INFORMS Journal on Computing

Vol. 16, No. 3, Summer 2004, pp. 255-265
1SN 0899-1499 | E1ssN 1526-5528 | 04 | 1603 | 0255

1orms})

Dpo110.1287 /ijoc.1030.0046
©2004 INFORMS

The Constraint Consensus Method for
Finding Approximately Feasible Points in
Nonlinear Programs

John W. Chinneck

Department of Systems and Computer Engineering, Carleton University, Ottawa, Ontario, K1S 5B6, Canada,
chinneck@sce.carleton.ca

his paper develops a method for moving quickly and cheaply from an arbitrary initial point at an extreme

distance from the feasible region to a point that is relatively near the feasible region of a nonlinearly con-
strained model. The method is a variant of a projection algorithm that is shown to be robust, even in the
presence of nonconvex constraints and infeasibility. Empirical results are presented.

Key words: nonlinear programming; feasibility; approximate algorithms
History: Accepted by W. David Kelton; received October 2002; revised May 2003; accepted June 2003.

1. Introduction

There are numerous nonlinear-programming applica-
tions in which it is necessary to move very quickly
from an initial point, often very far from feasibility, to
a final point that is approximately feasible for a set
of nonlinear constraints. A method for doing this is
a valuable “nonlinear crash start” in the solution of
any nonlinear program, for example. It is also a nec-
essary first step in global optimization using exhaus-
tive search algorithms (Kearfott and Dian 2000). See
Pardalos and Resende (2002) for further information
on techniques of nonlinear programming and global
optimization.

A generic nonlinear program consisting of m con-
straints in #n variables is shown in Equation 1. Our
main interest is the case in which one or more of the
constraint functions are nonlinear and the bounds on
the variables are very wide.

Minimize or maximize f(x)
st. g(x){<,>,=}b 1)
I<x<u

The major motivation here is to find reasonable
bounds on variables when these are not supplied by
the user. The MProbe software (Chinneck 2001a, b,
2002) analyzes functions for characteristics such as
their shape and distribution of values. It does so
by random sampling in the multidimensional box
defined by the variable bounds. Users often omit vari-
able bounds when they are unsure as to how to set
them. The resulting unbounded sampling box is so
large that it is extremely unlikely that any sample

255

points will be placed in the region of interest around
the feasible region.

For example, consider a three-variable model in
which the feasible region is approximately a cube
with sides of length 100, for a volume of 1 x 10°.
If the bounds are not set by the user, MProbe will
assume bounds of +1 x 10'° on each variable, for a
total sampling box volume of 8 x 10%°. The probabil-
ity of placing a random point in the feasible region is
then 1 x 10°/8 x 103 = 1.25 x 10~?, which is vanish-
ingly small. This difficulty worsens as the number of
unbounded variables in the model increases. For this
reason MProbe needs to be able to identify quickly the
approximate location of the feasible region by moving
from arbitrary initial points in the original sampling
box to points that are relatively near to the feasible
region. These approximately feasible points are used
as a guide to set variable bounds that define a suitable
box for productive sampling.

In the MProbe context it is important that near-
feasibility be achieved relatively quickly since this is
only a preliminary step towards the core sampling
work. On the other hand, it is acceptable for the
method to fail occasionally since many random ini-
tial points are supplied. However, the method should
converge to an approximate feasible point quickly for
a reasonable fraction of the initial points.

A note on nomenclature: We assume throughout
that constraints have the form LHS {<, >, =} RHS,
where RHS is a constant. The LHS is often referred to
as the “constraint body” and includes the functional
part of the constraint.

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

256

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

2. Measuring Nonlinear Closeness to
Feasibility

In the MProbe context, the idea is to find a box in
the variable space that is a close outer approximation
of the feasible region. As shown below, there is an
important distinction between measures of closeness
in the variable space and in the function space. Intu-
itively, the measure of how close an infeasible point
is to feasibility is the minimum Euclidean distance
between the point and the feasible region, referred to
here as the feasibility distance. The feasibility distance
is not normally used in most optimization solvers to
measure the degree of infeasibility; instead, measures
based on function values are the norm.

Most optimization solvers consider a constraint to
be “feasible” when it is satisfied to within a prespeci-
fied tolerance €. For example, a constraint of the form
LHS < RHS is commonly considered to be satisfied
if LHS < RHS + €, where € =1 x 107, for example.
The LHS could be up to € greater than the RHS
and the constraint will still be considered satisfied.
Since the feasibility measure in this case relates to the
value of the function, we refer to this as a function
tolerance test. The function tolerance test is applied
to the constraint violation, which is zero for satisfied
constraints, RHS — LHS for violated constraints of
the form LHS > RHS, LHS — RHS for violated con-
straints of the form LHS < RHS, and |RHS — LHS|
for violated equality constraints.

A function tolerance test is easy to implement, but
is unfortunately severely affected by scaling issues.
For example, consider the constraint x* < 9 at x =3.5.
The LHS evaluates to 12.25, for a constraint viola-
tion of 12.25 —9 = 3.25, well above the € of 1 x 107°.
Note, however, that since the constraint is exactly sat-
isfied at x = 3, the feasibility distance in this one-
dimensional example is 3.5 —3 =0.5. Now consider a
simple multiple of the original constraint: 10x2% < 90.
At the same point x = 3.5, the constraint violation is
122.5—-90 =32.5. The function tolerance test seems to
show that the identical point is much farther from fea-
sibility. In contrast, the feasibility distance remains 0.5.
At the opposite extreme, another multiple of the orig-
inal constraint, 0.0000001x% < 0.0000009, has a con-
straint violation of 0.000000325 at x = 3.5, which is
less that the € of 1 x 107, and therefore the constraint
is considered to be satisfied by this test. In contrast,
the feasibility distance retains its constant value of 0.5.

