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Very Large-Scale Neighborhood Search for the Quadratic Assignment Problem

Ravindra K. Ahujal, Krishna C. Jha®, James B. Orlin’, and Dushyant Sharma*

Abstract

The Quadratic Assignment Problem (QAP) consists of assigning » facilities to n locations so as to
minimize the total weighted cost of interactions between facilities. The QAP arises in many
diverse settings, is known to be NP-hard, and can be solved to optimality only for fairly small
size instances (typically, n < 25). Neighborhood search algorithms are the most popular heuristic
algorithms to solve larger size instances of the QAP. The most extensively used neighborhood
structure for the QAP is the 2-exchange neighborhood. This neighborhood is obtained by
swapping the locations of two facilities and thus has size O(n?). Previous efforts to explore larger
size neighborhoods (such as 3-exchange or 4-exchange neighborhoods) were not very successful,
as it took too long to evaluate the larger set of neighbors. In this paper, we propose very large-
scale neighborhood (VLSN) search algorithms where the size of the neighborhood is very large
and we propose a novel search procedure to heuristically enumerate good neighbors. Our search
procedure relies on the concept of improvement graph which allows us to evaluate neighbors
much faster than the existing methods. We present extensive computational results of our
algorithms on standard benchmark instances. These investigations reveal that very large-scale
neighborhood search algorithms give consistently better solutions compared the popular 2-
exchange neighborhood algorithms considering both the solution time and solution accuracy.
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1. INTRODUCTION

The Quadratic Assignment Problem (QAP) is a classical combinatorial optimization
problem and is widely regarded as one of the most difficult problems in this class. Given a set N
= {1, 2, ..., n}, and nxn matrices ' = {f;}, D = {d;}, and B = {b;}, the QAP is to find a
permutation ¢ of the set N which minimizes:

AP = ). D fidwwwn T D, bign (1)

i=1 j=1 i=1

The QAP arises as a natural problem in facility layout. In this context, the set N
represents a set of n facilities (numbered 1 through n) that need to be assigned to locations
(numbered 1 through n). The matrix ' = {f;;} represents the flow between different facilities, and
the matrix D = {d;;} represents the distance between locations. For example, if the facilities are
departments in a campus, then the flow f;; could be the average number of people walking daily
from department 7 to department j. The decision variable ¢(i), 1 < i < n, represents the location
assigned to facility i. Since there are n facilities and » locations and a facility can be assigned to
exactly one location, there is a one-to-one correspondence between feasible solutions of QAP and

permutations ¢.

Observe that (1) consists of two terms. The first term is the sum of n* flow costs between
n facilities (the term fjd ;4 represents the cost of flow from facility i to facility ;). The second
term considers the cost of erecting facilities which may be location-dependent. The matrix B =
{b;} represents the cost of creating facility i at location j. Hence, the QAP is to find an
assignment of facilities to locations so as to minimize the total cost of flow between the facilities
and the cost of erecting the facilities. The matrices £ and D are typically symmetric matrices but
are not required to be so. In our algorithms, we allow asymmetric instances and thus do not
assume that f; = f;; or d; = d;;. However, for the sake of simplicity, we will assume in Sections 2
through 6 that we are working with symmetric QAPs. In Section 7, we will study asymmetric
QAPs.

In addition to the facility layout, the QAP arises in many other applications, such as the
allocation of plants to candidate locations, backboard wiring problem, design of control panels
and typewriter keyboards, turbine balancing, ordering of interrelated data on a magnetic tape, and
others. The details and references for these and additional applications can be found in Malucelli
[1993], Pardalos, Rendl and Wolkowicz [1994], Burkard et al. [1998], and Cela [1998]. Given the
wide range of applications and the difficulty of solving the problem, the QAP has been
investigated extensively by the research community. The QAP is known to be NP-hard, and a
variety of exact and heuristic algorithms have been proposed. Exact algorithms for solving QAP
include approaches based on (i) dynamic programming (Christofides and Benavent [1989]); (ii)
cutting planes (Bazaraa and Sherali [1980]); and (iii) branch and bound (Lawler [1963], Pardalos
and Crouse [1989]). Among these, the branch and bound algorithms are the most successful, but
they are generally unable to solve problems of size larger than n = 25.



