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Abstract

We provide an adversarial risk analysis framework for batch acceptance problems
in which a decision-maker relies exclusively on the size of the batch to accept or
reject its admission to a system, while being aware of the presence of an opponent.
The adversary acts as a data-fiddler attacker perturbing the observations perceived
by the decision-maker through injecting faulty items and/or modifying the existing
items to faulty ones. We develop optimal policies against this combined attack
strategy and illustrate the methodology with a review spam example.

Keywords: adversarial hypothesis testing; data manipulation; security; review
spam.

1 Introduction

In this paper, we deal with batch acceptance problems, where a decision-maker needs
to accept or reject an incoming batch of items to a system based on certain observable
features. These features may be either attributes (e.g. number of defective items on a
sample) or variables (e.g. some summary statistic such as the mean quality). This class
of problems encompasses a wide range of applications including acceptance sampling
(Schilling and Neubauer, 2009), cargo container screening (Boros et al., 2009) and spam
detection (Cormack and Lynam, 2007). We do not cover, though, batch admission
problems to queuing systems, as for example in Stidham (1985).

Batch acceptance relates to the more general problem of hypothesis testing (French
and Ŕıos Insua, 2000), which has been extensively studied from a decision theoretic
perspective. However, lately, there has been a growing concern about the impact of
adversaries in this realm, with recent examples in fields such as adversarial classification
(Yu et al., 2018), adversarial machine learning (Jagielski et al., 2018) or adversarial
signal processing (Tondi et al., 2019). This consideration of an adversarial component

1



also applies to the more specific batch acceptance framework, where rational opponents
have been incorporated to the aforementioned contexts as in Tapiero (1995) (acceptance
sampling), Haphuriwat et al. (2011) (cargo container screening) and Kantarcioglu et al.
(2011) (spam detection).

Inclusion of adversaries in hypothesis testing and, in particular, batch acceptance
problems, has been mainly undertaken within the scope of game theory, which invariably
entails certain common knowledge assumptions. These usually relate to adversaries not
only knowing their own payoffs, preferences, beliefs and possible actions, but also those
of the other agents. This does not usually hold in the security contexts considered here;
see e.g. Hargreaves-Heap and Varoufakis (2004) or Young (2004) for discussions.

In González-Ortega et al. (2019b), we provided an alternative approach to adversarial
hypothesis testing based on the Adversarial Risk Analysis (ARA) paradigm (Ŕıos Insua
et al., 2009) studying two types of adversaries: data-fiddler attackers, who perturb the
data received by the decision-maker; and structural attackers, who alter the structure of
the corresponding data generation process. In a comparative study of probabilistic risk
analysis methods applied to container screening by Merrick and Parnell (2011), ARA
was considered specially appropriate for decomposing complex probability distributions,
apportioning uncertainty and explicitly showing the adaptation of each agent to their
opponent’s previous decisions.

Adopting the ARA framework for adversarial hypothesis testing, we present here a
novel approach for batch acceptance problems in presence of adversaries. The problem
faced is deciding whether to accept a batch of items received over a period of time, some
of which could be faulty hence entailing potential security and/or performance problems.
To simplify the discussion, the observable feature of the batch will be its size (the number
of items in it). We will consider the potential intrusion of a data-fiddler attacker trying
to obtain some gain by tampering with the batch prior to our observation. Though
simple, this setup is quite general and applicable to many situations such as acceptance
sampling (Lindley and Singpurwalla, 1991), where a manufacturer tries to determine
the optimal number of replicates in an experiment to convince a consumer who has to
decide whether to accept or reject the product. Our final discussion provides examples
where other more complex observable features are relevant.

An application in review spam (Heydari et al., 2015) is provided to illustrate the
approach. When buying a product, one typically gets feedback in a website from
reviews of existing product users. The balance between positive and negative comments
profoundly affects purchasing decisions and, thus, encourages review spam which may
generate economic or reputational benefits. Typical review spam involves untruthful
opinions, advertisements and duplicate reviews; see Jindal and Liu (2008) for a comprehensive
classification. According to Xie et al. (2012), sharp increases in the volume of reviews
correlate with recently arrived review spam. Therefore, we may develop batch acceptance
policies based on monitoring the amount of reviews per product during certain periods
of time to determine whether to further inspect for review spam related to specific
products, which may be accomplished with techniques such as those in Li et al. (2011)
or Lau et al. (2012).

Since we embrace a Bayesian viewpoint throughout the paper, we will make several
assumptions about the involved likelihood functions and prior distributions. Our choices
will be motivated, as in other Bayesian works, by their mathematical tractability and
physical relevance as well as their flexibility in capturing expert opinions. In particular,
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the adopted priors will depend on two parameters which can be easily determined from
a few experts’ assessments.

The outline of the paper is as follows. First, a non-adversarial version of the problem
is provided in Section 2. Next, appropriate modifications are introduced in Section
3 to include a data-fiddler opponent, considering the combination of two strategies:
faulty item injection and random item modification to faulty. A review spam example
illustrates the methodology in Section 4, concluding with a discussion in Section 5.
Proofs of all results are included in an Appendix.

2 Non-Adversarial Problem

We start with the non-adversarial version of the batch acceptance problem. A decision-
maker (D, she) needs to decide whether to accept or reject a batch of items based on
its observable size, without knowing its actual composition, consisting of acceptable and
faulty items. She then incurs in a loss which depends on her decision and the batch
content. As an example, within the aforementioned context of acceptance sampling, a
retailer might face the decision of accepting or rejecting a sample of a manufacturer’s
product in terms of the provided number of replicates, before even testing them. She
would then perceive opportunity costs if she rejects the sample and, otherwise, a loss
related to the inspection of the sample and the outcome of its exact composition.

The non-adversarial batch acceptance problem is depicted by the Influence Diagram
(ID) (Shachter, 1986) in Figure 1, which reflects the dependencies among the concerned
random variables, the decision to be made and its consequences. As usual in IDs, circle
nodes relate to random events or uncertainties, square nodes to decisions and hexagonal
nodes to values (losses in our case). Arrows into chance or value nodes specify conditional
dependence, whereas dashed arrows into decision nodes indicate information available
when making the corresponding decision.

XΘ

M

lDD

Figure 1: ID for the Non-Adversarial Batch Acceptance Problem.

The non-adversarial problem is described as follows, where capital letters denote chance
and decision nodes in the ID and the corresponding values at these nodes are represented
using lower case letters:

� The decision-maker needs to determine d, whether to accept (d = d0) or reject
(d = d1) a batch of items (node D).