As the example shows, the common function toler-
ance test is severely affected by scaling, to the extent
that a point can be considered to be very far from fea-
sibility, close to feasibility, or even feasible, depend-
ing on the constraint multiple that is applied. On the
other hand, the feasibility distance does not change
with the scaling factor.

When the feasibility of individual constraints is
tested via the function tolerance test, the overall
model feasibility is normally tested by summing the
constraint violations over all of the violated con-
straints. Minimizing this “sum of the infeasibilities”
(often abbreviated as SINF) is the usual objective func-
tion during a Phase 1 procedure whose goal is to find
a feasible point by driving SINF to zero (or below a
prespecified tolerance).

Unfortunately, since the constraint violations for the
individual constraints are affected by the constraint
scaling, when a SINF of zero (or near zero) is achieved
by a suitable Phase 1 procedure, the resulting point
may in fact violate some of the constraints by a
sizable feasibility distance. In fact, because of the
scaling issues, the point may violate a number of
constraints by various feasibility distances. Depend-
ing on the scaling, the SINF objective function may
be trying much harder to satisfy some constraints
than others because their constraint violations make a
much bigger contribution to SINE Constraints are not
treated equally in terms of their effect on the Phase 1
procedure or outcome.

In contrast, the feasibility distance is an unbiased
measure of the nearness of the point to feasibility for
each constraint.

Overall model feasibility is also commonly mea-
sured by the number of violated constraints (often
abbreviated as NINF). However, judgment of which
constraints are violated is normally based on the func-
tion tolerance test, and so this measure suffers from
the same scaling difficulties mentioned above. In con-
trast to the feasibility distance, a smaller value of
NINF can be associated with a point that is much
farther away from the feasible region. This happens
when fewer constraints are violated, but their fea-
sibility distances are larger. Some solvers, such as
MINOS (Murtagh and Saunders 1993), use both NINF
and SINF during their Phase 1 feasibility-seeking
procedures.

To reduce the variable bounds appropriately in the
MProbe application, it is important that a variable-
space measure of distance to feasibility be used, such
as the feasibility distance defined earlier. Nonlinear
optimization systems could also benefit by replacing
their current function-space measures by variable-
space measures for the reasons given above. Unfortu-
nately, the true feasibility distance is expensive to find
in nonlinearly constrained models. Given an infeasi-
ble point, an optimization problem must be solved
to find the closest feasible point. Since this is at least
as difficult as solving the original Phase 1 problem
itself, embedding such a procedure simply to measure
the closeness to feasibility of the current trial point
is clearly not justified. A more efficient procedure is
needed.

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

257

3. Projection Algorithms

The Euclidean distance to feasibility underpins pro-
jection algorithms, originated by Cimmino (1938) and
extensively developed in recent years by Censor and
collaborators (e.g., Chapter 5 of Censor and Zenios
1997), among others. In projection algorithms, the
orthogonal projection of an infeasible point is defined
as the closest feasible point (Xiao et al. 2003).

We define here the feasibility vector for an individual
constraint as the vector extending from an infeasible
point to its orthogonal projection on the constraint.
Both the direction and the distance of movement
necessary to achieve feasibility are captured by the
feasibility vector. Adding the feasibility vector to
an infeasible point yields the closest point that
satisfies the constraint, i.e., the orthogonal projection.
The length of the feasibility vector is the feasibility
distance.

The feasibility vector is easily found for a linear
constraint. At a point x that violates a constraint c, the
gradient of the constraint LHS is denoted by Vc, with
length || Vc|. A unit vector in the gradient direction
is then given by Vc/||Vc|. The direction parameter 4
has the value +1 if it is necessary to increase the LHS
value to satisfy the constraint, and —1 if it is necessary
to decrease the LHS to satisfy the constraint. Hence a
unit vector in the desired direction of motion is given
by dVc/|Vc||. If the constraint violation is v, then the
feasibility distance is v/||Vc||, and the feasibility vec-
tor is v/||Vc|| x dVc/||Vc|| = vdVc/||Vc|?, as has been
shown by Xiao et al. (2003) and others.

The feasibility vector can be used to construct
numerous varieties of projection algorithms (Censor
et al. 2001). In sequential projection algorithms, the
current point is updated by finding and applying
the feasibility vector for each constraint in turn. In
simultaneous projection algorithms, all of the feasibil-
ity vectors are calculated simultaneously and some
form of weighting is used to determine a final move-
ment vector. Other variations include the use of con-
trol sequences and relaxation parameters to adjust
the movements. Relaxation parameters are used to
lengthen or shorten the suggested movements.

Component averaging (Censor et al. 2001) is an
important recent development in simultaneous pro-
jection algorithms. In the usual simultaneous projec-
tion algorithm, the complete set of feasibility vec-
tors for the violated constraints are combined in
a weighted average. Component averaging, on the
other hand, realizes that not all of the constraints
contain all of the variables. For this reason, the final
movement vector is computed component-wise, and
only the constraints that contain a particular variable
are considered when that movement component is
calculated.

