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Abstract

With the identification of a novel coronavirus associated with the severe acute respiratory

syndrome (SARS), computational analysis of its RNA genome sequence is expected to give useful

clues to help elucidate the origin, evolution, and pathogenicity of the virus. In this paper, we study

the collective counts of palindromes in the SARS genome along with all the completely sequenced

coronaviruses. Based on a Markov-chain model for the genome sequence, the mean and standard

deviation for the number of palindromes at or above a given length are derived. These theoretical

results are complemented by extensive simulations to provide empirical estimates. Using a z score

obtained from these mathematical and empirical means and standard deviations, we have observed

that palindromes of length four are significantly underrepresented in all the coronaviruses in our

data set. In contrast, length-six palindromes are significantly underrepresented only in the SARS

coronavirus. Two other features are unique to the SARS sequence. First, there is a length-22

palindrome TCTTTAACAAGCTTGTTAAAGA spanning positions 25962–25983. Second, there

are two repeating length-12 palindromes TTATAATTATAA spanning positions 22712–22723

and 22796–22807. Some further investigations into possible biological implications of these

palindrome features are proposed.
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1. Introduction

In March 2003, a novel coronavirus associated with the severe acute respiratory syndrome

(SARS) was identified. The outbreak of SARS in different parts of the world, causing

hundreds of deaths, has initiated much international effort that includes clinical,
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epidemiologic, and laboratory investigations with the aim of controlling the spread of the

virus (Bloom 2003, Marra et al. 2003, Ruan et al. 2003, Rota et al. 2003). Although the

world was cleared of new SARS cases by July 2003, the pursuit for a thorough

understanding of the origin, evolution, and pathogenicity of this deadly virus continues.

With the availability of the complete genome sequence of the SARS and several other

coronaviruses in public databases (e.g., GenBank), it is possible to do a computational

analysis of the viral genome, looking for unusual genome sequence features either unique to

the SARS virus or common to the coronavirus family. Such information can give clues to

the origin, natural reservoir, and evolution of the virus. It may contribute to the studies of the

immune response to this virus and the pathogenesis of SARS-related disease (Rota et al.

2003).

Statistical and experimental studies of palindromes in the other classes of viral genomes,

such as the double stranded DNA viruses, bacteriophages, retroviruses, etc., have been

performed (Cain et al. 2001, Dirac et al. 2002, Hill et al. 2003, Karlin et al. 1992, Leung et

al. 2002, Rocha et al. 2001, among others). These studies have suggested that palindromes

might be involved in the viral packaging, replication, and defense mechanisms. Unlike these

well-studied viruses involved in fatal diseases such as AIDS and various cancers, the

coronaviruses have not received as much attention until the recent outbreak of SARS.

In the present study, we focus our attention on palindromes in the positive-stranded RNA

genomes of coronaviruses. In accordance with GenBank convention, we represent an RNA

sequence as a string of letters from the alphabet  = {A, C, G, T}. The four letters

respectively stand for the RNA bases adenine, cytosine, guanine, and uracil. The letters A

and T are complementary to each other because adenine and uracil form hydrogen bonds

with each other. The same applies to C and G. A palindrome is a symmetrical word such that

when it is read in the reverse direction, it is exactly the complement of itself. For example,

ACGT is a palindrome of length four. A palindrome is necessarily even in length because

the middle base in any odd-length nucleotide string cannot be identical to its complement.

Several points are worth noting from this initial exploratory analysis of palindromes in the

coronavirus genome sequences: (1) The palindrome counts in the coronavirus genomes seem

lower than what would be expected from random sequences. (2) The SARS virus contains

an exceptionally long palindrome with 22 nucleotide bases. This is the longest among all

palindromes observed in the coronaviruses. (3) There are two copies of a length-12

palindrome situated within 100 bases of each other in the SARS genome. This is not

observed in the other coronaviruses.

Whether or not these palindrome-related features have any biological relevance will, of

course, have to rely on careful laboratory investigations by the virologists. At this stage,

however, it would be only reasonable to assess whether these features can indeed be

considered statistically unusual when compared to random-sequence models. Our

observations call for investigations into the probability distributions of palindrome counts,

lengths, and locations in a random sequence. This paper will focus only on the palindrome

counts, leaving the others for future studies.
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In the next section, the mathematical formulas for the theoretical mean and variance for the

number of palindromes at or above a prescribed length are derived based on a Markov-chain

random-sequence model. Section 3 summarizes the computational results in comparing

palindrome counts of the coronavirus genomes to the random-sequence models. In §4, we

propose some biological questions that may be investigated in relation to these observed

nonrandom features. A few concluding remarks are given in §5.