� For this, she observes the size m ∈ {0, 1, 2, . . .} of the batch (node M). The case
m = 0 allows for empty batches.
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� The items in the batch may be acceptable or not with an acceptability rate θ ∈ [0, 1]
determining the probability that each item in the batch is acceptable (node Θ),
which is unknown to the decision-maker. If Z designates this (z = 0, acceptable
item; z = 1, otherwise), p(z = 0 | θ) = θ.

� The batch composition x includes two classes of items: 0, associated with acceptable
items; and 1, corresponding to faulty ones (node X). We use x0 to designate the
number of acceptable items and, accordingly, x1 = m−x0 for the number of faulty
items. The batch composition x = (x0, x1) is not observed by the decision-maker
before making his decision.

� Upon deciding d, and given x, the decision-maker obtains a loss lD(d, x) (node lD).

We make two assumptions in this non-adversarial setup:

A1. The acceptability of each item in the batch is independent of that of the others
and all items have the same rate. As a consequence, the number x0 of acceptable
items in a batch of size m will follow a binomial distribution x0 |m, θ ∼ Bin(m, θ).

A2. As for the loss lD, there are many possible choices. Let us consider the case where
just allowing one faulty item is as bad as allowing several of them, because of the
entailed security and/or performance issues: if D accepts a batch that contains at
least one faulty item, she incurs in the worst possible loss, 1; if she blocks such a
batch or accepts one with no faulty items, D attains the best loss, 0; finally, if she
rejects a batch with all items acceptable, D faces an (expected) opportunity cost
c ∈ (0, 1). Examples where this is realistic abound in cyber security, specially in
the case of autonomously propagated attacks (Ye et al., 2006), or terrorism, when
considering attacks to series systems (Hausken and Levitin, 2012).

Given the above problem structure, we have:

Proposition 1. Under Assumptions A1 and A2, the decision-maker’s optimal policy
in the non-adversarial batch acceptance problem is to accept the batch if and only if
Eθ [θ

m] ≥ (1 + c)−1. Moreover, if p(θ = 1) = 0, we can find a threshold value m1,
conditional on c and pD(θ), such that the optimal decision is to reject the batch if m >
m1.

An important case, standard in Bayesian analysis, holds when we have prior beliefs
about the item acceptability rate θ modeled through a beta distribution Be(α, β), as
this type of distribution forms a conjugate family with the binomial distribution. In this
context, if after receiving r items, s have been acceptable (and r− s, faulty), we update
to the posterior θ | r, s ∼ Be(α+ s, β+ r− s) (French and Ŕıos Insua, 2000). Its moment
generating function satisfies

Eθ [θ
m] =

m−1∏
k=0

α + s+ k

α + β + r + k
=

α + s+m− 1

α + β + r +m− 1
Eθ

[
θm−1

]
. (1)

Hence, according to Proposition 1, the decision-maker’s optimal policy would be to
accept the batch if and only if

m−1∏
k=0

α + s+ k

α + β + r + k
≥ 1

1 + c
.

4



A rejection threshold m1 on the number of items may be actually obtained recursively
using equation (1). A simple scheme would rely on the fact that Eθ [θ

0] = 1 and start the
iterative procedure with m = 1. Then, Eθ [θ

m] would be computed and, if the relation
in Proposition 1 is not satisfied, we would stop and determine m1 = m. Otherwise, we
would set m = m+ 1 and repeat the calculation and verification.

3 Adversarial Problem

We engage now in the adversarial version of the problem. An attacker (A, he) interferes
with the batch acceptance process to deceive the defender (D, she) and cause her to
make wrong acceptance decisions from which to attain a certain benefit. Specifically, we
consider a data-fiddler attacker who alters the incoming batch so that the information
received by the defender is perturbed.

We represent the problem with a Bi-Agent Influence Diagram (BAID) (Banks et al.,
2015) in Figure 2. Compared with the ID in Section 2, whose original elements are
depicted in thicker line style, we reflect the problems of the defender and attacker
integrated within a same structure. White nodes refer to issues solely affecting the
defender’s problem, whereas grey ones refer just to the attacker’s problem. Chance nodes
are striped implying that they model random events that are relevant for both agents’
decision-making. Note though, that each decision-maker may entertain a different
probability model over such shared chance nodes which, as anticipated, will not be
common knowledge. For example, besides model pD(x |m, θ) representing the defender’s
beliefs about batch composition x at nodeX, given the batch sizem and the acceptability
rate θ, we need to determine a model pA(x |m, θ) for the attacker, which might differ
from that of the defender.

XΘ M Λ

N Y

lD lAD A

Figure 2: BAID for the Adversarial Batch Acceptance Problem (Thicker Line Style for
Non-Adversarial ID).

The adversarial problem is then defined as follows, where we just specify the new
elements when comparing with Figure 1:

� The attacker observes the batch size m and may choose to manipulate its content
x, contingent onm and θ, through action a (node A), before the defender processes
it. The attacker’s inaction is modeled as a feasible action itself.

� The attack a will generally result in a new batch composition y derived from the
original one x (node Y ). Clearly, if the batch remains unperturbed, y = x.
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� In particular, an altered batch composition y potentially leads to a new batch size
n (node N), which would be observed by the defender, instead of the original size
m, when making her acceptance decision. Though manipulated, the batch may
keep its size unchanged, i.e. n = m.

� The original number m of items in the batch follows a generic one-parameter
distribution related to an arrival rate λ (node Λ), unknown to the agents. This
presumption was omitted in the non-adversarial problem as it had no impact in
it, since the defender observes the actual value of m. However, the distribution
of the arrival rate λ provides key information to the defender about the original
batch size m in this adversarial context.

� Having selected action a, and given the defender’s decision d and the final batch
composition y, the attacker perceives a loss lA(a, d, y) (node lA), in parallel to the
loss lD(d, y) obtained by the defender.

The perturbation effect of the attacker’s action a turning x into y, and m into n, poses a
major difference with respect to the non-adversarial version in Figure 1. For that reason,
the defender should not ignore the possible interference of the attacker, since this may
entail a performance degradation of the decision algorithm, as will be discussed later.

To progress in the analysis, we need assumptions about the potential actions undertaken
by the attacker such as the following:

A3. The attacker may fiddle with the data combining two types of perturbations:
(1) faulty item injection, incorporating his own faulty items into the batch; and
(2) random item modification to faulty, randomly selecting items from the batch
(recall he is unaware of the original batch composition) and turning them into
faulty.

The original faulty items in the batch will be designated O-faults (outer faults), while
faulty items provided by the attacker will be called A-faults (attacker faults). As a
consequence of Assumption A3, there will be A-faults of two classes in the final batch:
(1) y1 faulty items injected by the attacker, where 0 ≤ y1; and (2) y2 original items
modified to faulty without distinguishing the type of items being changed, y02 acceptable
and y12 O-fault, where y02 + y12 = y2 and 0 ≤ y02 ≤ x0, 0 ≤ y12 ≤ m − x0. Thus, the final
composition of the batch received (yet unobserved) by the defender consists of x0 − y02
acceptable items, m− x0 − y12 O-faults and y1 + y2 A-faults.