Since the applications of the QAP often give rise to problems of size far greater than 25,
there is a need for good heuristics for QAP that can solve larger size problems. A wide variety of
heuristic approaches have been developed for the QAP. These can be classified into the following
categories: (i) construction methods (Buffa, Armour and Vollmann [1964], Muller-Merbach
[1970]); (ii) limited enumeration methods (West [1983], Burkard and Bonniger [1983]); (iii)
GRASP (greedy randomized adaptive search procedure) (Li, Pardalos, and Resende [1994]); (iv)
simulated annealing methods (Wilhelm and Ward [1987]); (v) tabu search methods (Skorin-
Kapov [1990], Taillard [1991]); (vi) genetic algorithms (Fleurent and Ferland [1994], Tate and
Smith [1985], Ahuja, Orlin, and Tewari [1998], Drezner [2001]); and (vii) ant systems
(Maniezzo, Colorni, and Dorigo [1994]). The tabu search method of Taillard [1991], the GRASP
method of Li, Pardalos, and Resende [1994], and the genetic algorithm by Drezner [2001] are the
most accurate heuristics among these methods.

As observed in the survey paper of Burkard et al. [1998], the current neighborhood search
meta-heuristic (tabu search and simulated annealing) algorithms for the QAP use the 2-exchange
neighborhood structure in the search. A permutation ¢’ is called a 2-exchange neighbor of the
permutation ¢@if it can be obtained from ¢by switching the values of two entries in the
permutation ¢. It is easy to see that the number of 2-exchange neighbors of a permutation is
O(n%). There has been very limited effort in the past to explore larger neighborhood structures for
the QAP as the time needed to identify an improved neighbor becomes too high. In this paper, we
investigate the neighborhood structure based on multi-exchanges, which is a natural
generalization of the 2-exchanges. A multi-exchange is specified by a cyclic sequence C =1 - i, -

.. - Iy - 1 of facilities such that i, =i, for p # g. This multi-exchange implies that facility 7, is
assigned to the location ¢(7,), facility i, to ¢(i3), and so on, and finally facility i, is assigned to
#(i1). The location of all other facilities is not changed. We denote by ¢ the permutation obtained
by applying the multi-exchange C to the permutation ¢. In other words,

¢°(i) = §i) for i € N\{iy, ..., ix),
¢°(iy) = Wi,n) forp=1,..., k-1, and )
# (i) = Ki))-

We define the length of a multi-exchange as the number of facilities involved in the
corresponding cyclic sequence. For example, the cyclic sequence C =i, - i; - ... - ix - i; has length
k. We also refer to a multi-exchange of length k as a k-exchange. Figure 1 illustrates an example
of a 3-exchange. We note that a k~exchange can be generated by k different cyclic sequences. For
example, the 3-exchange shown in Figure 1 can be generated by any of the sequences 3-7-6-3, 7-
6-3-7, and 6-3-7-6.
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Figure 1. (a) Initial assignment of facilities to locations.
(b) Assignment after the cyclic exchange 3-7-6-3.

Given a positive integer 2 < K < n, the K-exchange neighborhood structure consists of all
the neighbors of a permutation obtained by using multi-exchanges of length at most K. We note
that the two-exchange neighborhood structure is contained in the K-exchange neighborhood

structure. The number of neighbors in the K-exchange neighborhood structure is Q( (IZ](K D).
This number is very large even for moderate values of K. For example, if n = 100 and K = 10,
then the K-exchange neighborhood may contain as many as 6x10'® neighbors. This neighborhood
structure falls under the category of very large-scale neighborhood (VLSN) structures where the
size of the neighborhood is too large to be searched explicitly and we use implicit enumeration
methods to identify improved neighbors.

Algorithms based on very large-scale neighborhood structures have been successfully
used in the context of several combinatorial optimization problems (see Ahuja et al. [2002], and
Deineko and Woeginger [2000] for surveys in this area). One of the tools used in performing
search over very large-scale neighborhood structures is the concept of the improvement graph. In
this technique, we associate a graph, called the improvement graph G(¢), with each feasible
solution ¢ of the combinatorial optimization problem. The improvement graph G(¢) is
constructed such that there is a one-to-one correspondence between every neighbor of ¢ to some
directed cycle (possibly satisfying certain constraints) in the improvement graph G(¢). We also
define arc costs in the improvement graph so that the difference in the objective function value of
a neighboring solution and the solution ¢@is equal to the cost of the constrained cycle
corresponding to the neighbor. This transforms the problem of finding an improved neighbor into
the problem of finding a negative cost constrained cycle in the improvement graph (assuming that
the combinatorial optimization problem is a minimization problem). The concept of the
improvement graph was first proposed by Thompson and Orlin [1989] for a partitioning problem,
where a set of elements is partitioned into several subsets of elements so as to minimize the sum
of the objective functions of the subsets. This technique has been used to develop several VLSN
search algorithms for specific partitioning problems such as the vehicle routing problem
(Thompson and Psaraftis [1993], Ibaraki et al. [2002]) and the capacitated minimum spanning
tree problem (Ahuja, Orlin, Sharma [2001a, 2001b]). The concept of improvement graph was also



used by Talluri [1996] and Ahuja et al. [2001c¢] to search very large-scale neighborhoods as in
fleet assignment problems arising in airline scheduling. Ergun [2001] also proposed several
improvement graphs for the vehicle routing problem and machine scheduling problems.

