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Abstract

This paper derives analytic expressions for the expected value of
sample information (EVSI), the expected value of distribution informa-
tion (EVDI), and the optimal sample size when data consists of inde-
pendent draws from a bounded sequence of integers. Due to challenges
of creating tractable EVSI expressions, most existing work valuing data
does so in one of three ways: 1) analytically through closed-form ex-
pressions on the upper bound of the value of data, 2) calculating the
expected value of data using numerical comparisons of decisions made
using simulated data to optimal decisions where the underlying data
distribution is known, or 3) using variance reduction as proxy for the
uncertainty reduction that accompanies more data. For the very flex-
ible case of modelling integer-valued observations using a multinomial
data-generating process with Dirichlet prior, this paper develops ex-
pressions that 1) generalize existing beta-Binomial computations, 2)
do not require prior knowledge of some underlying “true” distribution,
and 3) can be computed prior to the collection of any sample data.

1 Introduction

The seminal work of [34] introduced preposterior analysis, a Bayesian recipe
for estimating the value of information (VOI) prior to knowing the informa-
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tion’s content. The expected value of sample information (EVSI), a particu-
larly valuable VOI computation, values the information contained in sample
observations prior to their collection. [34] include many closed-form and oft-
used expressions for calculating EVSI under the assumption of quadratic
loss. One such expression is for a Bernoulli data-generating process with
beta prior distribution (a.k.a. a beta-Binomial model); each observation
being either zero or one [34, Table 6.2, p. 191]. In this paper, we gener-
alize the beta-binomial EVSI expression beyond binary-valued observations
to the case where each data point is drawn from a bounded sequence of
integers. These results expand the availability of tractable VOI expressions
to a useful scenario where previously value could only be approximated or
bounded when a closed-form expression was needed.

Depending on a modeler’s choices of actions, states of uncertainty, loss
(or utility) functions, and probability models, tractable calculations of VOI
may exist, but intractable formulations, especially for EVSI, are much more
common. In fact, reputed statistician Dennis Lindley has remarked that
the question of sample size “is embarrassingly difficult to answer” due to
difficulties calculating EVSI [26]. More generally, [14] shows that simply
characterizing the relationship between information and value is challeng-
ing; [14]’s work dispels the idea that information value will reliably exhibit
monotonic relationships with information value determinants such as action
flexibility, risk aversion, or a decision maker’s wealth.

While for some EVSI and VOI problems, closed-form solutions are at-
tainable [34, 5, 4], value of information solutions are often difficult to for-
mulate. Hence, many papers are known for their ability to characterize
aspects of VOI expressions such as the distributional properties of the ex-
pected value of perfect information (EVPI) [28], the impact of an exogenous
variable on EVPI [20], and the additivity of information value when multi-
ple sources of uncertainty exist [21]. EVSI calculations, in particular, often
result in intractable expressions of multiple integrals where only numerical
methods can yield results [25]. Even then, many numerical methods still
require further simplifying assumptions (see, e.g., [36]). While it is possi-
ble to approximate VOI computations via normal approximations (see, e.g.,
[30, 19]) or using a computationally intense simulation-based methodology
(see, e.g., [10, 37]), closed-form expressions yield instantaneous and accurate
value computations with more interpretable insights regarding the effects of
prior beliefs and sample sizes.

In this paper, we provide a new EVSI calculation for a flexible (i.e. multi-
nomial) data-generating process that adheres to three desiderata outlined
in [34, p.44]:
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Tractable EVSI is easily calculated using a closed-
form expression.

Rich A decision maker’s prior beliefs and in-
formation are readily incorporated as part
of the calculation.

Interpretable The expression for EVSI provides insight
as to the effects of prior beliefs and sam-
ple size choices on the expected value of
a sample.

Generating Process Conjugate Prior Source

Bernoulli(θ) (θ) ∼Beta
[34]
[32]

Poisson(λ) λ ∼gamma [34]

Normal(µ, σ)
µ ∼ Normal, σ known [34]

µ known, σ2 ∼ inv. Gamma [34]
σ2 ∼ inv. Gamma, µ|σ2 ∼ Normal [34]

Multinomial(t)1 t ∼ Dirichlet This Paper

Table 1: Position of this paper in comparison to other tractable EVSI cal-
culations.

