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Recently there has been much progress on the design of approximation algorithms for a variety of scheduling
problems in which the goal is to minimize the average weighted completion time of the jobs scheduled.

Many of these approximation algorithms have been inspired by polyhedral formulations of the scheduling
problems and their use in computing optimal solutions to small instances.
In this paper we demonstrate that the progress in the design and analysis of approximation algorithms for

these problems also yields techniques with improved computational efficacy. Specifically, we give a compre-
hensive experimental study of a number of these approximation algorithms for 1�rj �

∑
wjCj , the problem of

scheduling jobs with release dates on one machine so as to minimize the average weighted completion time
of the jobs scheduled. We study both the quality of lower bounds given for this problem by different linear-
programming relaxations and combinatorial relaxations, and the quality of upper bounds delivered by a number
of approximation algorithms based on them. The best algorithms, on almost all instances, come within a few per-
cent of the optimal average weighted completion time. Furthermore, we show that this can usually be achieved
with O�n logn� computation.
In addition we observe that on most kinds of synthetic data used in experimental studies a simple greedy

heuristic, used in successful combinatorial branch-and-bound algorithms for the problem, outperforms (on aver-
age) all of the LP-based heuristics. We identify, however, other classes of problems on which the LP-based
heuristics are superior and report on experiments that give a qualitative sense of the range of dominance of
each. We consider the impact of local improvement on the solutions as well.
We also consider the performance of the algorithms for the average weighted flow-time criterion, which,

although equivalent to average weighted completion time at optimality, is provably much harder to approx-
imate. Nonetheless, we demonstrate that for most instances we consider that the algorithms give very good
results for this criterion as well.
Finally, we extend the techniques to a rather different and more complex problem that arises from an actual

manufacturing application: resource-constrained project scheduling. In this setting as well, the techniques yield
algorithms with improved performance; we give the best-known solutions for a set of instances provided by
BASF AG, Germany.
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1. Introduction
In this paper we experimentally evaluate the strengths
of both combinatorial and linear-programming relax-
ations for the single-machine scheduling problem,
1�rj �

∑
wjCj . We also evaluate the empirical perfor-

mance of the approximation algorithms based on the
linear-programming relaxations.
Over the last fifteen years the single-machine

scheduling problem, 1�rj �
∑
wjCj , has received signi-

ficant attention from the enumerative and poly-

hedral community: Bianco and Ricciardelli (1982),
Hariri and Potts (1983), Belouadah et al. (1992), Dyer
and Wolsey (1990), De Sousa and Wolsey (1992),
Wolsey (1985), Queyranne (1993), Goemans (1996),
Van den Akker (1994), Van den Akker et al. (1999,
2000). Recently work on polyhedral formulations of
scheduling problems has inspired a number of results
on approximation algorithms. One interesting conse-
quence of this work was that a heuristic that yielded
excellent performance in empirical experiments was
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established to be a small-constant-factor approxima-
tion algorithm for 1�rj �

∑
wjCj (Hall et al. 1997).

Thus results from the enumerative “community” have
had a direct impact on the approximation commu-
nity. Subsequently, several papers appeared that gave
more ingenious variants of the algorithms in Hall
et al. (1997) with improved performance guaran-
tees (Goemans 1997, Chekuri et al. 2000, Schulz and
Skutella 1997a, Wang 1996, Goemans et al. 2002). In
this paper, we demonstrate experimentally that these
improved approximation algorithms yield improved
empirical performance as well. We also generalize
the techniques to yield improved algorithms for a
more complex scheduling problem that arises in an
actual manufacturing application from BASF AG,
Germany. We feel that the experimental results in this
paper, taken in conjunction with a number of previ-
ous papers on both enumerative and approximation
approaches, represent an example of good synergy
between theory, experimentation, and practice.
In this paper, we demonstrate the impact that

progress in the approximation approach can have
on enumerative/computational approaches. We show
that the ideas that lead to improved approximation
algorithms also lead to heuristics that are quite effec-
tive in empirical experiments. Furthermore we show
that they can be extended to give improved heuristics
for more complex problems that arise in practice.
Specifically, we study the performance of a suite of

different algorithms based both on the Cj -relaxation
and on the xjt-relaxation. We demonstrate that,
although the xjt formulation is known to provide
stronger lower bounds, for most of the instances we
considered, the Cj formulation, at a significantly less
computational cost, provides both a lower bound
(through the solution of its relaxation) and an upper
bound (through associated heuristics) that are on
average just a few percent from those given by
the time-indexed formulation. Furthermore, the best
algorithms give very high-quality upper bounds for
average weighted completion time; the ratio of the
computed upper bound to the lower bound almost
always comes within a few percent of optimal.
In parallel with work on linear-programming

lower bounds for 1�rj �
∑
wjCj there has been sig-

nificant work on branch-and-bound algorithms for
1�rj �

∑
wjCj based on combinatorial lower bounds

(Belouadah et al. 1992, Bianco and Ricciardelli 1982,
Dessouky and Deogun 1981, Hariri and Potts 1983).
The most successful of these is due to Belouadah
et al. (1992) who made use of two combinatorial
lower bounds based on job splitting (Posner 1985,
Belouadah 1985, Belouadah et al. 1992), and an upper
bound based on a simple greedy heuristic. We evalu-
ate their lower bounds and the simple greedy heuris-
tic. We also apply the LP-based heuristics to their

combinatorial relaxations and study the quality of
their performance.
Another optimality criterion that is closely related

to average weighted completion time is the average
weighted flow time,

∑
wj�Cj − rj � (often denoted∑

wjFj ), which in many settings is a much better cri-
terion of good average service. These two criteria
are equivalent at optimality, but from the perspective
of approximation they are very different there is no
�-approximation algorithm for the nonpreemptive
minimization of average flow time of jobs with release
dates on one machine with �= o�

√
n� unless P =NP

(Kellerer et al. 1999). Nonetheless, we demonstrate
that for many of the instances that we considered,
the approximation algorithms perform very well for
the average weighted flow-time criterion as well. We
also identify, however, several categories of prob-
lem instances for which the performance of these
techniques degrades dramatically for the average
weighted flow-time criterion.
We also study a number of more detailed issues

about the performance of the algorithms, including
the impact of the quality of the linear-programming
relaxation to which they are applied and the power
of randomization. In addition, we note that simple
local-improvement techniques are often very success-
ful in giving good solutions to scheduling prob-
lems (Anderson et al. 1997). We therefore consider
the impact of some simple local-improvement tech-
niques when applied both “from scratch” and to the
solutions yielded by the various heuristics that we
consider.
Finally, we show that the ideas behind the more

sophisticated algorithms lead to improved heuristics
for a rather different sort of scheduling problem that
arises in practice. Specifically, we consider a prob-
lem and data arising from a manufacturing appli-
cation from BASF AG, Germany, and give the best
known solutions for several specific instances of this
problem.
This last result highlights an important aspect of

our study. Although 1�rj �
∑
wjCj is a natural and

much-studied problem, instances of scheduling prob-
lems that are exactly of this form are rare in practice.
The rationale for its importance is captured by the fol-
lowing quote due to Dyer and Wolsey (1990, p. 255).