In the case of nonlinear constraints, the feasibility
vector cannot be found exactly without a great deal

of work: Solving a nonlinear optimization problem
to minimize the distance between the infeasible point
and a feasible point for the constraint. However, it
can easily be estimated by linear approximation: use
the constraint violation and the gradient at the cur-
rent point, and apply the linear formula above. Meth-
ods that use the gradient in this manner are called
gradient-projection methods. The accuracy of the result-
ing estimated feasibility vector is naturally affected by
the curvature of the constraint at the estimation point.

Consider again the simple one-dimensional non-
linear constraint x2 < 9. At x = 3.5, the estimated
feasibility vector provided by gradient projection is
[—0.4643], with length 0.4643. This is a good approx-
imation for the true feasibility vector of [—0.5] with
length 0.5. As for all Newton projection-based meth-
ods, the estimates are quite accurate for points that are
close to the orthogonal projection, but are less accu-
rate at more distant points. For the same constraint at
x =10, the feasibility distance is 7, but the estimated
feasibility distance is 4.55.

Projection algorithms have been proved to con-
verge when the constraints are all inequalities and
form a convex region (Censor and Zenios 1997). The
component-averaging scheme has also been proved
to converge for the convex feasibility problem, which
includes the case of linear equalities, even in the case
of inconsistency (Censor et al. 2001). However, proofs
of convergence have not been developed for the gen-
eral nonlinear nonconvex case.

The constraint consensus method, developed below,
is a form of simultaneous component-averaging
gradient-projection algorithm. It is a simple version
that does not use relaxation parameters or control
sequences or unequal weighting. It is specifically
designed for use in the nonlinear nonconvex case. The
empirical convergence results presented later in this
paper may be of interest to theoreticians seeking con-
vergence proofs as well as those interested in practical
applications of the method as a nonlinear crash start.

Hereafter, when referring to the “feasibility vector”
for a constraint, we mean the exact feasibility vector
in the case of linear constraints, and the estimated
feasibility vector based on the gradient projection in
the case of nonlinear constraints. Similarly the “feasi-
bility distance” means the exact feasibility distance in
the case of linear constraints, and the estimated feasi-
bility distance based on the gradient projection in the
case of nonlinear constraints.

4. The Constraint Consensus Method

The constraint consensus method developed here is
designed to cope with nonconvex sets of constraints.
This is an important characteristic in the MProbe
context, where convexity cannot be assumed, and
where nonconvexity is in fact likely. The main idea is

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

258

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

to combine the feasibility vectors in such a way that a
poor direction of motion suggested by the feasibility
vector for a nonconvex constraint is “outvoted” by the
feasibility vectors for the other constraints. This “vot-
ing” characteristic gives rise to the “constraint con-
sensus” name.

The challenge is to construct a single vector that
combines the movements suggested by the individ-
ual feasibility vectors, and that is then used to update
the current point. The resulting vector should in some
way reflect the consensus of opinion among the fea-
sibility vectors of the violated constraints; hence, it is
called the consensus vector t. The consensus vector is
constructed by component-wise averaging of the fea-
sibility vectors for the violated constraints. Let 1; rep-
resent the number of violated constraints that have
variable X; as a component, fl-]- represent the compo-
nent for variable x; in the feasibility vector for the
ith constraint, and s; represent the sum of the f,-]- for
variable x; over the feasibility vectors for all of the
violated constraints. The component of the consensus
vector for variable x; is then given by s;/n;. If this
vector is too short (length is less than a prespecified
tolerance B), then the iterations are halted with an
unsuccessful outcome.

The constraint consensus algorithm is summarized
in Figure 1. Constraints are considered violated only
if the feasibility distance is greater than a prespecified
feasibility distance tolerance a (Step 2.1.2). To mini-
mize the number of constraints for which a feasibil-
ity vector and feasibility distance must be found, a
prescreening step eliminates constraints having a con-
straint violation of zero (Step 2.1). The algorithm halts

Inputs:
e a set of constraints,
e an initial point x,
e a feasibility distance tolerance «,
e a movement tolerance .
1. NINF =0; for all j: n;=0,s=0.
For every constraint c;:
21 If ¢; is violated (without considering a tolerance) then:
2.1.1 Find the feasibility vector and the feasibility
distance.
2.1.2 If the feasibility distance is greater than « then:
2.1.2.1 NINF =NINF +1.
2.1.2.2 For every variable x; in ¢;:

21221 nj<n+1s < s+ f;

3. If NINF =0, then exist successfully.
4. For every variable x;:

41 t=s;/n;.
5. If ||t]| < B then exit unsuccessfully.
6. X < x+t.
7. If necessary, reset x to respect any violated variable bounds.
8. Go to Step 1.
Figure 1 The Constraint Consensus Algorithm

when every constraint has a constraint violation of
zero or a feasibility distance of less than «, i.e., NINF
is zero. The feasibility tolerance can be quite large,
depending on the purpose at hand. In the MProbe
application, a feasibility distance tolerance of 100 is
quite acceptable.

For simplicity, a few details are omitted in Figure 1.
The most important of these is a method for coping
with failed function or gradient evaluations, which
can be common when the algorithm is working with
points at extreme distances from the feasible region.
Constraints that experience function or gradient eval-
uation errors are simply ignored, but a flag is raised.
In many cases, the algorithm is able to progress even-
tually to a new point at which there are no func-
tion or gradient evaluation errors. However, if all
of the successfully-evaluated constraints report fea-
sibility (within the « feasibility distance tolerance),
but the flag is raised, then the algorithm terminates
unsuccessfully.

The constraint consensus method is simple: There
are no line searches, matrix inversions, or other ex-
pensive routines such as the solution of a linear-
programming problem. The main calculation effort is
in determining the lengths of the vectors.

