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1. Introduction
The simple plant-location problem (SPLP), also
known as the uncapacitated facility-location problem,
is one of the fundamental and most studied models
in facility-location theory. The objective is to choose,
from a set of potential facility-locations on a network,
which ones to open to minimize the sum of open-
ing (or fixed) costs and service (or variable) costs to
satisfy the known demands from a set of customers.
Although the origins of the plant-location problem
go back to the pioneering work of Weber (1909),
the actual formulation of SPLP may be attributed
to Stollsteimer (1963), Kuehn and Hamburger (1963),
and Balinski (1965). Since that time numerous arti-
cles have been published that deal with the prop-
erties and solution of the mathematical model, e.g.,
see the surveys in Krarup and Pruzan (1983), Labbé
et al. (1995), Labbé and Louveaux (1997), and the
books by Mirchandani and Francis (1990), Francis
et al. (1992), and Daskin (1995). Despite the inherent
assumptions of the model that may limit its practi-
cality, the SPLP has gained considerable importance
as a basic model in several combinatorial problems
dealing, e.g., with vehicle dispatching, set covering,
set partitioning, assortment, and, more recently, infor-
mation retrieval and data mining (Pentico 1976, 1988;

Jones et al. 1995; Tripathy et al. 1999). The SPLP is
also used in multicriteria extensions (Brimberg and
ReVelle 1998, 2000; Myung et al. 1997), and is shown
to be an embedded problem in a number of types of
location problems (ReVelle and Laporte 1996).

Most articles dealing with SPLP are concerned with
solving the mathematical program. An exact branch-
and-bound procedure was first proposed by Efroym-
son and Ray (1966), and later by Khumawala (1972).
A dual-based model, the well-known DUALOC algo-
rithm, was developed by Erlenkotter (1978) and a sim-
ilar version by Bilde and Krarup (1977). The main
idea here is to solve a reduced nonlinear form of the
dual-based model heuristically by a simple ascent and
adjustment procedure that often produces the opti-
mal dual solution, which in turn often corresponds
directly to the optimal primal integer solution. Other-
wise, a branch-and-bound procedure is implemented
to complete the solution. Refinements to the dual
approach allowed Körkel (1989) to solve exactly much
larger instances than previously attempted with sizes
on the order of 1�500 × 1�500. A primal-dual algo-
rithm by Galvão and Raggi (1989) alternates between
the primal and dual problems solving each in turn
heuristically. Again a branch-and-bound procedure is
used as required to close the process. More recently
an exact algorithm has been proposed by Goldengorin
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et al. (2003a) that is based on a pseudo-Boolean rep-
resentation of the problem due originally to Hammer
(1968). A data-correcting algorithm by Goldengorin
et al. (2003b) may be used for an exact or approximate
solution of the problem; however, the instances tested
are relatively small.

A direct solution approach to SPLP involves solv-
ing the primal LP relaxation followed by branch and
bound on the fractional values as in Morris (1978).
The relaxation is known often to yield an integer solu-
tion (or zero duality gap), a property referred to as
the integer friendliness of the model structure (ReVelle
1993). Tests in Brimberg and ReVelle (2000) on prob-
lem instances of up to 100 facility nodes × 300 cus-
tomer nodes revealed that, in the majority of cases
where fractional solutions were obtained, the optimal
solution was found after branching off a single vari-
able. However, as the SPLP is NP-hard (Cornuéjols
et al. 1990), the number of branchings tends to grow
exponentially with problem size. Nonetheless, the lat-
est general mixed integer LP solvers such as CPLEX
8.1 are now able to handle problem sizes up to
1�000 × 1�000 by using built-in efficient branch-and-
cut routines.

For NP-hard problems such as SPLP, it becomes
necessary to use approximate methods to solve
large instances. Earlier heuristics typically involve a
local search on the primal problem using add, drop,
and interchange moves (Kuehn and Hamburger 1963,
Feldman et al. 1966, Teitz and Bart 1968, Manne 1964).
See Cornuéjols et al. (1977) for an analysis of the
worst case behavior of such methods. Later methods
include Lagrangian-based heuristics (Beasley 1993), a
projection method (Conn and Cornuéjols 1990), and
more recently the application of metaheuristics such
as Tabu search (Goncharov and Kochetov 1999, 2000;
Michel and van Hentenryck 2004; Ghosh 2003), a
genetic algorithm (Kratica et al. 2001) and volume
algorithms with random rounding (Barahona and
Chudak 2000).

In the next section we review the formulation of
the SPLP, which is given by a mixed binary inte-
ger LP, and discuss several known linear and non-
linear formulations of the relaxed dual that will be
required later. In Section 3 the rules of our variable
neighborhood search (VNS) applied to the SPLP are
outlined, followed by an explanation of the steps
of a reduced VNS (RVNS) and the decomposition
approach (VNDS), two variants of VNS designed for
solving large problem instances. Guaranteed bounds
of the heuristic solution may be obtained by solving
the relaxed LP, either in the primal or dual space.
However, for very large problem instances, it is not
possible to store all variables in memory, or solve the
LP in reasonable time. We may obtain approximate

bounds (Erlenkotter 1978), but these will be less effec-
tive when a branch-and-bound phase is used later to
find the optimal solution. Hence, in Section 4, we pro-
ceed as follows: (i) an initial dual solution (not nec-
essarily feasible) is obtained from the primal VNDS
solution using the complementary slackness condi-
tions; (ii) a variable neighborhood descent (VND) is
applied in the dual space to improve the solution.
Section 5 then solves the problem exactly as follows:
(iii) an exact solution of the dual is obtained using
the last solution as the starting point and a new slid-
ing simplex method developed by us that is able to
reduce the size of the dual considerably; (iv) finally,
reverting back to the primal problem, a branch-and-
bound algorithm is used, strengthened by a tight
lower bound from the dual and upper bound from
the earlier heuristic (VNDS) solution.

Computational results are reported in Section 6
on a series of randomly-generated problems, includ-
ing instances that are much larger than previously
tested in the literature. The ability to solve very large
SPLPs is becoming more important in view of the size
of facility-location problems being tackled in prac-
tice today, and the fact that the SPLP is finding
other applications in such areas as cluster analysis,
computer and telecommunications network design,
information retrieval, and data mining. Section 7 sum-
marizes the main results and offers possible directions
of future research.

2. Mathematical Model
Let I = �1�2� � � � �m� denote a set of potential facilities,
and J = �1�2� � � � �n� a set of users or customers on
a network. The SPLP is

min
x�y

zP =
∑
i∈I

fiyi +
∑
i∈I

∑
j∈J

cijxij (1)

s.t.
∑
i∈I

xij = 1� ∀ j ∈ J � (2)

xij − yi ≤ 0� ∀ i ∈ I� ∀ j ∈ J � (3)

yi ∈ �0�1�� ∀ i ∈ I� (4)

xij ≥ 0� ∀ i ∈ I� ∀ j ∈ J � (5)

where
fi denotes the fixed cost for opening facility i;
cij is the distribution cost for satisfying the demand

of user j from facility i;
yi is a boolean variable equal to 1 if facility i is

opened, and 0 otherwise;
xij is the fraction of demand of user j satisfied from

facility i.
This problem has mn+m variables and mn+n con-

straints. The objective function expresses that the sum
of fixed costs to open facilities and distribution costs
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for these facilities to serve the users must be mini-
mized. The fi and cij are assumed to be positive. Con-
straint (2) imposes that the demand at each customer
is satisfied. Constraint (3) opens facility i by setting
yi = 1 if there is a flow from this facility to any cus-
tomer j �xij > 0�. Once the yi are fixed, the values of
the xij are easily determined; for each j , xij = 1 for that
open facility with minimum distribution cost cij (ties
may be broken arbitrarily); all other xij = 0.

