 
correlation. 
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One significant insight can be obtained from these results by re-interpreting Proposition 

4 within this new scenario. Proposition 4 illustrates the defender’s strategies in influencing the 

attacker’s estimation of the value of θ in order to optimize the organization’s overall expected 

payoffs. It shows that if the defender’s optimal detection rate is configured to be within region I, 

IV, or V, she has incentive to encourage the attacker to target attack (by either disseminating 

true information under region V or spreading false information under region I or IV). Based on 

our scenario description, this essentially implies that under certain conditions (e.g., the optimal 

detection rate falls into region I, IV, or V), it is optimal for the defender to deflect the attacker 

to the low value systems. This insight directly illustrates the relationships between system 

security level as a direct result from system value, and the defender’s optimal strategy. 

 

6.2.2. Scenario 2 

In this scenario, the system value is an independent dimension, in addition to the security level, 

of the organization’s information systems. With all parameters of our original model intact, now 

we add more parameters that capture the heterogeneity of the system values, and its impacts 

on the organization. 

We now assume among all the information systems in the organization, there is a 

portion of γ that would generate higher utility (cause more severe loss) to the organization if 

accessed by normal user (attacker) than the other (1-γ) portion. We denote this γ portion of the 

information systems as HI type, and the other (1-γ) portion of the information systems as LO 

type. We also assume γ ꓕ θ. That is, the value of the systems is independent of the security level 

of the system. Furthermore, we assume a HI system accessed by normal user will generate a 
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utility denoted as uh to the organization, and LO system accessed by normal user will generate a 

utility denoted as ul, with uh > ul. Therefore, when a normal user is granted access to a system, 

the organization obtains an expected payoff of γuh+(1-γ)ul. We denote this value as u*. Similarly, 

it is assumed that an attacker accessing a HI system would cause damage dh to the organization 

and an attacker accessing a LO system would cause damage dl, with dh > dl. Thus the 

organization’s overall expected damage when an attacker is granted access to a system is γdh + 

(1-γ)dl. We denote this value as d*. Finally, we assume that other than these two dimensions, all 

other aspects of the information system are identical among all systems. 

For the attacker, again the realization of his decision making as well as the analyses and 

results presented in Section 4.1 remain unchanged. For the defender, the realization of her 

decision making will be slightly different from what is illustrated in Figure 3: the payoffs to the 

organization change. When the user/attacker accesses a system, he will be facing either a HI 

system or a LO system with probability of either γ or 1-γ, respectively, which results in an 

expected payoff/damage of either u* or d*, respectively, to the organization. The new 

realization of the defender’s decision making is illustrated in the following Figure 7. 

From Figure 7, we solve for the defender’s optimal configuration of the detection 

system, and obtain 𝑃𝑑
∗ =  [

𝑑∗𝑠𝜆

(𝑙+𝑢∗)(1−𝜆)
∗

𝑄𝑓

𝑄𝑑𝜃+𝑄𝑓(1−𝜃)
]

𝑠

1−𝑠
, 𝑃𝑑

∗∗ = [
𝑑∗𝑠𝜆

(𝑙+𝑢∗)(1−𝜆)
]

𝑠

1−𝑠
, and 𝑃𝑑

∗∗∗ =

 
𝑐𝑡

(𝑣+ℎ)(𝑃1−𝜃)
= 𝛺. All analyses and results in Section 4.2 and 4.3 remain qualitatively similar. 

To illustrate the impact of system heterogeneity on defender’s optimal strategy, we 

obtain the following Lemma 3:  
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Figure 7. The possible realization for system defender’s decision making when the systems 
are heterogenous  

 

Lemma 3: As the value of γ increases, the values of Pd
* and Pd

** will also increase 

if and only if  
𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
  (6);  

and will decrease otherwise. 

Proof: we differentiate Pd
* and Pd

** w.r.t. γ, and solve for the inequality of 
𝑑Pd

∗

𝑑𝛾
>

0, and 
𝑑Pd

∗

𝑑𝛾
< 0, as well as  

𝑑Pd
∗∗

𝑑𝛾
> 0, and 

𝑑Pd
∗∗

𝑑𝛾
< 0,  and obtain the above result. 