In this paper, we study the use of the improvement graph for the multi-exchange
neighborhood structure for the QAP. However, our current application of the improvement graph
is different than previous applications. In previous applications, the improvement graph satisfied
the property that the cost of the multi-exchange was equal to the cost of the corresponding
(constrained) cycle in the improvement graph. This property is not ensured for the improvement
graph for the QAP. Rather, the cost of the cycle is a very good approximation of the cost of the
multi-exchange, and allows us to enumerate good neighbors quickly. The improvement graph
also allows us to evaluate the cost of a neighbor faster than using a normal method. Typically,
evaluating a k-exchange neighbor for the QAP takes O(nk) time; but using the improvement
graph we can do it in O(k) average time per neighbor.

We developed a generic search procedure to enumerate neighbors using improvement
graphs. We also developed several implementations of the generic search procedure which
enumerate the neighborhoods exactly as well as heuristically. We present a detailed
computational investigation of local improvement algorithms based on our neighborhood search
structures. Our investigations yield the following conclusions: (i) locally optimal solutions
obtained using multi-exchange neighborhood search algorithms are superior to those obtained
using 2-exchange neighborhood search algorithms; (ii) generally increasing the size of the
neighborhood structure improves the quality of local optimal solutions but after a certain point
there are diminishing returns; and (iii) enumerating a restricted subset of neighbors is much faster
than enumerating entire neighborhood and can develop improvements that are almost as good.

This paper is organized as follows. In Section 2, we describe the improvement graph data
structure for the QAP. We present a generic heuristic search procedure for the K-exchange
neighborhood structure for the QAP in Section 3. In Section 4, we describe several specific
implementations of the generic search procedure. In Section 5, we describe the neighborhood
search algorithm based on the generic search procedure. Section 6 describes an acceleration
technique we use to speed up the performance of the algorithm. For the simplicity of derivations,
in Sections 2 through 6, we analyze and discuss the algorithms for symmetric cases only, which
can be easily generalized for asymmetric cases. In Section 7, we present the corresponding
expressions for the general case (both symmetric and asymmetric instances). We provide and
analyze the computational results from our implementations in Section 8. Section 9 summarizes
our contributions.

2. IMPROVEMENT GRAPH

One of the main contributions of this paper is the development of the improvement graph
to enumerate multi-exchanges for the QAP. In this section, we describe how to construct the
improvement graph, and how it may help us in evaluating multi-exchanges quickly. This section



as well as the following sections requires some network notations, such as cycles and paths. We
will use the graph notation given in the book by Ahuja, Magnanti, and Orlin [1993] and refer the
reader to this book for the same.

Given a permutation ¢ and a k-exchange C, we denote the cost of the cyclic exchange by
Cost(¢, C). This cost term represents the difference between the objective function values of ¢
and ¢, that is,

Cost(dh O =) A= 2% 221y (de e 1~ doorscr)- G)

ieC j=l1

Clearly, the cost of the k-exchange C can be computed in time O(kn). We will show that
using improvement graphs, the cost of C can be computed in O(k’) time. This time can be further
reduced to an average of O(k) time. Since we choose k£ to be much smaller than n, the
improvement graph allows us to evaluate multi-exchanges substantially faster than standard
methods. In fact, it also leads to dramatic improvements in the running time to identify traditional
2-exchanges.

We associate an improvement graph G(¢) = (N, 4) with ¢, which is a directed graph
comprising of the node set NV and the arc set 4. The node set N contains a node i for every facility
i, and the arc set 4 contains an arc (i, j) for every ordered pair of nodes i and j in N. Each multi-
exchange C =i} — i) - ... - iy — I defines a (directed) cycle i), — i, - ... - iy — i} in G(¢) and,
similarly, each (directed) cycle i; — i; - ... - iy — i} in G(¢) defines a multi-exchange i} — i; - ... - i
— 7; with respect to ¢. Thus, there is a one-to-one correspondence between multi-exchanges with
respect to ¢ and cycles in G(¢). We will, henceforth, use C to denote both a multi-exchange and a
cycle in G(¢), and its type will be apparent from the context.