Shown in Table 1, our point of departure is generalizing the EVSI cal-
culation for a Bernoulli data-generating process with beta prior (a.k.a. a
beta-binomial model) to the case of a multinomial data generating process
with Dirichlet prior. Rich treatment and illustrative examples surround-
ing EVSI calculations for the beta-binomial conjugacy can be found in [15].
Additionally, [32] provide explicit closed-form value of information compu-
tations for the beta-binomial case and is very close in spirit to this work,
but does not investigate the Dirichlet-multinomial setting. In relation to
the multinomial sampling process we explore in this paper, existing work
has focused on non-utility based approaches where data is valued based on
its ability to bound a parameter of interest within a certain level of preci-
sion [1, 6]. Our approach, in contrast, extends the utility-based valuation
of sampling to a multinomial sampling environment to yield closed-form
expressions for both EVSI and the expected value of distribution informa-
tion (EVDI). Publication of analytically tractable expressions will be able
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to supplant the still-present usage of Monte Carlo simulation in multinomial
settings (see, e.g., [38]).

When closed-form EVSI expressions are unavailable, quantification of
value created through uncertainty reduction typically relies on one of three
techniques: 1) closed-form expressions on the upper bound of the value of
data, 2) simulated comparisons between valuing decisions made by an or-
acle who knows the underlying data distribution to decisions made by a
less-informed decision maker, or 3) using variance-reduction as a proxy for
how data reduces underlying uncertainty in the data-generating process. For
examples of the first type, [27] bound EVPI for a risk-averse decision maker
and [40] place an upper bound on the value of knowing the true distribu-
tion when one already knows the mean and variance of that distribution.
Examples of the second type often compare a Bayesian updating procedure
to a known optimal solution [8, 29, 7, 35]. Lastly, computing the value of
variance reduction independent of the specific quantity of data is also seen
within the literature [11, 22].

2 Problem Setup

Despite substantial efforts, notation for preposterior analysis has not been
standardized and is often a matter of personal taste [33]. To aid the reader
with this paper’s notation surrounding its random variables and their real-
izations, we present the following summary breaking the notation into three
levels of analysis:

1. Data/Sample. Data is an integer-valued random variable with support
{0, 1, . . . ,M}. Sample is a random vector referring to either a sequence of n data
observations or a vector of counts representing the number of occurrences of each
potential data value recorded in n observations.

D: A random variable representing a single data observation.
d: A single realization of D with integer valued support: d ∈ {0, 1, . . . ,M}.

X ≡ (X1, . . . , Xn): A random vector of n observations of D.
x ≡ (x1, . . . , xn): A realization of data vector X.

Dn: The support of X when n realizations are observed.
nk: the number of times that k ∈ {0, 1, . . . ,M} appears in x.

(n0, n1, . . . , nM ): A vector of counts of occurrences for each potential data value.

2. Data/Sampling Distributions. Data and sampling distributions are iden-
tical terms referring to the probability distribution governing the data-generating
process. Data distribution refers to generating individual data points and sampling

1With support interpreted as a sequence of integer values.
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distribution preferred when talking about a sequence of observations.

T ≡ (T0, T1, . . . , TM ): A random vector representing a data distribution.
Random elements Tk are data distribution parameters
representing the probability of data realization being k.

t ≡ (t0, t1, . . . , tM ): A realization of random vector T such that
tk = p(D = k) for k ∈ {0, 1, . . . ,M}.

t∗: The “true” data distribution or sampling distribution;
only knowable by an oracle.

T : The space or set of all possible data distributions. T, t, t∗ ∈ T .

3. Prior/Posterior Distributions. Continuous multivariate probability distri-
butions with domain of all possible data distributions.

π: A prior from which data distributions are generated.
πX : A posterior that updates π in light of data X.

2.1 Modelling Data and Loss

Consider a data-generating process that generates independent and identi-
cally distributed samples from a bounded sequence of M + 1 integers. For
notational simplicity, we rescale the sequence to be [M ] ≡ {0, 1, . . . ,M}. For
practical motivation, the data could represent product demand and the goal
is to make accurate predictions for inventory control [39]. For the specific
case of demand uncertainty, we note that there are asymmetric and other
loss functions that would be preferred to the quadratic loss function used
here, but closed-form expressions are not forthcoming for those cases.

The data-generating process is governed by an unknown data distribu-
tion, t, with discrete-finite support [M ]. Thus the statistical model for the
data-generating process is parameterized by the standard M -dimensional
simplex of probabilities

T = {t = (t0, . . . , tM ) ∈ RM+1
+ : t0 + . . .+ tM = 1};

this infinite (but finite-dimensional) parameter space describes how we are
labeling the potential data distributions. If the sample size of the data is n,
we have n values x1, . . . , xn ∈ [M ] being generated by the data-generating

process. For a given t ∈ T , the associated data-generating process p
(n)
t

assigns probability

p
(n)
t (x1, . . . , xn) =

n∏
i=1

txi (1)
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to this particular sequence of data values. In particular, if the sample size
is 1, the data-generating process is simply given by

pt(d) ≡ p(1)t (d) = td, d ∈ [M ].

