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Abstract

We use laboratory experiments to evaluate the effects of cognitive stress on inventory

management decisions in a finite horizon economic order quantity (EOQ) model. We ma-

nipulate two sources of cognitive stress. First, we vary individuals’ participation in a pin

memorization task. This exogenously increases cognitive load. Second, we introduce an

intervention to reduce cognitive stress by only allowing participants to order when inventory

is depleted. This restricts the order choice set. Increases in cognitive load negatively impact

earnings with and without the intervention, with these impacts largely occurring in the first

attempt of the task. With repetition, participants’ choices in all treatments trend to near op-

timal policy adoption. However, only in the intervention and low cognitive load treatment

do the majority of choices reach the optimal policy. We estimate the learning dynamics

of order decisions using a Markov learning model. Estimates suggest increased cognitive

load reduces the probability of switching to more profitable policies. Choice set complexity

increases biases for smaller order size adjustments, leading to greater policy lock-in.
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1 Introduction

Best inventory management practices call for the solution of dynamic optimization problems.

This requires inventory managers to parse complex sets of alternative solutions and to use their

short-term memory to hold and process information about the past, present, and future values

of key variables. Current workplace trends impose increasing demands upon these managers’

cognitive resources (Ruderman et al., 2017). Some examples of these trends are increasing

complexity of supply chains (Bode and Wagner, 2015), and widely accepted increasing rates

and scale of natural disasters and global social upheavals (Guan et al., 2020; Li et al., 2021).

We assess how increasing cognitive stress through the introduction of an additional task impacts

decision-making quality, and how a strategic intervention can mitigate the impact of this stress.

An extensive literature shows that, even under the best of circumstances, individuals systemat-

ically make suboptimal inventory management decisions. Decision-making biases and strategic

considerations are often key factors diminishing individual performances in these tasks (Niran-

jan et al., 2011). When managing the inventory of a perishable good with uncertain demand,

i.e. the newsvendor problem, decision makers neither follow the optimal risk neutral nor averse

policies consistently in experimental studies.1 Feng et al. (2011) observed the “pull-to-center”

effect in a cross-national laboratory study, using the newsvendor problem with a participant

pool of Chinese and American decision makers. When there is a multi-level supply chain for

a non-perishable good and certain demand, participants generate large bullwhip effects in beer

game experiments. Research has shown key factors driving the excessive inventory levels and

variance include strategic uncertainty regarding other decision makers (Croson et al., 2014),

limited level two thinking (Narayanan and Moritz, 2015) and failure to fully take account of

the future deliveries of past orders. In the setting of a durable good with uncertain demand,

optimal inventory management follows the (S, s) policy. Experimental studies (Magnani et al.,

2016; Khaw et al., 2017) demonstrate that individuals take time to find the optimal policy,

their policy adaptations are idiosyncratic and often participants abandon the optimal policy

once found. Despite all being important inventory management environments, none are ideal to

begin an evaluation of how cognitive stress diminishes decision-making quality. The reason is

that decision makers’ performances are already suboptimal in their respective most favourable

experimental conditions.

A more suitable inventory management environment should have two properties: the optimal

policy is invariant to a decision maker’s individual preferences and the majority of decision

makers can find the optimal policy after repetitions. The finite horizon deterministic EOQ en-

vironment potentially possesses these properties. We choose the parameters of our environment

such that the optimal inventory policy of the finite horizon matches that of the infinite horizon;

when inventory is depleted, the manager orders an optimal quantity that is the multiple of the

monthly demand for the good (Schwarz, 1972). We refer to this multiple as an EOQ cycle

length. While eliminating some common complications of inventory environments in practice,

this EOQ environment has several favourable features for our research question: participants

have a relatively good chance of finding the optimal policy; the solution is invariant to a decision

1See Katok et al. (2018) for an introduction and partial survey of this literature.
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maker’s risk attitude; and, it is an individual decision problem absent of strategic considerations.

The EOQ solution in our environment is dynamic, as the manager doesn’t make the same

decision at each point in time. This gives us an opportunity to observe pure learning behavior

in a dynamic problem. In most behavioral supply chain studies, participants do not determine

when to act. In our “Unrestricted” treatment, participants can order additional inventory each

month regardless of the current inventory level. Our intervention, the “Zero Only” treatment,

removes the possibility of violating the optimal inventory policy by forbidding participants from

ordering when there is a positive level of inventory. The other aspect of our experimental design

is the presence of an additional task competing for the participants’ short term memory resources

- we call this our “High” treatment. Our “Low” treatment doesn’t involve this competing task.

The crossing of the intervention treatments and cognitive load treatments constitute our 2× 2

experimental design.

There is an a priori belief that our intervention will yield economically significant improvements.

A growing literature in economics, e.g., Caplin et al. (2011); Masatlioglu et al. (2012); Abeler and

Jäger (2015); Lleras et al. (2017), examines and measures how individual choices are increasingly

suboptimal as their choice sets increase in complexity. Bolton and Katok (2008) find that

reducing the number of order options does not necessarily result in better performance for

newsvendor decisions. However, Feng et al. (2011) observe that thinning the set of order options

in a way that the optimal order quantity is not an extreme option in the choice set does lead

to better performance. Our Unrestricted treatment corresponds to the case of an unsupported

inventory manager, while the simplified choice set of the Zero Only treatment corresponds to

active management intervention. This allows our experiment to provide evidence on the value

of this practice.

The second factor we investigate is the presence of a concurrent task that competes for the

inventory manager’s cognitive resources. Tokar et al. (2012) finds experimental evidence of

cognitive overload with an increased quantity of information. In practice this would involve

the introduction of inventory management responsibilities of additional product lines. However,

managing the inventory of an additional product line typically introduces cross-demand impacts

and potential synergies for inventory costs reductions. To control for the “costs” and “benefits”

of successful inventory management we introduce an additional task unrelated to the inventory

management one.

This concurrent task is the memorization of a PIN code at the beginning of each inventory year,

and successful recall at the end of the year earns a monetary reward. The PIN task was first

introduced by Miller (1956), and has been successively used in economics and psychology to

exogenously shock cognitive load. Some examples of its application are in food choice (Shiv and

Fedorikhin, 1999), generosity (Roch et al., 2000), strategic games (Allred et al., 2016; Duffy and

Smith, 2014) and intertemporal choice (Hinson et al., 2003). Deck and Jahedi (2015) surveys

the use of PIN task in economic experiments with financial incentives as well as reporting new

experiments, one of which finds increasing PIN length reduces individual numeracy. To the best

of our knowledge, we are the first to use this technique in behavioral operations management.

Correspondingly, this allows our experiment to evaluate the impact of asking inventory managers
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to multitask.

Our results show that experimental participants earn less when there is a competing task or

when the intervention is absent. We observe there is a trend that participants learned to adopt

near optimal EOQ policies in general. The restriction of managers to only place orders when

inventories are exhausted and the alleviation of the competing task improved the chance for

decision makers to reach the optimal inventory policy. It should be noted that these performance

differences and suboptimal choices largely occur in the first three iterations of our environment.

As performance improves rapidly across treatments, we attempt to characterize the individual-

level learning driving this trend. In a simple framework that models an individual using an

Elimination-By-Aspect (EBA) (Tversky, 1972) choice architecture, we first estimate the propen-

sity to follow the basic characteristics of EOQ solutions: avoiding stockouts or carrying excess

inventories. We find that iterations of the task quickly diminish the probability of making such

choices and, surprisingly, imposing high cognitive loads doesn’t affect these probabilities. Once

participants follow EOQ types of actions, we model the number of monthly demand orders

requested, the EOQ cycle length, using a Markov learning model (Shachat and Zhang, 2017),

which quantifies the low rationality of simply increasing the likelihood of choosing payoff im-

proving choices, an essence of Learning Direction (LD) theory (Selten and Stoecker, 1986). Our

estimates of the model suggest that under high cognitive load participants are less likely to

switch to EOQ cycle lengths that increase payoffs. The estimates also suggest that with more

complicated policy choice sets participants are more reluctant to make large changes in EOQ

cycle length leading to greater sub-optimal policy lock-in.