         ▪ 

Inequality (6) ( 
𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
) illustrates the characteristics of the system heterogeneity. The 

LHS denotes the ratio of the potential damages between the two different types of systems and 

the RHS denotes the ratio of the potential benefits (plus the opportunity cost) between them. 

Lemma 3 indicates that when the heterogeneity of the two types of systems is captured more 
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by their potential loss if attacked, the optimal detection rate for the defender would increase as 

the portion of the HI system increases; when the heterogeneity of the two types of the systems 

is captured more by their potential payoffs to the organization, the optimal detection rate for 

the defender would decrease as the portion of the HI system increases. The practical 

implication of this result is straightforward: if damage from a security breach is the more salient 

focus for the organization, with more HI systems in the organization, the defender should 

tighten the detection of the attacker so as to protect the systems from getting accessed by 

attacker; if payoff from normal access is the more salient focus, with more HI systems in the 

organization, the defender should loosen the detection of the attacker so as to ensure access to 

the systems from the normal users. 

Next, we investigate how this additional dimension of system heterogeneity impacts 

defender’s strategy in deflecting attacker to the weak systems as illustrated in Proposition 4. 

The defender’s optimal configuration of the detection rate Pd is a function of γ. We can 

denote this function as Pd(γ). We can further solve Pd(γ)=Ω for γ, and denote the result as γ’. 

Lemma 3 shows when 
𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
, Pd(γ) increases in γ. Lemma 1 shows that the attacker will 

target attack instead of randomly attack if and only if Pd(γ) > Ω.  Therefore, when 
𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
, 

there are two cases regarding how the value of γ impacts the defender’s strategy to deflect the 

attacker.  

Case 1: if γ > γ’, the attacker will target attack (i.e., the value of θ falls in region B). 

Following our analyses in Section 5, for the defender to want the attacker to target attack in 

this case, the value of Pd must fall into region V.  As a result, when γ > γ’, the defender would 

want to deflect the attacker to the weak system if and only if the value of Pd falls into region V. 
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From Proposition 4, we know that under these circumstances the defender should encourage 

attacker to accurately estimate the value of θ. 

Case 2: if γ < γ’, the attacker will randomly attack (i.e., the value of θ falls in region A or 

C). This implies that in order for the defender to want the attacker to target attack in this case, 

the value of Pd must fall into region I or IV. As a result, when γ < γ’, the defender would want to 

deflect the attacker to the weak system if and only if the value of Pd falls into region I or IV. She 

should endeavor to encourage attacker to over-estimate the value of θ if it is in region A, and 

under-estimate if it is in region C. 

When 
𝑑ℎ

𝑑𝑙
<

𝑙+𝑢ℎ

𝑙+𝑢𝑙
, Pd(γ) decreases in γ. If γ < γ’, we encounter Case 1 described above, and 

if γ > γ’, we encounter Case 2 described above. 

The above analyses can be summarized as the following Proposition. 

Proposition 5: when the systems are heterogeneous in their values to the 

organization, the conditions under which defender would want to deflect the 

attacker to the weak systems under various combinations of the systems values, 

as well as the defender’s strategy to influence the attack’s estimation (in 

parenthesis), can be summarized in the following table: 

Table 5. The conditions under which defender would want to deflect attacker 
to weak systems (and the defender’s strategy to influence the attacker’s 

estimation of the value θ) 

 If 
𝑑ℎ

𝑑𝑙
<

𝑙+𝑢ℎ

𝑙+𝑢𝑙
 If 

𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
 

If γ>γ’ Value of Pd falls into region I or IV 

(encourage attacker to mis-
estimate) 

Value of Pd falls into region V 

(encourage attacker to 
accurately estimate) 

If γ<γ’ Value of Pd falls into region V 
(encourage attacker to 
accurately estimate) 

Value of Pd falls into region I or IV 
(encourage attacker to mis-
estimate) 
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 Proposition 5 shows the impact of system value heterogeneity on the defender’s 

strategy of deflecting attacker to the weak systems. When the heterogeneity of the two types 

of the systems is captured more by their potential loss if attacked (
𝑑ℎ

𝑑𝑙
>

𝑙+𝑢ℎ

𝑙+𝑢𝑙
), if the HI systems 

are of large quantity (γ>γ’), the defender’s optimal detection rate will be relatively high (falls 

into region V instead of region I or IV), and she would endeavor to help attacker accurately 

estimate the value of θ in order to encourage him target attack the weak systems; if the LO 

systems are of larger quantity (γ<γ’), the defender’s optimal detection rate will be relatively low 