If the binary constraints in (4) are relaxed to
0≤ yi ≤ 1, ∀ i ∈ I , one gets the strong linear program-
ming relaxation. Another relaxation, called the weak lin-
ear programming relaxation, may be obtained by also
replacing the constraints in (3) by

∑
j∈J xij ≤ nyi, ∀ i ∈ I ,

so that the number of original constraints is reduced
from mn + n to m + n. But this latter relaxation is
less tight than the strong one, and does not appear to
be of interest. The strong LP relaxation is known to
be integer-friendly (ReVelle 1993, Brimberg and ReVelle
2000); i.e., most variables yi take an integer value in
the optimal vector, and thus, the duality gap is also
small and often zero.

A particular class of test problems has been stud-
ied in depth (Barahona and Chudak 2000) and often
used in empirical studies. Potential sites for facilities
coincide with the given locations of the users, and
are points taken from a uniform distribution on the
unit square. Distribution costs cij are Euclidean dis-
tances between i and j ; fixed costs are equal for all
facilities, and set at

√
n/10,

√
n/100, or

√
n/1�000. It

is proven that any branch-and-bound algorithm using
the strong relaxation (without further cutting planes)
will require a number of branches that increases expo-
nentially with m (or n). Nevertheless, near-optimal
solutions may be readily obtained for fairly large
instances. For example, Barahona and Chudak (2000)
recently solved, with an instance-dependent error of
at most 1%, problems with m= n up to 3,000.

2.1. Dual Formulations
The dual of the strong LP relaxation is

max
v�w� t

(∑
j∈J

vj −
∑
i∈I

ti

)
(6)

s.t.
∑
j∈J

wij − ti ≤ fi� ∀ i ∈ I (7)

vj −wij ≤ cij � ∀ i ∈ I� ∀ j ∈ J (8)

ti�wij ≥ 0� ∀ i ∈ I� ∀ j ∈ J � (9)

Note that the variables vj are not restricted in sign.
However, because the equality sign in (2) may be
replaced by ≥ without affecting the optimal solution,
the vj will be nonnegative. This problem has mn +
m+ n variables and mn+m constraints. Thus, as in
the primal, it is large in both dimensions. Fortunately,

the dual may be simplified in various ways. First
observe that each variable ti appears only in the objec-
tive function, with a negative sign, and in a single
constraint in (7). Further examination shows that the
ti may be reduced one at a time without reducing the
objective function’s value. Using (7) and (9), we have

ti =max
{∑

j∈J
wij − fi�0

}
=
(∑

j∈J
wij − fi

)+
� (10)

where a+ = max�a�0�. It follows that in the optimal
solution the ti should all be zero, yielding the simpler
LP formulation of the dual that usually appears in the
literature:

max
v�w

zD =∑
j∈J

vj (11)

s.t.
∑
j∈J

wij ≤ fi� ∀ i ∈ I (12)

vj −wij ≤ cij � ∀ i ∈ I� ∀ j ∈ J (13)

wij ≥ 0� ∀ i ∈ I� ∀ j ∈ J � (14)

Erlenkotter (1978) observed that for any fixed vec-
tor of vj ’s, the wij may be reduced without affecting
feasibility, i.e., the wij may be made as small as pos-
sible. Thus, constraints (13) and (14) imply that we
should set

wij =max�vj − cij �0�= �vj − cij �
+� ∀ i� j� (15)

Now substitute (15) into (12) to get a nonlinear-
programming formulation in n variables with m con-
straints, known as the restricted dual:

max
v

∑
j∈J

vj (16)

s.t.
∑
j∈J

�vj − cij �
+ ≤ fi� ∀ i ∈ I � (17)

Another way to obtain a restricted dual is to sub-
stitute both (10) and (15) into the standard LP for-
mulation (6)–(9) to get the unconstrained nonlinear
program in n variables (Spielberg 1969, Conn and
Cornuéjols 1990):

max
v

F �v�=∑
j∈J

vj−
∑
i∈I

(
max

{∑
j∈J

�vj−cij �
+−fi�0

})
� (18)

Note that this formulation is equivalent to one sug-
gested by Karkazis (1985),

max
v

F �v�=∑
j∈J

vj +
∑
i∈I

(
min

{
fi −

∑
j∈J

�vj − cij �
+�0

})

since −max�x�=min�−x� always holds.
It is well known that F �v� is a piecewise linear

concave objective function in n variables, and several
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nonlinear-programming methods that use specifics of
the problem have been suggested to maximize it. For
example, in Karkazis (1985) and Klose (1995) sub-
gradient methods have been derived, and in Conn
and Cornuéjols (1990) a gradient-projection method is
proposed.

3. Solving the Primal Problem by
Variable Neighborhood Search

VNS is a recent metaheuristic (see Mladenović and
Hansen 1997, and the surveys in Hansen and Mlade-
nović 2001, 2003), whose basic idea is to use systemat-
ically different neighborhoods, both in descent phases
and to jump out of local optimum traps.

To apply VNS to our problem, the same data struc-
ture is used as suggested in Voss (1996) and in Hansen
and Mladenović (1997) for the p-median problem:

• Indices of facilities in the current and in the best
known solution are stored in arrays s and s∗.

• Indices of closest and second-closest open facil-
ities for each user and associated costs are stored in
arrays c and c̄, respectively.

3.1. A VNS Heuristic for SPLP
To apply VNS, a neighborhood structure must be
defined on the solution space. Let S denote any sub-
set of open facilities �S ⊆ I); the solution space � may
then be defined as all such possible subsets. The total
number of solutions in � is 2m − 1. To define the
neighborhoods, we use a distance function. Let S1,
S2 be any two solutions in � ; the distance between
them is defined by ��S1� S2� = ��S1\S2� ∪ �S2\S1��. If
S2 is obtained from S1 by closing one facility i1 ∈ S1
and opening an i2 ∈ I\S1 (an interchange: S2 = �S1\�i1��
∪ �i2�), ��S1� S2� = 2; if S2 = S1\�i1� (a drop) or S2 =
S1 ∪ �i2� (an add), ��S1� S2�= 1. The kth neighborhood
of a current solution S is defined as the set of all pos-
sible solutions S ′ derived from S by any combination
of exactly k total-interchange, drop, or add moves.

The basic steps of VNS consist of a repetitive
sequence of (i) shaking to a kth neighborhood of
the incumbent solution; (ii) conducting a local search
from the perturbed solution using the first neighbor-
hood; and (iii) moving to a better local optimum if
one is found.

(i) Shaking. To get a random point S ′ in the kth
neighborhood of the incumbent solution S (which cor-
responds to distance at most 2k), the following steps
are repeated k times:

• Choose a facility i1 at random from S equiprob-
ably.

• Choose a facility i2 at random from I\S equiprob-
ably.

• Generate a uniform random number rnd from
the interval �0�1�.