It is clear that the number of occurrences of particular data values in the
sample is a sufficient statistic for the model described, and that the sam-
pling distribution for this sufficient statistic is just the multinomial model.
Specifically, if nd = |{1 ≤ i ≤ n : xi = d}|, then (n0, . . . , nM ) is a sufficient
statistic, and we have, with obvious abuse of notation,

pt(n0, . . . , nM ) =

(
n

n0 · · ·nM

) M∏
d=0

tndd . (2)

Note that n0+ . . .+nM = n by definition; so we do not write the superscript
(n) when using the sufficient statistic to represent the data.

When making predictions for future data, ideally the action (or predic-
tion) is close to the actual data realization. For tractability, we consider a
quadratic terminal opportunity loss function for a single prediction to be of
the following form:

`(d, a) = k(d− a)2 (3)

where k > 0 is a known constant, a is the action/prediction, and d ∈ [M ] is
the actual data realization.

To briefly make the above notation more concrete, let’s imagine fore-
casting product demand for a product that will sell between 0 and 5 units
(M = 5). Each period’s i.i.d demand, d ∈ {0, 1, . . . , 5}, has an associated
probability of occurrence, pt(0), pt(1), . . . , pt(5), which is represented more
compactly as t0, t1, . . . , t5. The effectiveness of any action will be measured
using quadratic loss scaled by a factor k such that if k = 5, d = 4, and
a = 1, then `(4, 1) = 45. The decision maker is contemplating the value of
n = 3 observations where generated data, (x1, x2, x3), might be something
like (0, 5, 0) and the associated sufficient statistic of counts, (n0, . . . , n5),
would be (2, 0, 0, 0, 0, 1). Note that t ≡ t0, t1, . . . , t5 parameterizes both the
data-generating process of eq. (1) yielding (x1, x2, x3) and the equivalent
sampling process of eq. (2) yielding (n0, . . . , n5). As a result, we refer to t
as both data distribution and sampling distribution depending on context.
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2.2 Preposterior Analysis

For any data distribution t, define the expectation of loss as:

R(t, a) = ED|T=t [`(D, a)] =
M∑
d=0

pt(d)`(d, a). (4)

where R(t, a) is known as the Bayes risk. Since a decision maker (DM) does
not know the underlying “true” t∗ ∈ T data distribution, the minimum
Bayes risk, minaR(t∗, a), is likely unachievable.

For a DM, risk is evaluated on an average basis based on the probability
distribution the DM places over the simplex T . Without any sample obser-
vations, this distribution is the prior π over all possible data distributions
in T . The average risk of taking action a using prior π is

R̄(π, a) = ET [R(T, a)] , (5)

with T ∼ π. The Bayes action for π is

a∗(π) = arg min
a∈A

R̄(π, a). (6)

The Bayes risk for π is

R̄(π, a∗(π)) = min
a∈A

R̄(π, a). (7)

Access to a sample X ≡ (X1, . . . , Xn) results in a different decision with
different risk. With sample observations, the DM applies Bayes’ rule to
update π to πX (the posterior) and calculates the associated optimal Bayes
action a∗(πX). Since X is unknown prior to actually collecting the sample,
the Bayes risk for πX is itself a random variable. Hence, we evaluate the
DM’s prior expectation of loss with sample information over all possible
samples X,

EX
[
R̄(πX , a

∗(πX))
]

= ETEX|T [R(T, a∗(πX))] , (8)

with T ∼ π and the right-hand side expression derived by substituting πX
for π in eq. (5) and applying the law of total expectation.

Thus, the expected value of a sample of information (EVSI), Vn(π), is the
difference between the prior expectations of loss with and without sample
X under prior π:

Vn(π) = R̄(π, a∗(π))− EX
[
R̄(πX , a

∗(πX))
]

(9)

= ET [R(T, a∗(π))]− ETEX|T [R(T, a∗(πX))] (10)
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where T ∼ π and eq. (10) follows from eqs. (5) and (8). Proposition 2.1 for-
malizes our intuition that this expected value of sample information should
be non-negative.

Proposition 2.1. Suppose data distribution T ≡ (T0, . . . , TM ) is drawn
from a given prior π. Assume further that a DM is given n samples X ≡
(X1, . . . , Xn) and updates his/her prior to the posterior πX . Then, under
quadratic loss, the expected value of these n samples is non-negative, i.e.

Vn(π) = ET [R(T, a∗(π))]− ETEX|T [R(T, a∗(πX))] ≥ 0. (11)

Proof. See Appendix. �

Because the ordering within the sample X does not matter, the inner ex-
pectation in (11) is performed over (n0, n1, . . . , nM ) ∼ Multinomial(t) con-
ditioned on T = t where nj is the number of times that j ∈ [M ] appears in
the sample, and the outer expectation is performed over T ∼ π.