We consider now the optimal defensive policy in the adversarial batch acceptance
problem in light of Assumptions A1, A2 and A3.

3.1 The Defender’s Problem

Figure 3 displays the ID associated to the defender’s perspective of the adversarial
batch acceptance problem. Observe the differences with the BAID in Figure 2: the
attacker’s loss node is omitted, as it is irrelevant to her and, more importantly, his
decision node is transformed into a chance node, as the defender is uncertain about the
attacker’s action. Notice also the impact of the attacker’s inclusion on the defender’s
non-adversarial problem structure from the ID in Figure 1.
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Figure 3: Defender’s Problem.

We identify hereafter the defender’s optimal policy against a data-fiddler attacker
that operates according to Assumption A3. To begin with, suppose the defender knows
the distribution pD(y1, y2 |m) describing her beliefs about the attacker’s choice on how
many faulty items y1 to inject and how many items y2 to randomly modify to faults of his,
should the original batch size be m; that is, the distribution modeling her understanding
about the attacks she potentially faces. We provide first an auxiliary result:

Lemma 1. Suppose that the observed batch size is n. Under Assumption A3, the
probability q(n | θ, λ) that all n items in the final batch are acceptable, given the acceptability
θ and arrival λ rates, is

q(n | θ, λ) := pD(y1 = 0, y2 = 0 |m = n) pD(m = n |λ)∑n
i=0 pD(y1 = n− i |m = i) pD(m = i |λ)

θn.

Based on it, the following result parallels Proposition 1 in the adversarial problem:

Proposition 2. Under Assumptions A1, A2 and A3, the defender’s optimal policy in the
adversarial batch acceptance problem is to accept the batch if and only if Eθ,λ [q(n | θ, λ)] ≥
(1 + c)−1. Moreover, if p(θ = 1) = 0, we can find a threshold value n1, conditional on c,
pD(θ), pD(λ) and pD(y1 = 0, y2 = 0 |n, λ), such that the optimal decision is to reject the
batch if n > n1.

We can now compare the acceptance rules derived in the adversarial and non-
adversarial versions, thus contrasting an adversary-aware defender with an adversary-
unaware one. The latter relates to decision-makers who ignore the presence of adversaries,
hence believing that the observed batch size n is the original one, which should rather
be m.

Corollary 1. Under assumptions A1, A2 and A3, threshold values m1 and n1 for the
optimal acceptance policies, respectively defined in Propositions 1 and 2, fulfill m1 ≥ n1

.

Therefore, we conclude that the adversary-aware defender would always take a more
prudent decision than the adversary-unaware one, as she takes into account the information
about the adversary at her disposal.

To further advance in the analysis, we would need to make distributional assumptions.
For example, in the beta-binomial case concerning the acceptability rate θ (Section 2),
we have

Eθ,λ [q(n | θ, λ)] =

(
n−1∏
k=0

α + s+ k

α + β + r + k

)
Eλ

[
pD(y1 = 0, y2 = 0 |m = n) pD(m = n |λ)∑n

i=0 pD(y1 = n− i |m = i) pD(m = i |λ)

]
.
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As with respect to the arrival rate λ, a typical assumption would be that the number
m of original items follows a Poisson distribution with an average of λ items so that
m |λ ∼ Po(λ). In addition, suppose that the prior over λ is a gamma distribution
Ga(a, b). After t batches in which, in total, r items have arrived, the posterior would be
λ | t, r ∼ Ga(a+ r, b+ t). Then, it holds

Eθ,λ [q(n | θ, λ)] =

(
n−1∏
k=0

α + s+ k

α + β + r + k

)
Eλ

[
pD(y1 = 0, y2 = 0 |m = n) λn

n!∑n
i=0 pD(y1 = n− i |m = i) λi

i!

]
, (2)

which would be computed by simulation.
To completely determine the defender’s optimal decision for a given observed batch

size n, we still need to assess pD(y1, y2 |m) which has a strategic component, as it refers
to the optimal decision of an attacker. We could assess this distribution via standard
structured expert judgement methods as in e.g. Cooke (1991). However, as noted in
Ŕıos Insua et al. (2020), improved forecasts are frequently obtained using the structural
decomposition in ARA to assess a probability distribution over the attacker’s possible
actions reflecting the defender’s uncertainty about them. For this, ARA suggests a
decomposition approach that requires the defender to consider the attacker’s problem
from her perspective to obtain the attack distribution pD(y1, y2 |m) and, thus, the
probability q(n | θ, λ) needed in Proposition 2, as we next consider.

3.2 The Attacker’s Problem

As the underlying principle for the assessment of pD(y1, y2 |m), we consider the attacker
to minimize his expected loss in choosing his optimal attack (y∗1, y

∗
2) and our uncertainty

about such optimal choice through the random optimal policy (Y ∗
1 , Y

∗
2 )(m), which leads

to pD(y1, y2 |m) = P ((Y ∗
1 , Y

∗
2 )(m) = (y1, y2) |m). To facilitate this, the ID in Figure 4

portrays the defender’s perspective of the attacker’s problem. As opposed to the ID in
Figure 3 and the BAID in Figure 2, the defender’s loss node is suppressed, having just
implicit interest for the attacker, and her decision node is turned into a chance node, as
the attacker is uncertain about the defender’s choice concerning the eventual acceptance
of the batch. His beliefs about this distribution shall be denoted by pA(d0 |n).

XΘ M Λ

N Y

lAD A

Figure 4: Attacker’s Problem.

To be able to solve the attacker’s problem, the defender could consider Assumptions A1
and A3 applicable to his problem, presuming that they are pertinent in the attacker’s
view. This is a natural premise as the defender will relate the attacker’s prospect of
the problem to hers. Still, an additional assumption needs to be made concerning the
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attacker’s loss lA for which, as with the defender’s losses, there are many conceivable
structures. We adopt the following:

A4. The parameters involved in the attacker’s loss are his expected gain g due to each
A-fault, his expected gain h due to each O-fault (these could help him conceal
his A-faults when the defender inspects an accepted batch), his unitary cost f1 of
injecting A-faults and his incurred cost f2 of changing one item to faulty.