We have found limited other experimental research examining behavior in finite horizon EOQ

environments.2 Pan et al. (2020) build upon the theoretical framework and experimental design

we introduce here. They examine individual differences in a stationary limited horizon EOQ

setting with a distinctive sample of participants and a similar EOQ finite horizon setting with

different parameter values. Further, absent of the cognitive stress interventions, their exper-

imental instrument incorporates our Unrestricted-Low treatment. Pan et al. (2020) focus on

individual heterogeneity in terms of cognitive reflection, which is measured by the Cognitive

Reflection Test (CRT). They find participants with higher CRT scores tend to choose more

effective inventory management policies. However, the performance gap is transitory as partic-

ipants with lower CRT scores exhibit faster learning. Pan et al. (2020) study learning in the

same framework as ours. They find that individuals with higher cognitive ability are more likely

to switch to more profitable actions and also exhibit less policy lock-in.

2 Experiment

2.1 Inventory decision task

In the core decision-making part of our experiment, participants complete a series of six discrete

dynamic inventory management tasks. We refer to each task as a year, indexed zero to five,

and each year consists of twelve months, indexed by t. We use the following context to describe

2We found two experimental studies which examine infinite horizon EOQ models: Stangl and Thonemann
(2017) and Chen and Wu (2017).
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these tasks to a participant.

The participant manages the enterprise ‘S-store’ which sells coffee makers with a constant

demand rate (D) of 10 units per month. S-store sells a new model of coffee maker every year.

Coffee maker orders are placed prior to the start of a month, an integer amount denoted qt, and

arrive without lag, hence are included in the calculation of a month’s opening inventory. The

participant chooses the quantity of each monthly order.

Monthly orders and demand determine the changing inventory levels. Let It denote the closing

inventory for month t. The initial inventory of coffee makers prior to month one is zero, so

the first month’s opening inventory is the amount of the first month’s coffee maker order, i.e.

I0 + q1 = q1. In general, the opening inventory of coffee makers in month t is It−1 + qt. This

inventory is drawn down by monthly sales, the lesser of the monthly order flow of 10 or the

opening inventory (i.e. a stockout). This results in the closing inventory of It = It−1 + qt −
min{10, It−1 + qt}. When the model life cycle concludes at the end of month 12, any remaining

inventory is disposed at no cost but also generates no revenue. Further, we limit a participant’s

monthly order by its annual demand, i.e., qt ∈ {0, 1, 2, . . . , 120}.

A participant’s compensation, excluding a fixed show-up fee, is proportional to S-store’s profits,

which are expressed - as are all further monetary quantities - in experiment currency units

(denoted �). Each coffee maker sells at a price of �7. So revenue in month t is 7 ·min{10, It−1 +

qt}. S-store’s cost has two components: a fixed ordering cost, S, of �45 whenever she places a

strictly positive order; and a constant per-unit monthly inventory holding cost. The monthly

inventory holding costs is calculated by multiplying the average inventory of coffee makers held

in t, specifically (It−1+qt+It)
2 , and the monthly holding cost, h, of �1 per unit. The monthly

profit of S-store is the difference between the revenue and costs, and is calculated

πt(qt, It−1) =

7 · 10− S · 1qt>0 − It−1+qt+It
2 · 1 if It−1 + qt ≥ 10

7 · (It−1 + qt)− S · 1qt>0 − It−1+qt
2 · 1 if It−1 + qt < 10

where, 1 is the indicator function.

A participant i’s inventory policy for year a is the sequence of the twelve monthly quantity

orders, Qi,a = (qi,1, qi,2, . . . , qi,12). For a given inventory policy S-store’s annual profits are,

Πi,a(Qi,a) =

12∑
t=1

πt.

In the supply chain literature, the set of EOQ policies is the subset of inventory policies which

only place a quantity order once inventory reaches zero with no stockouts allowed. In our

dynamic decision-making environment, stockouts can occur if a non-optimal policy was chosen

previously. Correspondingly, we adjust the definition of an EOQ policy to classify choices at

these points off the optimal path.

Definition 1. An EOQ action is a temporal inventory management decision satisfying the

following conditions:
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(1). A participant only orders when the closing inventory of the previous period is less than 10

units, i.e., qt > 0 when It−1 < 10;

(2). A participant doesn’t order when the closing inventory of the previous period is at least 10

units, i.e., qt = 0 when It−1 ≥ 10;

(3). Participant’s order guarantees no stockouts in t, i.e., It−1 + qt ≥ 10.

Definition 2. An EOQ policy is a inventory management policy that consists only of EOQ

actions.

The original EOQ model solution is derived assuming an infinite demand horizon, in which the

average cost minimizing EOQ policy is to order the following quantity whenever the closing

inventory of the previous period is zero,

q∗ =

√
2DS

h
. (1)

In our context, the cost minimizing policy would be to order 30 coffee makers, an EOQ cycle

length of three months, whenever closing inventory of the previous period is zero. This would

also be the profit maximizing policy as average revenue is constant, up to the monthly demand

capacity, and is greater than the minimum average cost. In our finite horizon setting the optimal

policy does not change. However, if an inventory manager deviates from this policy early in the

year, the optimal course can involve alternative EOQ actions later in the year.

Schwarz (1972) characterizes the optimal EOQ policies for the finite horizon of T months. First,

we note the result that average total cost minimizing policy is to order according to Equation 1

if T is an integer multiple of the
q∗

D
. As simply following the EOQ policy of ordering 10 units

each period is profitable in our environment, profit maximization will call for satisfying the full

annual demand. The EOQ policy of always taking the EOQ action of 30 when inventory is

depleted maximizes profit in addition to minimizing average cost.

As individuals do fail to act optimally, we now consider alternative decision horizons (i.e. shorter

in this case). Let C(T ) be total incremental cost over the finite time interval T . We restrict

our attention to policies which only place orders when inventory is zero. An EOQ cycle length

is the interval of months between such orders, denoted by sk, which is the interval between the

(k − 1)th and the kth order. Let C(sk) be the total incremental cost for an EOQ cycle, and n

be the number of orders over T . We can formulate the problem as

min C(T ) =
n∑

k=1

C(sk) s.t.
n∑

k=1

sk = T

where

C(sk) = S + hDt2/2.

From the quadratic formulation, it is clear that in the optimal solution all of the sk are of the

same length. An EOQ constant inventory policy, denoted Q̄sk , is one with a constant cycle

length.
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Let Cn(T ) be the total incremental cost for the interval T given n orders,

Cn(T ) = nS + hDT 2/2n.

Minimising Cn(T ) gives

n∗ =

√
hDT 2

2S
.

Notice for the first month in our task, i.e. T = 12, this yields the same solution as the infinite

horizon formulation, n∗ = 4 and s∗k = 3.3 Further investigations on situations when the horizon

T is sufficiently small reveals that the optimal number of orders, n∗, is the smallest integer

satisfying n(n+ 1) ≥ hDT 2

2S
. With the parameter values in our task, Table 1 gives an overview

of the optimal solutions for different values of T .

Table 1: Optimal solutions for different T in our task

Month T
hDT 2

2S
n∗(n∗ + 1)

The optimal
order number
(n∗)

The optimal EOQ
cycle length (s∗k) se-
quence

The optimal or-
der size (q∗k)

12 1 0.111 2 1 {1} {10}
11 2 0.444 2 1 {2} {20}
10 3 1 2 1 {3} {30}
9 4 1.778 2 1 {4} {40}
8 5 2.778 6 2 {3, 2} {30, 20}
7 6 4 6 2 {3, 3} {30, 30}
6 7 5.444 6 2 {3, 4} {30, 40}
5 8 7.111 12 3 {3, 3, 2} {30, 30, 20}
4 9 9 12 3 {3, 3, 3} {30, 30, 30}
3 10 11.111 12 3 {3, 3, 4} {30, 30, 40}
2 11 13.444 20 4 {3, 3, 3, 2} {30, 30, 30, 20}
1 12 16 20 4 {3, 3, 3, 3} {30, 30, 30, 30}

With our finite horizon of one year, the following set of constant EOQ cycles sk = {1, 2, 3, 4, 6, 12}
and the corresponding constant EOQ policies are of particular interest. Table 2 shows for these

EOQ constant policies the corresponding annual profits, the number of orders placed annually

and the percentage of maximum potential annual profits, i.e. efficiency. Notice that EOQ con-

stant 2 and 4 both generate over 93% of the potential annual profits. Given the minimal loss

incurred by adopting these policies we define an alternative decision quality benchmark. When

a participant chooses sk = {2, 4} we call this “near optimal” performance.