(falls into region I or IV instead of region V), and she would endeavor to help attacker mis-

estimate the value of θ in order to nudge him into target attacking the weak systems. On the 

other hand, when the heterogeneity of the two type of the systems is captured more by their 

potential payoffs to the organization (
𝑑ℎ

𝑑𝑙
<

𝑙+𝑢ℎ

𝑙+𝑢𝑙
), the defender’s strategy to deflect attacker to 

the weak systems will reverse with respect to the relative quantity of HI or LO systems. 

 

7. Conclusions 

In this paper, we investigate the phenomenon of false positives from the attacker’s perspective 

in a typical attacker-defender information security game. False positives in detection have long 

been identified as a critical factor in security scenarios and have been extensively studied. 

However, in almost all of the extant literature, false positives have been studied exclusively 

from the system defender’s perspective, i.e., the existing literature focuses primarily on the 

research question of what happens if the system defender mis-identifies potential attacker.  

To the best of our knowledge, we present the first comprehensive analytical model that 

incorporates the false positives both from the perspective of attacker, as well as that of system 
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defender. We attempt to answer the research question of what are the consequences of 

attacker mis-identifying potential targets for attacking. We model the attacker-defender 

interactions, taking into consideration the attacker’s possible option of detecting weak systems 

before implementing attacks. We analyze the impacts of attacker’s false positives on the 

decision making of both the attacker and the system defender. Our results show that the false 

positives from the attacker’s perspective have a significant impact on the attacker’s decision 

making process for an attack, as well as the optimal protection strategy of the defender. We 

present analytical results for the defender’s optimal strategy when facing strategic attacker 

who may detect weak systems before attacking, and provide some insights on how a system 

defender should be more stringent or less rigid in detecting attacker under different scenarios. 

Our results also help to shed new light on some common and interesting phenomena in the 

information security landscape such as the prevalence of spam emails, the outrageous 

wordings of Nigerian scams, and the design of Honeypot as a security mechanism. 

An interesting finding of our analysis is that when attacker mis-estimates the proportion 

of the weak systems in the target organization, they are never better off; however, from the 

defender’s perspective, the attacker’s mis-estimation does not always benefit the defender. We 

show several scenarios under which the defender should endeavor to drive the attacker toward 

accurate estimation. 

Our work also sheds light on the impact of system value heterogeneity on the 

defender’s strategy of deflecting potential attacker to the weak systems. Our findings suggest 

that the defender has a fairly complex combination of optimal strategies contingent on a critical 

ratio of parameters that capture damage sustained when an attacker attacks the systems, 
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utility gained when a normal user accesses the systems and the loss of goodwill on account of 

normal user being mis-identified as an attacker.  These strategies again suggest, under certain 

conditions, an endeavor to influence the attacker in his estimation of the proportion of weak 

systems. 

There are several interesting directions in which this study can be extended. First of all, 

we present a parsimonious analytical model to investigate the attacker and defender behaviors. 

An important extension would be an empirical study that examines the pragmatic validity of 

our model and analytical results.  Secondly, in our model, the detection rate of attacker’s 

classification mechanism is an exogenous parameter, and the attacker’s decision making is 

focused exclusively on choosing between randomly attacking and detecting before attacking. It 

would be interesting to extend our model to endogenize the detection rate of attacker’s 

classification mechanism as attacker’s decision variable, and study how it would impact the 

defender’s optimal strategy. Also, we model the heterogeneity of the target information 

systems in a binary discrete setting: weak vs. strong systems. It would be a worthy effort to 

study a continuous setting in which the security strength of the systems may follow certain 

distributions. Finally, while we show that mis-estimating the proportion of weak systems never 

makes the attacker better off, it would be interesting to find if this mis-estimation is symmetric 

or asymmetric in terms of the potential loss in payout to the attacker when the attacker 

overestimates versus underestimates. 
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