An arc (i, j) € A signifies that the facility i moves from its current location to the current
location of facility j. In view of this interpretation, a cycle C =i, — i - ... - i — i}, signifies the
following changes: facility i moves from its current location to the location of facility #,, facility
i moves from its current location to the location of facility i3, and so on. Finally, facility i, moves
from its current location to the location of facility i;.

We now associate a cost cg’. with each arc (i, j) € 4. Ideally, we would like to define arc

costs so that the cost of the multi-exchange C with respect to the permutation ¢ is equal to the
cost of cycle C in G(¢). However, such a possibility would imply that P = NP because the multi-
exchange neighborhood structure includes all feasible solutions for an instance of the QAP. We
will, instead, define arc costs so that the cost of the multi-exchange is “close” to the cost of the

corresponding cycle. We define cg? as follows: it is the change in the cost of the solution ¢ when

facility i moves from its current location to the location of facility j and all other facilities do not
move. Observe that this change indicates that after the change there is no facility at location ¢(i)



and the location ¢(j) has two facilities. Thus, to determine the cost of the change, we need to take
the difference between the costs of interactions between facility i and other facilities, before and
after the change. Let ¢’ denote the solution after the change. Then, ¢{/) = &/) for [ # i and ¢1i) =

#j). Note that ¢’is not a permutation because ¢ (i) = ¢1;). We define cl‘l’ =z(¢)) — z(¢p). Thus,

of ==¢)-2AH=2* ;fu (dpcirgn = dgwpny) - @

which captures the change in the cost of interaction from facility i to other facilities.

The manner in which we define arc costs in the improvement graph does not ensure that

the cost of the cycle C in G(¢), given by Z(i,j)eC cg’» , will equal Cost(¢, C). The discrepancy in

¢

these two cost terms arises because when defining the arc cost ¢;;

we assume that the facility i

moves from its current location to the location of facility j but all other facilities do not move. But
in the multi-exchange C several facilities move and we do not correctly account for the cost of
flow between facilities in C. We, however, correctly account for the cost of flow between any two
facilities if one of the two facilities is not in C. We show next that the cost term Cost(¢, C) can be

computed by adding a corrective term to Z(i jeC cg’ .

Cost(p, O) =2(¢) —2P=2% 3. f; (d¢c(i)¢c(j) - dﬂ”‘f’(”)

ieC j=1
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The equation (5) shows that we can determine the cost of a multi-exchange C by first

determining the cost of the cycle C in G(¢), which is Z(i,/')eC P

;7 » and then correcting it using the

second term given in equation (5). This corrective term can be computed in time O(k?) if C is a k-
exchange.

Let us now remark on the usefulness of the improvement graph. First, it allows us to

determine the approximate cost of a multi-exchange C quickly. The cost term Z(i j)eC cg’ is a

reasonable estimate of the cost of the multi-exchange C. To see this, observe from (5) that the

corrective term Cost(g, C) — Z( ij)eC cl‘f contains O(k?) interactions between facilities. However, n
facilities have O(n”) interactions between them. If we choose k to be a relatively small fraction of
n, then the corrective term (on the average) will be substantially smaller than the total cost and the



cost of the cycle C in G(¢) will be a good estimate of the cost of the multi-exchange C. For
example, if n = 100 and k£ = 5, then there are 9,900 interactions between facilities and only 20 of
them are counted incorrectly. If we use £ = 10, then about 100 of them are counted incorrectly
which is only 1% of the total interactions between facilities. Thus, the improvement graph allows
us to enumerate extremely large set of neighbors quickly using approximate costs, and the
approximation in costs is quite small.

The improvement graph also allows us to determine the correct cost of a multi-exchange
faster than it normally takes to compute its cost. Normally, to compute the cost of a multi-
exchange takes O(kn) time as we would need to update the cost interactions between k facilities
(that move) with other facilities. However, using (5) we can compute the cost of a multi-exchange
in O(%*) time. For example, if n = 100 and k = 10, then we can compute the cost of a multi-
exchange about 10 times faster which can make substantial difference in an algorithm’s
performance.

The benefits we derive from the use of improvement graph come at a cost: we need to
construct the improvement graph and calculate arc costs. It follows from (4) that we can construct
the improvement graph from scratch in O(n’) time. But we need to compute the improvement
graph from scratch just once. In all subsequent steps, we only update the improvement graph as
we perform multi-exchanges. We show in the next lemma that updating the improvement graph
following a k-exchange takes only O(kn”) time. We also show in Section 8 that our neighborhood
search algorithms use small values of & (4 and 5) only as on the benchmark instances higher
values do not add extra benefit. Hence, it takes O(n°) time to update the improvement graph,
which is quite efficient in practice. Thus, the time needed to construct and update the
improvement graph is relatively small, and is well justified by the savings we obtain in
enumerating and evaluating multi-exchanges.