Figure 2 shows an example iteration of the
constraint consensus method in which the feasibility
distance tolerance is @ = 0.5 and the consensus vec-
tor length tolerance is 8 = 0.1. The two constraints
are A(x): x, <5 and B(x): x} + x, < 10. The ini-
tial infeasible point (2.5, 8) violates both constraints.
The feasibility vectors (shown as dashed arrows) are
[0 =3] for A(x) with length 3, and [-0.817 —0.163]
for B(x) with length 0.833. Both feasibility distances
are larger than « and hence both feasibility vectors
are included in the calculation of the consensus vec-
tor. A(x) does not involve x;, so it is ignored when
calculating the x; component of the consensus vec-
tor. The consensus vector, shown as a solid arrow, is
[-0.817 —1.582], and has a length of 1.781, which is
greater than (3, so the vector is accepted. The updated
point is (1.683, 6.418), which satisfies B but not A, so
the constraint consensus method will continue.

4.1. Alternative Stopping Conditions
The algorithm in Figure 1 exits successfully when the
(estimated) feasibility distances for the violated con-
straints are all less than a specified feasibility distance
tolerance «. This is most similar to the usual condi-
tions for assessing the feasibility of a model. How-
ever, other stopping conditions can be postulated.
Two such possibilities are described below.
Analogous to the usual Phase 1 objective of min-
imizing the sum of the infeasibilities, the algorithm
could also be stopped when the sum of the feasi-
bility distances over all of the violated constraints is

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

259

P -

Feasible region

3 (. 1 1 1
0 0.5 1 1.5

Figure 2 Example Iteration of the Constraint Consensus Method

smaller than a specified tolerance. The important dif-
ference from the ordinary Phase 1 objective is that
this is a variable-space measure as opposed to the
usual function-space measure. A second possibility is
to stop the algorithm when the consensus vector is
shorter than a specified tolerance.

Both of these alternative stopping conditions con-
sider all of the constraints simultaneously, as opposed
to the condition in Figure 1. Both attempt to pro-
vide a measure of closeness to simultaneous feasibil-
ity of all constraints. Both are also adversely affected
by ill-conditioning. The sum of feasibility distances
will drive the algorithm to continue iterating under
ill-conditioning when very little progress is being
made. The length of the feasibility vector will cause
early termination in the case of ill-conditioning. In
the MProbe context, it is desirable to include ill-
conditioned portions of the model in the sampling
region so that this property can be examined. For this
reason, the stopping condition included in Figure 1 is
preferred.

4.2, Characteristics
The gradient projection method of finding an esti-
mated feasibility vector is closely related to Newton'’s
method, and hence has similar characteristics. Prin-
cipal among these is that the accuracy of the esti-
mates improves the closer the point is to the solution,
and the quadratic convergence rate. However, gradi-
ent projection methods can also be fooled by specific
function shapes or by inappropriate placement of test
points. See, e.g., Polak (1997) for further discussion of
Newton methods.

A weakness of the constraint consensus algorithm
in particular is that the method of combining the

individual feasibility vectors can be fooled by spe-
cific circumstances, especially when a set of feasibil-
ity vectors pulling in one direction is counterbalanced
by a set of feasibility vectors pulling in the opposite
direction. In this case, the resulting consensus vector
is very short, causing the algorithm to terminate
unsuccessfully at Step 5 of Figure 1, even though the
individual feasibility vectors have reasonable lengths.
However, the failure is recognized. Figure 3 shows an
example of an infeasible zone in which the two feasi-
bility vectors produce a null consensus vector, thereby
halting the iterations.

Short consensus vectors also happen in the case
of ill conditioning. Consider two linear inequality
constraints that cross, but are close to parallel, as
shown in Figure 4. Some infeasible starting points
will quickly lead to a point between the constraints
at which both are violated, as shown in the figure.

Feasible
region

Consensus Vector Is Too Short

Figure 3

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

260 INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS
f nonconvex set. This can be assessed by determin-
'y ing the constraint region effect (Chinneck 2001a, b) for
! each constraint, which indicates whether or not a con-
! straint contributes to a convex feasible region, if one
i exists. A constraint that has a convex region effect is in
‘I" one of the following categories:
\ * convex inequality of < type,
\ * concave inequality of > type,
' e linear equality.
A constraint that has a nonconvex region effect is in one
of the following categories:
* convex inequality of > type,
* concave inequality of < type,
Figure 4 1il-Conditioning * convex and concave inequality,

Here the feasibility vectors for the two constraints
will be almost opposites of each other. The consensus
vector will suggest only a slight movement towards
the feasible region. Since the consensus vector is
so short, the method will terminate unsuccessfully.
However, if there is a third violated linear inequal-
ity involved, which is almost perpendicular to the
two ill conditioned constraints, then convergence will
be rapid.

Experiments show that the constraint consensus
method is sometimes not effective for achieving true
feasibility of a constraint set. This may happen when
the movements suggested by the algorithm fall short
of the target due to averaging. This effect is mitigated
in other projection algorithms by using relaxation
parameters to influence the length of the suggested
movement vector. In the constraint consensus algo-
rithm, this effect is instead mitigated by the relatively
large size of the approximate feasibility tolerance.
If a constraint violates the approximate feasibility
condition (i.e., the estimated feasibility distance is
greater than «), then the associated feasibility vector
is included in the movement calculations. This feasi-
bility vector is attempting to move to a point which
actually satisfies the constraint (with a feasibility dis-
tance tolerance of zero) as opposed to a point that
approximately satisfies the constraint (with a feasibil-
ity distance tolerance of «). The attempted movement
is thus well beyond what is needed to satisfy a large
feasibility distance tolerance, so relaxation parameters
are not necessary.