Given the identified attacker’s problem structure, designate by γ(y1) := g pA(d0 |n =
m+ y1) his expected gain per A-fault when the defender perceives the batch size to be
n = m+ y1. Then:

Proposition 3. Under Assumptions A1, A3 and A4, the attacker’s optimal policy for
the adversarial batch acceptance problem is to inject y∗1 A-faults and (randomly) modify
y∗2 items to faulty so that the combined attack (y∗1, y

∗
2)(m) minimizes in y1 and y2 his

expected loss

ψA(y1, y2 |m) = y1 (f1 − γ(y1))+y2

(
f2 −

(
1− h

g
(1− EA[θ])

)
γ(y1)

)
−m h

g
(1− EA[θ]) γ(y1).

(3)
Moreover: (i) the attacker’s optimal amount y∗1 of injected items is finite provided
that pA(d0 |n) ≤ f1−ε

g
for all n ≥ n0 for certain threshold value n0 and ε > 0; and

(ii) the attacker’s optimal amount y∗2 of (randomly) modified items to faulty is 0 when

f2 >
(
1− h

g
(1− EA[θ])

)
γ(y∗1), and m when f2 <

(
1− h

g
(1− EA[θ])

)
γ(y∗1).

Notice, however, that the defender lacks information about the required attacker’s
loss and probabilities components. Suppose she acknowledges such uncertainty over
those ingredients through random parameters and probabilities

(
G,H, F1, F2, PA(d0 |n), PA(θ)

)
.

Without loss of generality, assume they are all defined over a common probability space
(Ω,A,P) with atomic elements ω ∈ Ω (Chung, 2001). For example, P ω

A (θ) defines an
instance of PA(θ) and, based on it, EP, ω

A [θ] determines an occurrence of EA[θ]. Let E
P
A [θ]

denote the attacker’s random expected value of θ and Γ(Y1) := GPA(d0 |n = m+Y1) his
random expected gain per A-fault when the defender receives a batch of size n = m+Y1.
We then have:

Proposition 4. From the defender’s perspective, and under Assumptions A1, A3 and
A4, the attacker’s random optimal policy for the adversarial batch acceptance problem is
(Y ∗

1 , Y
∗
2 )(m) minimizing in Y1 and Y2 his random expected loss

ΨA(Y1, Y2 |m) = Y1 (F1 − Γ(Y1))+Y2
(
F2 −

(
1− H

G

(
1− EP

A [θ]
))

Γ(Y1)
)
−m H

G

(
1− EP

A [θ]
)
Γ(Y1).

Moreover, if PA

(
F2 =

(
1− H

G

(
1− EP

A [θ]
))

Γ(Y ∗
1 )
)
= 0, the attacker’s random optimal

amount Y ∗
2 of (randomly) modified items to faulty will almost surely be 0 or m.

Due to the complexity of directly evaluating (Y ∗
1 , Y

∗
2 )(m) through Proposition 4,

the defender may resort to a Monte Carlo approximation, see Caflisch (1998) for a
general discussion, as specified in Algorithm 1. This involves drawing from the involved
components

(
G,H, F1, F2, PA(d0 |n), PA(θ)

)
, computing the corresponding optimal amount

of injected and modified A-faults to obtain a sample {(Y ∗
1,k, Y

∗
2,k)(m)}Kk=1 of size K from

(Y ∗
1 , Y

∗
2 )(m), and then estimating p̂D(y1, y2 |m) ≈ #{(Y ∗

1,k, Y
∗
2,k) = (y1, y2)}/K.
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Algorithm 1 Forecasting the Attacker’s Choices.

Data: Original batch size m; number of iterations K; upper bound for the amount of injected items
Y 1.

1: Set p̂D(y1, y2 |m) = 0 for y1 = 0, 1, . . . , Y 1, y2 = 0,m.

2: For k = 1 to K do

3: Sample gk ∼ G, hk ∼ H, f1,k ∼ F1 and f2,k ∼ F2.

4: Sample distribution pk(θ) ∼ PA(θ) and compute Eθ,k =
∫
θ pk(θ) dθ.

5: For y1 = 0 to Y 1 do

6: Sample π0,k(y1) ∼ PA(d0 |n = m+ y1) and compute γk(y1) = gk π0,k(y1).

7: Compute ψk(y1, 0) = y1 (f1,k − γk(y1))−m hk

gk
(1− Eθ,k) γk(y1).

8: Compute ψk(y1,m) = y1 (f1,k − γk(y1)) +m (f2,k − γk(y1)).

9: End For

10: Find (y∗1 , y
∗
2) = argmin

y1,y2

ψk(y1, y2) and set p̂D(y∗1 , y
∗
2 |m) = p̂D(y∗1 , y

∗
2 |m) + 1.

11: End For

12: Set p̂D(y1, y2 |m) = p̂D(y1, y2 |m)/K for y1 = 0, 1, . . . , Y 1, y2 = 0,m.

Convergence of this algorithm to the required probability distribution pD(y1, y2 |m) is
guaranteed by the Strong Law of Large Numbers. See Robert and Casella (2013) who
also provide arguments to choose the K required to reach a desired precision in the
approximation (based on the Central Limit Theorem).

With regard to modeling the involved attacker’s random losses and probabilities,
typical assumptions would be:

� Upper and lower bounds on gains and costs may be provided in general based on
the available knowledge. Under the assumption of lack of additional information,
they can be considered uniformly distributed: G ∼ U(g−, g+), H ∼ U(h−, h+),
F1 ∼ U(f−

1 , f
+
1 ) and F2 ∼ U(f−

2 , f
+
2 ). When further information is at hand,

e.g. their mode or several quantiles, other reasonable models would be triangular
or shifted beta distributions.

� PA(d0 |n) may be modeled through a uniform distribution if the defender does
not acknowledge a strategic assessment of the attacker about her own decision-
making process. However, if she does consider that the attacker deems her as
attacker-aware, a distribution compatible with a threshold policy as the one found
in Proposition 2 could be used, which might be the prelude of a hierarchy of
decision-making problems and require further recursion. See Ŕıos and Ŕıos Insua
(2012) for a description of the potentially infinite regress in a simpler class of
problems.

� As for PA(θ), based on a principle of using pD(θ) with some uncertainty, we
may model it through a Dirichlet process (Ferguson , 1973) with base given by
a beta distribution Be(α + s, β + r − s) and concentration parameter ρ, denoted
DirP(Be(α + s, β + r − s), ρ).
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4 An Example in Review Spam

As an illustration, we present a review spam example built upon the model in Section 3.
Simplifications have been made for the sake of a better understanding of the methodology
and a reduction of the problem’s size and computation time. We support a merchant
website manager (defender) who tries to detect review spam about their purchasable
products. She regards each daily set of reviews per product as a batch and monitors
the number of reviews within it. If this is under a certain threshold, all comments are
accepted. However, if such threshold is exceeded, then she further inspects the batch
checking additional available information like the origins of each review and/or their
actual content as suggested in the references in Section 1. Thus, the proposed approach
serves for screening for spam in review batches.