Lemma 1: Given the improvement graph G(¢) and a k-exchange C with respect to ¢, the

improvement graph G(¢°) can be constructed in O(kn’) time.

Proof: The improvement graphs G(¢) and G(¢) have the same set of nodes and arcs. They differ
only in arc costs. Each arc (i, /) € G(¢°) is one of the following two types: (i) either i € C orj €
C, and (i) i ¢ C andj ¢ C. There are 2k(n — k) = O(nk) arcs of type (i), and O(n”) arcs of type (ii).
Using (4), we can determine the cost of a type (i) arc in O(n) time, thus giving a total time of
(n’k) to compute the cost of all type (i) arcs. We show next that we can determine the cost of a
type (ii) arc in O(k) time, which also yields a total time of O(n’k) to compute the costs of all type
(i1) arcs.

n
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Since we already know cfj’- and C, and C is a k-exchange, we can evaluate (6) in O(k)

time, which establishes the lemma. .

3. IDENTIFYING PROFITABLE MULTI-EXCHANGES

Our algorithm for the QAP is a neighborhood search algorithm and proceeds by
performing profitable multi-exchanges. To keep the number of multi-exchanges enumerated
manageable, we first enumerate 2-exchanges, followed by 3-exchanges, and so on, until we
reach a specified value of k, denoted by K, which is the largest size of the multi-exchanges we
wish to perform. This enumeration scheme is motivated by the consideration that we look for
larger size multi-exchanges when smaller size multi-exchanges cannot be found. In this section,
we describe a generic search procedure for enumerating and identifying multi-exchanges using
improvement graphs.

Our method for enumerating multi-exchanges with respect to a solution ¢ proceeds by
enumerating directed paths of increasing lengths in the improvement graph G(¢), where, the
length of a path is the number of nodes in the path. Observe that each path P=1i, — i - ... - i in
the improvement graph has a corresponding cycle in the improvement graph i; — i, - ... - iy — i
obtained by joining the last node of the path with the first node in the path; this cycle also
defines a multi-exchange with respect to ¢. Let C(P) denote the multi-exchange defined by the
path P.

Our method for enumerating cycles of increasing lengths performs the following three
steps repeatedly for increasing values of k, starting with & = 2. Let S* denote a set of some paths
of length k in G(¢#). We start with S’ = {1, 2, ..., n}, which is the set of n paths of length 1, each
consisting of a singleton node.

Path Extension: We consider each path P € $*/ one by one and “extend” it by adding one node
to it. To extend a path P =i, — 15 - ... - if.1, we add the arc (i, iy) for each iy € NM\{iy, is,..., ir;},
and obtain several paths of length k. Let E(P) denote the set of all paths obtained by extending

the path P. Further, let P* = U E(P).
Pest!



Cycle Evaluation: Each path P ¢ P* yields a corresponding multi-exchange C(P). We evaluate

each of these multi-exchanges and determine whether any of them is a profitable multi-
exchange. If yes, we return the best multi-exchange and stop; otherwise we proceed further.

Path Pruning: In this step, we prune several paths in the set P* which are less likely to lead to
profitable multi-exchanges. We call a procedure, PathSelect(P"), that takes as an input the set of

paths " enumerated in the previous step and selects a subset S of it. This subset of paths will be

extended further in the next iteration for the next higher value of k&. We describe in Section 4
several ways to implement the PathSelect procedure. Path pruning is critical to keep the number
of paths enumerated manageable.

The following algorithmic description summarizes the steps of our heuristic search
procedure, which we call the K-exchange search procedure.

procedure K-exchange search;
begin
kI,
let S’ — N be the set of paths of length 1;
C'—¢and W —0;
while S* is non-empty and k <K and W > 0 do
begin
k — k+1;
P —Upeg1 E(P);
let P,,;, € S* be the path such that Cost(¢, C(P,,)) = min{Cost(#, C(P)): P € P'};
if W' > Cost(, C(Pyin)) then W «— Cost(¢, C(Pyin) and C* «— C(Pyin):

S* — PathSelect(P";

end;
*
return C ;
end.

Figure 2: The generic search procedure for identifying profitable multi-exchanges.