2. Palindrome Counts in Markov-Chain Models

The main objective of this paper is to assess whether the palindrome counts in the

coronavirus genomes are observed more (or less) frequently than expected, under some

specified probability models. We model the genome sequence as a realization of a sequence

of random variables ξ1, ξ2, …, ξn taking values in  = {A, C, G, T} and n is the genome

length. Throughout, we will assume that either

i. {ξ1, ξ2, …, ξn} are independent and identically distributed (M0); or

ii. {ξ1, ξ2, …, ξn} form a stationary Markov chain of order one (M1).

For studying DNA words of length k, one can choose to use Markov chains of order up to

the maximum order of k–2 as the sequence model. A higherorder Markov chain will better

fit the data sequence, but at the same time the number of parameters in the model increases

exponentially. In this study, we carried out some simulations using the second-order

Markov-chain model (M2). The computation takes much longer, but the z scores obtained

gave the same interpretation as that of the M1 model. We therefore content ourselves with

the M0 and M1 models for our analysis of palindromes of length four and above.

We are interested in deriving the mean and standard deviation of the random variable XL,

total number of palindromes of length at least 2L under the M0 and M1 sequence models.

This will help quantify the extent of deviation of the observed palindrome counts in the

coronavirus genome from the expected counts under the specified probability model. For L

≤ k ≤ n−L, define

We say that a palindrome occurs at k when Ik =1. Therefore, . Note that the

distribution of Ik depends only on the joint distribution of (ξk−L+1, …, ξk+L). Under the M0

or M1 model, the joint distribution of (ξk−L+1, …, ξk+L) is independent of k. Hence ℙ[Ik = 1]

is a constant in k. Similarly ℙ [Ij =1, Ik =1] depends only on |j −k|. Therefore, for L ≤ k ≤ n−L

and 1 ≤ d ≤ n−L−k, we define
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The expressions of γ(0) and γ(d) are crucial to calculating the mean and variance of XL (see

Proposition 3 below). Lemma 1 (respectively, Lemma 2) deals with the computation of γ(0)

and γ(d) under the M1 (respectively, M0) sequence model. Indeed, we will deduce Lemma 2

from Lemma 1.

Throughout, we use b′ to denote the complementary base of b, and w′ the inversion (i.e., the

complementary word read in reverse) of the word w. There are quite a few details to work

out all the possible overlap cases because the overlap structures depend on the relative sizes

of d (the extent of overlap) and 2L (the cutoff length of a palindrome). However, there are

only two basic patterns in the overlap. In the first pattern (as illustrated by Figure 1b), the

shaded segment, due to the complimentary requirement of a palindrome, will uniquely

determine the left and right ends of Ck and Ck+d. And in the other pattern (as illustrated by

Figure 1c), the shaded segment will determine the rest of both palindromes. In Figure 1a,

even though palindromes Ck and Ck+d do not actually overlap (i.e., d ≥ 2L), the occurrence

of a palindrome at k will still have an effect on the probability that a palindrome will occur

at k+d under the M1 sequence model. Lemma 1 provides expressions of γ(d) under all

possible situations.

Lemma 1

Suppose the genome sequence is modeled as a stationary Markov chain of order one with

stationary distribution π := (π(A), π(C), π(G), π(T)). For a, b ∈  and m ≥ 1, let P(a, b) and

P(m) (a, b) respectively denote the transition probability and the m-step transition probability

from base a to base b.

a. We have

(1)

b. For d ≥ 1, we have the following three cases:

i. d ≥ 2L:

ii. L ≤d <2L:

iii. 1 ≤d <L: we let L=qd +r.
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where

Proof—(a) Note that a palindrome of length at least 2L is of the form 

where b1, …, bL ∈ . Therefore,

Because

(1) follows immediately after rearranging terms.

(b) To compute the overlap probability γ(d), i.e., the probability that there are palindromes at

k and k+d, we call the stretch of bases ξk−L+1 ···ξk+d+L the span of palindromes Ck and Ck+d.