2.2 Experimental design

Our experimental design has two treatment variables, each of which has two categories. This

generates a 2×2 factorial experimental design. We adopt a between subject design; a participant

only experiences one of the four possible treatment cells.

The first treatment variable is the feasible set of inventory policies a participant can follow. The

first category is called “Unrestricted”, where a participant can choose any quantity they wish

3Pan et al. (2020) use the same inventory management decision problem as we do but with different parameter
values. In their setting, the monthly demand is 20 units, price is �5 per unit, the fixed ordering cost is �80,
and the constant monthly holding cost is �0.5 per unit. These parameters yield a different optimal solution, i.e.,
n∗ = 3 and s∗k = 4.
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Table 2: Alternative EOQ constant strategies which do not generate stockouts or positive closing
inventories in month 12 and their respective performance properties.

Q̄sk

The number
of orders per
year

Constant
order size

Profit per
EOQ cycle

Annual profit Efficiency

12 1 120 75 75 15.63%
6 2 60 195 390 81.25%
4 3 40 155 465 96.88%
3 4 30 120 480 100.00%
2 6 20 75 450 93.75%
1 12 10 20 240 50.00%

each month as long as the quantity does not exceed 120. The second category is called “Zero

Only”, where participants are restricted to ordering only once the inventory level is zero. We

expect that the larger set of alternatives in the unrestricted category presents participants with

a more difficult learning task.

The second treatment variable is the level of exogenous cognitive load burden we induce by

introducing a competing task. In the “Low” cognitive load category participants complete the

inventory tasks without distractions. In the “High” cognitive load we introduce an incentivized

PIN task that is completed alongside the inventory management task and requires the utilization

of short term memory. At the start of each year, a participant is given 15 seconds to memorise

a random 6-digit PIN. The PIN is case sensitive, consisting of numbers, upper and lower case

letters.4 After the completion of the year, a participant is prompted to enter the PIN. Entering

the correct PIN unlocks an extra reward of �300. A participant only has one attempt at the

PIN task. If a participant actively tries to complete the PIN task successfully, we expect the

diminished access to short term memory to reduce decision-making quality and the speed of

any learning.

Table 3 summarizes our experimental design and provides summary statistics on the demo-

graphics of the participants. We designate treatment cells by the word pairs x -y, where x is

feasible set of policies category and y is category of the cognitive load.

2.3 Experimental procedures

Seven sessions were conducted at Newcastle University Business School experimental economics

laboratory during May and July 2017. 162 participants5 were recruited via random selection

for invitation from a participant pool database of the Behavioural Economics Northeast Clus-

ter. All participants were students from Newcastle University except for three who were from

Northumbria University.

4The PIN is the same for all participants across each year to ensure control.
5We excluded five participants from our data analysis and the participant counts are given in Table 3. One

participant, in the Zero Only-Low treatment, always submitted the random slider starting position when inventory
reached zero. Two other participants, in the Zero Only-High treatment, grossly took advantage of the limited
liability rule. The final two excluded participants attended the last session and demonstrated behaviour that
they had been briefed about the content of the experiment; they clicked through the instructions without reading
them and subsequently provided the solution Q̄3 for all years - even though this was not optimal for the practice
year.
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Table 3: Summary of the demographic information of participants for each treatment

Treatment cell Participants
Average
age

Male Postgrad
STEM
subjects1

Average math
level2

Unrestricted-Low 41 25 34% 49% 37% 3.68
Unrestricted-High 41 25 37% 44% 56% 3.20
Zero Only-Low 39 25 23% 47% 34% 3.26
Zero Only-High 36 28 50% 56% 28% 3.53

1 STEM subjects include Engineering & Technology, Life Sciences & Medicine and Natural Sci-
ences. Non-STEM subjects include Arts & Humanities and Social Sciences & Management.
2 Math Level was self-assessed, and was categorised into 6 levels. 1 = “Below GCSE”, 2 =
“GCSE”, 3 = “A Level”, 4 = “Undergraduate”, 5 = “Postgraduate”, 6 = “Above Postgraduate”.
Note that GCSE (General Certificate of Secondary Education) is an academic qualification in a
specific subject typically taken by school students aged 14-16 of the UK (except Scotland), at a
level below A level.

Each session lasted no more than sixty minutes, with strict procedures to limit the access to any

aides that would provide assistance in calculations or remembering PIN codes. Participants were

signed in individually and instructed to leave their personal belongings, including any writing

instruments, in the reception area before being escorted to a computer desk placed in a privacy

carrel. Each participant was then provided with a pen and two copies of an informed consent

document, which they read and signed if they wished to continue their participation. The

pen and signed forms were then collected by a monitor. Participants were sternly informed

thereafter that no electronic devices - such as mobile phones, calculator, smart watches, etc.

- could be used until their session was completed. They were further instructed that the rest

of the experimental tasks were fully computerized and they would complete the rest of the

experiment only using their mouse. Prior to participants entering the laboratory, all computer

keyboards were concealed under a thick opaque cover. This aimed to diminish any access to

mnemonic devices for remembering PIN codes. These measures were taken in all sessions to

provide control between High and Low cognitive load treatments.

The experiment itself was conducted using a self-contained program developed in oTree (Chen

et al., 2016). Access was restricted to other programs on the computer. The sum of these

measures eliminated many of the tools participants commonly used to perform mathematical

calculations. This dismal work environment was applied to all four treatment cells.

Once instructed to start by the monitor, participants read through the instructions6 at their

own pace. After reading the instructions, participants were asked to complete seven multiple

choice questions designed to ensure that they understand the calculation of costs and profits.

Participants who provided more than two incorrect answers had to review the mistaken questions

with one of the experimenters before proceeding to the decision tasks.

Participants then took part in the six year decision task sequence, followed by a short post-

experiment survey which collected demographic information. Year 0 was a practice round which

used an alternative set of cost parameters7 from those of Years 1 through 5, and the performance

6In the supplement appendix, we provide a complete set of instructions.
7In the practice year the order costs were �45 and the holding costs were �0.5.
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in this task did not affect a participant’s total earnings. The purpose of the practice year was

to help familiarize the participants with the task and the decision screen. Orders were entered

by moving a slider whose value range was zero to one hundred and twenty. The initial point

of the slider was random each month, and in the case of a Zero Only treatment it was greyed

out if there is a positive opening inventory. The decision screen included a table providing the

entire history of a participant’s monthly ordering choices, as well as opening inventory, units

sold, closing inventory, sales revenue, ordering costs, holding costs and profits.8 For participants

who experienced the High cognitive load treatment, we provided an opportunity to practice the

PIN task in the practice year.

Participants then completed the Years 1 through 5 decision tasks. Participants were paid for

their accumulated earnings from these decision tasks, at the conversion rate of �300 = £1, as

well as a £5 show-up fee. There was limited liability; to ensure the motivation to make profits

would not be affected by large negative earnings made in a particular year, any negative profits

made in a year will be treated as 0 earnings.9 The average earnings across all treatments were

£13.37 per participant, including the participation fee.10

One last important aspect of the experiment was the fixed length of time a participant had

to complete the inventory management task for a year. We required that a participant spend

exactly four minutes completing each task in Years 1 through 5. This was designed to prevent

participants from racing through the monthly decisions in order to reduce the cognitive cost of

remembering their PIN. If a participant completed their twelve monthly decisions early they

could not advance to the next period (or enter the PIN) until the four minutes expired. If they

failed to complete the twelve tasks before the time expired, the computer program executed the

remaining months’ sales with the existing inventory stock.

3 Empirical evaluation of treatment effects

We evaluate the treatment effects of restricted inventory policy choice sets and increased cogni-

tive load by considering their impacts upon participant’s earnings in the inventory management

tasks, the propensity to choose optimal inventory policies, and then the efficacy of the PIN task

and whether performance in that task is correlated with inventory performance.