Observe that in this procedure, the value of K is a parameter and can be specified by the
user. Increasing the value of K may in general improve the quality of local optimal solutions
obtained, but our computational investigations show that there are diminishing returns after K =
4; hence K = 4 is a good value to be used in the search procedure. For another implementation
(Implementation 4) of PathSelect as discussed in Section 4, we keep the value of K = 5. Also
observe that the algorithm terminates in two ways: C" is empty or C" is nonempty. If C” is empty,
then it implies that the algorithm has failed to find a profitable multi-exchange and the current
solution ¢ is locally optimal. If C* is nonempty, then it implies that the algorithm found a
profitable multi-exchange C".

10



We now analyze the complexity of the algorithm. Let p denote the maximum number of
paths in any S*. The while loop executes at most K times. In each execution of the while loop, it

takes O(pn) time to compute the set P* and it may contain as many as pn paths. Since computing

the cost of k-exchange for each P € P* takes O(k) time, we require O(AK’pn) time to find a

profitable k-exchange, if any. We shall show in Section 4 that the subroutine PathSelect takes
O(pn log(pn)) time. Since for most situations considered by us log(pn) < k*, the running time of
the algorithm is O(K’pn).

It is easy to see that if we ignore the time taken by the procedure PathSelect, then the
bottleneck operation in the generic search procedure is to evaluate the cost Cost(¢, C(P)) of each

path P € P*. Since C(P) is a k-exchange with respect to the solution ¢, using (5) we can

determine its cost in O(k%) time. We will next show that we can determine the cost of k-exchange
C(P) in O(k) time.

The generic search procedure proceeds by enumerating paths in G(¢). Each path P =i, —
i - ... - iy in G(¢) defines a “path exchange” with respect to the solution ¢ in an obvious manner,
which is the same as the k-exchange C =1, — i; - ... - iy — i; except that we do not perform the last
move of shifting facility i; from its current location to the location of facility i;. Alternatively,
¢P(i1) = i) forall /=1, 2,..., k-1, and ;ﬁp(i) =g(i) foralli € N\ {i}, ip, ..., ir.1}. We denote the
cost of the path exchange P with respect to the solution ¢ by Cost(¢, P). Hence,

Cost($, P)==(¢) —=(h=2* 3> f; (drbp(i)d)P(j) - d‘l’(i)"’(f)) ' @

ieP j=1

Observe that ¢ and ¢“* differ only in the location of the facility . This observation
allows us to compute the cost of the cyclic exchange C(P) from the cost of the path exchange P in
O(k) time using the following expression:

Cost(¢, C(P)) — Cost(¢, P) =2 * ¢?

iy

t2r j;fw ((d¢(,-l)¢c( " Daioe ) ) ~(dacinaci) = Boi e )) : ®)
Now suppose that we extend the path P to P' =i} — i, - ... - iy — ir+; by adding the node

ir+1. Then, we can determine the cost of the path P’from the cost of the path P in O(k) time using
the following expression:

Cost(¢, P)) — Cost(¢, P) =2 * ¢?

Ik 41

+2%* ;fikj ((d¢(ik+,)¢l" )~ d¢(ik)¢l’(j) ) - (d¢(ik+1)¢(j) - d¢(ik)¢(j) )) - )

In our enhanced version, we maintain the cost of each path P enumerated by the
algorithm. Given the cost of path P, we can determine the cost of the cycle C(P) in O(k) time.

11



Further, when we extend any path P, then the cost of the extended path too can be computed in
O(k) time. Thus, the running time of the generic search procedure is O(K ZkK:2| Pk 1), plus the
time taken by the subroutine PathSelect.

4. SPECIFIC IMPLEMENTATIONS

In Section 3, we presented a generic search algorithm to identify a profitable multi-
exchange. We can derive several specific implementations of the generic version by

implementing the procedure PathSelect(P") differently. The procedure PathSelect(P") accepts as

an input a set of paths 7* and returns a subset S* of these paths. We describe next several ways in
which PathSelect can be implemented.

Implementation 1 (All Paths): In this version, we define PathSelect(Pk) to be P itself; that is,

we select all the paths to be taken to the next stage. This version guarantees that we will always
find a profitable multi-exchange if it exists. However, the number of paths enumerated by the
algorithm increase exponentially with & and it takes too long to find profitable k-exchanges for &
> 6 even for n = 25.