For (i) d ≥ 2L: The span s of the two palindromes Ck and Ck+d is of the form acb where

, c=c1 · · ·cd−2L, and  . Hence,

Hence (i) follows immediately from
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and

For (ii) L ≤ d < 2L: Refer to Figure 1(b), let w = bd−L+1 ···bL denote the common segment of

palindromes Ck and Ck+d. Assuming d >L, let u =b1 ···bd−L and v = bL+1 ···bd; we can

represent Ck =w′;u′uw and Ck+d =wvv′w′ where b1, …, bd ∈ . Therefore,

Writing it out in terms of the initial distribution and transition probabilities, we have proved

(ii) for d >L. The case for d = L is similar: Take u and v as null words and proceed as in the

case d >L.

To prove (iii), we consider the case r ≥ 1 first. This time, let w = b1 ···bd denote the first d

bases to the right of the center of Ck and to the left of the center of Ck+d. Let u = b1 ···br and

v = bd−r+1 ···bd, respectively denote the first and last r bases of w. Figure 1(c) displays the

necessary structure in Ck and Ck+d for both of them to be palindromes when q =3. If q is

odd, then the span of Ck and Ck+d is of the form . Therefore,

(2)

If q is even, then the span of Ck and Ck+d is changed accordingly to the form

 and

(3)

By making the one-to-one transformation in the summation, , and we

can see that both sums on the RHS of (2) and (3) are the same. So without loss of generality,

we compute γ(d) under the assumption that q is odd. The crucial step is then to calculate the

probability of the span of Ck and Ck+d, and part (iii) will follow immediately from summing

over all possible b1, …, bd. We first consider r ≥ 2, then
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(4)

For r =1, (4) becomes

If r = 0, reasoning similar to the above leads us to consider just the case q is odd. However,

the span of Ck and Ck+d becomes (one can take u and v as empty words) .

And hence,

Under the M0 model, the stationary distribution π = (pA, pC, pG, pT), and the transition

probabilities P(a, b) = pb and P(m) (a, b) = pb for any a, b ∈ , m≥ 1. Substituting these into

Lemma 1(a) and (i) and (ii) of Lemma 1(b) immediately gives us the corresponding parts in

Lemma 2 below. Part (iii) of Lemma 1(b) can be simplified further according to how big the

remainder r is in relation to d. We shall omit the details. In this way, we have deduced the

following Lemma 2, which was first proved in Leung et al. (2002).

Lemma 2

Suppose the genome sequence is modeled as M0and let
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a. We have

b. For d ≥ 1, we have the following four cases:

i. d ≥ 2L:

ii. L ≤d <2L:

when 1 ≤ d < L we let L = qd + r where 0 ≤ r <d, and consider two

subcases according to how big the remainder r is in relation to d.

iii. 1 ≤d <L and 0 ≤r <(d+1)/2:

iv. 1 ≤d <L and (d +1)/2 ≤r <d:

Proposition 3

With the Ik’s as defined at the beginning of §2, the total number of palindromes of length at

least 2L is given by . And hence,

and

where γ(0) and γ(d) are given as in Lemma 2 under the M0sequence model, and Lemma 1

under M1 sequence model.

Proof—The first equation follows immediately from taking expectations on both sides of

, and
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3. Palindrome Counts in Coronaviruses

The derived means and variances under the M0 and M1 sequence models enable us to assess

whether the observed palindrome count in a genome is too abundant or rare. The z score

defined in (5) below is a modification of a generally accepted measure of over (or

under)representation of a DNA word. For L ≥ 2, a standardized frequency under the

assumption of the M1 sequence model is defined as

(5)

where XL is the observed number of palindromes of length at least 2L, and μM1 and σM1

denote its expected value and standard deviation, respectively. (For simplicity, we do not

indicate the dependence of μ and σ on L.) The corresponding z score is defined similarly for

the M0 sequence model. When L is small compared with the genome length n, XL is a sum

of weakly dependent random indicators Ik and it is therefore well approximated by a normal

distribution. Indeed, if we let  denote the number of occurrences of the jth palindrome in

the genome, then the count vector ( ) will converge to a multivariate

normal distribution as n→∞ (see Theorem 12.5 in Waterman 1995). And hence

 will converge to a normal distribution as n→∞. For L = 2 or 3, and n in

the range 30,000, we expect that the distribution of the z scores will be approximately

standard normal. The near-straight lines in the Q-Q plots in Figure 2 confirmed that this is

the case. This motivates our definition: The count is said to be over (or under)represented, if

the z score is greater than 1.645 or less than −1.645, respectively (i.e., in the upper or lower

5% of a standard normal distribution, as commonly used in one-tailed hypothesis tests in

biological experiments). However, it should be emphasized that these cutoff z score values

can only be considered as a convenient statistical guideline to help bring out interesting

observations rather than a strict criterion to lead to a definitive conclusion.