Suppose the website manager is aware that some product is of current interest to
a recurrent spammer (attacker) on the website. Common actions for this spammer
could be to provide spam reviews from fake user accounts (faulty item injection, see
Ramilli and Prandini (2009) for information on spam injection) and/or altering reviews
by compromising accounts (item modification to faulty, see Ruan et al. (2015) for details
on compromised account behaviour).

We specify now the ingredients involved in the batch acceptance problem. The
choice of the form and the parameters of the prior distributions and, similarly, of the
utilities should be the result of an elicitation process, e.g. as described in O’Hagan et al.
(2006). For illustrative purposes, we select distributions which are convenient from a
mathematical point of view, e.g. gamma priors which are conjugate with respect to the
Poisson model. Other distributions, such as lognormal or Weibull, could have been
chosen making the computation more cumbersome but numerically easily tractable. For
the same explanatory purposes, the choice of the parameters is clearly arbitrary, but we
briefly describe typical ways of eliciting them in practice.

� The probability θ that a review is acceptable. We consider a beta distribution
Be(9, 1) as its prior. Procedures for eliciting the beta distribution parameters
have been well developed in the literature (Chaloner and Duncan, 1983). The
choice of parameters could be determined by assessments from various experts
on the expected acceptability of any single review, along with their uncertainty
about it and a range of the most likely values. In statistical terms, the Be(9, 1)
prior corresponds to an expected probability of a review’s acceptability of 0.9
with variance 0.008, while there is an approximate 90% probability of having an
acceptability rate in the interval [0.717, 0.994].

� The current rate λ of original posted reviews on the product. We associate
a gamma distribution Ga(5, 1) as its prior. We could resort again to expert
judgement and expect an original batch size of 5 daily reviews with an equal
variance, implying that there is an approximate 90% probability of having a value
in the interval [1.970, 9.150]. The number m of actual reviews per day will follow
a Poisson distribution with an average of λ reviews so that m |λ ∼ Po(λ).

� The (expected) costs associated with rejecting a batch with all acceptable reviews
and further inspecting it will be assumed to be c = 0.9 utility units.
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As for the attacker’s problem, suppose the following assessments are made:

� His gains and costs will be uniformly distributed as G ∼ U(0.8, 1), H ∼ U(0, 0.25),
F1 ∼ U(0.25, 0.5) and F2 ∼ U(0.3, 0.6). Two implicit assumptions are: (i) the
expected gain due to his own spam reviews (A-faults) is greater than that due to
already existing spam reviews (O-faults) as the attacker may better design them to
fulfill his objectives (E [G] > E [H]); and, (ii) on average, injecting spam reviews
involves less effort for the attacker than modifying comments by compromising
accounts as he has more control over the process (E [F1] < E [F2]).

� PA(d0 |n) will be modeled through a uniform distribution dependent on the final
batch size n. To avoid recursions, consider that the attacker relates it to the
defender’s non-adversarial context in Section 2. In terms of the batch original
expected acceptability, he could presume that the defender admits batches of size
n with probability Eθ [θ

n]. Additionally, he could weigh that probability by 0.5,
admitting that the defender might suspect him to be manipulating every other
batch. Then, we estimate

E [PA(d0 |n)] =
Eθ [θ

n]

2
=

1

2

n−1∏
k=0

9 + k

10 + k
=

9

18 + 2n
,

making use of the defender’s prior over θ and expression (1). To allow for some
uncertainty, and assuming that PA(d0 |n) > PA(d0 |n + 1) for every n ∈ N, we
adopt

PA(d0 |n) ∼ U

(
9

19 + 2n
,
9 10+n

9+n

19 + 2n

)
.

For the case n = 0, we consistently assume PA(d0 |n = 0) = 1.

� PA(θ) will be a Dirichlet process with a Be(9, 1) base and concentration parameter
ρ = 100, i.e. DirP(Be(9, 1), 100). A Bayesian approach on how to assess the
concentration parameter of a Dirichlet process, given its base distribution, relying
both on available information and/or expert judgement may be found in Dorazio
(2009).

Recall that y∗2 ∈ {0,m}. Therefore, the attack probabilities for each original batch size
m may be estimated using Monte Carlo simulation adapting Algorithm 1.
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Algorithm 2 Forecasting the Spammer’s Choices.

Data: Original batch size m; number of iterations K; upper bound for the amount of injected spam
reviews Y 1.

1: Set p̂D(y1, y2 |m) = 0 for y1 = 0, 1, . . . , Y 1, y2 = 0,m.

2: For k = 1 to K do

3: Sample gk ∼ U( 45 , 1), hk ∼ U(0, 14 ), f1,k ∼ U( 14 ,
1
2 ) and f2,k ∼ U( 3

10 ,
3
5 ).

4: Sample pk(θ) ∼ DirP(Be(9, 1), 100) and compute Eθ,k =
∫
θ pk(θ) dθ.

5: For y1 = 0 to Y 1 do

6: If m = 0 and y1 = 0 then
7: Set γk(y1) = gk.
8: Else

9: Sample π0,k(y1) ∼ U

(
9

19 + 2m+ 2y1
,

9 10+m+y1

9+m+y1

19 + 2m+ 2y1

)
and compute γk(y1) = gk π0,k(y1).

10: End If

11: Compute ψk(y1, 0) = y1 (f1,k − γk(y1))−m hk

gk
(1− Eθ,k) γk(y1).

12: Compute ψk(y1,m) = y1 (f1,k − γk(y1)) +m (f2,k − γk(y1)).

13: End For

14: Find (y∗1 , y
∗
2) = argmin

y1,y2

ψk(y1, y2) and set p̂D(y∗1 , y
∗
2 |m) = p̂D(y∗1 , y

∗
2 |m) + 1.

15: End For

16: Set p̂D(y1, y2 |m) = p̂D(y1, y2 |m)/K for y1 = 0, 1, . . . , Y 1, y2 = 0,m.

Tables 1 and 2 reflect an application of the scheme with K = 103 iterations (sufficient
for illustrative purposes) and an upper bound for the amount of injected spam reviews
of Y 1 = 5, leading to the estimates of p̂D(y1, y2 |m) for an original batch size of m =
0, 1, . . . , 10. According to both tables, the relevant final batch size possibilities may be
constrained to n = 0, 1, . . . , 10.

Table 1: Defender’s Estimation of p̂D(y1, y2 = 0 |m).