This is not an end in itself, but it is we believe one
of the inherently difficult single-machine problems for
which it is a challenge to obtain strong lower bounds.
We hope that ultimately this approach will allow us to
tackle and solve problems including many machines
and other types of constraints including deadlines,
precedence constraints and order dependent process-
ing times.

In the development of approximation algorithms
their hope has been borne out, as techniques devel-
oped for the one-machine problem led to the design of
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approximation algorithms for a wide variety of prob-
lems (Hall et al. 1997; Chakrabarti et al. 1998; Chekuri
et al. 2000; Schulz and Skutella 1997a, b; Goemans
et al. 2002). We view the experimental results in this
paper as further evidence towards the validation of
their thesis.
Finally, we note that our goal is not an in-depth

understanding of the running times of the different
algorithms, but rather an understanding of the ap-
proximation performance of two different approaches
with radically different running times; therefore we do
not report on running times in depth in this paper.
We also note that we do not claim that our best algo-
rithms are the best known, as we have not conducted
in-depth comparisons with all other approaches. Our
goal is simply to understand the behavior of the
above-mentioned approximation algorithms and to
demonstrate the possible impact of these approaches
on real problems.

2. Background: Formulations and
Algorithms

2.1. Time-Indexed Formulations
A time-indexed formulation is based on time dis-
cretization. That is, time is divided into periods,
where period t starts at time t− 1 and ends at time t.
The planning horizon is denoted by T and there-
fore we consider the time periods 1�2� � � � � T . Dyer
and Wolsey (1990) had proposed a number of time-
indexed formulations for scheduling problems. Here
we focus on two of their formulations, xjt-formulation
and yjt-formulation. These two formulations have
been studied extensively by de Sousa and Wolsey
(1992), van den Akker et al. (1999, 2000), van den
Akker (1994), and Queyranne and Schulz (1994) and
have been useful in the design of approximation algo-
rithms (Hall et al. 1997, Goemans 1997, Chekuri et al.
2000, Schulz and Skutella 1997a, Wang 1996, Goemans
et al. 2002). We describe below these two formulations
for single-machine scheduling problems.

xjt-Formulation. This formulation is general in that
it models several single-machine scheduling problems
including 1�rj �

∑
wjCj .

minimize
n∑
j=1

T∑
t=1
cjtxjt (1)

subject to
T∑
t=1
xjt = 1� j = 1� � � � �n� (2)

n∑
j=1

t+pj−1∑
s=t

xjs ≤ 1� t = 1� � � � � T � (3)

xjt ∈ �0�1�� j = 1� � � � �n� t = 1� � � � � T (4)

where the binary variable xjt for each job j �j =
1� � � � �n� and time period �t− 1� t� �t = 1� � � � � T � indi-
cates whether job j completes in period �t − 1� t�
�xjt = 1� or not �xjt = 0�. The assignment constraints
(2) state that each job has to be completed exactly
once, and the capacity constraints (3) state that the
machine can handle at most one job during any time
period. This formulation can be used to model several
single-machine scheduling problems by an appropri-
ate choice of the objective coefficients and possibly a
restriction on the set of variables. For instance, if the
objective is to minimize the weighted sum of the com-
pletion times, we take coefficients cjt =wjt, where wj

denotes the weight of job j ; if there are release dates
rj , i.e., job j becomes available at time rj , then we dis-
card the variables xjt for t = 1� � � � � rj + pj − 1.
The xjt-LP is obtained from (1)–(4) by relaxing the

integrality constraint on xjt (4) to

0≤ xjt ≤ 1 j = 1� � � � �n� t = 1� � � � � T � (5)

The xjt-LP has been observed to give strong lower
bounds (de Sousa and Wolsey 1992, van den Akker
1994) but is very difficult to solve due to its size.
Because the number of constraints is n + T and the
number of variables is roughly nT with T >

∑
j pj ,

even for instances with relatively few jobs, the size
can be enormous. As a result, the memory required to
store an instance and the time required to solve just
the LP relaxation may be prohibitively large. There-
fore, for time-indexed formulations to be useful, ways
are needed to reduce the memory requirements and
the solution times of the LP relaxation. van den Akker
et al. (1999, 2000) show that Dantzig-Wolfe decompo-
sition techniques and column-generation techniques
can be used for partial alleviation of the difficul-
ties associated with the size of time-indexed formu-
lations. Even though Dantzig-Wolfe decomposition
techniques and column-generation techniques allow
the solution of the LP relaxation of much larger in-
stances, there are some inherent difficulties with that
approach too. Column-generation techniques tend to
converge very slowly, especially on larger more diffi-
cult instances.
The xjt-LP is a nonpreemptive relaxation. That is,

the relaxation is obtained by slicing jobs into pieces in
a horizontal fashion such that any one piece requires
only a fractional capacity of the machine but the full
processing requirement of the job that it belongs to.
A feasible solution to the xjt-LP for the instance in
Table 1 is given in Figure 1. The solution in Figure 1
can be viewed as a schedule of such pieces (slices) of
jobs. For example, the slice of job j corresponding to
xjt = 0�25 utilizes one fourth of the machine’s capacity
and is scheduled nonpreemptively from t−pj to t, for
some t.
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Table 1 A Problem Instance

j rj pj

1 0 10
2 4 5
3 6 2
4 7 4

yjt-Formulation. Another formulation for the
single-machine scheduling problem 1�rj �

∑
wjCj is:

minimize
n∑
j=1
wj

(
pj

2
+ 1
pj

T∑
t=rj+1

(
t− 1

2

)
yjt

)
(6)

subject to
n∑
j=1
yjt ≤ 1� t = 1� � � � � T � (7)

T∑
t=rj+1

yjt = pj� j = 1� � � � �n� (8)

yjt ∈ �0�1�� j = 1� � � � �n�
t = rj + 1� � � � � T (9)

where the binary variable yjt for each job j (j =
1� � � � �n) and time period �t− 1� t� (t = 1� � � � � T ) indi-
cates whether job j is processed in period �t − 1� t�
(yjt = 1) or not (yjt = 0). The term in the objective func-
tion, namely pj/2+ �1/pj�

∑T
t=rj+1�t− 1

2 �yjt , corresponds
to the actual completion time of job j if the job were
continuously processed from Cj −pj to Cj . The second
term in this expression, namely �1/pj�

∑T
t=rj+1�t− 1

2 �yjt ,
computes the midpoint of the computation for each
job j (using the middle of each time unit when the
job runs). Adding the remaining half of the process-
ing time pj/2 to this midpoint of computation of job
j gives the effective completion time of job j . This
effective completion time of job j is earlier than the
completion time of the last piece of job j even if the yjt
are integral (unless all pieces of the job are scheduled
consecutively). Thus the solution to the yjt-LP relax-
ation provides only a lower bound to the preemp-
tive schedule. The constraints (8) require that each job
should be processed in its entirety between its release

1

2

3 3

4 4 1

3 1

4 2 2

0 2 4 10 12 14 16 18 20 22 24 26 286 8

Figure 1 A Feasible Solution to the xjt -LP (1–3,5) for the Instance in
Table 1

Note. The circled numbers indicate the job id’s. The x-axis denotes time, and
the y -axis denotes the capacity of the machine (which is 1 unit).

date rj and T . The capacity constraints (7) state that
the machine can handle at most one job during any
time period.
In a relaxation to the integer program (6)–(9), the

integrality constraint (9) is relaxed to

0≤ yjt ≤ 1 j = 1� � � � �n� t = rj + 1� � � � � T (10)

We will refer to this linear program as yjt-LP. This lin-
ear program is a valid relaxation to the optimal pre-
emptive schedule as well (Hall et al. 1997).
Although the yjt formulation is of exponential size,

with n + T constraints and roughly nT variables
where T ≥∑

j pj , Dyer and Wolsey (1990) showed that
it is a transportation problem with a very special
structure and thus can be solved in O�n logn� time
(see also Goemans 1997). The structure of the solution
is simple: at any point in time, schedule the available
unfinished job with maximum wj/pj (this may involve
preemption). Note that pj denotes the total processing
requirement of job j and not the remaining processing
requirement. The yjt-LP is a preemptive relaxation.
A feasible solution to the yjt-LP for the instance in
Table 1 is given in Figure 2.
Although both formulations are exponential in size,

the relaxation to the yjt-formulation can be solved
in polynomial time whereas the relaxation to the xjt-
formulation requires a pseudo-polynomial-time solu-
tion. As a result, any approximation algorithm that is
based on the yjt-relaxation is a polynomial-time algo-
rithm whereas any approximation algorithm based on
the xjt-relaxation is only a pseudo-polynomial-time
algorithm. Note however, that the xjt-relaxation gives
stronger lower bounds than does the yjt-relaxation.

2.2. Completion-Time Formulations
A different approach to model the problem is by using
variables Cj that represent the completion time of
job j in a schedule. Let N be the set of all n jobs
and define for any set S ⊆ N , rmin�S� =minj∈S rj and
p�S� = ∑

j∈S pj . Further, define p�S�2 = �
∑

j∈S pj �2 and
p2�S�=∑

j∈S p2j . We will refer to the following relax-
ation to 1�rj �

∑
wjCj as the Cj -relaxation:

minimize
n∑
j=1
wjCj

subject to
∑
j∈S
pjCj ≥ ��S�� for each S ⊆N� (11)

1 2 3 14 2

12 14 16 18 2086420 10

Figure 2 A Feasible Solution to the yjt -LP (6–8,10) for the Instance in
Table 1

Note. The circled numbers indicate the job id’s. The x-axis denotes time and
the y -axis denotes the capacity of the machine (which is 1 unit).
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where

��S�= rmin�S�p�S�+ 1
2 �p

2�S�+ p�S�2��

The constraints of the linear program are valid
constraints for the problem but do not completely
characterize the set of feasible schedules. Neverthe-
less, solutions to this relaxation can be used to com-
pute near-optimal solutions. Although this relaxation
has an exponential number of constraints, Goemans
(1996) showed that its solution can be computed in
O�n logn� time and that it is equivalent to the yjt-
relaxation of Dyer and Wolsey (1990).

2.3. Combinatorial Relaxations
Another method for obtaining a relaxation, as opposed
to solving relaxations to integer-programming formu-
lations, is to relax certain constraints about the struc-
ture of the schedule. This makes use of the underlying
combinatorial structure of the problem in some fash-
ion. For example, the nonpreemptive constraints in a
problem could be relaxed by allowing preemptions of
jobs.
For the single-machine scheduling problem 1�rj �∑
wjCj and its variants a variety of combinatorial

relaxations have been proposed including Rinaldi
and Sassano (1977), Chandra (1979), Dessouky and
Deogun (1981), Bianco and Ricciardelli (1982), Potts
and van Wassenhove (1983), Hariri and Potts (1983),
Posner (1985), Belouadah (1985), and Belouadah et al.
(1992). For instance, in Chandra (1979) and Bianco
and Ricciardelli (1982), they relax the problem by
considering partial sequences of jobs. In Dessouky
and Deogun (1981), they partially relax the release-
date constraints. Posner (1985), Belouadah (1985), and
Belouadah et al. (1992) propose a variant of preemp-
tive relaxation.
We consider the combinatorial relaxations of

Belouadah et al. (1992). Their relaxations are based on
job splitting (Posner 1985, Belouadah 1985, Belouadah
et al. 1992) where jobs are split into smaller pieces.
This technique is based on the idea that a relax-
ation to a nonpreemptive scheduling problem may
be obtained by splitting each job into smaller pieces
that can be scheduled individually. In the case of
1�rj �

∑
wjCj , when we split job j into pieces we must

split its weight wj among the pieces as well. In
essence, we create a number of smaller jobs. If we split
the jobs in such a way that we can solve the result-
ing relaxed problem in polynomial time, we obtain
a polynomial-time computable lower bound on the
optimal solution to the original problem. This job-
splitting type of relaxation has been observed to give
good lower bounds and has been successfully used in
branch-and-bound algorithms.
Belouadah et al. (1992) give two lower bounds (to

which we will refer as BPP1 and BPP2) based on job

splitting. In BPP1, the pieces of job j are exactly those
that arise in the optimal preemptive solution to the yjt
relaxation, and the optimal solution to the resulting
split problem has the same structure as that of the
optimal preemptive solution to the yjt-relaxation. In
this lower bound each piece of job j receives a fraction
of weight wj in exact proportion to the fraction of the
size of pj that its size is. In the BPP2 lower bound,
weights are assigned greedily. For each job, as much
weight as possible is shifted to later scheduled pieces
of that job. The weight assignment should be such
that the optimal solution of the split instance can be
computed in polynomial time.
The lower bounds achieved by this process, BPP1

and BPP2, are both bounded above by the solution to
the optimal preemptive schedule. However, the pre-
emptive version of 1�rj �

∑
wjCj is also NP-hard and

hence we must settle for solving something weaker
that can be computed in polynomial time.
A result of Uma et al. (2003) it was proven that the

BPP1 lower bound is equal to the solution to the
yjt-relaxation and also that neither the solution to
the xjt-relaxation nor the BPP2 relaxation dominates
the other.
Therefore, of the five lower bounds considered—xjt ,

yjt , Cj -based, BPP1, and BPP2—three (yjt , Cj -based,
and BPP1) are identical. Hence, in this paper, we
empirically evaluate the strength of the three distinct
lower bounds—xjt , yjt , and BPP2.