We compute the z scores of the genomes in the following data set: It is composed of seven

coronaviruses with complete genome sequences and four other RNA viruses. For some

coronaviruses, the genome sequences of multiple strains of the same virus are available.

Only one strain is included in our data set because their genomes are very similar. Four other

RNA viruses outside the coronavirus family are included in the data set. Two of these (the

rubella virus and the equine arteritis virus) have positive-stranded RNA genomes like the

coronaviruses, one (rabies virus) has a negative-stranded RNA genome, and the remaining
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one (HIV) is a retrovirus. Table 1 lists the names of the viruses, abbreviations, GenBank

accession numbers, genome lengths, and base compositions of the seven coronaviruses and

the other four RNA viruses. Table 2 displays the z scores for counts of palindromes of length

four and above under the M0 and M1 models.

Table 2 indicates that there is a general avoidance of palindromes of length four and above

in the coronavirus genomes. A natural question that follows is whether palindromes of a

given exact length are also underrepresented in these viruses.

To answer this question, one would need the mean ν and standard deviation τ for the count

YL of palindromes of exact length 2L. It is easy to obtain the mean because ν = E(YL) =

E(XL) − E(XL+1). The standard deviation of YL can be derived with suitable modification of

the method of proofs in Lemmas 1 and 2, but the expression obtained is rather lengthy due

to an increase in the overlapping structures. Instead, we adopt an alternative approach to

estimate the standard deviation by simulation, which at the same time serves to validate our

derived means and standard deviations. This approach has a further advantage of giving us

the empirical distributions, and Figure 2 shows that for small values of L, the distributions

are well approximated by normal distributions.

For each virus in Table 1, 1,000 random sequences were generated for both the M0 and M1

models using scripts written in the R language (http://www.r-project.org/). The sequences

are run through the palindrome program which is part of EMBOSS (European Molecular

Biology Open Software Suite, Rice et al. 2000) to extract the palindrome positions and

length. Each output is then read by R again and the counts of palindromes of various length

are tabulated.

Tables 3 and 4 present the counts of palindromes of exact length four, six, and eight, along

with their expected values ν, estimated standard deviations τ̂, and z scores. Based on the z

scores, Tables 3 and 4 indicate that length-four palindromes are significantly

underrepresented across the coronavirus family under both the M0 and M1 sequence

models. However, for length-six palindromes, SARS is the only member of the coronavirus

family that shows underrepresentation under the M1 sequence model. For length eight or

above, no distinct patterns are observed.

For palindromes of length four and above, it is possible to fit higher-order Markov models to

the genome sequence. For example, the second-order Markov-chain model that takes the

base, dinucleotide, as well as trinucleotide composition into account, can be used to

calculate the z scores. We simulated 1,000 random sequences with the M2 model, but the

results did not differ much from the M1 model.

As the EMBOSS palindrome program provides us with a detailed listing of all occurrences

of palindromes of length four and above, we are able to notice two unique features in SARS.

First, the SARS sequence contains a long palindrome of length 22, the longest among all

palindromes observed in the coronaviruses. Second, there are two identical, length-12

palindromes situated within 100 bases of each other in the SARS genome. These are not

observed in the other coronaviruses. Although contributing little to the total palindrome

Chew et al. Page 10

INFORMS J Comput. Author manuscript; available in PMC 2014 June 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.r-project.org/


counts, these three palindromes appear unusual enough to warrant further study of their

possible biological roles, as discussed in the next section.

4. Discussion

Various statistical assessments of unusual abundance and rarity of individual words,

including individual palindromes, in nucleotide sequences have been done using random-

sequence models in a number of previous studies (Karlin et al. 1992; Merkl and Fritz 1996;

Rocha et al. 1998, 2001; Schbath et al. 1995, to name just a few). The present study,

however, aims at investigating the unusual abundance and rarity of palindromes collectively

rather than individually. The mathematical results in §2 provide a directly computable

formula to give a single z score for all palindromes with a given minimal length. We hope

the exploratory results in this paper will serve as a basis for more detailed investigations to

see how palindromes might be involved in important biological mechanisms of the

coronaviruses.