5. Empirical Results
Test models are drawn from a number of well-known
sources: Himmelblau (1972), Floudas and Pardalos
(1990), Floudas et al. (1999), and Vanderbei’s (2002)
web repository. The models are chosen to cover a
range of constraint types, shapes, and complexities.
An extremely important characteristic of the test
models is whether the constraints form a convex or

¢ nonlinear equality.

Constraints of these latter types contribute to the cre-
ation of a nonconvex feasible region, if one exists.

The MProbe software (Chinneck 2001a, b, 2002) is
used to assess constraint region effects. It does so by
sampling within the initial set of variable bounds.
Constraints having nonconvex region effects are pos-
itively identified. However, it is possible that a con-
straint can be erroneously identified as having a
convex region effect through insufficient sampling.
Hence the models in Table 1 are at least as nonconvex
as shown, if not more.

A number of the test models were chosen because
they include constraints that have nonconvex region
effects. It is particularly difficult for projection algo-
rithms to find the feasible region in the presence of a
constraint that has a nonconvex region effect. This is
because the gradient projection of the constraint may
point towards different discontiguous feasible zones
for the constraint at different intermediate points in
the solution.

The relevant model characteristics are summarized
in Table 1. Constraints are noted as belonging to one
of three categories: linear, quadratic, or general non-
linear (NL), and the number of equalities and inequal-
ities in each category are shown. Note especially the
number of unbounded variables and the number of
constraints having nonconvex region effects in each
model. Brief descriptions of each model follow:

® FPhel: Heat-exchanger network. The four quad-
ratic constraints are convex and concave, and have
nonconvex region effects. Source is Floudas and
Pardalos (1990, p. 63).

* FPnlp3: Nonlinear objective with all linear con-
straints. Source is Floudas and Pardalos (1990, p. 28).

® FPnlp6: Nonlinear test problem. The variables
have very small ranges, so every test point is within
the approximate feasibility tolerance in every test.
Included for completeness in comparison with results
by Kearfott and Dian (2000). Source is Floudas and
Pardalos (1990, p. 30).

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS 261
Table 1 Characteristics of the Test Models

Variables Constraints Linear cons. Quad. cons. Gen. NL cons.
Model Tot. Unbnded. Tot. Nonconv. = Ineq. = Ineq. = Ineq.
FPhet 16 4 13 4 9 0 4 0 0 0
FPnip3 4 2 3 0 1 2 0 0 0 0
FPnip6 2 0 2 2 0 0 0 0 0 2
FPpb1 9 7 6 3 3 0 1 2 0 0
FPgp3 12 3 6 0 0 6 0 0 0 0
Hang 143 113 116 58 58 0 0 0 58 0
Test6 17 0 13 6 1 4 1 3 1 3
Electrns 150 150 50 50 0 0 50 0 0 0
Himmelblau6 43 43 14 0 14 0 0 0 0 0
Himmelblau15 6 0 4 4 0 0 0 0 0 4
Himmelblau20 24 24 20 12 2 0 12 0 0 6
Himmelblau23 100 100 12 0 0 12 0 0 0 0
FEA14.1.1 2 2 2 2 0 0 0 0 2 0
FEA14.1.2 5 5 5 5 0 0 0 2 0 3
FEA8.2.7 5 0 3 3 0 0 2 0 1 0
Sawpatterns 3 3 196 ? 0 0 0 1 0 195

Note. Ranged inequalities are counted as two constraints.

e FPpbl: Pooling-blending problem. Source is
Floudas and Pardalos (1990, p. 59).

* FPgp3: Quadratic program. Source is Floudas and
Pardalos (1990, p. 8).

* Hang: Flight distance calculations for a hang
glider. Source is Vanderbei (2002).

* Test6: Standard MProbe test model. It is infeasi-
ble, and includes functions known to cause calcula-
tion errors. Source is Chinneck (2002).

e Electrns: Positioning of electrons on a unit sphere.
While the 50 quadratic constraints all have convex
shapes, the fact that they are equality constraints
means that they have a nonconvex region effect. The
variable ranges are set at £10° due to excessive func-
tion evaluation errors beyond this range. Source is
Vanderbei (2002).

e Himmelblau6: A chemical equilibrium problem.
The AMPL software (Fourer et al. 1993) used to
express the model automatically reduces it slightly,
so the variable and equation counts do not match
those in the original source. Convergence is very
slow unless the AMPL presolver is first applied.
Results reported later are after the presolver has been
applied. The presolver reduces the number of upper-
unbounded variables from 43 to 5. The 5 unbounded
variables are further restricted to a range of +10°.
Iteration limit reset to 1,000 for a = 10. Source is
Himmelblau (1972).

o Himmelblau20: Minimization of blending costs.
The upper-unbounded variables are restricted to a
range of zero to 10°. Source is Himmelblau (1972).

o Himmelblau23: All linear constraints. Source is
Himmelblau (1972).

* FEA14.1.1, FEA14.1.2: Nonlinear systems of equa-
tions. These are used directly, not converted to an

optimization problem as suggested in the book. The
original small box constraints on the variables are
removed and replaced by ranges of +10°. There
are excessive function evaluation errors beyond this
range. Source is Floudas et al. (1999, §§14.1.1 and
14.1.2).