Implementation 2 (Negative Paths): In this version, the subroutine PathSelect(P") returns only

those paths which have negative cost; that is, PathSelect(P*) = {P € P*: Cost(¢, P) < 0} where ¢
is the current solution. This version is motivated by the intuition that if there is a profitable multi-
exchange C =i, — i, - ... - iy — i}, then there should exist a node in this sequence, say node i, so
that each of the paths i — ixy, i — i1 — im2y +vuy i — Br1 — i2 - ... - i has a negative cost. Though
results of this type are valid for many combinatorial optimization problems, it is not true for the
QAP. However, it is a reasonable heuristic to eliminate paths that are less likely to yield
profitable multi-exchanges.

Implementation 3 (Best o’ Paths): In this version, we sort all the paths in 7P in the non-

decreasing order of path costs, and select the first o’ paths, where o is a specified constant. For
example, if a = 2, then we select the best 2n° paths. This version is motivated by the intuition that
the paths with lower cost are more likely to yield profitable multi-exchanges. The choice of o
allows us to strike a right tradeoff between the running time and the solution quality. Higher
values of a will increase the chances of finding profitable multi-exchanges but also increase the
time needed to find a profitable multi-exchange. Our computational results presented in Section 8
indicate that o = 1 is a good choice considering both the running time and solution quality. We
have used max heap data structure to keep an’ paths in a stage. Hence if there are pn possible
paths (as discussed in Section 3), it takes pnlog(pn) time to store o’ best paths in a heap.

Implementation 4 (Best n Paths): In this implementation, we select the best path in P* starting

at node i for each 1 < i < n. Therefore, the set S* contains at most one path starting at each node in
N. Note that in Implementation 3, it is possible that many low cost paths contain the same set of
arcs making the search less diverse. Allowing each node to be the starting point of a different path
can add some diversity to the heuristic search process.
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5. THE NEIGHBORHOOD SEARCH ALGORITHM

In this section, we describe our neighborhood search algorithm (Figure 3) for the QAP.
Our algorithm starts with a random permutation (obtained by generating pseudorandom numbers
between 1 and 7 and rejecting the numbers already generated) and successively improves it by
performing profitable multi-exchanges obtained by using the K-exchange search procedure, until
the procedure fails to produce a profitable multi-exchange.

algorithm QAP-neighborhood-search;
begin
generate an initial random permutation ¢;
construct the improvement graph G(¢);
while K-exchange search returns a non-empty multi-exchange C do
begin
replace the permutation ¢ by the permutation ¢;
update the improvement graph;
end;
return the permutation ¢;
end;

Figure 3. The neighborhood Search algorithm for the QAP.

Let us perform the running time analysis of the algorithm. The initial construction of the
improvement graph takes O(n’) time. The time needed by the procedure K-exchange search is
O(K?p), where p is the maximum number of paths maintained by the procedure during any
iteration (see Section 3). For Implementation 3 of PathSelect, p < an® and this procedure requires
O(K’n*) time per iteration (that is, per improvement). For Implementation 4 of the PathSelect, p <
n®, and the procedure again takes time O(K’n°). Updating the improvement graph takes O(n°K)
time (see Section 2).

Each execution of the QAP-neighborhood-search algorithm yields a locally optimal
solution of the QAP with respect to the neighborhood defined by the K-exchange search
procedure. The solution obtained depends upon the initial random permutation ¢ and the version
of the PathSelect procedure we use. We refer to one execution of the algorithm as one run. Our
computational investigations revealed that if we apply only one run of the algorithm, then the
solution method is not very robust. The QAP in general has an extremely large number of locally
optimal solutions even if the size of the neighborhood is very large. Each run produces a locally
optimal solution which is a random sample in the solution space of locally optimal solutions. To
obtain a robust locally optimal solution, we need to perform several runs of the algorithm and use
the best locally optimal solution found in these runs.

6. ACCELERATING THE SEARCH ALGORITHM

In this section, we describe a method to speedup the performance of the generic search
algorithm and also its specific implementations. The speedup uses the fact that several paths give
the same multi-exchange. For example, all the paths i} — i, — i3 — iy, o — i3 — ig — 11, I3 — iy — i} — Iy,
and iy — i, — i, — i3 imply the same multi-exchange i, — i, — i3 — iy — i, when we connect the last
node of these paths to the first node of the path. In general, a k-exchange can be represented by &k
different paths. Since our generic search algorithm enumerates k-exchanges by enumerating
paths, we may obtain the same k-exchange several times during the search process through
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different paths. To avoid repeated enumeration of the multi-exchanges, our search algorithm
maintains certain kinds of paths, called valid paths, defined as follows:

Valid Paths: 4 path i;— i, - ... - iy is a valid path if i; < i; for every 2 < j < k.

Our generic search algorithm enumerates only valid paths. The following lemma shows
that we do not miss any multi-exchanges by maintaining valid paths only.