• If rnd ≤ 0�2, delete i1 from the solution �p ←
p− 1�; if rnd ≥ 0�8, add i2 to the solution �p← p+ 1�;
if rnd ∈ �0�2�0�8�, interchange positions i1 and i2 in s,
i.e., close facility i1 and open facility i2.

• Update the arrays for first and second closest
facilities w.r.t. the new open facilities.

(The values 0.2 and 0.8 used in choosing the move
have been obtained empirically by comparing results
for threshold values distant of 0.1 at the time. Val-
ues 0.2 and 0.8 imply interchanges are more frequent
in shaking than opening or closing facilities yet the
number of these may vary.)

(ii) Local search. A local search is conducted from
the perturbed solution S ′ using the first neighbor-
hood, �1�S

′�. In the best-improvement version of the
local search that we are using, all p�m− p�+m solu-
tions from �1�S

′� are visited, and a move made to
the best among them only if its objective-function
value is smaller than that of S ′. A fast-interchange
version, as proposed in Whitaker (1983) and Hansen
and Mladenović (1997) for solving the p-median, is
applied. The local search is repeated after each down-
ward move until a local minimum is reached.

(iii) Move or not. The simplest acceptance criterion
for basic VNS is used. A move is made only if the
local search in (ii) obtains a better solution than the
incumbent S. Each time a move is made, k is reset to
kmin (a parameter typically 1); otherwise k is changed
(typically augmented by one until a parameter kmax is
reached, after which it is reset to kmin), and the cycle
is repeated. The search is terminated after a stop-
ping criterion, such as a limit on execution time or on
the number of iterations without an improvement, is
reached.

3.2. Variable Neighborhood Decomposition
Search

Reduced variable neighborhood search (RVNS) and
variable neighborhood decomposition search (VNDS)
are two variants of VNS devoted to solving large
problem instances. In RVNS, we simply skip the local-
search phase of the basic VNS.

Our procedure first obtains an initial solution with
RVNS. Two parameters are specified for RVNS: the
maximum neighborhood distance, k′max, for the shak-
ing operation, and a stopping criterion based on the
maximum number of iterations imax allowed between
two improvements. A suitable compromise between
speed and quality was found experimentally to be
k′max = 2 and imax = 30 or 20 seconds elapsed time.
This shows that shaking must remain moderate to get
an imprived solution without a descent phase. Once
RVNS is executed, we proceed with our decomposi-
tion heuristic as outlined below:

1. Initialization. Choose values for the two param-
eters #max (maximum number of open facilities to
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be selected from the incumbent solution) and tmax
(maximum computing time for the heuristic). Set the
incumbent solution S to be the set of open facilities
obtained by RVNS, and let p= �S�. Set the size of the
decomposed problem, #= 2.

2. Constructing the decomposed problem. (i) De-
termine the �p− 1�× p matrix R= %rij & of ordered net-
work distances where column j is assigned the jth
facility listed in S, row i is reserved for the ith closest
facility in S to each facility j , i = 2� � � � � p, and rij is
the corresponding network distance. (Note: Also save
facility indices in R.)

(ii) Determine r#j∗ =min1≤j≤p�r#j �.
(iii) The subproblem and its initial solution �D�

are defined as follows:
• The open facilities are given by the facility

assigned column j∗ and the 2nd�3rd� � � � � #th closest
facilities to it (the first #− 1 entries in column j∗).

• The subset of users consists of the n′ ones
assigned in the incumbent solution S to the subset of
# open facilities just identified.

• Additional potential facility sites are added
by a subroutine.

3. Solving the decomposed problem. If the total
number of facility sites (open or closed) in the sub-
problem, m′ ≤ 1�000, solve it by VNS; if 1�000<m′ ≤
1�500, solve it by RVNS; else set #= 2 and return to
step 2 (the decomposed problem is too big).

4. Move or not. If the new solution D′ is better than
D, proceed to step 5; else if #= #max, set #= 2; else set
#← #+ 1. If t < tmax, return to step 2; else stop.

5. Adjusting for boundary effect. Add the new
decomposed solution D′ to the fixed portion of S �S ←
�S\D�∪D′�. Conduct a local search from the new solu-
tion to obtain a local optimum S ′. Set S = S ′. If t < tmax,
set #= 2 and return to step 2; else stop.

Note that the new set of facilities obtained in the
subproblem may influence users not considered in the
subproblem, i.e., some users may change assignment
with respect to this new solution. Such a boundary
effect is accounted for by updating arrays c and c̄ in
the whole space each time a new improved solution
in the subproblem is found.

4. A VNS Heuristic for the Dual
4.1. Initial Dual Solution
Guaranteed performance of the primal heuristic may
be determined if a lower bound on the objective
function value is known. To that end the standard
approach is to relax the integrality condition on the yi
variables. The well-known integer-friendliness prop-
erty ensures that the strong LP relaxation for the SPLP
gives a small duality gap between the optimal inte-
ger and relaxed solutions. We may then evaluate the
existing gap as a percentage: 100× �zh− zr �/zr , where

zh denotes the solution obtained by the heuristic and
zr the solution of the strong LP relaxation, to deter-
mine the maximum error obtained by the heuristic
solution.

Let us consider the dual of the strong LP relaxation,
(11)–(14). For large problems (say n=m= 1�500) find-
ing the exact solution of the primal or dual by some
general LP solver such as CPLEX would be impossi-
ble or, at best, very time consuming. Thus, we first
develop some procedures that will take into account
the primal solution �y�x� found by the heuristic, and
avoid solving completely the dual problem at this
stage.

The complementary-slackness conditions for the SPLP
are

vj

(∑
i∈I

xij − 1
)
= 0� ∀ j ∈ J (19)

wij�yi − xij �= 0� ∀ i ∈ I� ∀ j ∈ J (20)(
fi −

∑
j∈J

wij

)
yi = 0� ∀ i ∈ I (21)

�cij − vj +wij�xij = 0� ∀ i ∈ I� ∀j ∈ J � (22)

where �y�x� and �v�w� denote the associated primal
and dual solutions (feasible or not), respectively.

The strong duality theorem �z∗P = z∗D� is obtained
by summing first each of (19)–(22) and then sum-
ming their left- and right-hand sides. In this proof
all four complementary slackness conditions (19)–(22)
are needed. However, (20), (21), and (22) are not nec-
essarily true if we add integrality constraints on the
primal variables yi, and that is the source of the dual-
ity gap zP − zD. Since the primal solution is feasible,
(19) is automatically satisfied.

Mladenović et al. (2006) prove following proposi-
tion. Here I+ denotes the set of open facilities, and
I− = I\I+, the set of closed ones, in the heuristic solu-
tion �y�x�.

Proposition 1. If �I+� ≥ 2 and a feasible primal solu-
tion is such that

∑
j∈J

�c̄j − cij �
+ ≤ fi� ∀ i ∈ I−� (23)

then �y�x� is an optimal solution of the strong LP relax-
ation of SPLP.

Therefore, having a set of open facilities I+ and
associated vector of second-closest distances c̄ ob-
tained by VNDS, we first check if (23) is satisfied, and
if that is the case, the incumbent solution solves SPLP
optimally and no further work is required.

Otherwise, our next objective is to derive an ap-
proximate dual solution from the primal (heuristic)
solution. What makes our procedure new is that the
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dual solution does not have to be feasible. In effect,
we take advantage of two expected conditions: (a) the
primal VNDS solution is very close to optimum;
(b) the duality gap is small. Thus, by finding a dual
solution with the same objective-function value as
the primal, we expect to be close in the dual solu-
tion space to the optimal (feasible) dual solution. To
accomplish this, the complementary-slackness condi-
tions must be satisfied.