3 Tractable Valuation of Sample Information

To arrive at a tractable valuation for (10), we leverage the Dirichlet distri-
bution as a prior for three reasons: 1) it is a conjugate prior to categori-
cal/multinomial outcomes, 2) its support is the M -dimensional simplex T ,
and 3) it has flexibility to model many types of prior information for the de-
cision maker. With the Dirichlet assumption, the main result of this paper,
Theorem 3.1, can be presented:

Theorem 3.1. For data distribution T with support [M ] and prior π =
Dirichlet(α0, α1, . . . , αM ), the expected reduction in quadratic loss after ob-
serving n data samples, also called the expected value of sample information
(EVSI), is given by:

Vn(π) =
kn(c2 − c21)

(n+ α)(1 + α)
. (12)

where α =
∑M

d=0 αd is the precision/concentration parameter of the Dirich-

let distribution (see [16]) and c1 = 1
α

∑M
d=0 dαd and c2 = 1

α

∑M
d=0 d

2αd
are the first and second moments of the data under the marginal likelihood
(α1, α2, . . . , αM )/α.

Proof. See Appendix. �
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Theorem 3.1 gives the expected value of observing an n-trial multinomial
sample with Dirichlet prior where support of the underlying data-generating
process is the bounded sequence of integers [M ] = {0, 1, . . . ,M}. This is a
natural generalization of valuing an n-trial binomial sample with beta prior
where support of the underlying data-generating process is restricted such
that [M ] = {0, 1}. With just a slight change of notation, we know from [32]
that EVSI for the beta-binomial case in closed-form is:

kn

n+ α0 + α1
· α0α1

(α0 + α1)2(α0 + α1 + 1)
(13)

where π ∼ Beta(α0, α1). Replacing this prior with the equivalent Dirichlet
parameterization of π ∼ Dirichlet(α0, α1) and using Theorem 3.1 yields an
identical result:

Vn(π) =
kn(c2 − c21)

(n+ α)(1 + α)

=
kn

(n+ α0 + α1)
·

α1
α0+α1

− α2
1

(α0+α1)2

(α0 + α1 + 1)

=
kn

(n+ α0 + α1)
· α0α1

(α0 + α1)2(α0 + α1 + 1)

(14)

As a direct consequence of Theorem 3.1, when n → ∞, we have an
expression for the expected value of distribution information (EVDI), as an
infinite sample gives the data distribution exactly:

V∞(π) = lim
n→∞

Vn(π) =
k(c2 − c21)

1 + α
. (15)

Lastly, we can express the efficiency η of the sample information as a function
of the number of sample points using the ratio of (12) to (15) as:

η =
n

n+ α
. (16)

Hence, the percentage of value obtained through sampling is given by the
ratio of the number of data points n to the sum of the n data points
and the concentration parameter α of a Dirichlet distribution. This sam-
pling efficiency calculation directly simplifies to the known formula of the
beta-binomial case from [34](in our notation): η = n/(α0 + α1) where
π ∼ Beta(α0, α1).

Again, we make the notation more concrete, by revisiting our forecasting
product demand example from the end of §2.1. Recall, we have a product
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that will sell between 0 and 5 units (M = 5) and loss is scaled by k =
5. The decision maker is contemplating the value of n = 3 observations.
Introducing a zero-inflated prior π ∼ Dirichlet(106 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6) means α =

15
6 , c1 = 6

15 · (0 ·
10
6 + 1 · 16 + 2 · 16 + 3 · 16 + 4 · 16 + 5 · 16) = 1, c2 = 6

15 ·
(0 · 106 + 1 · 16 + 4 · 16 + 9 · 16 + 16 · 16 + 25 · 16) = 11

3 . Plugging into eq. (12)
yields EVSI V3(π) = 160

77 ≈ 2.08. and EVDI V∞(π) = 80
21 ≈ 3.81. From

eq. (16) we get η = 6
11 ≈ 54.5%, so the learning from n = 3 samples is

expected to provide more than half of the maximum possible reduction in
loss. Following from eqs. (26) - (31), a∗(π) = 1 and prior expected loss
R̄(π, a∗(π)) = 5 · (−12 · 1015 + 02 · 1

15 + 12 · 1
15 + 22 · 1

15 + 32 · 1
15 + 42 · 1

15) =
40
3 ≈ 13.33. And thus, we can also get the prior expectation of posterior loss
EX
[
R̄(πX , a

∗(πX))
]

= R̄(π, a∗(π))− V3(π) = 40
3 −

160
77 ≈ 11.26.