Original Batch Size - m
Attack - y1 0 1 2 3 4 5 6 7 8 9 10

0 0.394 0.365 0.543 0.710 0.841 0.923 0.969 0.992 1.000 1.000 1.000
1 0.294 0.204 0.167 0.134 0.105 0.062 0.029 0.008 0.000 0.000 0.000
2 0.214 0.134 0.092 0.055 0.029 0.006 0.002 0.000 0.000 0.000 0.000
3 0.084 0.051 0.029 0.008 0.000 0.001 0.000 0.000 0.000 0.000 0.000
4 0.014 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2: Defender’s Estimation of p̂D(y1, y2 = m |m).

Original Batch Size - m
Attack - y1 0 1 2 3 4 5 6 7 8 9 10

0 0.394 0.191 0.149 0.088 0.025 0.008 0.000 0.000 0.000 0.000 0.000
1 0.294 0.036 0.015 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
2 0.214 0.011 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3 0.084 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
4 0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

We conclude that:
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� The spammer will unlikely alter all original reviews by compromising accounts
(y2 = m), but rather just favour the production of his own spam reviews from fake
user accounts without compromising any accounts (y2 = 0).

� Attacks are only likely for small amounts of original reviews (m = 0, 1 in the
present example), avoiding significant perturbations of the batch size (given the
small probabilities for y1 > 2).

Making use of Tables 1 and 2 to compute q(n | θ, λ) in Lemma 1, the website manager
may estimate the expected probability that all n reviews she is monitoring are acceptable.
Table 3 provides such probabilities, as well as the optimal choice based on decision rule
in Proposition 2 with 1/(1 + c) = 0.526 (being c = 0.9).

Table 3: Defender’s Optimal Decision Given the Final Amount of Reviews.

Final Batch Size - n
0 1 2 3 4 5 6 7 8 9 10

Accept, d0 Yes No Yes Yes Yes No No No No No No
Eθ,λ [q(n | θ, λ)] 1.000 0.524 0.532 0.535 0.529 0.509 0.511 0.526 0.512 0.500 0.474

The following remarks stem from Tables 1, 2 and 3:

� When an empty batch is received (n = 0), the model obviously accepts the batch
since there cannot be spam reviews.

� For smaller original batch sizes, the spammer is encouraged to both inject spam
reviews and/or modify comments by compromising accounts as it is more likely
that all original reviews are acceptable. This might cause the website manager to
further inspect (reject) batches with a small size (n = 1 in our example).

� For bigger original batch sizes, the spammer is discouraged to intervene and thus
avoid costs as it is more likely that some original reviews are already spam. This
might lead the website manager to accept batches with a medium size (n = 2, 3, 4
in this example).

� In line with Proposition 2, there is a threshold size (n1 = 5 in the present example)
such that any monitored batch bigger than that will always be rejected (hence
investigated) by the website manager, as she will expect the original batch to
already include spam reviews.

To exemplify the Bayesian updating of the defender’s optimal acceptance policy, assume
that 38 reviews have been posted about the concerned product within a week and the
website manager has inspected all of them determining that just 4 were spam. According
to expression (2), and identifying t = 7 (received batches), r = 38 (total amount of items
in the batches) and s = 34 (acceptable items), Table 4 reflects the updated optimal
decision rule, which differs from the initial one.

Table 4: Defender’s Updated Decision Given the Final Amount of Reviews.

Final Batch Size - n
0 1 2 3 4 5 6 7 8 9 10

Accept, d0 Yes Yes Yes Yes Yes No No No No No No
Eθ,λ [q(n | θ, λ)] 1.000 0.534 0.547 0.548 0.536 0.502 0.480 0.463 0.433 0.402 0.366
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We end up by providing a comparison with what would be the behaviour of an adversary-
unaware decision-maker, as discussed in Corollary 1. The acceptance rule for an adversary-
unaware defender is given by Proposition 1 based on Eθ [θ

n]. In our example, this
results in the optimal policy depicted in Table 5, leading the website manager to accept
all batches with n ≤ 8, so that the threshold value alluded in such proposition is
m1 = 8, indeed verifying m1 ≥ n1. This is caused by having high values for both the
expected acceptability rate (0.9) and the costs associated with inspecting a batch (reject)
when all reviews are acceptable (c = 0.9), so that the adversary-unaware defender
has low incentives for inspecting small to medium size batches. Hence, we may safely
conclude that by only considering the potential inclusion of O-faults in the batch and not
acknowledging the addition of A-faults, the website manager’s decision policy is clearly
less prudent from that used by the adversary-aware defender.

Table 5: Adversary-Unaware Defender’s Decision Given the Final Amount of Reviews.

Final Batch Size - n
0 1 2 3 4 5 6 7 8 9 10

Accept, d0 Yes Yes Yes Yes Yes Yes Yes Yes Yes No No
Eθ [θ

n] 1.000 0.900 0.818 0.750 0.692 0.643 0.600 0.562 0.529 0.500 0.474

5 Discussion

We have provided an ARA framework to deal with adversarial batch acceptance problems.
In this way, symmetric losses and strong common knowledge assumptions typical of
non-cooperative game theory are avoided. We have assumed that we were supporting
a defender who needs to accept or reject an incoming batch of items observing its size,
while a purposeful attacker may perturb the batch composition and, potentially, its size,
prior to her observation. In doing this, the defender has to forecast the attacker’s action
and find her own optimal alternative.

We have assumed that the defender only perceives the batch size, although other
observable features may be recognized and incorporated to the model separately or
using more complex metrics, e.g. as in cargo container screening (Gaukler et al., 2012;
Dreiding and McLay, 2013; Merrick and Albert, 2018) or spam detection (Sculley and
Wachman, 2007; Zhang et al., 2014; Luckner et al., 2014). When the defender has no
information about the observable feature(s) other than her previous experience, we could
think of a multi-stage version of the model in Section 3 or a sequential hypothesis testing
framework (Tartakovsky et al., 2014) as in compromised machine detection (Duan et al.,
2012). Other loss functions for the defender could be explored as well, e.g. depending
on the number of faulty items in the batch, as in Schlenker et al. (2016). Regarding the
attacker, different loss structures could be explored as well.

Finally, our batch acceptance model has been illustrated with a review spam example
considering a simplified version of a merchant website manager trying to detect review
spam on purchasable products. When applying the model to a real case, a multi-period
problem allowing for information updating, as in Zhuang et al. (2010) or Hausken and
Zhuang (2011), or deeper recursive thinking strategies, as in McLay et al. (2012), Ŕıos
and Ŕıos Insua (2012) or Shapiro et al. (2014), could be considered. In addition, new
strategies for the attacker, such as the injection of (apparently) non-spam reviews to
confound the defender (Duan et al., 2012), could be used as an evasion technique.
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Moreover, the defender could use alternative procedures to detect spam reviews based
on batches consisting of weekly reviews per user towards identifying fraudulent rating
behaviour as in Lim et al. (2010) or Hooi et al. (2016).