Proposition 2. For a given primal solution y, let v be
a corresponding dual solution such that

∑
j∈Ji

vj = fi +
∑
j∈Ji

cj � ∀ i ∈ I+� (24)

where Ji denotes the subset of users assigned to open facil-
ity i. Then zD�v�= zP �y�.

Proof.

zD�v�=
∑
j∈J

vj =
∑
i∈I+

∑
j∈Ji

vj =
∑
i∈I+

(
fi +

∑
j∈Ji

cj

)
= zP �y�� �

We use the previous proposition to find an initial
dual solution v that belongs to the intersection of the
p= �I+� hyperplanes in (24). If, in addition, we impose
the condition

cj ≤ vj ≤ c̄j � ∀ j ∈ J � (25)

it follows that all the complementary slackness con-
ditions will be satisfied (see Mladenović et al. 2006).
Thus, a dual solution that satisfies (24) and (25) also
satisfies the four complementary slackness conditions
(19)–(22). Also note that conditions (21) and (22) are
usually used exclusively to get the primal solution for
a given dual (Erlenkotter 1978), and that the transfor-
mation of a primal to a corresponding dual is usually
done by setting vj = cj , which is known to produce
feasible but bad initial dual solutions (Galvão and
Raggi 1989). Proposition 2 is capable of providing a
better initial dual, but, since such a solution is not
unique, alternative procedures must be investigated.
We consider the following approaches.

(i) Proportional formula.

vj = cj +
fi�c̄j − cj �∑
#∈Ji �c̄# − c#�

� ∀ j ∈ J � i= i+j � (26)

where i+j denotes the closest open facility to j (i.e.,
the facility assigned to j). Summing the left and right
sides of (26) over j ∈ Ji, it follows that (24) holds,
∀ i ∈ I+. We may also show that (25) is satisfied. Since
the primal solution is a local minimum, we have
(Mladenović et al. 2006)

∑
j∈Ji �c̄j − cj �≥ fi, ∀ i ∈ I+ and

thus, cj < vj ≤ c̄j , ∀ j ∈ J .

(ii) Projection formula. Given any dual solution
v′
j ∈ �n, we may find its closest point that belongs to

the manifold defined in (24) by

vj = v′
j −

1
�Ji�

(∑
#∈Ji

v′
# − fi −

∑
#∈Ji

c#

)
� j ∈ J � i= i+j �

For example, we could select v′
j = �c̄j + cj �/2, ∀ j ∈ J ;

i.e., take a point �v′
j � in the middle of the hypercube

H = ∏n
j=1%cj� c̄j &. Another possibility would be v′

j =
max�cj�min�c̃j � c̄j ��, ∀ j ∈ J . In the last expression, c̃j
is defined as c̃j = mini∈I−�cij �, ∀ j ∈ J (see Mladenović
et al. 2006 for details).

4.2. Improving the Dual Solution
As seen above, the initial dual solution is easily
obtained by closed formula; however, it will most
likely be infeasible. To reduce this infeasibility, we
consider the unconstrained dual function in (20):

F �v�=∑
j∈J

vj −
∑
i∈I

(∑
j∈J

�vj − cij �
+ − fi

)+
�

where the second term in the right side is the sum of
infeasibilities. To maximize this function, we devise a
powerful local search that uses variable neighborhood
descent (VND) rules and four neighborhood struc-
tures designed for this purpose.

The first two neighborhoods represent windows
around the current vj in the ranked matrix %cij &. Let-
ting ij denote the lower index of the window, we
obtain cij � j ≤ vj ≤ cij+1� j , ∀ j ∈ J . To simplify the nota-
tion, denote the last inequalities that define the win-
dow around the current dual value by aj ≤ vj ≤ bj .
The first neighborhood N1�v� is constructed by replac-
ing vj with aj , i.e.,

N1�v� = ��a1�v2� � � � � vn�� �v1� a2� � � � � vn�� � � � �

�v1�v2� � � � � an���

In the same way, neighborhood N2�v� is obtained by
replacing vj with its upper window (one at the time):

N2�v� = ��b1�v2� � � � � vn�� �v1� b2� � � � � vn�� � � � �

�v1�v2� � � � � bn���

The cardinality of each of these two neighborhoods
equals n.

In the third neighborhood N3�v�, the value of
some variable vj is increased by ,vj = min�bj − vj�
mini∈I� cij≤vj

,fi�, where ,fi = �fi −
∑

j∈J �vj − cij �
+�+. A

move in N3 will improve F �v� without increasing the
infeasibility of the solution.

In N4�v� the value of some variable vj is de-
creased by

,vj =min
(

min
i- vj>cij

(∑
j∈J

�vj − cij �
+ − fi

)+
�vj − cj

)
� (27)
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The last formula needs to be explained in more
detail. When vj is reduced by some amount, then, in
order to get a larger F �v�, we need to reduce at least
two members of the sum

∑
i∈I �

∑
j∈J �vj − cij �

+ − fi�
+.

Those two members should then satisfy the condi-
tions vj > cij and

∑n
j=1�vj − cij �

+ > fi. Thus, it may be
possible to increase F �v� by decreasing vj according
to (27).

The VND procedure first makes best improvement
moves in the N1 neighborhood of the current solution
by examining all n points in that neighborhood. Once
stalled, the procedure moves to the next neighbor-
hood in the sequence �N2�N3�N4�, always reverting
to N1 when an improvement is found. The iterations
end when no improvement is found consecutively in
each of the four neighborhoods. Note that the output
solution may still be infeasible.

5. Exact Solution Methods
5.1. Sliding Simplex for Exact Dual Solution
Earlier we saw that Erlenkotter’s observation in (17)
leads to a restricted dual ��18�� �19�� with only n vari-
ables vj and m constraints. However, the constraints
are nonlinear due to the max operator. Combining a
vector v= �vj� with relation (17) gives a dual solution
�v�w� satisfying constraints (15) and (16), but not nec-
essarily (14). Instead of trying to solve the restricted
dual, we rewrite the original (linear) dual in a reduced
form by taking advantage of the fact that (a) many
of the constraints in (15) are nonbinding and may be
eliminated; (b) for those that are binding, the wij may
be eliminated by direct substitution. The reduced lin-
ear dual and its solution by a new sliding simplex
approach is discussed next.