2.4. Approximation Algorithms and Heuristics
In this section, we present the various approximation
algorithms for 1�rj �

∑
wjCj . Progress on approxima-

tion algorithms for 1�rj �
∑
wjCj began with the special

case of wj = 1 for all j , for which Phillips et al. (1998)
introduced the idea of taking a relaxation of the prob-
lem and inferring an ordering from that relaxation.
Progress on the case of general wj arose from the use
of one of the two linear programs discussed earlier as
a relaxation from which to infer an ordering. Since the
solutions to either relaxation correspond to fractional
solutions to a time-indexed formulation (either xjt or
yjt-based), we wish to find a way to capture from the
fractional assignment of jobs to points in time a mea-
sure of where the important part of a job is scheduled.
Two basic ideas have been introduced. The first is

to use the values suggested by the linear program. For
example, let the solution to the Cj -based relaxation
(which is equal to the solution to the yjt-relaxation)
be 
Cj , j = 1� � � � �n. We sort the jobs by nondecreasing
Cj and schedule in that order, respecting release-date
constraints (Schulz 1996, Hall et al. 1997). In the case
of the xjt-based formulation, we again order the jobs
by their suggested completion times

∑T
t=pj txjt . This

algorithm, applied to either relaxation, is known to
be a 3-approximation algorithm (Hall et al. 1997) and
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we will refer to it as Schedule-by-
Cj ; when applied to
the solution of xjt-based formulations, it was demon-
strated empirically to be very effective in practice (van
den Akker et al. 2000).
A different approach to constructing an ordering is

to make use of the notion of an  -point (Phillips et al.
1998, Hall et al. 1996). The  -point of job j , 0≤  ≤ 1,
is defined to be the first point in time, in the solution
to a time-indexed relaxation, at which an  fraction
of job j has been completed. We define the algorithm
Schedule-by-Fixed- , that can be applied to the solu-
tion of either relaxation, as ordering the jobs by their
 -points and scheduling in that order. Goemans (1997)
has shown that for  = 1/

√
�2� this is a �

√
2 + 1�-

approximation algorithm. Goemans also showed that
by choosing  randomly according to a uniform distri-
bution and then scheduling in this order, one obtains
a randomized 2-approximation algorithm (Goemans
1997) and if one chooses using a different distri-
bution, a 1�7451-approximation algorithm (Goemans
1997). Either randomized algorithm can be derandom-
ized by considering n different values of  , scheduling
according to each of them, and then choosing the best.
We call these two algorithms Schedule-by-Random-
 and Schedule-by-Best- . In our experiments, for
Schedule-by-Random- ,  is chosen randomly from
a uniform distribution. Finally, Schulz and Skutella
(1997a) introduced the idea of randomly choosing
n values of  , one for each job, and ordering
the jobs according to these  -points (Schulz and
Skutella 1997a); this has been proven to be a 1.6853-
approximation algorithm (Goemans et al. 2002). We
call this algorithm Schedule-by-Random- j .
Finally we also consider the simple greedy heuris-

tic used in Belouadah et al. (1992) in their branch-
and-bound code to compute the upper bound. This
heuristic, SWPT (shortest weighted processing time),
selects for processing when the machine is idle the
unprocessed available job with the smallest pj/wj ratio
and schedules it nonpreemptively. It is trivial to see
that the worst-case performance of this heuristic is
unbounded. For example, consider the following sce-
nario with two jobs: Job 1 is released at time 0, has
weight 1, and processing time p. Job 2 is released at
time 1, has weight w, and processing time 1. For suf-
ficiently large values of w and p, SWPT will schedule
job 1 followed by job 2, whereas optimal will schedule
job 2 followed by job 1. As w and p tend to infinity,
the cost of the SWPT schedule can be made arbitrarily
large compared to the optimal.

3. Experiments
In this experimental study our main goal is to under-
stand the quality of the different relaxations and the
quality of the upper bounds they deliver and to deter-
mine if these techniques can be extended to real

domains. As a result, we investigate the following
issues:
• Do the ideas that led to a series of successive-

ly improved approximation algorithms have a simi-
lar impact in practice as well? We would particularly
like to understand the quality of lower bounds deliv-
ered by the relaxations and to understand the quality
of performance of the approximation algorithms and
heuristics.
• To what extent can one achieve speed-accuracy

trade-offs using randomization and sampling?
• How much influence does the relaxation have on

the quality of the schedule that is built from it?
• How does a very simple heuristic compare to the

sophisticated approximation algorithms?
• How effective are local-improvement techniques?
• Finally, do these sophisticated techniques have

any practical significance? Can we extend these tech-
niques to solve hard-to-solve problems that arise in
the real world?
We therefore utilized a number of sets of instances,
designed with the hope of providing a rich test set on
which to observe different behaviors.

3.1. Experimental Design
We consider three categories of data that we call Opti-
mal, Synthetic, and Hard. The Optimal set is a set of 60
instances with n= 30 jobs; for all of these instances we
know the exact optimal solutions, computed by the
branch-and-cut code of van den Akker et al. (1999);
these instances represent the limits of what they were
able to solve optimally with their code. For all these
instances, the release dates were generated uniformly
in �0� 12

∑n
j=1 pj� and wj was generated uniformly in

�1�10�. Twenty instances had pj generated uniformly
in �1�5� and forty in �1�10�.
The Synthetic set is a large collection of instances

generated according to four parameters: Number of
jobs �n�, arrival rate �a�, distribution for the ran-
dom generation of the weights wj , and distribution
for the random generation of the processing times
pj . The number of jobs (in each instance) was cho-
sen from �50�100�200�500�. The release dates rj were
generated by a Poisson process to model that on
average a jobs arrived every pmax units of time where
a ∈ �2�5�10�20� and pmax = 10. Three types of distri-
butions were used for the random generation of wj

and pj—(i) uniform in the range �1�10�, (ii) a nor-
mal distribution � �5�0�2�5� (where � �"�#� denotes a
normal distribution with mean " and standard devi-
ation #), and (iii) a bimodal distribution where with
probability 0.5 we chose from a normal distribution
� �2�5�0�5� and with probability 0�5 we chose from a
normal distribution � �7�5�0�5�. For each combination
of parameters 10 instances were generated randomly
for a total of 1440 instances.
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For all of these synthetic instances we solved the
associated Cj -based relaxation (and also the BPP2
relaxation). We solved the xjt-based relaxation, using
the column-generation code, for as many instances as
feasible. After a significant amount of computation
time, we solved this relaxation exactly for all of the
n= 50 instances and the set of n= 100 instances with
arrival rates 2 and 5; for n = 100 we cut off the col-
umn generation somewhat early and therefore only
produced approximate solutions. This demonstrates
an obvious and major advantage of the Cj -based LP-
relaxations over the xjt : They are solvable efficiently.
The Hard set was designed to provoke poor per-