Batch acceptance problems with multiple attackers are also of significance (Hausken
and Bier, 2011), where an ARA perspective would support the defender versus all
attackers. In such cases, we would need to determine the relationship between the
attacks which could be completely independent, influence somehow each other or be
partially or totally coordinated. Multiple defenders could also be considered (Jiang
et al., 2013) with different cooperation levels and their own observations of the batch
features.

Proofs of Results

Proof of Proposition 1: Under Assumptions A1 and A2, Table 6 reflects the losses
suffered by the decision-maker for both of her choices under the two key scenarios:
(i) having a batch with all items acceptable; and (ii) having some (at least one) faulty
items in the batch. The table also displays the probability of such scenarios for a batch
with m items, as well as the expected losses for each decision, given θ.

Table 6: Decision-maker’s Loss Structure - Batch of m Items.

D’s Decision All Acceptable Some Faulty Exp. Loss
Accept, d0 0 1 1− θm

Reject, d1 c 0 c θm

Probability θm 1− θm

As displayed in Table 6, the expected losses of both decisions d0 (accept) and d1
(reject) with respect to the unknown item acceptability rate θ are, respectively,

ψD(d0) = Eθ [1− θm] = 1− Eθ [θ
m] , ψD(d1) = Eθ [c θ

m] = cEθ [θ
m] .

The decision-maker’s optimal decision is then to accept the batch (d0) if and only if

ψD(d1) ≥ ψD(d0) ⇐⇒ cEθ [θ
m] ≥ 1− Eθ [θ

m] ⇐⇒ Eθ [θ
m] ≥ 1

1 + c
. (4)

Now, if p(θ = 1) = 0, so that θ ∈ [0, 1) almost surely, the expected value Eθ [θ
m] is a

decreasing function in m converging to 0 as m → ∞. Therefore, there is a threshold
value m1 such that the optimal decision is to reject the batch (d1) if m > m1.

Proof of Lemma 1: Let us express the probability that all items in a final batch of
size n are acceptable as q(n | θ, λ) = pD(x0 = n, y1 = 0, y2 = 0 |n, θ, λ). According to
the Law of Total Probability, the probability of having a final batch with size n = m+y1
items, given λ, is

pD(n |λ) =
n∑

i=0

pD(y1 = n− i |m = i) pD(m = i |λ),

reflecting all feasible combinations of m initial batch sizes and y1 injected faulty items.
Then, we deduce that the probability of having no A-faults (y1 = y2 = 0) in a final
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batch of n items, given λ, corresponds to

pD(y1 = 0, y2 = 0 |n, λ) = pD(y1 = 0, y2 = 0 |m = n) pD(m = n |λ)
pD(n |λ)

=
pD(y1 = 0, y2 = 0 |m = n) pD(m = n |λ)∑n

i=0 pD(y1 = n− i |m = i) pD(m = i |λ)
.

Finally, the probability that all n items in the final batch are acceptable, given θ and λ,
is

q(n | θ, λ) = pD(y1 = 0, y2 = 0 |n, λ) pD(x0 = n |m = n, θ)

=
pD(y1 = 0, y2 = 0 |m = n) pD(m = n |λ)∑n

i=0 pD(y1 = n− i |m = i) pD(m = i |λ)
θn,

since the only circumstance for an acceptable final batch is having n initial acceptable
items (x0 = m = n) and no faulty items included through injection or modification
(y1 = y2 = 0).

Proof of Proposition 2: According to Assumption A3 and Lemma 1, Table 7 presents
the loss structure for the defender, given our assumptions, for both of her choices under
the two scenarios of interest (all items acceptable, some items faulty). Besides, the
probability of such scenarios for a final batch with n items is also reflected, as well as
the expected losses for each decision given θ and λ.

Table 7: Defender’s Loss Structure - Final Batch of n Items.

D’s Decision All Acceptable Some Faulty Exp. Loss
Accept, d0 0 1 1− q(n | θ, λ)
Reject, d1 c 0 c q(n | θ, λ)
Probability q(n | θ, λ) 1− q(n | θ, λ)

Thus, the expected losses of both decisions d0 (accept) and d1 (reject) with respect
to the unknown item acceptability θ and arrival λ rates are

ψD(d0) = 1− Eθ,λ [q(n | θ, λ)] , ψD(d1) = cEθ,λ [q(n | θ, λ)] .

The defender’s optimal rule is then to accept the batch (d0) if and only if

Eθ,λ [q(n | θ, λ)] ≥
1

1 + c
. (5)

Now, since pD(y1 = 0, y2 = 0 |n, λ) ∈ [0, 1], the expected value Eθ,λ [q(n | θ, λ)] =
Eθ,λ [pD(y1 = 0, y2 = 0 |n, λ) θn] is bounded from below by 0 and bounded from above
by Eθ [θ

n] which is a decreasing function in n converging to 0 as n → ∞. Thus,
Eθ,λ [q(n | θ, λ)] also converges to 0 as n→ ∞ and there is a threshold value n1 such that
the optimal choice is to reject the batch (d1) if n > n1.

Proof of Corollary 1: For an adversary-unaware defender, the acceptance rule would
be expression (4) based on Eθ [θ

n] (Proposition 1). An adversary-aware defender would
use rule (5) resorting to Eθ,λ [q(n | θ, λ)] instead (Proposition 2). The result holds since
q(n | θ, λ) = pD(y1 = 0, y2 = 0 |n, λ) θn with pD(y1 = 0, y2 = 0 |n, λ) ≤ 1 being a
probability.
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Proof of Proposition 3: Under Assumption A4, Table 8 depicts the attacker’s loss
structure from the defender’s perspective. Losses depend on the batch composition
and the decisions made by both agents with x0 ∈ {0, 1, . . . ,m}, y1 ∈ {0, 1, 2, . . .} and
y2 = y02 + y12 ∈ {0, 1, . . . ,m}.

Table 8: Attacker’s Loss Structure per Item.

D’s Decision Acceptable O-Fault Inj. A-Fault Mod. A-Fault
Accept, d0 0 −h f1 − g f2 − g
Reject, d1 0 0 f1 f2
Amount x0 − y02 m− x0 − y12 y1 y2

According to the loss structure in Table 8, given that the attacker chooses to inject
y1 and modify y2 items to faulty, his expected losses associated with both defender’s
decisions are

lA(d0, y1, y2) = −h (m−x0−E
[
y12
]
)+(f1−g) y1+(f2−g) y2, lA(d1, y1, y2) = f1 y1+f2 y2.