3.1 Hypotheses

Our motivation of treatment variables leads to several natural hypotheses. Naturally, better

performance leads to greater average annual earnings and is indicated by greater percentage

of participants adopting optimal (near-optimal) inventories. Increases in cognitive load reduce

short term memory capacity and lead to diminished performance in both the Zero Only and

Unrestricted policy choice sets, giving the following hypotheses:

Hypothesis 1.a. Participants perform better in the Zero Only-Low treatment than the Zero

Only-High treatment. This will be reflected in two measures: average annual earnings and the

8We provide screen captures of these interfaces in the supplement appendix.
9This limited liability only affected the earnings of five participants in five different years.

10The average earnings of Low treatment (without PIN task) was £11.58 per participant, while the average
earnings of High treatment (with PIN task) was £15.23 per participant.

10



percentage of participants who adopt optimal (near-optimal) inventories.

Hypothesis 1.b. Participants perform better in the Unrestricted-Low treatment than the Unrestricted-

High treatment. This will be reflected in two measures: average annual earnings and the per-

centage of participants who adopt optimal (near-optimal) inventories.

The set of inventory policies in the Unrestricted is much larger than and only adds suboptimal

alternatives to the Zero Only restricted set of policy choices. The reduced focalness of EOQ

strategies and greatly complicated participants’ choice sets in the Unrestricted treatments leads

to our next set of hypotheses:

Hypothesis 2.a. Participants perform better in the Zero Only-Low treatment than the Unrestricted-

Low treatment. This will be reflected in two measures: average annual earnings and the per-

centage of participants who adopt optimal (near-optimal) inventories.

Hypothesis 2.b. Participants perform better in the Zero Only-High treatment than the Unrestricted-

High treatment. This will be reflected in two measures: average annual earnings and the per-

centage of participants who adopt optimal (near-optimal) inventories.

3.2 Annual inventory profits

We test the differences in average annual profit for different treatment groups using two-sided t-

tests and non-parametric Wilcoxon rank-sum tests. As participants have the best performance

with the intervention and without the cognitive load, we use Zero Only-Low treatment as

a reference point to demonstrate profit loss resulting from the presence of more complicated

choice sets and a shock to their cognitive load. We report the results of these hypotheses tests

in Table 4. The first two rows indicate that both the absence of the intervention and shocking

their cognitive load negatively impact average annual profits both statistically and economically.

More complicated policy choices cause more profit loss than High cognitive load.

When we examine the effect of exogenously increasing a participant’s cognitive load conditional

on the policy choice set we find mixed support for Hypothesis 1. There is a statistically sig-

nificant reduction on average earnings in the Zero Only treatment, but not in the Unrestricted

treatment. We do find stronger evidence in support of Hypothesis 2, as we find limiting partic-

ipant’s choices to EOQ restricted policies leads to statistically greater average earnings in both

Low and High cognitive load settings.

A disaggregated view of the average annual profits permits insight into learning over time

and how our treatments impact it. Figure 1 presents these time trends for each of the four

treatments. There are several prominent features of this figure which provide refined insights

into our hypotheses results on the average profit levels. First, performance gains are mostly

achieved in Years 1 through 3. Second, average earnings are around 90% of the possible earnings

in the last two years; except for the Unrestricted-High treatment which are around 5-10% lower.

Third, High cognitive load and Unrestricted policy choice sets both cause the greatest negative

performance impact in Year 1.

We quantify and assess these remarks by conducting a series of dummy variable linear regressions

using random effects estimators with standard errors clustered at the level of the individuals.
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Table 4: Average annual profits by treatment and hypotheses tests for differences in average
annual earnings

Panel A: Annual profits by treatment

Unrestricted-Low Unrestricted-High Zero Only-Low Zero Only-High

Average 375.85 366.70 412.94 390.10
Stand. Dev. 129.38 126.87 97.35 113.78

Panel B: Hypotheses tests for differences in average annual profits (p-values reported)

Treatment Comparison Difference Profit loss (%)Two-sided t-tests Wilcoxon rank-sum

Zero Only vs Unrestricted 30.71 7.64% 0.000 0.001
Low vs High 16.29 4.14% 0.055 0.003

Zero Only-Low vs Zero Only-High1 22.84 5.53% 0.038 0.012
Unrestricted-Low vs Unrestricted-High2 9.15 2.43% 0.470 0.124
Zero Only-Low vs Unrestricted-Low3 37.09 8.98% 0.001 0.012
Zero Only-High vs Unrestricted-High4 23.40 6.00% 0.059 0.052

1 Strong Evidence for Hypothesis 1a
2 Weak Evidence for Hypothesis 1b
3 Strong Evidence for Hypothesis 2a
4 Strong Evidence for Hypothesis 2b

Figure 1: Annual Profits over individual Years and by treatment: Averages and 95% confidence
intervals
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We report these results in Table 5.

In model (1), we simply regress annual profit on a constant and dummy variables for Years 1

through 4, rendering Year 5 the base level. In model (2) we introduce dummy variables for

the Zero Only and High treatment categories. In this case the constant reflects the average

profit level for Year 5 in the Unrestricted-Low treatment; and the Year 1 through 4 dummy

12



Table 5: Dummy variable regressions for annual profit: random effects panel data (n=785)

(1) (2) (3) (4)
Annual Profit Annual Profit Annual Profit Annual Profit

Year 1 -112.27∗∗∗ -112.80∗∗∗ -122.44∗∗∗ -122.44∗∗∗

(11.24) (18.34) (20.77) (20.83)
Zero Only*Year 1 45.45∗∗ 65.22∗∗ 63.91∗∗

(21.97) (26.77) (27.09)
High*Year 1 -43.20∗ -23.91 -23.91

(22.17) (32.23) (32.32)
Zero Only*High*Year 1 -40.40 -39.09

(44.19) (44.46)
Year 2 -73.39∗∗∗ -82.86∗∗∗ -80.89∗∗∗ -80.89∗∗∗

(10.02) (19.08) (22.92) (22.98)
Zero Only*Year 2 11.56 7.53 5.07

(20.05) (29.81) (30.10)
High*Year 2 8.04 4.11 4.11

(20.13) (29.94) (30.02)
Zero Only*High*Year 2 8.24 10.69

(40.13) (40.40)
Year 3 -38.81∗∗∗ -38.75∗∗ -59.41∗∗∗ -59.41∗∗∗

(7.78) (15.39) (18.34) (18.39)
Zero Only*Year 3 -16.24 26.15 28.35

(15.78) (22.69) (22.85)
High*Year 3 15.70 57.02∗∗∗ 57.02∗∗∗

(15.65) (19.90) (19.95)
Zero Only*High*Year 3 -86.59∗∗∗ -88.79∗∗∗

(30.82) (30.97)
Year 4 -12.85∗∗∗ -20.08∗∗ -23.09∗∗ -23.09∗∗

(4.61) (9.40) (11.57) (11.61)
Zero Only*Year 4 15.59∗ 21.75∗ 21.90∗

(9.03) (12.16) (12.23)
High*Year 4 -0.45 5.56 5.56

(9.25) (15.57) (15.62)
Zero Only*High*Year 4 -12.59 -12.74

(18.12) (18.19)
Zero Only 19.12∗ 12.96 14.30

(10.31) (13.87) (15.17)
High -11.70 -17.71 -22.49

(10.45) (16.25) (16.77)
Zero Only*High 12.58 15.31

(20.71) (22.68)
Male 15.04

(11.85)
Postgrad -14.88

(12.03)
STEM 12.18

(11.47)
Math Level -2.69

(5.13)
Constant 433.40∗∗∗ 430.01∗∗∗ 433.01∗∗∗ 440.60∗∗∗

(5.28) (8.56) (9.70) (20.84)

Wald χ2 183.28 210.84 228.77 239.23

Standard errors in parentheses adjusted for clusters in individuals
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

variable coefficients reflect the average annual profits across participants in the Unrestricted-

Low treatment. In model (3), we add interaction dummy variables for the Zero Only and High

treatment categories to examine if their joint imposition leads to super- or sub-additive impact

on annual profit. In model (4), we add individual characteristic dummy variables to examine

individual differences.

Our treatment effects for Zero Only and High are largely generated by their Year 1 impacts,
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suggested by their individually significant coefficients in models (2) and (3). We conduct a Chow

test, for which the null is model (1) versus the alternative of model (2), i.e. the joint differences

of the two treatments are significant. The resulting χ2-stat is 27.32, and has a p-value of 0.002.