formance from the LP-based heuristics. All of these
instances attempt to exploit the fact that the yjt relax-
ation is also a valid relaxation of the optimal preemp-
tive schedule (Hall et al. 1997), and that therefore on
instances for which the optimal preemptive schedule
is much better than the optimal nonpreemptive sched-
ule, the yjt-based relaxation should perform poorly.
Therefore these instances have one or several very
large jobs, and a large number of tiny jobs that are
released regularly at small intervals. For the Hard set
we created instances with processing times 1 and 20
or 1 and 30. The size 1 jobs were generated on aver-
age 9 times more frequently than the size 20 or size
30 jobs and n ∈ �50�100�.
In this paper we focus on subsets of the data sets

that turn out to be among the most difficult in their
categories for the heuristics and that are at the same
time representative of the overall behavior of that set.
Specifically, we focus on the Optimal, Synthetic 1 and
Synthetic 2, and Hard data sets. The Synthetic 1 set
corresponds to the subset of the Synthetic set where
n ∈ �50�100� and a ∈ �2�5� and the Synthetic 2 data
set corresponds to a variation of the Synthetic set
with release dates being generated uniformly and n ∈
�50�100�200�500�.
On each solution to either linear program we

ran a suite of algorithms, including Schedule-by-
Cj ,
Schedule-by-Fixed- (for  = 1/√�2�), Schedule-by-
Best- , Schedule-by-Random- (based on the uni-
form distribution), and Schedule-by-Random- j .

3.2. Experimental Results

3.2.1. Relative Strengths of Lower and Upper
Bounds. We now look more carefully at the perfor-
mance of the algorithms, first those based on the Cj
relaxations. With respect to the

∑
wjCj optimality cri-

terion the two basic algorithms (Schedule-by-
Cj and
Schedule-by-Fixed- ) give solutions that are almost
always within 9�5% of optimal, and Schedule-by-
Best- is almost always within 2% of optimal, with a
maximum observed performance of a factor of 1.037
times optimal. As this suggests, in general it is easy to

Table 2 Quality of the Lower Bounds with Respect to the Weighted
Flow Time Given by yjt , BPP2, and xjt Relaxations

Optimal Hard Synthetic 1 Synthetic 2

yjt (BPP1) 4.506 19.169 1.729 1.848
BPP2 2.969 15.539 0.941 0.000
xjt 1.322 0.000 0.013 N/A

Note. We report on �BEST−LB�/LB×100, where BEST is the best available
lower bound and LB is the corresponding lower bound. The values reported
are averaged over all the instances in each case.

approximate the
∑
wjCj criterion within a few percent

of optimal, unless the instances are constructed in a
very careful fashion. Therefore we focus for the rest of
the paper on the

∑
wjFj criterion. Note that the rela-

tive error with respect to average weighted flow time
is an upper bound on the relative error with respect
to average weighted completion time.
We next examine the quality of the lower bound

delivered by each of the relaxations. Table 2 reports
on the relative performance of the different lower
bounds. We note that the BPP2 lower bound does
provide some improvement over the yjt bound at
modest additional computational cost (O�n logn� to
O�n2�), but because both are relaxations of the optimal
preemptive schedule, on the Hard data set the BPP2
bound is still far from the xjt-lower bound. Further-
more, note that on the Optimal and Synthetic 1 data
sets sometimes BPP2 is better than the xjt-relaxation,
and this explains why none of the numbers in those
columns is 0—the comparison is always with respect
to the best lower bound for that instance. We note that
the maximum improvement observed by BPP2 over
yjt on any instance was 9�492%, on an instance in the
Hard data set.
We next study the performance of the upper-

bounding techniques (both approximation algorithms
and heuristics) on the different data sets.
Optimal and Synthetic Sets. For the instances in the

Synthetic and Hard data sets we do not have the opti-
mal solutions (as n = 50 was beyond the range of
problems solvable optimally by the branch-and-cut
code of van den Akker et al. (1999). However, because
the algorithms will solve the linear-programming
relaxations, yielding a lower bound, and then con-
struct a schedule based on this relaxation, yielding
an upper bound, we report as an upper bound on
performance the ratio of the upper bound to the
lower bound. We report these ratios with respect
to the xjt-based relaxation if we know its solution
and otherwise with respect to the Cj -based relax-
ation. The Optimal and Synthetic data sets give similar
results qualitatively, both with respect to the gen-
eral size of factors of approximation achieved by the
algorithms and their relative performance. Here we
present results for the Synthetic 1 data set.
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Table 3 Performance of Algorithms Applied to Solution of Cj -Relaxation for
∑

wjFj

Schedule-by-
Cj Schedule-by-Fixed-
 Schedule-by-Best-


�n� a� Mean Std. dev. Max Mean Std. dev. Max Mean Std. dev. Max

�50�2� 1.271 0.144 1.729 1.184 0.092 1.495 1.066 0.047 1.282
�50�5� 1.107 0.045 1.245 1.073 0.032 1.197 1.018 0.013 1.071
�100�2� 1.268 0.125 1.786 1.190 0.096 1.686 1.071 0.043 1.271
�100�5� 1.079 0.030 1.152 1.056 0.018 1.104 1.014 0.010 1.055

Note. We report on ratio of algorithm performance to xjt -relaxation lower bound.

Although we considered nine combinations of dis-
tributions for generating the processing times and
weights (three possibilities for each), in the hope of
generating different sorts of behaviors, there were not
significant qualitative differences in the performance
on different distributions. Therefore, in reporting
results we group into one set all �wj� pj� distribution
combinations for a particular �n�a� pair.
Despite the worst-case results on the difficulty of

the
∑
wjFj objective, the performance of these algo-

rithms is quite reasonable, as illustrated in Table 3.
The basic algorithms are observed performing as
badly as 1.786 times optimal, but Schedule-by-Best- 
is observed to perform only as badly as 1�282 times
optimal. We also note that on average and in its
maximum observed values Schedule-by-Fixed- is
better than Schedule-by-
Cj , and Schedule-by-Best- 
gives significant improvement over both. However,
this need not be true on every instance—on about
15% (over the entire Synthetic data set, which is the
superset of the Synthetic 1 data set) Schedule-by-

Cj gave a better solution than Schedule-by-Fixed- 
(and on two of the 1440 instances it was better than
Schedule-by-Best- ). Note that the ordering of aver-
age performance corresponds to the respective quality
of their current worst-case performance guarantees,
which are, respectively, 3 (Hall et al. 1997), �

√
2+ 1�

(Goemans 1997) and 1.745 (Goemans et al. 2002). Thus
the ideas that yielded improved worst-case analysis
yield significantly improved empirical performance.
To gain a sense of the distribution of the various

performance factors achieved by these algorithms,
we constructed a histogram of this information in
Figure 3.
We now compare this performance to that of the

algorithms applied to the solution of the xjt-based
relaxations. In Table 4 we observe that the Cj -based
algorithms give performance very close to that of the
xjt algorithms, at greatly reduced computational cost;
the best xjt-algorithms are on average less than 2%
better than the best Cj -based algorithms. We conclude
that on data of this sort the Cj -based relaxations and
algorithms deliver surprisingly strong experimental
performance.
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∑
wjFj criterion for the case �n� a� = �50�2�

(a total of 90 instances).