* FEAS8.2.7: Original box constraints on the vari-
ables of +5 are replaced by +10*. Above this range,
there are numerous function evaluation errors and
failures of the method to converge. Source is Floudas
et al. (1999, §8.2.7).

* Sawpatterns: Unbounded variables restricted to
£1,000 due to excessive function and gradient eval-
uation errors at larger ranges. Source is Vanderbei
(2002). The convexity status of the constraints in the
model is unknown (shown as “?” in Table 1) due to
excess function evaluation errors during MProbe test-
ing. However, it is highly likely that almost all of the
constraints have nonconvex region effects due to their
algebraic form.

5.1. Experiment 1: Moving Closer to Feasibility
The first experiment demonstrates the ability of the
algorithm to move from a distant point to a point
that is much closer to the feasible region. To know
the actual distance to feasibility, we require the
orthogonal projection. We estimate this point by solv-
ing the following nonlinear optimization problem.
Given a point p, find the orthogonal projection x as
follows:

Minimize Z
= [('xl - Pl)z + (- Pz)z +o+(x, — Pn)z]
subject to constraints and variable
bounds in the model. (2)

1/2

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

262 INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS
Table 2 Evaluation of the Constraint Consensus Method on the FPhe1 Model
CC to approx. feasibility Feasibility distances MINOS to feasibility

Trial Itns Fecn evals Grad evals Initial Final Final/Initial Itns Fen evals Grad evals

1 26 351 351 1.402E+10 2.977E+02 2.124E-08 50 1,300 1,287

2 26 351 351 1.425E+10 3.082E+02 2.164E —08 59 1,872 1,859

3 25 338 338 5.501E+09 2.684E +02 4.879E—08 12 156 143

4 26 351 351 1.005E+10 3.095E+02 3.079E-08 24 663 650

5 26 351 351 1.069E+10 3.205E+02 2.999E-08 26 650 637

6 26 351 351 1.092E+10 3.365E+02 3.082E —-08 40 1,157 1,144

7 26 351 351 1.433E+10 3.349E+02 2.337E—08 12 117 104

8 27 364 364 1.176E+10 2.916E+02 2.478E —08 1 143 130

9 27 364 364 1.538E+10 2.430E+02 1.580E — 08 13 143 130
10 26 351 351 5.721E+09 2.912E+02 5.091E—08 17 377 364
Avg: 26.1 352.3 352.3 1.126E+ 10 3.001E+02 2.981E — 08 26.4 657.8 644.8

The estimated distance to feasibility of point p is
given by Z. This nonlinear optimization problem
is solved here by MINOS (Murtagh and Saunders
1993).

The starting points for the constraint consensus
algorithm are chosen randomly within the variable
bounds; unbounded variables have a range of +10%.
The MINOS estimated distance to feasibility is calcu-
lated at both the random initial point and at the final
point returned by the constraint consensus algorithm.
We expect to find that the final point is close to fea-
sibility. The MINOS estimated distance to feasibility
at the final point will not necessarily be less than «,
though it should be in the same range.

This experiment uses the FPhel model, which has
16 variables (4 unbounded) and 13 constraints (4 have
nonconvex region effects). The results are summa-
rized in Table 2. The constraint consensus method has
a =100. The “feasibility distances” columns give the
distance to the orthogonal projection, as calculated by
solving system (2) using MINOS, for both the initial
random point at which the constraint consensus (CC)
method begins, and at the final point returned by
the constraint consensus method. The “MINOS to
feasibility” columns measure the effort that MINOS
expends in achieving a first feasible point if started
at the same initial point as the constraint consensus
method. In all cases, the number of function and gra-
dient evaluations refers to evaluations of individual
constraints, not the entire set of constraints.

Both the constraint consensus method and MINOS
are successful in achieving final feasibility (approxi-
mate feasibility for the constraint consensus method,
exact feasibility for MINOS) in all ten trials. Note that
the distances to feasibility at the initial random points
are quite large, averaging 1.126E + 10, but that the
distances to feasibility at the final points are much
smaller, averaging 3.001E + 02. The average ratio of
final to initial distance to feasibility is 2.981E — 08,

a difference of eight orders of magnitude. The con-
straint consensus method is very effective in mov-
ing from a distant point to a point that is quite close
to feasibility. Further, it does so with relatively little
effort, an average of just 352.3 function evaluations
and 352.3 gradient evaluations.

As a comparison, Table 2 also shows the effort
expended by MINOS in achieving feasibility from
the same initial point. Since the constraint consensus
method is only required to achieve approximate
feasibility, this is not a fair comparison. However, it
is interesting to note that the constraint consensus
method expends around half the effort in terms of
function and gradient evaluations to achieve approx-
imate feasibility, as compared to effort expended by
MINOS to achieve full feasibility. However, MINOS
also carries out a linear programming solution and
a reduced-gradient solution at each iteration, which
adds a great deal more calculation burden than
expended by the constraint consensus method. A final
observation is that the effort expended by the con-
straint consensus method is remarkably consistent
between trials, even though the model has four con-
straints that have nonconvex region effects. The effort
expended by MINOS is more highly variable, proba-
bly due to the same nonconvex effects.

5.2. Experiment 2: Frequency of Success

The second experiment evaluates the success of the
method when applied to the entire set of models listed
in Table 1. The results are summarized in Table 3. Vari-
ables are restricted to various large ranges, as noted;
an “unbounded” variable is restricted to a range of
+10'°. In some models, the original bounds on the
variables are expanded to test the ability of the con-
straint consensus algorithm to achieve near-feasibility
from larger distances. Results are collected at a =100
and at @« =10; B=0.5 in all cases. In most cases the
method is halted after 500 iterations and the attempt
to achieve near-feasibility is deemed to have failed.