5.1.1. Reduced Dual. Suppose that

cj ≤ vj ≤ c̄j � ∀ j ∈ J � (28)

Let us then divide the set of users J into three subsets
for each facility i ∈ I :

Ji1 = �j ∈ J � cij < cj�� Ji2 = �j ∈ J � cj ≤ cij ≤ c̄j ��

Ji3 = �j ∈ J � c̄j < cij ��

Using (15), it is immediately seen that wij = 0 for all
users j ∈ Ji3. Also from wij = �vj − cij �

+, it holds that
wij = vj − cij , for all j ∈ Ji1, i ∈ I−, since vj ≥ cj . There-
fore, model (11)–(14) is reduced as follows:

max
v�w

zD =∑
j∈J

vj (29)

s.t.
∑
j∈Ji1

vj +
∑
j∈Ji2

wij ≤ fi +
∑
j∈Ji1

cij � ∀ i ∈ I (30)

vj −wij ≤ cij � ∀ i ∈ I� j ∈ Ji2 (31)

wij ≥ 0� ∀ i ∈ I� j ∈ Ji2� (32)

In our sliding simplex method, the wij variables cor-
responding cij � %cj� c̄j & are removed with their con-
straints as in the above formulation, but now the
bounds cj and c̄j are allowed to vary during the solu-
tion process to move towards the optimal solution
while keeping a reasonable dimension on the prob-
lem size. To this end, it is necessary to rank the cij by
nondecreasing values for each j . Using a second-level
index for ranking, we have ci1j ≤ ci2j ≤ · · · ≤ cimj , ∀ j ∈ J .
Consider a value of vj ∈ %ci1j � cimj &, and let k denote the
largest index such that cikj ≤ vj . Then, we define the
#-interval of vj to be

%cik−#j
� cik+#j

&� (33)

which contains the following values of the cij - cik−#j
�

cik−#+1j
� � � � � cikj � cik+1j

� � � � � cik+#j
. Note that there may be

an adjustment necessary for border effect; i.e., some
end terms are obviously omitted if k − # < 1 or
k+ # >m.

Setting cj = cik−#j
and c̄j = cik+#j

∀ j ∈ J , one gets the
reduced #-dual associated with vector v, as given in
(29)–(32) and (28) with the subsets Ji1, Ji2, Ji3, i =
1� � � � �m, updated appropriately.

The steps of the sliding simplex are as follows:
1. Initialization. For each j ∈ J rank the cij in order

of nondecreasing values (ties being broken arbitrar-
ily). Record the values and corresponding indices as
cipj and ip for p = 1� � � � � �I � and all j ∈ J . Choose a
value for parameter #.

2. Initial solution. Obtain a vector v which corre-
sponds to a feasible or infeasible solution �v�w� of the
dual. Set up the first reduced #-dual from v.

3. Solution of the #-dual. Solve the current #-dual
using the simplex algorithm (e.g., with CPLEX) and
the latest dual solution as starting solution to obtain
a vector v∗.

4. Optimality test. Check for each j ∈ J , that the
following condition holds: v∗

j = ci1j or cik−#j
< v∗

j < cik+#j

or v∗
j = cimj . If for some j it is not the case, go to step 5;

otherwise go to step 6.
5. Updating of the reduced #-dual. Update the in-

dex k and window in (33) for each j as required; refor-
mulate the #-dual accordingly and return to step 3.

6. Output. An optimal solution of the dual is given
by �v∗�w∗� where w∗

ij =max�v∗
j − cij �0�, ∀ i ∈ I , ∀ j ∈ J ;

its value is
∑

j∈J v∗
j .

The sliding simplex method bears some resem-
blance to the BOXSTEP method of Marsten et al.
(1975). Indeed, BOXSTEP proceeds by solving a
sequence of problems with additional constraints
defining a box around the current solution; if the solu-
tion of the current such problem is on the boundary,
the box is translated. The sliding simplex method has
some differences too: (i) it adds interval constraints
on a small part of the variables only; (ii) the role
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of these constraints is to eliminate a large part of
the original constraints and variables; and (iii) the
problem obtained is a linear program solved by sim-
plex instead of a nonlinear one solved by subgradient
optimization.

Theorem 1. The sliding simplex algorithm solves the
dual of SPLP.

Proof. From sensitivity analysis, one may add to
the dual (11)–(14) without changing the optimal solu-
tion the set of constraints

ci1j ≤ vj ≤ cimj� ∀ j ∈ J (34)

as at least one yi must be equal to 1 in any feasible
solution. Then the current reduced #-dual is equiva-
lent to this problem with the additional constraints

cik−#j
≤ vj ≤ cik+#j

� ∀ j ∈ J � (35)

where we assume that redundant constraints obtained
when cik−#j

= ci1j or cik+#j
= cimj are omitted.

The optimal solution �v∗�w∗� of (11)–(14), (34), (35)
is such that none of the constraints (35) are tight, as
otherwise the condition of step 4 would not hold. So
it remains optimal if those constraints are removed,
i.e., for (11)–(14), (34) and hence for (11)–(14).

Furthermore, since there are a finite number of
combinations of windows for v, and each combina-
tion may be encountered at most once, the algorithm
must terminate after a finite number of iterations. �

5.2. Exact Primal Solution
At this stage we have a primal solution obtained by
the VNDS heuristic that provides an upper bound,
and an exact dual solution by sliding simplex that
provides a lower bound for the optimal solution of
the SPLP. If the two bounds are equal, the VNDS solu-
tion must be optimal. Otherwise, a classical branch-
and-bound procedure is initiated. The tightness of the
upper and lower bounds will be useful in keeping
the number of branchings to a minimum. The main
features of the branch-and-bound algorithm are as
follows:

(a) For branching, the fractional primal variables
(duals of the dual) are first identified, and those that
correspond to open facilities in the heuristic solution
are closed, one at a time, by a depth-first strategy.

(b) At each node of the branch-and-bound tree, a
relaxed dual is solved by the sliding simplex method,
described in the previous section using the solution
of the parent node as the starting point.

(c) As in Erlenkotter (1978), to keep facility i closed,
the fixed cost fi is temporarily set to +�; to keep
facility i open, the fixed cost fi is set to 0.

(d) An elementary backtracking scheme with
last-in, first-out is applied.

(e) Pruning of nodes in the branch-and-bound tree
is either by bounding (relaxed solution is worse than
upper bound) or by obtaining a primal integer solu-
tion (no fractional dual values of the dual problem).

Because the sliding simplex method may call the LP
solver many times at each node as the windows on
the vj change, it is advisable after each call to check
if the node can be fathomed by bounding, before pro-
ceeding further to the exact lower bound.

6. Computational Experience
In this section we first explain what type of test
instances are used. They are available in the Online
Supplement to this paper on the journal’s website.
Then we verify the capacity of the latest CPLEX 8.1
as a general mixed integer solver applied to the SPLP.
Our main computer results on the specialized heuris-
tics and algorithms described above are then given.

6.1. Barahona-Chudak Instances
Our procedure is tested on similarly-constructed
instances from Barahona and Chudak (2000). That is,
both facility and user points are assumed to be the
same random uniformly-distributed set of vertices in
the unit square. The fixed costs are the same for all
facilities, and the transportation costs correspond to
the Euclidean distances separating pairs of points in
the plane. Several interesting properties of such test
problems are described in Ahn et al. (1988), e.g.: (i) for
n ≤ 500, the problems are easy to solve; (ii) when n
is large, any enumerative method based on LP relax-
ation requires the exploration of an exponentially-
increasing number of solutions; and (iii) the value of
the LP relaxation is about 0.998 of the optimal value.