4 Notes on Richness and Interpretability of Mod-
elings Assumptions

In the previous section, we showed one of the three EVSI desiderata, tractabil-
ity, can be achieved for a multinomial data-generating process with Dirichlet
prior. The multinomial distribution is flexible enough to model any discrete
(finite) data distribution. Its prior, the Dirichlet distribution, is also flexible
in its ability to model a wide range of distributions over a simplex. Yet, some
sacrifice of richness in modeling prior beliefs is made in the name of tractabil-
ity. Most notably, a more rich/flexible alternative prior over a simplex is the
logistic-normal distribution [3, see discussion in]. The most glaring weak-
ness of the Dirichlet distribution is in modeling prior beliefs where there is
some type of correlation structure between data observations. For example,
observing a high data value, say 100, would make one think values of 101
and 99 are also more likely to occur than data values further away. How-
ever, the Dirichlet distribution, as a prior distribution to multinomial data,
is unable to capture this structure. Notably, the distribution-free underpin-
nings of the Kaplan-Meier estimator also ignore this potential correlation
among data observations, yet shows favorable results in a similar repeated
newsvendor setting [17] .

The richness of the Dirichlet prior is best seen through the lens of its intu-
itive reparameterization [16]. Let the concentration parameter α =

∑M
i=0 αi

and let the vector m =
(
α0
α ,

α1
α , . . . ,

αM
α

)
represent the mean where the

expected mean of the data observations is given as c1 = 1
α

∑M
i=0 iαi =∑M

i=0 imi. When α is small, say α ≤ M , the prior distribution over the
simplex can differ greatly from m and reflect a decision maker’s uncertainty
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Figure 1: Graphical depiction of the Dirichlet prior parameters, poten-
tial realizations for that prior (i.e. the multinomial parameters), and the
EVSI/EVDI calculations as a function of n samples for the given prior. Top
row for concentration parameter α = 10 and bottom row for concentration
parameter α = 50
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around their expectation. As α is made larger, the prior distribution will
concentrate probability density near m and reflect greater confidence. We
present a graphical overview of this in Figure 1 for two different concentra-
tion parameters. As seen, when α is smaller (top row of Figure 1) the real-
ized multinomial parameters (middle-top plot) can be further away from the
mean m (which is proportional to the parameters in the top-left plot). As α
increases (bottom-row) the prior distribution becomes much more informa-
tive and multinomial parameters will most likely mirror the prior Dirichlet
parameters.

In terms of interpretability, Theorem 3.1 formalizes our intuition about
what drives the value of data. Specifically, data is valuable when 1) the
sample contains a lot of data (high n), 2) the expected variance of the
data distribution is large (high c2 − c21), and 3) there is a lot of uncertainty
regarding the true data distribution (α is small). Additionally, the calcu-
lation for EVDI (eq. 15) gives an interpretable upper bound on the value
of data where high variance pushes to make samples more valuable and a
high concentration parameter makes samples less valuable. Lastly, the equa-
tion for efficiency (16) adds further insight by stating how quickly the upper
bound on the value of data is approached; basically, the smaller the Dirichlet
concentration parameter, the more quickly EVDI is approached with each
subsequent data point.

5 Illustrative Examples

In this section, we demonstrate how the tractable formulation for EVSI,
equation (12), can serve as a building block inside of other research initia-
tives. The first example explores sample size optimization and the second
example shows how a tractable EVSI calculation can lead to a tractable de-
cision policy in a two-stage production planning problem. In the third/last
example, the EVSI formula provides a foundation from which to benchmark
heuristic updating procedures that seek to estimate an underlying unknown
data distribution.

5.1 The Choice of Sample Size

We now explore a decision maker’s objective to choose the number of sam-
ple points to collect in such a way as to minimize his expected loss when
assuming expected sampling cost, Cs(n), is a linear function of the number
of sampled points n:

Cs(n) = K + sn (17)
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where s is the cost of one sample and K represents the fixed costs of sam-
pling.

The loss function to be minimized, `s(n), combines equations (12) and
(17):

`s(n) = − kn(c2 − c21)
(n+ α)(1 + α)

+K + sn (18)

And assuming for practical purposes that n can be treated continuously,
we get the optimal sample size:

n∗ =

√
α

(1 + α)

k

s
(c2 − c21)− α (19)

for cases where n∗ is positively valued and the fixed costs of sampling K
can be recovered, i.e. Vn(π) > Cs(n

∗). In all other cases, n∗ = 0. Equation
(19) has a nice economic interpretation where the three terms represent the
strength of the prior, the ratio between the scaling of the quadratic loss
costs and the unit sampling costs, and the predicted variance of the data
distribution.