There are two random sequence models M0 and M1 used in this paper. Because M1 can take

the genome dinucleotide compositions into consideration while M0 cannot, M1 is preferred

over M0. Comparatively, the z scores under M1 are less extreme than those of M0. M1 is

therefore more conservative in declaring the palindrome counts in a genome to be

significantly different from those in random sequences. We shall base our discussion of the

results on M1 whenever possible.

The counts of palindromes of length at least four in each coronavirus analyzed are

significantly lower than expected (see Table 2). As the palindrome length increases to six

and above, the underrepresentation of palindromes no longer holds across the family

(theoretical z scores under M1 range from –1.66 to 0.46). This suggests that there is a

family-wide avoidance of palindromes of exact length four in the coronaviruses, which is

confirmed by the empirical z scores for exact-length palindromes in Tables 3 and 4. With

this knowledge, a thorough examination of the relative abundance of individual length-four

palindromes, conditional on the total length-four palindrome count is called for. We are in

the process of setting up such a study.

Although the underrepresentation of length-four palindromes is observed for all of the

coronaviruses in our data set that include members from all three antigenic groups (Marra et

al. 2003), this underrepresentation is not universally true in all RNA viruses, as

demonstrated by the other RNA viruses outside the coronavirus family. While it is

conceivable that palindrome underrepresentation is just a characteristic of the common

ancestor of the coronaviruses, it is worth noting that the characteristic is preserved in the

family despite the reputation for RNA viruses to be nature’s swiftest evolvers (Worobey and

Holmes 1999). So far, we cannot find any previous report of underrepresentation of short

palindromes in RNA viruses with eukaryotic hosts. However, avoidance of short

palindromes in some bacterial and phage DNA genomes has been reported in several studies

(Karlin et al. 1992; Merkl and Fritz 1996; Rocha et al. 1998, 2001, among others). The

phenomenon is generally explained in relation to the defense mechanisms of the bacterial

and phage genomes, protecting themselves against being destroyed by restriction enzymes
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capable of cutting up DNA molecules at certain palindromic sites. It will be interesting to

investigate whether there is any possible interaction of the short palindromes in the

coronavirus genomes with the immune system of the host cells that might have detrimental

effects on the survival of the virus.

Length-six palindromes are found significantly underrepresented only in SARS but not in

the other six coronaviruses (see Table 4). Would this avoidance of length-six palindromes in

the SARS genome offer a protective effect on the virus, making it comparatively more

difficult to be destroyed and contributing to the rapid spread and the severity of the disease?

This will be an interesting point to observe as we seek to learn more about the SARS virus.

Among all palindromes found in the seven coronaviruses genomes we analyzed, the longest

one resides in SARS. It is composed of the 22 bases TCTTTAACAAGCTTGTTAAAGA

spanning positions 25962–25983. Because the probability distribution of palindrome lengths

has not been rigorously obtained, we can only attempt a rough estimation, based on the

simple M0 sequence model, of observing a length-22 palindrome in a genome with base

composition like that of SARS. It has been demonstrated in Leung et al. (2002) that for

larger values of L (say ≥5), we may approximate the counts of palindromes at or above

length 2L by a Poisson random variable with parameter λ equal to the expected count. We

therefore have ℙ[maximal palindrome length ≥ 22]= ℙ [X11 ≥ 1], which can be approximated

by the corresponding Poisson probability with λ11 = E(X11) = 0.01008 by Proposition 3.

This Poisson probability is equal to 1−e−λ11, about 1%.

Knowing that this long palindrome is quite unlikely to occur by chance, one would logically

ask the question of whether it plays any particular functional role. According to the

classification of open reading frames (ORFs) encoding potential nonstructural proteins of

the SARS virus (Rota et al. 2003, Table 1), this palindrome occurs in the overlapping region

of the two ORFs designated X1 and X2. Due to the location of this palindrome, it is

tempting to speculate that it might be involved in some secondary structures serving similar

purposes like those of a pseudoknot, which is typically found at frame-shift locations in

overlapping coding sequences (Giedroc et al. 2000). One would have to perform a detailed

secondary structure prediction on this part of the SARS and other coronavirus genomes

before further suggestions can be made. The methods and tools used by Qin et al. (2003) to

predict the secondary structure in another part of the SARS virus genome (around the

packaging-signal sequence) are likely to be applicable here as well.