We conduct a second Chow test to compare the veracity of model (3) versus model (2). The

resulting χ2-stat in this case is 8.73, and has a p-value of 0.120.

Our analyses of annual profits leads us to our first set of results.

Result 1. Reducing the participants’ policy choice sets to EOQ restricted ones leads to higher

profits. However, these gains predominantly occur in Year 1 - when the participants face the

inventory decision problem for the first time.

Result 2. Exogenously increasing participants’ cognitive load leads to lower profits. However,

these losses predominantly occur in Year 1 - when the participants face the inventory decision

problem for the first time.

Result 3. There is no super- or sub-additive effect of simultaneously exposing participants to

the Zero Only and High treatment categories.

3.3 Inventory management policy choices

We turn our analysis towards the inventory policy choices of participants. For each participant

we evaluate each of the annual inventory policies, Qi,a, for whether it is optimal, Q̄3, or if it is

near-optimal, and EOQ constant strategy of either Q̄2 or Q̄4 . Figure 2 depicts the evolution

across years of the percentages of participants following optimal and near-optimal policies in

each treatment. Inspection of this figure reveals our next set of results.

Figure 2: Stacked graph of the percentage of participants following optimal and near-optimal
EOQ constant strategies: by Year and treatment
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Result 4. There is a trend in all treatments for increasing use of optimal and near-optimal

policies from Year 1 to Year 4.

Result 5. High cognitive load leads to lower percentage use of these policies for both Zero Only

and Unrestricted in all five Years.

3.4 Efficacy of the PIN reward procedure

Next, we evaluate the efficacy of procedure for exogenously increasing the cognitive load. Our

experimental design faces a challenging balancing act. If the PIN reward procedure is too simple,

participants will always collect the reward utilizing minimal short run memory resources, and if

it is too difficult they could either decide to forgo the mental costs of trying to commit the PIN

to short term memory or forgo effort in the inventory management tasks. A second concern

is that raw intelligence is an omitted variable in our analysis which would manifest itself in

a strong positive correlation between a participant’s performances in the PIN reward and the

inventory management task.

We provide visual evidence that our design successfully addresses this balancing act in Figure 3.

First, we observe that only three out of the seventy-seven participants earned one or less PIN

rewards; and at the same time thirty-three out of seventy-seven collected all five pin rewards.

Second, there doesn’t appear to be a clustering of poor inventory management performers,

below the ad hoc threshold of �1500, on high or low numbers of earned PIN rewards. Third,

there is little evident differences in the conditional means of total profits - suggesting the PIN

and inventory management task performance are independent.

Figure 3: Participants’ total inventory management task profits conditional on the number of
PIN rewards earned and the corresponding whisker plots for the 50, 75, and 95% quantiles. The
numbers across the top are the counts of participants who earned the corresponding number of
PIN rewards.
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We quantify the evidence of the independence of PIN and inventory management task perfor-

mance by statistically measuring their correlation and testing its statistical significance. Table 6

reports these correlations and the p-values of the hypotheses tests that the correlation is zero.

The left portion of the table addresses the correlation between the success of a PIN reward task

and the corresponding annual inventory profit. The evidence is mixed. We do not find correla-

tions significantly different from zero in four out of five years, but do find a highly significant

positive correlation when we pool all of the years. This analysis suggests potential positive

correlation between a correct PIN task and individual reward; however, this analysis does not

allow for differences in participants’ performances for the PIN task. To address this concern we

evaluate the correlations between the total number of PIN rewards earned by a participant j

and both j’s annual profits and her total inventory tasks profit. We report these correlations in

the right side of Table 6. In this analysis we find evidence in favor of no correlation. None of

these correlations are statistically significant.

Table 6: Spearman correlations between PIN reward earned in Year a by participant j and
j’s corresponding Inventory task profit; Spearman and Pearson Rank correlations between a
participant j’s total number of earned PIN rewards and their Inventory task profits

PIN reward eared in Year a Number of PIN reward earned

Spearman Rank Corr. Pearson Corr. Spearman Rank Corr.

Annual
Profit

Year 1 0.08 0.13 0.11
(0.512) (0.248) (0.324)

Year 2 0.12 0.08 0.11
(0.315) (0.507) (0.338)

Year 3 0.21 0.10 0.04
(0.072) (0.391) (0.750)

Year 4 0.09 0.15 0.04
(0.459) (0.182) (0.725)

Year 5 0.14 0.10 0.14
(0.226) (0.379) (0.218)

All Years 0.18 N/A N/A
(0.001) N/A N/A

Total Profit
N/A 0.179 0.182
N/A (0.120) (0.114)

1. The p-values of the respective tests are reported in the parenthesis.
2. We don’t report the correlations for Total Profit in column three because the calculation will
include multiple repetitions of a participant’s total inventory profit.
3. We don’t report the correlations for all Years in columns for and five because the calculation will
include multiple repetitions of a participant’s total number of PIN rewards.

4 Learning Dynamics

The rapid behavioural adjustment over the first three annual iterations is a surprising feature of

our data. We propose a behavioural process underpinning this rapid individual learning. This

process is a Markov learning model in the spirit of Shachat and Zhang (2017), also adopted

by Pan et al. (2020) for their similar inventory management task. The Markov learning model

incorporates the Elimination-By-Aspect (EBA) choice model and specifies choice transitions by

the Learning Direction (LD) theory.

The EBA is a framework for making choices among deterministic alternatives which are char-

acterised by multiple attributes. Under the EBA choice model there is a hierarchy of attributes
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and a decision maker sequentially refines the number of alternatives based on attribute values.

In our two-tier hierarchical structure, the first tier sorts potential choices that are EOQ actions

or not. The second tier chooses an EOQ cycle length. The choice process for EOQ cycle length

accommodates the potential conflict of a choice set’s natural ordering not having monotonicity

in value.

The sequential feature of the EBA model is an alternative to standard comprehensive utility

evaluation and can lead to suboptimal choices. This is a positive feature in our analysis as it

allows us to establish an empirically justified degrees of irrationality by which learning occurs.

While this is not a fully rational framework, it is not an uncommon one. McFadden (1980)

generalised the EBA model to one of probabilistic choice and noting it has significant potential

for econometric applications because it allowed complex patterns of substitutability among

alternatives. For example, Daniel et al. (2018) conducted a discrete choice experiment eliciting

Swedish households’ willingness-to-accept compensation for restrictions on household electricity

and heating use during peak hours and found more than half of the respondents use an EBA

strategy. Fader and McAlister (1990) estimate an EBA model using UPC scanner data collected

from purchases of ground coffee and find the model fits and predicts the data well. EBA has

also been employed as a descriptive model of choice in transportation investment and demand

analysis, residential choice, and career choice (Khraibani et al., 2016; Kato and Kosuda, 2008;

Young, 1984; Gati et al., 1995).

We find an overwhelming proportion of choices are EOQ actions from the first tier analysis.

Therefore, the LD theory covers the large majority of decisions and specifies the transition

probabilities between EOQ cycle lengths. LD theory is a qualitative theory about adjustments

within repetitive decision tasks, which calls for increasing probability for the choices that yield

payoff improvements. We use a Markov model to quantify these adjustments. We specify the

transitional probabilities as functions of whether a choice improves the current payoff and its

absolute change in EOQ cycle length. We include both factors as payoffs are not monotonic

in EOQ cycle length, and wish to accommodate potential viscosity in the magnitude of EOQ

cycle length adjustment.11

4.1 Branch Decision 1

As the experimental design prunes Branch 1 for the EOQ treatment, for the most part, the pri-

mary question is whether High cognitive load leads to larger probabilities of Non-EOQ actions.

We formulate the probabilities of choosing Non-EOQ actions as simple Logit functions of time,

habit formation and whether it is a High cognitive load treatment.