5.2 Two-Stage Production Planning

The example shown here is a simple two-stage production planning problem
(see, e.g., [9]) where the decision maker seeks to optimally schedule the 2nd

production run.
Assume J periods make up a selling season. Each period, j ∈ J faces in-

dependent and identical categorical demand with Dirichlet prior and quadratic
loss (i.e. a repeated newsvendor setting with quadratic loss) with identical
shipments scheduled for each period. A decision maker can choose either 1)
to schedule the delivery quantity for each period in the entire selling season
or, 2) at cost K can specify a period j∗ after which the scheduled delivery
quantity can be changed. Assuming this change date will be contractually
set in advance of the selling season, find j∗ to minimize expected net costs
over the entire season J .

The net cost function for this problem is:

C(j) =

0, if j = 0,

K − (J − j) kj(c2 − c21)
(j + α)(1 + α)

, if j ∈ (0, J ]
(20)
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When j ∈ (0, J ], the net cost function C(·) is strictly convex and has a
unique global minimum value. The optimal period j∗ is

j∗ = arg min
j∈{0,1,...,J}

C(j)

When minC(j) = 0 for 0 < j ≤ J , we choose j∗ = 0.
For the case when minC(j) < 0, we have

j∗ =
√
α(J + α)− α

Considering that j∗ must be a non-negative integer, summarizing differ-
ent cases we have the optimal j∗ as

j∗ =


0, if min

j∈[0,J ]
C(j) = 0,

arg min
j∈{bj0c,dj0e}

C(j), if min
j∈[0,J ]

C(j) < 0.
(21)

where j0 =
√
α(J + α)− α.

5.3 Benchmarking Data-Driven Algorithms

An active area of research is to propose algorithms for decisions in repeated
settings where minimal assumptions about the underlying data distribution
are known. These approaches include Sample Average Approximation(SAA)
[24, 23], concave adaptive value estimation (CAVE) [12], and Second Order
Belief Maximum Entropy (SOBME) [35]. When benchmarking these algo-
rithms, it is customary to pick a handful of “true” distributions where the
algorithm competes against a known optimal solution.

With the introduction of a closed-form EVSI calculation in the context
of a Dirichlet prior, a more robust benchmarking scenario can be achieved.
Instead of picking a “true” data distribution, we pick a “true prior” from the
Dirichlet family with support matching the problem of interest. This prior
can be used to then simulate “true” data distributions (as many as we want)
by which we can estimate the reduction in squared loss as a function of n,
the number of data samples. Given this setup, a comparison of a proposed
algorithm can be made against a known optimal updating procedure. After
all, it is the updating procedure that we are seeking to validate, and the opti-
mal updating procedure to benchmark new algorithms against is, therefore,
the Bayesian one detailed in the proof of Theorem 3.1 (see appendix).

As a proof of concept, Figure 2 is an example benchmarking the well-
known sample average approximation (SAA) (see [24]) against the known op-
timal Bayesian updating procedure (BAYES) using a Dirichlet(α0, α1, . . . , αM )

14
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Figure 2: Comparing the sample average approximation(SAA) updating
procedure to the known Bayesian (BAYES) optimal updating procedure.

prior withM = 20, α = 10, and m ∝ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 13, 11, 9, 7, 5, 3, 1}
(chosen to be slightly skewed). In this scenario, we see the value of prior in-
formation in small data settings as BAYES outperforms SAA. It also shows
how as the amount of data increases, the non-parametric SAA algorithm’s
performance improves and closely mimics that of the optimal Bayesian up-
dating procedure.

6 Conclusion

The use of preposterior analysis in this paper provides a formal method for
valuing data prior to its collection and as such, should serve as a build-
ing block in many systems and models going forward. By expanding the
support of the underlying data-generating process from [M ] = {0, 1} to
[M ] = {0, 1, . . . ,M}, the beta-binomial EVSI calculations are successfully
generalized to a Dirichlet-multinomial setting. Using this new EVSI com-
putation, three illustrative examples valuing data prior to its collection are
shown, there are potentially many other contexts where this tractable formu-
lation might also prove useful. Researchers in two particular areas, medical
decision making and active (machine) learning are known to be interested in
EVSI types of calculations (see, e.g., [2, 13, 18, 31]). And we look forward
to hearing of other useful deployments for this method of valuing data prior
to its collection.
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A Proof of Proposition 2.1 and Theorem 3.1

A.1 Proof of Proposition 2.1

The expected value of sample information is

Vn (π) = ET [R(T, a∗(π))]− ETEX|T [R(T, a∗(πX))] . (22)

For the first term in eq. (22), we have

ET [R(T, a∗(π))] = kET
[
ED|T

[
(D − a∗ (π))2

]]
= kET

[
ED|T

[
(D − E [D])2

]]
= kED

[
(D − E [D])2

]
= kVar [D] .