As he randomly picks the y2 items among the m original items in the batch (Assumption
A3), then E [y12] = y2

m−x0

m
, so that

lA(d0, y1, y2) = −h (m− x0) (1− y2
m
) + (f1 − g) y1 + (f2 − g) y2.

Knowing that the original batch size is m, the attacker should select (y∗1, y
∗
2)(m) to

minimize his expected loss

ψA(y1, y2 |m) = pA(d0 |n = m+ y1)

∫ ( m∑
x0=0

lA(d0, y1, y2) pA(x0 |m, θ)

)
pA(θ) dθ

+(1− pA(d0 |n = m+ y1)) lA(d1, y1, y2)

= y1 (f1 − γ(y1)) + y2 (f2 − γ(y1))

− h
g

(
1− y2

m

)
γ(y1)

∫ ( m∑
x0=0

(
m
x0

)
θx0 (1− θ)m−x0 (m− x0)

)
pA(θ) dθ

= y1 (f1 − γ(y1)) + y2

(
f2 −

(
1− h

g
(1− EA[θ])

)
γ(y1)

)
−m h

g
(1− EA[θ]) γ(y1).

For the additional conclusions (i) and (ii) observe that:

(i) If pA(d0 |n) ≤ f1−ε
g

for all n ≥ n0, so that the attacker’s expected loss per injected

A-fault f1 − pA(d0 |n) g is uniformly bounded from below by ε for large enough
batch sizes n, then 0 ≤ γ(y1) ≤ f1 − ε for all y1 ≥ n0 −m. As a result, since we
can rewrite the attacker’s expected loss as

ψA(y1, y2 |m) = y1 (f1 − γ(y1)) + y2 (f2 ± k1 γ(y1))− k2 γ(y1)

with k1, k2 ≥ 0 (note that 1 − h
g
(1− EA[θ]) might be lower than 0 if h > g), it

holds that

ψA(y1, y2 |m) ≥ y1 ε+ y2 (f2 − k1 (f1 − ε))− k2 (f1 − ε)
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for all y1 ≥ n0 −m. Being 0 ≤ y2 ≤ m, we conclude that the optimal amount y∗1
of injected items must be bounded.

(ii) The attacker’s expected loss (3) is linear in y2 ∈ {0, 1, . . . ,m} with slope f2 −(
1− h

g
(1− EA[θ])

)
γ(y1), reflecting whether it is worth for the attacker to modify

items based on its sign. Then, whichever the actual value of y∗1, the optimal value

of y2 is y∗2 = 0 when f2 >
(
1− h

g
(1− EA[θ])

)
γ(y∗1) (positive slope), and y∗2 = m

when f2 <
(
1− h

g
(1− EA[θ])

)
γ(y∗1) (negative slope). A null slope makes optimal

all y2 ∈ {0, 1, . . . ,m}.

Proof of Proposition 4: For each atomic element ω ∈ Ω, choose the corresponding
parameters and probabilities

(
Gω, Hω, F ω

1 , F
ω
2 , P

ω
A (d0 |n), P ω

A (θ)
)
. Proposition 3 is then

applicable and we may find the attacker’s optimal policy (y∗1, y
∗
2)

ω(m) minimizing in y1
and y2 his expected loss

Ψω
A(y1, y2 |m) = y1 (F

ω
1 − Γω(y1)) + y2

(
F ω
2 −

(
1− Hω

Gω

(
1− EP, ω

A [θ]
))

Γω(y1)
)

−m Hω

Gω

(
1− EP, ω

A [θ]
)
Γω(y1).

The set of optimal solutions (y∗1, y
∗
2)

ω(m) for each atomic element ω ∈ Ω, together
with the probability space (Ω,A,P), thus defines the attacker’s random optimal policy
(Y ∗

1 , Y
∗
2 )(m). Now, if PA

(
F2 =

(
1− H

G

(
1− EP

A [θ]
))

Γ(Y ∗
1 )
)

= 0, conclusion (ii) in
Proposition 3 guarantees that y∗, ω2 ∈ {0,m} almost surely for each atomic element
ω ∈ Ω. Hence, Y ∗

2 ∈ {0,m} almost surely.
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Notation Summary

To facilitate reading, we provide a summary of the main notation.

ARA Adversarial Risk Analysis.

ID Influence Diagram.

BAID Bi-Agent Influence Diagram.

O-faults Outer faults (original faulty items).

A-faults Attacker faults (faulty items introduced by attacker).

d/D Defender’s choice upon acceptance / related decision node.

m/M Original batch size / related chance node.

θ /Θ Item acceptability rate / related chance node.
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x/X Original batch composition / related chance node.

x0 /x1 Number of original acceptable / faulty items.

lD Defender’s loss function and related loss node.

c Defender’s (expected) opportunity cost upon rejecting a batch with all items
acceptable.

Eξ [·] Expected value with respect to random variable ξ.

ψD Defender’s expected loss function.

a/A Attacker’s action / related decision node.

y /Y Final batch composition / related chance node.

n/N Final batch size / related chance node.

λ/Λ Item arrival rate / related chance node.

x/X Original batch composition / related chance node.

lA Attacker’s loss function and related loss node.

y1 Number of faulty items injected by attacker.

y2 Number of original items modified to faulty by attacker.

y0
2 /y

1
2 Number of original acceptable / faulty items modified to faulty by attacker.

q(n |θ, λ) Probability that all items in a final batch of size n are acceptable.

pD(·) Probabilities from defender’s perspective.

pA(·)/PA(·) Probabilities from attacker’s perspective / defender’s random version.

h/H Attacker’s (expected) gain per O-fault / defender’s random version.

g /G Attacker’s (expected) gain per A-fault / defender’s random version.

f1 /F1 Attacker’s (expected) cost per injected A-fault / defender’s random version.

f2 /F2 Attacker’s (expected) cost per item modified to A-fault / defender’s random
version.

γ(y1)/Γ(y1) Attacker’s expected gain per A-fault / defender’s random version.

ψA /ΨA Attacker’s expected loss function / defender’s random version.

y∗
1 /y

∗
2 Optimal amount of injected / modified items by attacker.

(Ω,A,P) Common probability space modeling defender’s uncertainty about attacker.

ω Atomic element of probability space.
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J ω Instance of random parameter J based on atomic element ω.

P ω
A (·)/EP, ω

A [θ] Instance of distribution / expected value of PA(·) on probability
space.

EP
A [ξ] Random expected value of randomized variable ξ on probability space.

Y ∗
1 /Y

∗
2 Distribution over optimal amount of injected / modified items by attacker.

K Number of iterations in Monte Carlo simulation.

Y 1 Upper bound for amount of injected items by attacker.
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