Another feature unique to SARS is the occurrence of two repeating length-12 palindromes

TTATAATTATAA spanning positions 22712–22723 and 22796–22807, all within 100

bases of the genome in the coding sequence of the surface-spike glycoprotein, which is

important for virus entry and virus-receptor interactions (Yu et al. 2003). Both copies begin

on the third position of a codon. Three amino acids Tyr-Asn-Tyr are coded by the second

through tenth bases of the palindrome. No such repeating palindromes are observed in the

corresponding glycoprotein-coding sequences for any of the other six coronaviruses.

Probabilistic assessment of close repeating palindromes occurring in random sequences has

yet to be formulated mathematically or estimated by simulation. (The method of Robin and

Daudin 1999 can be used to assess the probability that a given palindrome repeats itself in
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close proximity.) If such an observation is found to be unlikely to occur by chance, then

these repeating palindromes might be tested for potential regulatory functions. Large

palindromes present in single-stranded RNA have the inherent ability to form double-

stranded stem structures through the formation of intramolecular base pairs; thus, it is

possible that these sequences form secondary RNA structures in the genomic RNA and in

one or more subgenomic RNAs of the SARS virus. In many of the single-stranded RNA

viruses, stem structures play important regulatory roles in genome replication or gene

expression. It should be possible to investigate potential regulatory roles of these repeated

length-12 palindromes by engineering silent mutations within these sequences such that the

encoded protein is not altered but the palindromes and putative secondary structures are lost.

5. Concluding Remarks

While we hope that there will never be another outbreak of SARS, we believe that detailed

analysis of the SARS genome sequence can help generate useful information for

understanding the biology of the coronaviruses and perhaps other RNA viruses in general.

This first exploration about palindromes in the coronavirus family generates many questions

to be investigated in greater detail mathematically, computationally, as well as biologically.

Closely related to palindromes is the sequence feature of close inversion, which is a

palindrome with its two halves separated by a short stretch of intervening nucleotides. These

close inversions are well known to form stem-loop and other secondary structures involved

in the viral recombination and packaging process (Rowe et al. 1997, Qin et al. 2003). We

anticipate that a set of interesting and challenging questions in random-sequence models will

again emerge from the analysis of close inversions.
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Figure 1. Overlapping Structures of Palindromes Ck and Ck+d for Different Values of d
Note. (a), (b), and (c) are drawn with different scales.

Chew et al. Page 15

INFORMS J Comput. Author manuscript; available in PMC 2014 June 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Normal Q-Q Plots of Counts of Palindromes of Length Four (Top) and Six (Bottom) in the

1,000 Random Sequences Under the M1 Model for the SARS Genome
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Table 1

List of Seven Coronaviruses and Four Other RNA Viruses to be Analyzed

Name Abbrev. Accession Length Base composition

SARS coronavirus Urbani SARS AY278741 29,727 (0.28, 0.20, 0.21, 0.31)

Avian infectious bronchitis virus AIBV NC_001451.1 27,608 (0.29, 0.16, 0.22, 0.33)

Bovine coronavirus BCoV NC_003045.1 31,028 (0.27, 0.15, 0.22, 0.36)

Human coronavirus 229E HCoV NC_002645.1 27,317 (0.27, 0.17, 0.22, 0.35)

Murine hepatitis virus MHV NC_001846 31,357 (0.26, 0.18, 0.24, 0.32)

Porcine epidemic diarrhea virus PEDV NC_003436.1 28,033 (0.25, 0.19, 0.23, 0.33)

Transmissible gastroenteritis virus TGV NC_002306.2 28,586 (0.29, 0.17, 0.21, 0.33)

Rubella virus RUV NC_001545.1 9,755 (0.15, 0.39, 0.31, 0.15)

Equine arteritis virus EAV NC_002532.2 12,704 (0.21, 0.26, 0.26, 0.27)

Rabies virus RV NC_001542.1 11,932 (0.29, 0.22, 0.23, 0.26)

Human immunodeficiency virus 1 HIV-1 NC_001802.1 9,181 (0.36, 0.18, 0.24, 0.22)
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