Hard Sets. Next we discuss some hard data sets,
on which these techniques were expected to exhibit
lower-quality performance. All of these instances
attempt to exploit the fact that the Cj -based relax-
ation is also a valid relaxation of the optimal preemp-
tive schedule (Hall et al. 1997), and that therefore on
instances for which the optimal preemptive schedule
is much better than the optimal nonpreemptive sched-
ule, the Cj -based relaxation should perform poorly.
Motivated by this and by Kellerer et al. (1999) we

constructed instances with one or several very large

Table 4 Comparison of the xjt -Based Algorithms to the Cj -Based Algo-
rithms for

∑
wjFj

N = 50 N = 100

Mean Std. dev. Mean Std. dev.

Schedule-by-
Cj 0.966 0.076 0.991 0.060
Schedule-by-Fixed-
 0.993 0.074 1.011 0.057
Schedule-by-Best-
 0.982 0.032 0.995 0.025

Note. The values given are the mean and standard deviation of the ratio of the
performance of the xjt -based algorithm to the Cj -based algorithm (averaged
over 180 instances) in the synthetic set.
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jobs, and a large number of tiny jobs that are released
regularly at small intervals. For such an instance, its
average flow time with preemption allowed is much
smaller than its nonpreemptive average flow time
because with preemption, each tiny job can be snuck
in preemptively without overly disturbing the pro-
cessing of the large job. We would expect the xjt-
formulations to give stronger lower bounds, as it is
only a relaxation of the nonpreemptive problem, but,
with respect to average weighted flow time they will
still be weak on such instances because the small jobs
can be snuck in in a fractional sense.
To generate difficult instances of this form we

need processing times in a larger range than �1�10�
and thus we experimented with instances with pj
generated in �1�100�. We generated job sizes in a
bimodal distribution, with the modes at 5 and 85;
the size 5 jobs were generated on average 9 times
more frequently. On this set of instances, which we
investigated for n ∈ �50�100�200�500�, the worst per-
formance (upper bound/lower bound ratio) recorded
over all algorithms exceeds 4 and the average perfor-
mance measure of the best algorithm approaches 2.
We note that the algorithms are actually doing better
than this because the Cj -based lower bound to which
we compare is weak.
Based on this experiment, we experimented with

instances with a very large spread—for example, jobs
of size 1 and 200. On one such instance we recorded
a ratio for Schedule-by-Best- of 16.502, which was
in part due to the weak lower bound. However, the
actual approximation factor, when the instance was
solved optimally, was still 7.110. In this instance we
have one large job released at time 0 and a sequence
of small jobs that arrive periodically over time. In the
optimal schedule the large job should be processed
last. However, in the Cj -based relaxation it is com-
pleted, preemptively, much earlier, and therefore for
all  its  -point is earlier than a large number of
small jobs. As a result, many small jobs are delayed
unduly by all of our algorithms. We note that these
particular instances were very similar in spirit to the
instances given by Queyranne (1993) and Wang (1996)
that demonstrate a lower bound of e/�e − 1� on the
worst-case ratio of (Optimal Schedule value)/(Value
of Cj -based relaxation).
Unfortunately, instances with pj ∈ �1�100� are well

beyond our ability to solve the xjt time-indexed relax-
ation. Therefore, in an attempt to understand the rel-
ative performance of the lower bound given by the
xjt-relaxation for such hard instances we created the
Hard data set with pj ∈ �1�20� and �1�30� (with pro-
cessing times 1 and 20 or 30). For these we could solve
the xjt-relaxation except for the 100 job instances with
pj ∈ �1�30�. On this set, on average the xjt-relaxation
is about 19% stronger than the Cj -based relaxation.

The Schedule-by-Best- algorithm is observed to
perform as badly as 2.428 times optimal and inci-
dentally, this performance was obtained when sched-
uled using the stronger xjt-relaxation than the weaker
yjt-relaxation. Later we will discuss more about the
impact of the quality of the underlying relaxation to
the algorithms’ performance.
Conclusions. To conclude, the observed quality of

the lower bounds directly correspond to the time
spent on computing them, with yjt-relaxation giv-
ing the weakest bounds and xjt-relaxation giving the
strongest bounds. (Hence, if the quality of the lower
bounds is not highly critical to the end applica-
tion, then using yjt-relaxation is better than using xjt-
relaxation because of the additional time it takes to
solve the xjt-relaxation.) Likewise, there is a direct
correspondence of the quality of the schedule given
by an approximation algorithm with its performance
guarantee. In general, Schedule-by-Best- outper-
forms all the other approximation algorithms.

3.2.2. Randomness and Sampling. On most in-
stances, we see that the Schedule-by-Best- algo-
rithm yields significant improvement over the other
algorithms. However, it requires extra computation,
as one must check n different values of  , and thus
is an O�n2� algorithm. Note that Schedule-by-Best- 
actually arose as a derandomization of the Schedule-
by-Random- algorithm (Goemans 1997, Chekuri
et al. 2000). To what extent does randomization afford
the performance guarantees of Schedule-by-Best- 
at a reduced computational cost? Qualitatively we
summarize that both Schedule-by-Random- and
Schedule-by-Random- j , on average, give perfor-
mance better than Schedule-by-
Cj (although occa-
sionally they can do worse) but they do not do nearly
as well as Schedule-by-Best- .
It is, however, a natural idea to run the randomized

algorithm several times and choose the best answer it
gives. In a similar spirit, perhaps we need not check
all  , as does Schedule-by-Best- ; maybe checking
just a few will be sufficient. Thus, we introduce three
additional algorithms. Schedule-by-k-Best- divides
�0�1� into k equal subintervals and tries each of
the resulting endpoints as candidate  , returning the
best answer. Goemans (1997) has shown that this is
a �2+ 1/k�-approximation algorithm. Schedule-by-k-
Random- and Schedule-by-k-Random- j run the
respective randomized algorithms k times.
We conclude that it is necessary to test relatively

few values of  to achieve performance very close
to Schedule-by-Best- . For example, in the Synthetic
data set Schedule-by-k-Best- , with k = 5, on aver-
age is less than one percent from Schedule-by-Best- ,
with standard deviation 1�2%; on 48% of instances it
achieved exactly the same bound. Even on the Hard
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data set, with k= 10 we observed performance within
3% to 4% of Schedule-by-Best- .
As a general qualitative rule, the randomized algo-

rithms that made k random choices were somewhat
worse than the algorithm that chose k values of  
deterministically for k ≤ n. However, Schedule-by-
k-Random- j , for k large enough, yields on average
moderate performance improvements. For example
on the Synthetic set with �n�a� = �50�2�, it on aver-
age improved on Schedule-by-Best- around k= 50
and improved gradually until k = 200 or so. The
overall performance gain was approximately 3%. For
some of the hardest problems significant improve-
ments (20% to 30%) were seen by running Schedule-
by-k-Random- j a large number of times.