(23)

The second line is due to the optimal action under squared loss being the
mean (see eq. (30)). The third line of equation (23) follows from the law of
total expectation. Thus, the optimal Bayes risk without sample information
under quadratic loss (3) is the marginal variance of D scaled by a factor k.

Similarly, for the second term in eq. (22) we find

ET
{
EX|T [R (T, a∗ (πX))]

}
= kET

{
EX|T

[
ED|T

[
(D − a∗ (πX))2

]]}
= kET

{
EX|T

[
ED|T

[(
D − ED|X [D]

)2]]}
= kEX

{
ED|X

[(
D − ED|X [D]

)2]}
= kEX

[
VarD|X [D]

]
.

(24)

The optimal Bayes risk under quadratic loss (3) if a sample of size n is to
be collected is the expected variance of the predictive posterior distribution
of D scaled by a factor k.

Combining (22),(23), and (24), we complete the proof:

Vn (π) = ET [R(T, a∗(π))]− ET
{
EX|T [R (T, a∗ (πX))]

}
= kVar [D]− kEX

[
VarD|X [D]

]
= k

{
Var [D]− EX

[
VarD|X [D]

]}
= kVarX

[
ED|X [D]

]
≥ 0.

(25)
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The last equal sign in equation (25) follows from the law of total variance.
Since k > 0 and VarX

[
ED|X [D]

]
≥ 0 for any X, we have Vn (π) ≥ 0 for any

sample size n. �

A.2 Proof of Theorem 3.1

Consider the prior distribution for the data-generating process

π = Dirichlet(α0, α1, . . . , αM ).

Suppose our information consists of n samples of the data distribution. Let
nj , j ∈ [M ] be the frequency of the data being j so that nj are integers such

that
∑M

j=0 nj = n. Then, because the multinomial and Dirichlet distribu-
tions are conjugate,

πX = Dirichlet(α0 + n0, α1 + n1, . . . , αM + nM ).

Because π and πX both belong to the same class of distributions, we derive
closed-form valuations for the information X. The corresponding marginal
likelihoods for π and πX are

qπ(d) =
αd
α
,

qπX (d) =
αd + nd
α+ n

,

where α =
∑M

i=0 αi. If the information happens to occur in such a way
that nj ∝ αj for each j, then the updated marginal likelihood is unchanged:
qd(π) = qd(πX), d ∈ [M ].

For convenience, define the quantities

Z =
1

n

M∑
d=0

dnd,

c1 =
1

α

M∑
d=0

dαd,

c2 =
1

α

M∑
d=0

d2αd,

where Z represents the average frequency of the sample, c1 the prior expec-
tation for a sample value, and c2 the prior second moment for the sample
value.
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Given the loss function in (3), the Bayes risk and action without sample
information can be explicitly calculated

R̄(π, a) = ET∼π[R(T, a)], (26)

= ET∼π

[
M∑
d=0

pT (d)`(d, a)

]
, (27)

=

M∑
d=0

`(d, a)ET∼π[pT (d)], (28)

=
M∑
d=0

`(d, a)qπ(d), (29)

where {qπ(0), qπ(1), . . . , qπ(M)} is the marginal likelihood. The Bayes action
minimizes eq. (29):

∂R̄(π, a)

∂a
= −2k

M∑
d=0

(d− a)qπ(d) = −2k

(
M∑
d=0

dqπ(d)− a
M∑
d=0

qπ(d)

)
= 0,

⇒ a∗(π) =
M∑
d=0

dqπ(d),

= Eqπ [D], (30)

= c1. (31)

the mean data outcome under the prior marginal likelihood. The corre-
sponding Bayes Risk is

R̄(π, a∗(π)) = k
M∑
d=0

(d− a∗(π))2qπ(d),

= kVarqπ [D],

= k(c2 − c21).
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Similarly, with sample information we have

∂R̄(πX , a)

∂a
= −2k

M∑
d=0

(d− a)qπX (d),

= −2k

(
M∑
d=0

dqπX (d)− a
M∑
d=0

qπX (d)

)
= 0,

⇒ a∗(πX) =
M∑
d=0

dqπX (d),

= EqπX [D],

=
αc1 + nZ

α+ n
, (32)

which is the mean data outcome under the posterior marginal likelihood.
Now expressing EVSI as

Vn(π) = R̄(π, a∗(π))− ETEX|TR(T, a∗(πX)), (33)

note the inner expectation is taken over the data frequency, which follows a
multinomial distribution: (n0, . . . , nM ) ∼ Multinomial(pt(0), . . . , pt(M))),
and the outer expectation is taken over all possible distributions pt∗ ∼
Dir(α0, . . . , αM ).