The Logit regression results are presented in Table 7: Panel A for the case It−1 < 10 and Panel

B for the case It−1 ≥ 10. For the prior case, deviations from an EOQ action occur due to

the possibilities of stockouts. For the latter case, the only possible deviation from an EOQ

11Other frequently adopted models of learning such as the experienced weighted attraction (EWA) learning
models (Camerer and Ho, 1999) are unfit for our tasks. They are unfit due to two key features. Firstly, the
payoffs for inventory orders are not monotonic in the number of months violating the “higher payoff implies
higher probability” of choice property of EWA-like learning models. Secondly, there are a low number of positive
orders decisions in many potential policies. For example, when an order of EOQ cycle length 12 is placed at the
start of the year, only one observation is recorded that year.
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action is to order a strictly positive amount, qt > 0, leading to excess inventory. Furthermore,

NonEOQACCi,r−1 is the total rounds participant i has deviated from EOQ up through round

r − 1, which is intended to capture habit formation.

Table 7: Logit regression on the probability of deviating from an EOQ action

Panel A: It−1 < 10 Panel B: It−1 ≥ 10

NonEOQi,r (1) (2) (3) (4) (5) (6)

Y earr -0.498∗∗∗ -0.500∗∗∗ -0.690∗∗∗ -0.308∗∗∗ -0.309∗∗∗ -0.608∗∗∗

(0.126) (0.128) (0.160) (0.096) (0.097) (0.134)
Monthr 0.194∗∗∗ 0.194∗∗∗ 0.153∗∗∗ -0.115∗∗∗ -0.114∗∗∗ -0.141∗∗∗

(0.047) (0.047) (0.054) (0.027) (0.027) (0.029)
High 0.255 0.216 -0.404 -0.193

(0.425) (0.311) (0.376) (0.296)
NonEOQACCi,r−1 0.288∗∗∗ 0.307∗∗∗

(0.039) (0.040)
Constant -3.379∗∗∗ -3.507∗∗∗ -3.175∗∗∗ -1.754∗∗∗ -1.573∗∗∗ -1.311∗∗∗

(0.583) (0.630) (0.690) (0.338) (0.397) (0.430)

N 3032 3032 2875 3286 3286 3286
χ2 34.10∗∗∗ 36.06∗∗∗ 97.89∗∗∗ 22.66∗∗∗ 22.90∗∗∗ 75.76∗∗∗

Pr(NonEOQi,r) = 1 0.034 0.034 0.037 0.035 0.035 0.030

Standard errors in parentheses adjusted for clusters in individuals
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Similar with the results reported in Pan et al. (2020), the estimated probability of a NonEOQ

action at the average level of factors appear to be small. The number of years and the ac-

cumulation of experience of choosing Non-EOQ actions are significant both statistically and

economically, which indicates there is significant learning to choose EOQ actions across the five

years. The positive estimated value of the coefficient of NonEOQACCi,r−1 captures the indi-

vidual differences in the epiphany of the EOQ logic. The estimated coefficients for Months are

statistically significant but lack economic significance. The marginal effects on the choice prob-

abilities are extremely low and the effects have opposite signs in the two cases. This suggests

that later in a year, stockouts are more and ordering while holding excess inventory is less likely.

Surprisingly, there is no significant effect of having a high cognitive load on taking Non-EOQ

actions. Thus the performance differences must come from the types of EOQ actions one takes

under high cognitive load. Overall, these results suggest providing the more complicated choice

set does lead to more Non-EOQ actions, rather these choices diminish with experience.

4.2 Branch Decision 2: A Markov model of EOQ cycle choice

At the Branch Decision 2, we consider how participants switch from one EOQ cycle length to

another. Let s̃i,k denotes the largest integer less than or equal to It−1+qt
10 .12 Figure 4 shows

histograms of EOQ cycle choices using this new definition in both Unrestricted and Zero Only

treatments. This figure illustrates there are more optimal EOQ cycles of length three in the Zero

Only treatment, and more extreme EOQ cycles of lengths one and twelve in the Unrestricted

treatment.

12For example, If a participant has a closing inventory of 2 units from previous period and orders 8 units, then
s̃i,k = 1.
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Figure 4: EOQ cycle choice histograms for Zero Only and Unrestricted treatments
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We use the Markov model presented in Pan et al. (2020) to examine the probability of switching

to an at least as profitable EOQ action and the viscosity to making large changes to EOQ cycle

length. The model has two parameters, α and λ. The parameter α is the probability of moving

to the subset of EOQ cycles no worse than s̃i,k−1.
13 While λ measures the strength of the bias

for small changes within the subsets. A decrease in λ corresponds to a growing bias in favor of

smaller cycle length adjustments. Table 8 presents the maximum likelihood estimates of these

parameters for each treatment cell.

Table 8: Maximum Likelihood Estimates for the Markov EOQ cycle choice model, standard
errors in parentheses

Parameter Unrestricted-Low Unrestricted-High Zero Only-Low Zero Only-High

α 0.708 0.676 0.760 0.712
(0.041) (0.040) (0.031) (0.032)

λ -1.104 -1.320 -0.709 -0.782
(0.217) (0.209) (0.178) (0.137)

Table 9: Differences in parameter estimates and corresponding likelihood ratio test p-values for
the Markov EOQ cycle choice model

Parameter α λ
Treatment Comparison Difference p-value Difference p-value

Unrestricted-Low vs Unrestricted-High 0.032 0.575 0.216 0.475
Zero Only-Low vs Zero Only-High 0.048 0.284 0.074 0.744
Unrestricted-Low vs Zero Only-Low -0.052 0.310 -0.396 0.159
Unrestricted-High vs Zero Only-High -0.036 0.487 -0.538 0.032

In all treatments, α is approximately 70% indicating that participants are more likely to move

into their current subset of EOQ cycles that is no worse than s̃i,k−1. However, the absence

13The subset of EOQ cycles no worse than s̃i,k−1 (NW), and the subset of EOQ cycles no better than s̃i,k−1

(NB), are defined by the monthly average profit of the EOQ cycles conditional upon month. The values of
the monthly average profit and a detailed listing on NW and NB subsets for different months can be found in
Appendix C.
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of the intervention and introducing cognitive load reduce the probability of switching to more

profitable actions. The estimate of λ is larger in magnitude for the Unrestricted treatments,

indicating a larger bias for small changes within the sets. The ability to order in any month

leads to a greater degree of action lock-in. However, the estimated differences in the parameters

are not statistically significant.

We evaluate the predictive ability of our Markov learning model by comparing the log-likelihood

of the experimental data for all four treatments under our estimated versions of the learn-

ing model against the log-likelihood evaluated under a model of simple multinomial Bernoulli

choice. The outcome probabilities of the multinomial Bernoulli model are the empirical choice

frequencies of a Non-EOQ action, and the EOQ cycle length choices 0-12. The increase in the

log-likelihood value of our estimated Markov learning model measures improvement of predic-

tion accuracy over unconditional choice frequencies. The value of the log-likelihood function

for the multinomial Bernoulli choice model is -12297.54. This is demonstrably lower than the

log-likelihood value of -3377.07 for our Markov learning models.

Overall we find the Unrestricted treatment leads to a small percentage of Non-EOQ actions,

generating performance diminishing outcomes of excess inventories and stockouts. However,

we find the likelihood of these events diminish over time and is surprisingly unaffected by high

cognitive loads. The more complex choice sets of the Unrestricted treatment also leads to

more inertia in EOQ cycle length choices inducing choice lock-in. This is a likely cause of

participants choosing near rather than absolute optimal policies in the last two years. This

is a similar phenomenon found in Caplin et al. (2011); as they increase choice set complexity

participants tend to switch within a smaller range of values.14 The effect of the High cognitive

load is for participants to exhibit a lower level of rationality once they choose EOQ actions; their

probability of choosing EOQ cycles that generate at least the same level of average monthly

profit is lower.

5 General Discussion

Decision models to optimise inventory management are a core element of operations manage-

ment. Recent empirical research has challenged the assumptions that inventory managers are

fully rational and expected profit maximising. Behavioural inventory management research

has turned to experimental methods and behavioural modelling to examine systematic and

predictable deviations from optimal decision-making. Extensive research has been done in

environments with probabilistic outcomes and uncertainty, such as the newsvendor problem.

Schweitzer and Cachon (2000) were among the first to analyse behaviour in the newsvendor

setting and identify the pull-to-centre effect, which refers to the observation that people place

order quantities that are between the profit maximising quantities and mean demand. Uppari

and Hasija (2019) also analysed this effect by comparing different Prospect Theory models.