3.2.3. Algorithm Performance vs. Quality of
Linear-Program Solution. Overall, our results sug-
gest that the higher the quality of the LP relaxation
solution, the better the algorithms perform. This is
true across all the data sets, when we compare the
performance of the algorithms based on the BPP2
relaxation and the yjt-relaxation, as is evident from
Table 5. Recall that both BPP2 and yjt are preemp-
tive relaxations and BPP2 is stronger than yjt . But
this is not always the case when we consider the
xjt-relaxation also. For example, on the �50�5� Syn-
thetic data Schedule-by-Fixed- does on average
slightly worse when it is based on the xjt-relaxation,
and on the Hard instances for which we had solu-
tions to both relaxations the algorithms based on the
Cj relaxation were also better on average. We also
explored this relationship from a different perspec-
tive. Specifically, recall that a branch-and-cut code
for the solution of an integer program produces
a sequence of solutions to the linear-programming
relaxation that are of increasing quality (i.e. increas-
ingly close to the optimal integer solution). For 10
instances we have generated the sequence of solu-
tions to the time-indexed linear-programming relax-
ation produced by the branch-and-cut code at the

Table 5 Performance of the Algorithms Based on the Three (yjt �BPP2� xjt ) Formulations

Hard Synthetic 1 Synthetic 2

Mean Std. dev. Max Mean Std. dev. Max Mean Std. dev. Max

Schedule-by-fixed-
 (yjt ) 2.207 0.623 3.906 1.126 0.093 1.686 1.334 0.126 1.892
Schedule-by-Best-
 (yjt ) 1.683 0.263 2.164 1.042 0.042 1.282 1.155 0.067 1.371
Schedule-by-5-Best-
 (yjt ) 1.775 0.301 2.244 1.048 0.046 1.358 1.171 0.079 1.419

Schedule-by-fixed-
 (BPP2) 1.985 0.507 3.902 1.116 0.084 1.643 1.292 0.109 1.615
Schedule-by-Best-
 (BPP2) 1.628 0.245 2.122 1.040 0.039 1.233 1.144 0.059 1.311
Schedule-by-5-Best-
 (BPP2) 1.710 0.274 2.296 1.046 0.043 1.233 1.157 0.067 1.356

Schedule-by-Best-
 (xjt ) 1.854 0.320 2.428 1.048 0.045 1.303 — — —
SWPT 1.874 0.372 3.015 1.033 0.032 1.148 1.121 0.048 1.307

Note. We report the mean, standard deviation, and maximum of the ratio of the performance of the algorithm to the best lower bound.
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root node, and run the algorithms on them. Some-
what surprisingly, the algorithms’ performance does
not monotonically improve with improved LP solu-
tion. For instance, see Figure 4 where we have shown
the plots for one of the 10 instances. It is an interest-
ing question to understand this phenomenon better
and its implications. If the goal is only approximately
optimal performance, these results suggest that there
may be little benefit in doing the most intensive com-
putations.

3.2.4. SWPT vs. LP-based Heuristics. Of greater
interest is to compare the performance of all this
LP “stuff” to the simple and naive heuristic used
by Belouadah et al. (1992) in their combinatorial
branch-and-bound code. This heuristic, SWPT, sim-
ply, when idle, selects for processing the unprocessed
available job with the smallest pj/wj ratio (or equiv-
alently the largest wj/pj ratio) and schedules it non-
preemptively. It is trivial to see that the worst-case
performance of this heuristic is unbounded. Table 5
provides a summary of the performance of the vari-
ous heuristics.
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It is striking that except on the Hard data set the
SWPT heuristic is superior to all the LP relaxation-
based approaches. Across the entire Synthetic data
sets SWPT yields a better solution than do the LP-
approaches 70% to 80% of the time. On specific
instances of the Hard data set it is up to 27% better
than the best performance of the other heuristics.
In some sense this performance is quite surprising,

but in another it is not very surprising at all. SWPT,
while lacking any worst-case performance guarantee,
is a natural choice that should work well “most of
the time.” It is likely that when one generates syn-
thetic data one is generating instances that one would
think of “much of the time.” It is on the harder sorts
of instances that the potential problems with such a
heuristic arise.
Although it would not be difficult to generate

instances that would yield horrendous performance
for SWPT, the purpose of an experimental study is to
yield insight into algorithm performance on instances
that may be somewhat natural. To this end we gen-
erated a spectrum of problems in the framework of
“a few jobs of size P and lots of jobs of size 1,” with
P ranging from 1 to 1,000. The results of the experi-
ment, plotted in Figure 5, gives a qualitative sense of
the range in which SWPT is competitive with algo-
rithms with worst-case performance guarantee, which
is essentially up to P = 100 or so.

3.2.5. Effect of Local Improvement. Finally, we
experimented with the impact of local improvement,
which can be a very powerful algorithmic technique
for certain scheduling problems. Specifically, given a
solution, we considered all pairs and all triples of
jobs, switching any that led to an improved solu-
tion and iterating until no improving switch existed.
We applied these to the solutions of all the heuris-
tics. For the heuristics that considered several pos-
sible schedules we applied local improvement to all
of them and took the best resulting schedule. The
results, reported in Table 6, indicate that the com-
bination of local improvement applied to a collec-
tion of high-quality schedules yield the best results.