Three different types of instances based on differ-
ent magnitudes of fixed cost are considered. These
problems provide a wide range of structural diversity:
(i) Type I, fi =

√
n/10, ∀ i ∈ I ; (ii) Type II, fi =

√
n/100,

∀ i ∈ I ; and (iii) Type III, fi =
√
n/1�000, ∀ i ∈ I . To avoid

numerical problems, all data entries are made inte-
ger by rounding them to four significant digits. As
noted in Barahona and Chudak (2000), the DUALOC
heuristic seems to benefit most from such round-
ing. However, their results show that their volume
algorithm together with random rounding (V&RRWC
for short) outperforms significantly the dual ascent
and dual adjustment heuristics of Erlenkotter (1978) on
Type I and Type II instances. On Type III instances
dual adjustment (DA) was the best. Experiments were
performed on relatively large instances for the time,
with m = n ≤ 3�000. For example, comparing the %
gap (or guaranteed instance-dependent bounds) of
DA and V&RRWC on all three types of instances for
the maximum problem size considered m= n= 3�000,
the following average results were reported: Type I:
16.79% for DA vs. 0.71% for V&RRWC; Type II: 4.27%
vs. 0.93%; Type III: 0.62% vs. 0.85%.
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Table 1 Testing CPLEX

fi n zmip∗ tmipopt zVNDS tVNDS

√
n/10 100 209
805�00 1�26 209
805�00 0�09

200 361
531�00 7�19 361
531�00 0�75
300 511
252�00 26�97 511
428�00 1�55
400 660
444�00 67�03 660
444�00 6�72
500 799
791�00 141�55 802
841�00 24�40
600 926
829�00 241�20 926
829�00 31�59
700 1
058
487�00 720�65 1
058
487�00 46�20

√
n/100 100 70
769�00 0�84 70
769�00 0�16

200 138
674�00 5�05 138
674�00 0�89
300 203
000�00 24�13 203
000�00 2�70
400 267
729�00 34�32 267
729�00 4�80
500 328
235�00 62�64 328
235�00 9�95
600 388
733�00 205�90 388
734�00 10�97
700 447
089�00 117�75 447
089�00 16�55
800 503
200�00 200�73 503
200�00 24�47
900 557
946�00 443�44 557
953�00 30�43

1
000 611
110�00 372�52 611
110�00 52�14
1
100 665
303�00 1
209�21 665
303�00 57�48

√
n/1
000 100 9
959�00 0�87 9
959�00 0�19

200 27
806�00 5�10 27
806�00 0�23
300 49
687�00 15�72 49
687�00 0�20
400 74
711�00 31�77 74
711�00 0�26
500 99
794�00 56�00 99
794�00 0�30
600 124
479�00 83�39 124
479�00 0�45
700 150
446�00 117�75 150
446�00 0�59
800 175
042�00 167�02 175
042�00 0�83
900 199
145�00 233�64 199
145�00 1�05

1
000 223
206�00 274�58 223
206�00 1�30
1
100 246
267�00 584�98 246
267�00 1�56

6.2. CPLEX Integer Solver
One solution approach, of course, is to use a general
off-the-shelf mixed integer program solver such as
CPLEX. Table 1 shows the results obtained by the
latest CPLEX 8.1 on various sizes of the three types
of problems considered (in the usual form (1)–(5)).
Columns 1 and 2 give the fixed cost and prob-
lem size, respectively, of each instance; the next two
columns provide the optimal solution value and the
execution time obtained by running CPLEX on a PC
Pentium 4; the last two columns provide the corre-
sponding results of our VNDS heuristic on the same
machine.

The experiments show that execution time and
memory requirements of CPLEX increase rapidly for
moderately-sized problems. Type I problems also
appear the hardest to solve. It is clear that the solu-
tion of large problems with CPLEX is still not a viable
option. Meanwhile, comparing the results in the table
from VNDS, we see that high-quality solutions are
obtained in a fraction of the time by this heuris-
tic. The optimal solution was found in all Type III
instances, in 9 out of 11 Type II, and 5 out of 7 Type I.
The Type III instances appeared very easy, requiring
VNDS on average around 1 sec. to find the optimal
solution.

6.3. Main Computational Results
Here we examine the computational results obtained
on problem instances generated by the procedure of
Barahona and Chudak (2000) described earlier. We
cover the same range of instances, and go far beyond,
testing problem instances as large as 15�000× 15�000.
All programs are coded in C++ and run on two
machines depending on problem size: for n ≤ 7�000,
we use a 1,800 MHz PC Pentium 4, and for n> 7�000,
a SUN Enterprise 10,000 (with 400 Mhz clock and 64
gigabyte of RAM) that is slower but has sufficient
memory to handle the larger problems.

Tables 2–4 summarize our computational results
for the three types of problems considered and the
problem sizes �n = m� indicated in the first column;
for a given size the same problem is used but the
fixed cost �fi� at each node is adjusted according to
the type I, II, or III. The value p gives the num-
ber of open facility sites in the optimal (if available)
or best-known solution. The next four columns give
objective-function values obtained, respectively, by
our branch-and-bound (optimal value), sliding sim-
plex for exact solution of the dual, reduced variable
neighborhood search (RVNS) for the first stage of
the heuristic procedure, and variable neighborhood
decomposition search (VNDS) for the final stage. The
computation times are reported in sequence in the
next four columns, followed by time totals, best rep-
resenting the total time spent until the best heuristic
solution was found and all, the actual time spent. The
last two columns give the gap calculated as a percent-
age as follows:

Gap�B&B�=
(
zh − z∗P

z∗P

)
× 100�

Gap�Sliding�=
(
zh − z∗D

z∗D

)
× 100�

where zh, z∗P , and z∗D are the objective-function val-
ues obtained, respectively, by VNDS, B&B, and slid-
ing simplex. Optimal solutions of the primal problem
are not shown where computation times of the B&B
exceeded an imposed limit resulting in premature ter-
mination of the algorithm.

Parameter settings selected for the variable neigh-
borhood search procedures are noted as follows (also
see Section 3):
VNDS: lmax =min�p�25�, where p is the number of

open facilities in the current solution; stopping condi-
tion: 20 sequences of #max iterations without improve-
ment (Type III), 10 (Type I and II).
VNS subroutine: kmin = 1, step size = 1, kmax = 20

(Type III), 10 (Type I and II); stopping condition:
20 sequences of kmax iterations without improvement
(Type III), 10 (Type I and II).
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Table 2 Main Results: Type I Instances

Objective values Time (sec.) Time total % gap

n p B&B Sliding RVNS VNDS B&B Sliding RVNS VNDS Best All B&B Sliding

1,000 15 1,431,038 1,431,013.5 1,524,403 1,431,038 35�3 0.1 15�9 51�3 156�7 0.00 0.0017
1,100 16 1,555,369 1,555,027.5 1,666,104 1,555,369 6
829�2 35�3 0.1 21�8 57�2 105�9 0.00 0.0017
1,300 18 1,789,843 1,789,021.3 1,906,447 1,789,843 49�9 38�2 0.1 14�2 52�5 93�4 0.00 0.0459
1,400 18 1,904,195 1,903,679.5 2,077,133 1,905,380 42�9 35�3 0.1 39�5 74�9 115�6 0.06 0.0892
1,500 18 2,023,878.0 2,141,113 2,024,911 205�8 0.1 94�0 299�9 387�7 0.0510
2,000 20 2,581,964.9 2,790,620 2,590,631 842�5 0.1 98�0 940�6 1
505�7 0.3356
2,500 21 3,101,007.7 3,422,644 3,106,197 1
923�0 0.6 56�0 1
979�6 2
504�3 0.1673
3,000 23 3,602,388.1 3,904,718 3,606,160 3
073�1 0.3 153�3 3
226�7 4
078�5 0.1047
3,500 23 4,099,448.7 4,504,614 4,116,586 7
943�7 0.3 113�9 8
057�9 10
982�2 0.4181
4,000 25 4,581,458.1 4,879,807 4,599,619 15
927�2 0.5 245�1 16
172�8 18
342�0 0.3964
4,500 26 5,047,959.0 5,476,685 5,077,153 31
329�1 0.9 183�5 31
513�5 34
624�9 0.5783
5,000 29 5,517,681.8 6,099,060 5,548,718 52
734�9 1.2 118�4 52
854�5 55
923�6 0.5625