The challenges seem to be persistent suboptimal choices, and difficulties to identify the process

by which individuals learn to adjust in repetition. The bulk of behavioural modelling has fo-

cused on the preferences of inventory managers. However, the nature of the newsvendor problem

14See Caplin et al. (2011, page 2909) - Figure 4 for a comparison on the range of values observed with varying
choice set complexity.
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leads to a difficulty of disentangling aspects of risk preferences and the influence of deterministic

attributes such as loss aversion, stockout and excess inventory disutilities.

We turn to a deterministic EOQ environment, one of the fundamental inventory models of supply

chain management in practice, allowing isolation of the influence of deterministic attributes and

identification of the learning process. We find a much more rapid convergence process from

suboptimal to optimal choices. Moreover, we use the psychological EBA choice model as the

baseline learning model and the LD theory to capture order adjustment. We incorporate policy

attributes such as stockout and excess inventories into a hierarchical refinement of the choice

set through an EBA approach which allows for a greater set of substitution patterns by the

decision maker than is allowed by typical behavioural newsvendor models.

Even though both the EBA and LD models incorporate quite low rationalities, they predict the

observed rapid improvement in order choices. In the EBA choice model, individuals learn to

identify top attributes such as avoiding stockouts or excess inventory, namely the EOQ or non-

EOQ actions in our setup. Once this step is taken, they proceed to learn the EOQ cycle length

that maximises payoff. This process does not occur in a proportional way, rather individuals

exhibit low rationality when probabilistically moving up and down the payoff gradient. Our low

rationality approach establishes a baseline for future research to explore interventions embedded

in more complicated environments, such as those including uncertainty, stochastic demand or

time-varying costs.
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A Experiment Instructions and Interface

Instructions for different treatments are presented as the texts/sentences in italics and square
brackets below.

A.1 Instruction Page

Welcome

Welcome to today’s experiment. Please read the following instructions carefully as they are
directly relevant to how much money you will earn today. Please do not communicate with
other people during the experiment. Please note that you are not permitted to use pen
and paper or a mobile phone. Please kindly switch your mobile phone off or put it on
silent mode. Students causing a disturbance will be asked to leave the room. You will enter
all of your decisions in today’s experiment using only the computer mouse. Please do not
attempt to use the keyboard or remove the keyboard cover. The information displayed on your
computer monitor is private and specific to you. All monetary amounts in today’s experiment
are expressed as experimental currency units (ECU). The conversion rate for ECU and GBP is
300 ECU = £1 cash payment. Your payment will be rounded up to the nearest ten pence.

If you have any questions at any point during today’s session, please raise your hand and one
of the monitors will come to help.

Task

In today’s experiment, you will be making inventory management decisions for an enterprise
called ‘S-Store’. S-Store sells coffee makers. You will perform this role for a sequence of 6 years.
Every month you will decide how many coffee makers to order from the coffee maker supplier.
Your earnings in this experiment will be proportional to the total profitability of S-Store. S-
store will sell a new coffee maker model every year. Thus in the first month of a year your
inventory always starts from zero. Further, any coffee makers remaining in inventory at the end
of month 12 will be disposed of. To summarise, you will be making 12 monthly decisions for a
year, and you will do this for 6 years in total.

You will have up to 4 minutes to complete your task for each year. Year 1 is a practice round,
and you will have up to 7 minutes to complete the task for this year. You should use this
as an opportunity to familiarize yourself with the software and decision tasks. If you don’t
finish within the time allowed, the computer will automatically execute the remaining month(s)
sales with the existing inventory. You will not be able to add inventory. A ‘wait page’ displays
automatically if you spend less than the allowed time in a year. You will only be able to proceed
to the next year when the remaining time runs out.

Before the decision making portion of the experiment begins, there will be a Quiz consisting
of 7 simple questions to check your understanding of the task. Please answer the questions
carefully. If you missed 3 or more questions, you would be asked review the correct answers
before you can proceed to the task.

[The following italic texts are additional for treatments with High Cognitive Loads]

PIN

In addition to the task, you will be given a 6-digit PIN at the beginning of each year. The PIN
is case sensitive, and consisting of numbers, uppercase and lowercase letters. You will have 15
seconds to remember the PIN. This is your KEY to unlock an account which contains an extra
reward of 300 ECU. You can open the account at the end of each year by correctly entering the
PIN. You will only have one attempt to correctly enter the pin to claim this extra reward.
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Payment

Year 0 is a practice round, and you will receive no earnings from your decisions in this year. For
Years 1 through 5, your earnings will accumulate across years. At the end of the experiment
you will be paid £5 show-up fee and your accumulated earnings, converted to Pounds. Note,
negative profit may occur if poor coffee maker ordering decisions are made. To ensure that no
one will leave the experiment with a payment less than £5, a negative total profit made in Year
1 to Year 5 will be treated as 0 earnings.

A.2 Background Information

[The following Background Information section shows up on every decision page.]

Your Role:

S-Store is open 360 days per year. You are the inventory manager for S-Store. In your role, you
will control S-Store’s inventory level which determines the store’s total profits.

We now explain how S-Stores, and correspondingly you, earns profit. While we are explaining
how the calculations are made, during the decision tasks the computer will carry out these
calculations and report the results to you.

S-Store sells coffee makers at a price of 7 ECU per unit. S-Store can sell up to 10 coffee
makers per month. A coffee maker can only be sold if there is a unit held in inventory. If
you hold 10 or more units in inventory at the start of the month, S-Store will sell 10 coffee
makers that month. However, if there are less than 10 units held in inventory at the start of
the month then S-Store will only sell that amount. For example, if there are 2 units held in
inventory at the beginning of a month then S-Store only sells 2 units that month. [(For Zero
Only treatment only) You can only place an order when the current month’s opening inventory
is 0. For example, if the current month’s opening inventory is 3 units, you cannot place an
order this month, S-Store only sells 3 units this month.] S-Store’s sales revenue for a month is
calculated as follows:

Sales revenue = 7 ECU * Number of units sold.

Your job is to manage the store’s inventory levels by each month choosing an inventory order.
Prior to the start of each month you can order coffee makers from the supplier to add to the
inventory. Your inventory management determines the S-Store’s total costs. S-Store pays two
types of costs. One is the ordering cost. Every time you order a positive amount you have
to pay an order cost. This ordering cost is 45 ECU, and does not depend upon the size of the
order. If you order zero coffee makers then you do not pay the 45 ECU ordering cost. Holding
coffee makers in inventory is costly so S-Store pays a monthly inventory holding cost. S-
Store pay’s monthly inventory holding cost is based on the average number of coffee makers
held in inventory multiplied by the per unit monthly inventory holding cost of 1 ECU. This is
calculated as follows:

Inventory holding costs = 1 ECU * (Opening inventory + Order Quantity + Closing
inventory)/2.

Calculation of S-Store’s profits

Profits = Sales revenue - Ordering costs - Inventory holding costs

Your monthly earnings are equal to S-Store’s monthly profits.

Examples:

1. Alice’s closing inventory of last month is 20 units, she placed an order of 0 units in this
month.
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The demand for each month is 10 units.
She made sales of 10 units.
Her closing inventory of this month is 20− 10 = 10 units.
Her profit in this month is equal to: 7 ∗ 10− 0− 1 ∗ (20 + 0 + 10)/2 = 55.

2. Alice’s closing inventory of last month is 4 units, she placed an order of 5 units in this
month.
The demand for each month is 10 units.
She only made sales of 9 units. Her closing inventory of this month is 0 units. Her profit
in this month is equal to: 7 ∗ 9− 45− 1 ∗ (4 + 5 + 0)/2 = 13.5.

A.3 Multiple Choice Questions prior to Decision Task

There are a couple of questions for you before the task, please use the information:

The demand for each month is 10 units.
Price of each coffee maker is 7.
Ordering cost is 45 per order.
Monthly inventory holding cost is 1 per unit.

Question 1 of 7
If the inventory level was 5 and you ordered 0 units. How many units will you SELL this month?

A 0
B 5
C 10
D 15

Question 2 of 7
If the inventory level was 0 and you ordered 15 units. How many units will you SELL this
month?

A 0
B 5
C 10
D 15

Question 3 of 7
If you made sales of 10 units. What will be your SALES REVENUE this month?