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS 263
Table 3 Empirical Results

a=100 a=10
Model Success Itns Fen evals Grad evals Success Itns Fen evals Grad evals
FPhet 100 26.2 353.3 353.3 100 29.7 399.0 399.0
FPnip3 100 135.3 408.9 408.9 100 153.8 464.3 464.3
FPnip6 100 0.0 2.0 0.7 100 0.0 2.0 0.6
FPpb1 100 209.4 1,262.5 1,084.1 100 242.7 1,462.3 1,224.9
FPgp3 100 174.9 1,055.2 1,055.2 100 198.9 1,199.1 1,199.1
Hang 100 29.6 3,551.9 3,551.9 100 37.4 4,452.1 4,452.1
Test6 90 0.5 17.5 10.6 0 n.a. n.a. n.a.
Electrns 100 13.0 702.0 702.0 100 17.0 900.0 900.0
Himmelblau6 66 457.7 6,421.1 6,421.1 100 654.6 9,178.8 9,178.8
Himmelblau20 100 253.0 5,080.2 3,704.1 100 353.5 7,089.8 5,104.4
Himmelblau23 100 76.7 931.9 543.6 100 86.9 1,054.3 615.0
FEA14.1.1 100 221 46.2 46.2 100 35.2 72.4 724
FEA14.1.2 100 86.5 437.5 437.5 90 108.7 548.5 548.5
FEA8.2.7 100 331.9 998.7 998.7 67 1,376.3 4,132.0 4,132.0
Sawpatterns 7”7 1.4 460.7 24 79 3.6 893.2 4.6

In Table 3, each model is started at 100 random
points at @ =100, and again for another 100 random
points at & = 10. The random points are uniformly
distributed between the upper and lower bounds
on the variables. The success columns indicate how
many of the 100 trials terminate successfully. The itns
columns give the average number of iterations for
each successful termination. The fcn evals and grad
evals columns show the average number of individual
function and gradient evaluations, respectively, per
successful termination.

Table 3 shows that the constraint consensus method
is quite effective, at least over the 15 models tested.
This is true even when the fraction of constraints that
have nonconvex region effects is relatively large. For
example, 58 of the 116 constraints in the hang model
have nonconvex region effects, as do all 50 of the
constraints in the electrns model. This is an impor-
tant observation for projection algorithms in general:
Empirical results for models that include constraints
having nonconvex region effects are very good. The
method is also unaffected by models having primarily
or only equality constraints.

Test6 is a model that is known to be infeasible, and
also contains functions that are known to cause calcu-
lation errors. Still, the constraint consensus method is
able to converge in 90% of the tests at « =100. How-
ever, because the model is infeasible, the method does
not ever converge at o = 10. Himmelblau6 is also note-
worthy in that while it has only linear equality con-
straints, it does take numerous iterations to converge.
This may be due to a degree of ill conditioning.

As expected, tightening the tolerance from a =100
to @ =10 increases the average number of iterations
required for successful termination. This is usually a
relatively modest increase, except in FEAS.2.7 where
the number of iterations required quadruples.

5.3. Experiment 3: Comparison to Another Method
A comparison can be made with results obtained
by Kearfott and Dian (2000), who also addressed
the issue of finding approximate feasible points
from random initial points. They tested three
methods: purely random sampling (method pure-rand)
and two methods that use a generalized Newton
method for underdetermined systems. This approach
is related to projection methods in that the constraint
gradients and the constraint violations are used to
adjust the position of the approximate point. How-
ever, the method requires the inversion of a matrix,
which Kearfott and Dian obtain via a pseudoinverse
routine. In one method, all inequality constraints are
converted to equality constraints by the addition of
slack variables for use in the generalized Newton
method (method slack), while in the other method
satisfied inequality constraints are ignored (method
rand-GN).

Kearfott and Dian applied their method to eight
models, five of which also appear in Table 3: FPhel,
FPnlp3, FPnlp6, FPpbl, and FPqp3. Note that the termi-
nating condition for Kearfott and Dian is a function-
based error tolerance of 107¢, much tighter than that
used in Table 3. Note also that the original variable
bounds are used for all models; note especially the
very tight bounds in FPnlp6. Their results for the five
comparable models are summarized in Table 4. The
“Success” column in Table 4 gives the percentage of
trials in which the algorithm terminated successfully.

The results in Tables 3 and 4 are not directly compa-
rable given the differences in the tolerances (a function
error of less than 107° for Kearfott and Dian versus an
estimated feasibility distance tolerance of o =10). The
effort in each case is also not comparable: It is mea-
sured by the number of function and gradient evalua-
tions in Table 3 and is given in “standard time units” in

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

264

Table 4 Method of Kearfott and Dian (2000)

Model Method Random points Success

FPhet pure-rand 108 0
slack 100 1
rand-GN 100 1

FPnip3 pure-rand 106 0
slack 100 18
rand-GN 100 42

FPnip6 pure-rand 108 41
slack 100 7
rand-GN 100 100

FPpb1 pure-rand 108 0
slack 100 19
rand-GN 100 29

FPgp3 pure-rand 108 2
slack 10,000 3
rand-GN 100 6

Kearfott and Dian’s paper. However, it is interesting to
note that the constraint consensus method terminates
successfully in 100% of the cases for these five models,
and does so at the cost of relatively modest numbers
of function and gradient evaluations, without the need
for matrix inversions.