Table 3 Main Results: Type II Instances

Objective values Time (sec.) Time total % gap

n p B&B Sliding RVNS VNDS B&B Sliding RVNS VNDS Best All B&B Sliding

500 62 328
235 328
235�0 355
279 328
235 1�0 1�0 1.2 24�4 26�6 51�2 0.0000 0.0000
1,000 77 611
110 611
110�0 694
078 611
110 5�9 4�9 0.2 11�6 16�7 96�7 0.0000 0.0000
1,500 85 872
278 872
216�0 983
339 872
434 124�4 9�8 0.3 171�6 181�7 345�1 0.0179 0.0250
2,000 92 1
122
577 1
122
498�6 1
248
881 1
123
159 495�8 24�2 0.6 138�3 163�1 440�3 0.0518 0.0588
2,500 104 1
366
092�2 1
495
801 1
366
643 105�5 1.2 485�7 592�4 965�7 0.0403
3,000 107 1
595
895 1
595
895�0 1
748
782 1
595
896 75�5 63�3 1.4 315�6 380�3 905�8 0.0001 0.0001
3,500 111 1
819
686�8 1
999
865 1
820
639 357�4 1.9 1
106�8 1
466�1 2
274�7 0.0524
4,000 113 2
042
313�4 2
296
471 2
043
218 500�2 0.9 2
366�6 2
867�7 4
030�2 0.0443
4,500 119 2
255
880�7 2
526
011 2
256
254 502�4 1.5 1
767�6 2
271�5 3
668�4 0.0166
5,000 124 2
466
883�6 2
768
239 2
467
480 1
054�5 2.3 1
360�2 2
417�0 4
095�1 0.0242

Table 4 Main Results: Type III Instances

Objective values Time (sec.) Time total % gap

n p B&B Sliding RVNS VNDS B&B Sliding RVNS VNDS Best All B&B Sliding

500 347 99
794 99
794�0 107
984 99
794 0�1 0�1 0�2 0�3 0�6 1�5 0.0000 0.0000
1,000 391 223
206 223
206�0 247
790 223
206 1�1 1�1 0�7 1�3 3�1 7�4 0.0000 0.0000
1,500 410 332
750 332
744�0 382
516 332
764 8�6 2�6 1�0 3�0 6�6 17�3 0.0042 0.0060
2,000 453 438
574 438
568�5 496
630 438
578 68�0 4�8 2�7 30�7 38�2 55�6 0.0009 0.0023
2,500 498 542
203 542
182�5 614
880 542
267 86�1 7�3 3�2 34�8 45�3 70�9 0.0118 0.0157
3,000 519 642
321 642
309�0 736
939 642
321 78�3 8�8 4�2 152�1 165�1 203�5 0.0000 0.0018
3,500 542 741
097 741
057�3 848
933 741
126 555�9 13�3 5�6 87�1 106�0 158�2 0.0039 0.0092
4,000 570 839
922 839
909�5 972
883 839
942 205�3 21�1 5�8 162�2 189�1 255�9 0.0024 0.0039
4,500 582 932
428 932
361�5 1
069
821 932
597 5
156�1 23�4 7�3 113�7 144�4 231�7 0.0181 0.0253
5,000 600 1
028
249 1
028
235�0 1
217
007 1
028
255 1
266�3 32�2 6�9 239�6 278�7 394�8 0.0006 0.0019
6,000 637 1
211
889 1
211
861�0 1
384
204 1
211
932 4
030�7 47�6 14�3 761�4 823�3 981�9 0.0035 0.0058
7,000 668 1
392
127 1
392
099�0 1
593
475 1
392
232 28
547�7 87�8 14�9 715�5 818�8 1
044�9 0.0075 0.0096
8,000 701 1
569
292�0 1
791
174 1
569
767 1
718�6 22�0 1
043�8 2
784�4 3
090�1 0.0303
9,000 724 1
742
075�5 2
022
581 1
742
388 2
270�7 20�2 1
528�0 3
818�9 4
182�9 0.0180
10,000 752 1
915
065�1 2
163
915 1
915
562 2
695�2 36�3 1
530�4 4
261�9 4
740�1 0.0259
11,000 768 2
079
253�9 2
391
519 2
079
616 3
916�6 33�4 1
144�2 5
094�2 5
686�6 0.0175
12,000 789 2
245
167�0 2
551
364 2
245
526 4
630�4 40�4 3
113�3 7
784�1 8
504�6 0.0215
13,000 802 2
411
167�2 2
702
463 2
411
335 5
507�2 80�9 6
266�9 11
855�0 12
716�4 0.0109
14,000 827 2
570
329�3 2
913
820 2
570
792 7
023�2 74�1 3
919�3 11
016�6 11
935�4 0.0180
15,000 844 2
733
373�3 3
134
626 2
733
979 8
181�9 61�3 5
103�4 13
346�6 14
500�1 0.0221
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Table 5 Main Results: Type IV Instances

Objective values Time (sec.) Time total % gap

n p B&B Sliding RVNS VNDS B&B Sliding RVNS VNDS Best All B&B Sliding

500 46 368
408 368
408 643
882 368
408 2�34 2�24 0�25 20�06 20�31 484�28 0�0000 0.0000
1,000 77 578
740 578
740 1
130
397 578
740 5�16 5�13 0�61 20�05 20�66 974�34 0�0000 0.0000
1,500 109 740
870 740
870 1
058
235 740
870 30�85 30�73 1�60 527�12 528�72 1
361�93 0�0000 0.0000
2,000 128 915
155 915
155 2
098
798 915
155 65�75 65�44 1�62 344�37 345�99 1
667�10 0�0000 0.0000
2,500 144 1
071
962 1
071
962 1
547
638 1
071
962 109�81 109�46 3�44 134�94 138�38 1
683�46 0�0000 0.0000
3,000 178 1
193
847 1
193
847 1
864
527 1
193
847 107�86 107�71 3�59 1
191�94 1
195�53 1
909�35 0�0000 0.0000
3,500 198 1
334
569 1
334
569 2
056
067 1
334
620 150�51 150�36 4�85 1
045�48 1
050�33 1
490�51 0�0038 0.0038
4,000 206 1
438
336 1
438
304 2
218
219 1
438
336 250�12 249�89 6�34 932�58 938�92 1
313�91 0�0000 0.0022
4,500 231 1
541
880 1
541
880 2
593
945 1
542
339 298�16 297�89 6�58 1
064�58 1
071�16 1
445�19 0�0298 0.0298
5,000 246 1
693
821 1
693
782 2
616
424 1
695
554 394�28 369�74 8�22 1
490�67 1
498�89 2
123�97 0�0009 0.0010
5,500 255 1
813
342 1
813
324 2
941
636 1
813
342 468�12 462�57 8�02 2
824�83 2
832�85 3
576�60 0�0000 0.0000
6,000 281 1
919
477 1
919
477 3
108
396 1
917
477 811�12 810�89 8�73 2
617�86 2
626�59 3
389�80 0�000 0.0000
6,500 306 2
016
429 2
016
284 3
519
048 2
016
678 812�23 551�15 8�60 4
389�96 4
398�56 5
988�45 0�0123 0.0196
7,000 305 2
154
829 2
152
592 3
960
288 2
154
829 1
130�82 747�30 8�11 4
627�29 4
635�40 6
125�82 0�0000 0.1039
8,000 331 2
320
081 2
320
081 5
652
921 2
320
944 1
261�99 1
260�93 20�01 6
895�36 7
015�37 7
892�23 0�0000 0.0000
9,000 362 2
529
390 2
529
390 6
554
965 2
529
575 1
364�11 1
362�94 20�03 3
510�40 3
530�43 8
773�16 0�0081 0.0081
10,000 384 2
737
359 2
737
350 7
528
204 2
737
359 4
224�59 1
592�29 20�02 5
261�97 5
281�99 9
676�13 0�0000 0.0003
11,000 411 2
934
323 2
934
323 8
149
233 2
934
428 1
896�45 1
893�23 20�01 5
812�11 5
832�12 9
005�78 0�0036 0.0036
12,000 430 3
110
714 3
110
714 8
068
905 3
110
714 2
571�31 2
567�24 20�05 4
930�31 4
950�36 9
682�77 0�0000 0.0000
13,000 458 3
300
155 3
300
155 8
975
232 3
300
155 3
126�11 3
122�78 20�16 9
530�48 9
550�64 9
941�00 0�0000 0.0000
14,000 473 3
461
208 3
461
208 9
091
698 3
461
208 4
764�81 4
759�12 20�18 8
168�80 8
188�98 10
184�80 0�0000 0.0000
15,000 490 3
645
572 3
645
340 9
787
616 3
645
990 19
217�56 5
429�82 20�20 4
898�03 4
918�23 12
025�06 0�0115 0.0178