A 0
B 10
C 25
D 70

Question 4 of 7
If you ordered 0 units. What will be your ORDERING COST this month?

A 0
B 1
C 45
D 70

Question 5 of 7
If you ordered 1 unit. What will be your ORDERING COST this month?

A 0
B 1
C 45
D 70
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Question 6 of 7
If the inventory level was 0 and you ordered 10 units. You made sales of 10 units. What will
be your HOLDING COST this month?

A 0
B 1
C 5
D 10

Question 7 of 7
If your sales revenue is 70. Your ordering cost is 0 and your holding cost is 10. What will be
your PROFIT this month?

A 15
B 25
C 60
D 70

Figure 5 shows the result page of the multiple choice questions when participants had given more
than 2 incorrect answers. Under such circumstances, they had to raise their hands to go through
incorrectly answered questions with a monitor in order to obtain a passcode to proceed to the
decision tasks.

Figure 5: Result Page of the Multiple Choice Questions

A.4 Decision Tasks

Prior to each year’s decision tasks, a mini-instruction page appears. Figure 6 is an example
with PIN task. For treatments with high cognitive loads, the pin page follows (Figure 7).

An example of the ordering decision page is shown in Figure 8. Participants move the slider
to enter their decision of order quantity for each month. Order quantities, costs, and profits of
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Figure 6: An example of Instruction Page with PIN task

Figure 7: PIN Page prior to Ordering Page

previous months are also displayed on the page. If participants completed the year’s decision
task within 4 minutes, they had to wait until the end of 4 minutes.

They were then prompted to enter the PIN (Figure 9), followed by the end of the year result
page (Figure 10).

B Post-Experimental Survey, Demographics and Summary Statis-
tics of Participants

Participants were asked to fill a simple questionnaire at the end of the experiment for us to
collect some demographic information.

The following are some summary statistics of the participants.

Table 10: Demographics in Participants

Age (mean) 25.6
Gender (% female) 65%
Education (%Undergraduate) 51%

One can observe that 37% of the participants are from Social Science & Management, among
which they may have training in operations management or have been exposed to the EOQ
model before.
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Figure 8: Ordering Page

Figure 9: Enter the PIN Page
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Figure 10: End of the Year Result Page

Figure 11: Post-Experimental Survey
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Figure 12: Distribution of University Programs Participants study and Mathematics levels of
participants (self reported)
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Mathematics Level of Participants

(b) Mathematics levels of participants

Table 11: Regression on PIN and demographic information

(1) (2)
Annual Profit Annual Profit

Year 1 -129.08∗∗∗ -130.78∗∗∗

(19.30) (18.84)
Year 2 -71.18∗∗∗ -70.65∗∗∗

(16.84) (16.90)
Year 3 -31.00∗∗ -30.90∗∗

(13.76) (13.23)
Year 4 -13.95 -13.74

(12.28) (11.89)
Unrestricted -22.32∗∗ -33.26∗∗∗

(11.22) (12.56)
High·Correct PIN 27.26∗ 19.09

(15.96) (16.13)
Age -2.42∗∗∗

(0.78)
Male 16.14

(11.88)
Postgrad -7.44

(12.40)
STEM 8.66

(13.73)
Math level -5.98

(5.20)
Constant 417.18∗∗∗ 505.75∗∗∗

(15.61) (33.00)

N 385 385
R2 0.18 0.22

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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C Possible NW NB sets by month

The monthly average profit conditional upon month is reported in Table 12. Notice that the
profit function depends upon t and will penalize relatively long EOQ cycles that generates excess
inventory at the year’s end.

Table 12: Average monthly profit for alternative EOQ cycle choice given the current month

s 1 2 3 4 5 6 121

Month 1-7 20 37.5 40 38.75 36 32.5 -
Month 8 20 37.5 40 38.75 36 26 -
Month 9 20 37.5 40 38.75 28.75 18.75 -
Month 10 20 37.5 40 30 20 10 -
Month 11 20 37.5 27.5 17.5 7.5 -2.5 -
Month 12 20 10 0 -10 -20 -30 -
1 s̃i,k = 12 always offers the lowest average monthly payoff

Based on the monthly average profit table, we can compute the No worse than and No better
than sets for each EOQ cycle conditional upon month as follows:

Table 13: The No worse than and No better than sets for each EOQ cycle by month

Months 2-8

s̃i,k−1 = 1 NW = {1, 2, 3, 4, 5, 6} NB = {1, 12}
s̃i,k−1 = 2 NW = {2, 3, 4} NB = {1, 2, 5, 6, 12}
s̃i,k−1 = 3 NW = {3} NB = {1, 2, 3, 4, 5, 6, 12}
s̃i,k−1 = 4 NW = {3, 4} NB = {1, 2, 4, 5, 6, 12}
s̃i,k−1 = 5 NW = {2, 3, 4, 5} NB = {1, 5, 6, 12}
s̃i,k−1 = 6 NW = {2, 3, 4, 5, 6} NB = {1, 6, 12}
s̃i,k−1 = 12 NW = {1, 2, 3, 4, 5, 6, 12} NB = {12}

Month 9

s̃i,k−1 = 1 NW = {1, 2, 3, 4, 5} NB = {1, 6, 12}
s̃i,k−1 = 2 NW = {2, 3, 4} NB = {1, 2, 5, 6, 12}
s̃i,k−1 = 3 NW = {3} NB = {1, 2, 3, 4, 5, 6, 12}
s̃i,k−1 = 4 NW = {3, 4} NB = {1, 2, 4, 5, 6, 12}
s̃i,k−1 = 5 NW = {2, 3, 4, 5} NB = {1, 5, 6, 12}
s̃i,k−1 = 6 NW = {1, 2, 3, 4, 5, 6} NB = {6, 12}
s̃i,k−1 = 12 NW = {1, 2, 3, 4, 5, 6, 12} NB = {12}

Month 10

s̃i,k−1 = 1 NW = {1, 2, 3, 4, 5} NB = {1, 5, 6, 12}
s̃i,k−1 = 2 NW = {2, 3} NB = {1, 2, 4, 5, 6, 12}
s̃i,k−1 = 3 NW = {3} NB = {1, 2, 3, 4, 5, 6, 12}
s̃i,k−1 = 4 NW = {2, 3, 4} NB = {1, 4, 5, 6, 12}
s̃i,k−1 = 5 NW = {1, 2, 3, 4, 5} NB = {1, 5, 6, 12}
s̃i,k−1 = 6 NW = {1, 2, 3, 4, 5, 6} NB = {6, 12}
s̃i,k−1 = 12 NW = {1, 2, 3, 4, 5, 6, 12} NB = {12}

Month 11

s̃i,k−1 = 1 NW = {1, 2, 3} NB = {1, 4, 5, 6, 12}
s̃i,k−1 = 2 NW = {2} NB = {1, 2, 3, 4, 5, 6, 12}
s̃i,k−1 = 3 NW = {2, 3} NB = {1, 3, 4, 5, 6, 12}
s̃i,k−1 = 4 NW = {1, 2, 3, 4} NB = {4, 5, 6, 12}
s̃i,k−1 = 5 NW = {1, 2, 3, 4, 5} NB = {5, 6, 12}
s̃i,k−1 = 6 NW = {1, 2, 3, 4, 5, 6} NB = {6, 12}
s̃i,k−1 = 12 NW = {1, 2, 3, 4, 5, 6, 12} NB = {12}

Month 12

s̃i,k−1 = 1 NW = {1} NB = {1, 2, 3, 4, 5, 6, 12}
s̃i,k−1 = 2 NW = {1, 2} NB = {2, 3, 4, 5, 6, 12}
s̃i,k−1 = 3 NW = {1, 2, 3} NB = {3, 4, 5, 6, 12}
s̃i,k−1 = 4 NW = {1, 2, 3, 4} NB = {4, 5, 6, 12}
s̃i,k−1 = 5 NW = {1, 2, 3, 4, 5} NB = {5, 6, 12}
s̃i,k−1 = 6 NW = {1, 2, 3, 4, 5, 6} NB = {6, 12}
s̃i,k−1 = 12 NW = {1, 2, 3, 4, 5, 6, 12} NB = {12}
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