Table 6 Performance of the Algorithms Based on the Three (yjt �BPP2� xjt ) Formulations After Some Local Improvement

Hard Synthetic 1 Synthetic 2

Mean Std. dev. Max Mean Std. dev. Max Mean Std. dev. Max

Schedule-by-fixed-
 (yjt ) 1.594 0.264 2.137 1.088 0.061 1.330 1.200 0.073 1.438
Schedule-by-20-Best-
 (yjt ) 1.402 0.148 1.679 1.022 0.022 1.138 1.096 0.035 1.196
Schedule-by-5-Best-
 (yjt ) 1.420 0.164 1.770 1.024 0.023 1.140 1.100 0.037 1.213

Schedule-by-fixed-
 (BPP2) 1.591 0.270 2.141 1.081 0.058 1.339 1.175 0.066 1.371
Schedule-by-20-Best-
 (BPP2) 1.398 0.133 1.624 1.022 0.022 1.143 1.096 0.035 1.191
Schedule-by-5-Best-
 (BPP2) 1.413 0.142 1.652 1.024 0.023 1.143 1.100 0.036 1.213

Schedule-by-20-Best-
 (xjt ) 1.429 0.197 1.871 1.021 0.022 1.125 — — —
SWPT 1.746 0.284 2.321 1.031 0.030 1.147 1.110 0.042 1.241

Note. We report the mean, standard deviation, and maximum of the ratio of the performance of the algorithm to the best lower bound.
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Note. ALG is the cost of the solution obtained from running the correspond-
ing algorithm on the Cj -based relaxation, if applicable, and LP is the solution
to the Cj -relaxation for

∑
wjFj for Schedule-by-Best-
, Schedule-by-5-

Best-
 and SWPT. Each data point is an average of 10 instances. On the
x-axis we plot the maximum job size pmax. pmax = k means that the process-
ing time was generated so that p= 1 with a probability of 0.9 and p= k with
a Probability of 0.1. The arrival times were generated uniformly on �0��500�.

When combined with local improvement techniques
the Schedule-by-Best- heuristics invariably outper-
form the SWPT heuristic. We note further that apply-
ing this local improvement from scratch (random
orderings) was not competitive with its application to
a good initial schedule. The latter approach on aver-
age yielded solutions of quality 40% to 50% better.
If we switch all pairs of jobs, then local search runs

in O�n2� time. Instead of switching all pairs of jobs, if
we randomly choose O�n� pairs of jobs to switch, then
local search can be made to run in O�n� time. On the
other hand, solving the yjt-relaxation takes O�n logn�
time and solving the xjt-relaxation takes pseudopoly-
nomial time. Therefore, if we are given a fixed amount
of time and if the quality of the schedule is not highly
critical, then solving the yjt-relaxation followed by
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local search is a better approach than trying to get a
better lower bound by solving the xjt-relaxation.

4. Extending the Techniques: A
Real-Life Scheduling Problem

In this section, we demonstrate that the approxima-
tion algorithms evaluated in this paper also have
practical value by illustrating their effectiveness on a
real-life complex scheduling problem arising at BASF
AG in Ludwigshafen, Germany. The problem is a
resource-constrained project-scheduling problem and
is described, together with methods that have been
proposed for its solution, in Kallrath and Wilson
(1997).
A number of orders have to be scheduled. Each

order is broken down and produced in several identi-
cal pieces. Each piece in turn consists of several tasks,
representing processing steps. Each task is character-
ized by a specific personnel requirement and a spe-
cific duration. The production of some of the orders
are linked, i.e., the output of one order serves as input
for another. Labor is the limiting resource. A fixed
number of workers are available. The objective is min-
imizing the schedule length.
The problem is modeled by introducing a job for

each piece of an order. As all pieces of an order
are identical, the ordering of identical pieces is fixed
using precedence constraints to avoid symmetries.
Due to the fact that some orders are connected, addi-
tional precedence relations between jobs exist. Each
job has, in addition to a processing time, a labor pro-
file (duration and personnel requirement of the tasks).
The jobs have to be scheduled on a single machine
with limited capacity (number of workers). The objec-
tive is to minimize the makespan.
Various time-indexed formulations for the above

problem have been proposed and investigated. We
have used the so-called block formulation, which
aggregates certain jobs into composite jobs, for all
our computational experiments. The block formula-
tion also formed the basis for an LP based branch-
and-bound algorithm developed by Cavalcante et al.

Table 7 Manufacturing Application from BASF AG, Germany

18 20 24 27

Best known prior to this work 469 418 363 363
Best known through this work 457 401 363 363

Schedule-by-
Cj 509 480 452 433 406 369 376 363
Schedule-by-
 �
= 0�5� 524 469 449 429 388 366 396 363
Best(all)-
 500 469 427 419 372 365 374 363
Schedule-by-Random-
j 481 469 423 416 376 363 364 363

Note. The column headings indicate the number of available workers (18, 20, 24, 27). The first row gives the best known makespan
of the schedule prior to our work and the second row gives the best known makespan of the schedule through our work. The last four
rows give the makespan before local improvement and after doing some local improvement at the root node.

(2001). The algorithm employs the Schedule-by-
Cj
and the Schedule-by-Fixed- (with  = 0�5) heuris-
tics as well as some local improvement techniques to
obtain feasible schedules at each node of the search
tree. The solutions obtained for the four available
data sets, each corresponding to a different number of
available workers (18, 20, 24, 27), were 469, 418, 366,
and 363, respectively.
We investigated whether the use of improved

heuristics would result in improved overall per-
formance. Therefore, we replaced the heuristics
Schedule-by-
Cj and Schedule-by-Fixed- by Best-
 and Schedule-by-Random- j . The new solutions
obtained for the four available data sets (with an
imposed time limit on cpu time of 4 hours), were
457, 401, 363, and 363, respectively, which are the best
known solutions for all these instances. We note that
the biggest advantage of these multiple- heuristics is
that they supply a number of high-quality schedules
for which to apply local improvement. We form all the
schedules, one for each  , apply the local improve-
ment to each schedule, and then choose the best one.
Table 7 provides a little more insight into the value

of the various heuristics. For each of the four data
sets, we present the value of the makespan obtained
by the heuristics, as well as the value of the makespan
after local search techniques have been applied to
improve the initial schedule, at the root node of the
search tree.
We note that the quality of the initial schedule is

important. We have conducted a small experiment in
which we applied the local improvement techniques
to 1,000 randomly generated feasible schedules, but
were unable to produce schedules of comparable
quality.

5. Discussion and Future Directions
Our main goal in this paper is simply to understand
the empirical impact of ideas and techniques that
arose in the quest for improved worst-case perfor-
mance guarantees for algorithms for 1�rj �

∑
wjCj . Our

results demonstrate that theoretical progress can lead
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to progress in practice. Our goal is not to attempt to
develop the best possible heuristics or to compare our
work with all previous computational work on the
problem. Therefore, the experimental results in this
paper, taken in conjunction with a number of previ-
ous papers on both enumerative and approximation
approaches, represent an example of good synergy
between theory, experimentation, and practice.
In this study we touch on several approaches to

scheduling problems: Linear-programming, approx-
imation, combinatorial relaxations and branch-and-
bound, and local improvement, and made a modest
contribution to further our understanding of their
relationship. We feel that it is an important direction
to continue to try to understand, in a unified fashion,
the different roles that these elements can play in the
theory and practice of scheduling.
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