The first term in (33) has already been evaluated as k(c2− c21). We now
calculate the second term.

R(t, a∗(πX)) = k
M∑
d=0

pt(d)(d− a∗(πX))2

= k

M∑
d=0

pt(d)

[
d− αc1 + nZ

α+ n

]2

⇒ EX|T=t [R(t, a∗(πX))] = k

M∑
d=0

pt(d)

[
d2 −

(
2nd

α+ n
− 2nαc1

(α+ n)2

)
EX [Z]

−2dαc1
α+ n

+
α2c21

(α+ n)2
+

n2

(α+ n)2
EX [Z2]

]
.(34)

19



Since Z(n0, . . . , nM ) = 1
n

∑M
d=0 dnd,

EX|T=t[Z] =

M∑
d=0

dpt(d),

EX|T=t[Z2] = VarX|T=t[Z] +
(
EX|T=t[Z]

)2
=

1

n

M∑
d=0

d2pt(d) +
(n− 1)

n

(
M∑
d=0

dpt(d)

)2

,

where the last line follows from the fact

VarX|T=t[Z] = VarX|T=t

[
1

n

M∑
d=0

dnd

]

=
1

n2
VarX|T=t

[
M∑
d=0

dnd

]

=
1

n2


M∑
d=0

d2VarX|T=t [nd] + 2

M∑
0=i<j

ijCovX|T=t (ni, nj)


=

1

n2


M∑
d=0

d2npt(d) (1− pt(d))− 2

M∑
0=i<j

ijnpt(i)pt(j)


=

1

n

M∑
d=0

d2pt(d)− 1

n


M∑
d=0

d2p2t (d) + 2
M∑

0=i<j

ijpt(i)pt(j)


=

1

n

M∑
d=0

d2pt(d)− 1

n

(
M∑
d=0

dpt(d)

)2

. (35)

Eq. (34) becomes

EX|T=t[R(t, a∗(πX))] = k

{(
1 +

n

(α+ n)2

) M∑
d=0

d2pt(d) +

(
2αnc1

(α+ n)2
− 2αc1
α+ n

) M∑
d=0

dpt(d)

+

[
n(n− 1)

(α+ n)2
− 2n

α+ n

][ M∑
d=0

dpt(d)

]2
+

α2c21
(α+ n)2

 .

The final step is to take the expectation over all possible beliefs pt ∼

20



Dirichlet(α0, . . . , αM ). Using the fact that

ET∼π[pT (i)] =
αi
α
,

ET∼π[pT (i)2] = Var[pT (i)] + ET [pT (i)]2

=
αi(α− αi)
α2(α+ 1)

+
α2
i

α2

=
αi(αi + 1)

α(α+ 1)
,

ET∼π[pT (i)pT (j)] = Cov[pT (i), pT (j)] + ET [pT (i)]ET [pT (j)], i 6= j,

= − αiαj
α2(α+ 1)

+
αiαj
α2

=
αiαj

α(α+ 1)
,

and

ET∼π

( M∑
d=0

dpT (d)

)2
 = ET∼π

 M∑
d=0

d2p2T (d) + 2
M∑

0=i<j

ijpT (i)pT (j)


=

M∑
d=0

d2ET∼π
[
p2T (d)

]
+ 2

M∑
0=i<j

ijET∼π [pT (i)pT (j)]

=

M∑
d=0

d2
αd (αd + 1)

α (α+ 1)
+ 2

M∑
0=i<j

ij
αiαj

α (α+ 1)

=
1

α+ 1

M∑
d=0

d2αd
α

+
1

α (α+ 1)

 M∑
d=0

d2α2
d + 2

M∑
0=i<j

ijαiαj


=

c2
α+ 1

+
1

α (α+ 1)

(
M∑
d=0

dαd

)2

=
c2

α+ 1
+

αc21
α+ 1

, (36)
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we obtain

ETEX|T [R(T, a∗(πX))] = k

{(
1 +

n

(α+ n)2

) M∑
d=0

d2αd
α

+

(
2αnc1

(α+ n)2
− 2αc1
α+ n

) M∑
d=0

dαd
α

+

[
n(n− 1)

(α+ n)2
− 2n

α+ n

] [
c2

α+ 1
+

αc21
α+ 1

]
+

α2c21
(α+ n)2

}
= k(c2 − c21)

α(1 + α+ n)

(1 + α)(n+ α)
.

The value of n samples from the data distribution is therefore

Vn(π) = k(c2 − c21)− k(c2 − c21)
α(1 + α+ n)

(1 + α)(n+ α)

=
kn(c2 − c21)

(n+ α)(1 + α)
. (37)

�
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