Note that FPnlp6 has very tight bounds on the vari-
ables, so it is immediately satisfied at every initial
point at @ =100 and a =10 when using the constraint
consensus method. Kearfott and Dian are also able to
achieve 100% success on this model when using the
rand-GN method.

6. Conclusions

While development continues, there are reasons for
optimism about the constraint consensus method.
It is simple to implement and has proven effec-
tive in the tests to date. Calculation effort is small,
consisting almost entirely of function and gradi-
ent evaluations, and does not require line searches,
linear-programming solutions, reduced-gradient cal-
culations, matrix inversions, etc. Perhaps most
importantly, it has proven quite robust, even for mod-
els including numerous constraints that have non-
convex region effects. This robustness is thought
to be due to the “voting” behavior in which poor
movement directions suggested by a few constraints
are “outvoted” by better directions suggested by
the majority of the constraints. On the negative
side, the constraint consensus method suffers from
the usual drawbacks of gradient-based methods
when faced with ill-conditioning effects and local
minima.

Projection methods in general provide a way of
exactly determining the variable-space closeness of
a linear constraint to feasibility, as opposed to the
usual practice of estimating closeness to feasibility
based on function-space measures. Adoption of this

variable-space measure may improve the accuracy of
linear-programming solutions since it eliminates scal-
ing effects. In the same vein, projection methods pro-
vide a way of estimating the variable-space closeness
to feasibility for nonlinear constraints. This may also
prove to be a better method for nonlinear program-
ming for similar reasons.

Finally, there are numerous avenues for future
research. Work is already underway on using the
constraint consensus method in a random-sampling
approach to tighten the variable bounds in non-
linear programs. Adjustments to the algorithm can
be expected as the research proceeds. For example,
it may be straightforward to detect ill condition-
ing when a relatively small component movement
results even though the constituent feasibility vec-
tor components are themselves much larger. This
may be the signal to apply a relaxation parame-
ter to lengthen the movement in the recommended
direction.

Acknowledgments

This research is supported by a research grant to the author
from the Natural Sciences and Engineering Research Coun-
cil of Canada. Yair Censor (University of Haifa) provided
valuable advice on early drafts of the paper, as did Michael
Saunders (Stanford University).

References

Censor, Y., T. Elfving, G. T. Herman. 2001. Averaging strings of
sequential iterations for convex feasibility problems. D. But-
nariu, Y. Censor, S. Reich, eds. Inherently Parallel Algorithms in
Feasibility and Optimization and Their Applications. Elsevier Sci-
ence B. V., Amsterdam, The Netherlands, 101-113.

Censor, Y., D. Gordon, R. Gordon. 2001. Component averaging:
An efficient iterative parallel algorithm for large and sparse
unstructured problems. Parallel Comput. 27 777-808.

Censor, Y., S. A. Zenios. 1997. Parallel Optimization: Theory, Algo-
rithms, and Applications. Oxford University Press, New York.

Chinneck, J. W. 2001a. Analyzing mathematical programs using
MProbe. Ann. Oper. Res. 104 33-48.

Chinneck, J. W. 2001b. Discovering the characteristics of mathemati-
cal programs via sampling. Optim. Methods Software 17 319-352.

Chinneck, J. W. 2002. MProbe web page, http://www.sce.carleton.
ca/faculty/chinneck /mprobe.html.

Cimmino, G. 1938. Calcolo Approssimato per Soluzioni dei Sistemi
di Equazioni Lineari. La Ricerca Sci. XVI, Ser. 1I, Anno IX 1
326-333.

Floudas, C. A., P. M. Pardalos. 1990. A Collection of Test Problems
for Constrained Global Optimization Algorithms. Springer-Verlag,
Berlin, Germany.

Floudas, C. A., P. M. Pardalos, C. S. Adjiman, W. R. Esposito,
Z. H. Gumus, S. T. Harding, J. L. Klepeis, C. A. Meyer,
C. A. Schweiger. 1999. Handbook of Test Problems in Local and
Global Optimization. Kluwer Academic Publishers, Dordrecht,
The Netherlands.

Fourer, R., D. M. Gay, B. W. Kernighan. 1993. AMPL: A Modeling
Language for Mathematical Programming. Boyd & Fraser Publish-
ing Company, Danvers, MA.

Chinneck: The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs

INFORMS Journal on Computing 16(3), pp. 255-265, ©2004 INFORMS

265

Himmelblau, D. M. 1972. Applied Nonlinear Programming. McGraw-
Hill Book Company, New York.

Kearfott, R. B., J. Dian. 2000. An iterative method for find-
ing approximate feasible points. Technical report, Depart-
ment of Mathematics, University of Southwestern Louisiana,
Lafayette, LA.

Murtagh, B. A., M. A. Saunders. 1993. MINOS 5.4 User’s Guide
(Preliminary). Technical Report SOL 83-20R, Systems Opti-
mization Laboratory, Department of Operations Research,
Stanford University, Stanford, CA.

Pardalos, P. M., M. G. C. Resende. 2002. Handbook of Applied Opti-
mization. Oxford University Press, Oxford, U.K.

Polak, E. 1997. Optimization: Algorithms and Consistent Approxima-
tions. Springer-Verlag, New York.

Vanderbei, R. 2002. Web Repository of AMPL Test Models.
http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/index.
html.

Xiao, Y., Y. Censor, D. Michalski, J. Galvin. 2003. The least-intensity
feasible solution for aperture-based inverse planning in radia-
tion therapy. Ann. Oper. Res. 119 183-203.