From the summary results in Tables 2–4, we see:
• The VNDS heuristic provides high-quality solu-

tions over a wide range of problem sizes and types.
This includes much larger problem instances than
currently considered in the literature. For Type III
instances up to 15�000 × 15�000, the largest gap
obtained is on the order of 0.03%. For Type II, the
maximum gap is 0.06% for problem sizes up to
5�000×5�000, and Type I, 0.58%. These results present
a significant improvement in the state-of-the-art given
in Barahona and Chudak (2000), where gaps of 1% are
reported on problem sizes up to 3�000×3�000. Mean-
while the computation time for VNDS is very rea-
sonable considering the problem sizes investigated.
For example, problems up to 3�000× 3�000 take only
a few minutes; the largest one �15�000× 15�000) ran
for 1.8 hours. Type III instances, the easiest for our
VNDS, were the hardest for Barahona and Chudak’s
V&RRWC.

• The sliding simplex method is capable of solving
the dual exactly for the large problems investigated.
This is quite impressive considering that the largest
problem solved has n+mn = 225�015�000 dual vari-
ables. By obtaining a tight starting solution (which
may be infeasible), and then using our sliding simplex
method, a substantial reduction in problem size and
number of simplex iterations is obtained. Computa-
tion times for sliding simplex are also seen to be rea-
sonable, although Type I instances took significantly
longer.

• By using the entire package proposed here,
namely, a heuristic solution of the primal problem by

VNDS, followed by exact solution of the dual with
sliding simplex, and then closing the gap with branch
and bound, exact solution of large SPLPs is achieved.
Our largest problem solved �7�000× 7�000� set a new
record (soon to be beaten, as shown below).

A referee suggested that we test the exact algorithm
on instances with different fixed costs. Consequently,
we combined a series of instances of type IV, in which
fixed costs are drawn randomly from a uniform dis-
tribution on the interval %

√
n/1�000�

√
n/10&. Results

are presented in Table 5; they show the following:
• Instances with different fixed costs are easier to

solve than are those with uniform fixed costs. Indeed,
all problems with sizes up to 15,000 could be solved
exactly, again setting a new record.

• Reduced VNS does not give good results if it is
allocated a small computing time as in the previous
experiments; VNDS, with the new stopping rule as
before, takes more time but obtains excellent results,
close to or equal to those of the sliding simplex algo-
rithm; the value of the LP relaxation obtained by the
sliding simplex algorithm is optimal in 12 cases out
of 22, including those with 12,000, 13,000, and 14,000
users; the branch-and-bound algorithm has less work
to do than with instances of type III, II, and espe-
cially I, although some computing time is required
even when there is no duality gap to obtain an integer
solution.

Finally, Table 6 studies the effect of the window
size # in the sliding simplex. Here an instance of size
n = 1�500 is generated, and the three problem types
investigated. As expected, a smaller window results
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Table 6 Efficiency of Sliding Simplex for Different Values of � and
n= 1
500

Type zD � # CPLEX calls # iter Time

I 2
023
878 1 49 182
590 205�72
2 20 301
999 497�28
3 13 334
159 843�37
4 11 433
068 1
363�54
5 8 411
637 1
526�79

II 872
216 1 12 26
688 9�97
2 8 33
278 11�26
3 5 34
034 14�55
4 5 50
983 29�11
5 4 55
738 44�79

III 332
744 1 6 11
559 2�73
2 4 12
507 2�60
3 3 13
085 2�65
4 2 10
322 2�18
5 2 10
980 2�38

in more subproblems or calls to CPLEX. However, the
effect on computation time appears to be the reverse
for types I and II; computation time appears to be
insensitive to the parameter # for type III.

7. Conclusions
This paper develops a new methodology for solv-
ing the SPLP. In the first stage a heuristic based
on variable neighborhood search (VNS) is used to
obtain a near-optimal solution. We show that VNS
with decomposition is a very powerful technique
for large-scale problems, up to 15,000 facilities ×
15�000 users. In the second phase, our approach is
to find an exact solution of the relaxed dual prob-
lem. This is accomplished in three stages: (i) find an
initial dual solution (generally infeasible) using the
primal heuristic solution and complementary slack-
ness conditions; (ii) improve the solution by apply-
ing VNS on the unconstrained nonlinear form of
the dual; and (iii) finally, solve the dual exactly
using a customized sliding simplex algorithm that
applies windows on the dual variables to reduce
the size of the problem substantially. In all problems
tested, including instances much larger than previ-
ously reported, our procedure was able to find the
exact dual solution in reasonable computing time. In
the third and final phase, armed with tight upper
and lower bounds obtained respectively from the
heuristic primal solution in phase one and the exact
dual solution in phase two, we apply a standard
branch-and-bound algorithm to find an optimal solu-
tion of the original problem. The lower bounds are
updated with the dual sliding simplex method and
the upper bounds whenever new integer solutions are
obtained at the nodes of the branching tree. In this
way we were able to solve exactly problem instances
with up to 7�000× 7�000 for uniform fixed costs and

15�000× 15�000 otherwise. This advances the record
considerably.

Future directions include further experimenting
with, and fine-tuning of, our primal-dual variable
neighborhood search methodology. Adapting the
exact solution method proposed here to extensions of
the SPLP should also be investigated.
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Hansen, P., N. Mladenović. 2001. Variable neighborhood search:
Principles and applications. Eur. J. Oper. Res. 130 449–467.

Hansen, P., N. Mladenović. 2003. Variable neighborhood search.
F. Glover, G. Kochenberger, eds. Handbook of Metaheuristics.
Kluwer Academic Publishers, Boston, MA, 145–184.
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