Lemma 2: Any multi-exchange can be enumerated by maintaining only valid paths.

Proof: Consider a multi-exchange j; — j; - ... - ji. Letj;=min {j,: 1 <h < k}. Now define i; =, i,
= Ji15 +-+» Ik = Jik, Where all subscript mathematics is modulo (£+1). It follows from the definition
of j; that each of the paths iy, iy — i5, iy =i — i3, ... , i — i - ... - iy is a valid path. Hence starting at
node i; we can gradually build iy — i, - ... - i; by maintaining only valid paths, and joining node i
to node i; gives us the desired multi-exchange. .

We can easily modify the generic search algorithm so that it only enumerates valid paths.
In this modified algorithm, when we consider adding the arc (i, i+) to the path i} — i, - ... - i, we
compare i} with i, If i) < ijsy, we add the arc; otherwise we do not add it. It can be noted that
above lemma holds if we enumerate all paths. However, as we keep only o’ paths in each stage,
there may be the cases when we might miss a profitable multi-exchange. Our experiment shows
that loss in missed improvements is well compensated by the gain in time. The computational
results presented in Section 8 show that enumerating only valid paths decreases the running time
of the generic search algorithm substantially.

7. EXPRESSIONS FOR THE ASYMMETRIC QAP

In the previous sections, we gave expressions for calculating various cost terms for
symmetric instances of QAP. In this section, we give expressions for the asymmetric QAP. We
state the expressions without proof since their logic is similar to those for the symmetric case.

For the asymmetric case, we will replace the expressions (3)-(9) by the following
expressions (3')-(9') respectively.

Cost(#, O =)~ 2 = L2 ( i (e g0y ~doopin )+ L (A g = oo )] 3

ieC j=1

cj =2($)~=(d) = ;(fil (Do = o)+ fi (doacsy ~ docvron)) - )

— o
Cost(,O)= D cj=2 2. (fij (d¢c(i)¢(j) = dy(irp() ) tJji (d¢(j)¢c(i) = dy( ) )) +

(i,j)eC ieC jeC
220 (d¢c(,-)¢c( Ho d¢(i>¢</>) DI (d¢C(j)¢C(l-) B d¢(f)¢<">) (%)
ieC jeC ieC jeC
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C
cp =~ Z(f,-; (dscnanr = doirwr)+ Ji(dsarsy ‘d¢(z>¢<i))) +

leC

;(fiz (dmwc(l) ~dyirCay ) i (dqﬁc(lw(j) ~4ye g )) ©)

Cost(¢, P) = Z(¢P) —2(9) :ZZ(fll (dq)P O d¢(i)¢(.1') ) + fji (d¢P(j)¢P(i) - d¢(j)¢(i) )) (7)

ieP j=1

Cost($, CPY) - Cost Py =cf, + g‘; Jis ((d¢(n 1)~ Lo ) ) ~(dairecn = daciower )) *
j;fﬁk ((d¢c( o ~ 4P e ) - (d¢(j)¢(i1) ~dy( o) )) (8"
Cost(9. P) = Costd Py =cjy, + ; Jus ((d¢(z‘k+1>¢"'</> ~ i) ) ~ (4460801 = Dation0r )) *
;fﬂk ((d¢"'<j>¢(ik+1> ~ e aci) ) - (dd’(j)d)(ikﬂ) ~dy(pati) )) ©"

8. COMPUTATIONAL TESTING

In this section, we describe computational results of the neighborhood search algorithms
developed by us. We implemented all of our algorithms in C and ran them on IBM SP machine
(model RS6000) with a processor speed of 333 MHz. We tested the algorithms on 132 benchmark
instances available at the QAPLIB, the library of QAP instances maintained by the Institute of
Mathematics, Graz University of Technology (http://www.opt.math.tu-graz.ac.at/qaplib/). Our

computational results include analyzing the CPU times taken by our algorithms, quality of the
solutions obtained by them as well as understanding the behavior of the VLSN search algorithms.

Neighborhood search algorithms need some feasible solution as the starting solution. We
generated random permutations of #» numbers and used them as starting solutions. Further we
implemented a multi-start version of the neighborhood search algorithm, where we apply the
neighborhood search algorithm multiple times with different starting solutions, called different
runs, and select the best solution found in these runs. Number of runs depend on the size of the
problem instance.

In Section 4, we propose four implementations of the generic VLSN search algorithm for
the QAP. The first implementation maintains all the paths enumerated in the search process. We
found that the number of paths grows very quickly with k& and the algorithm runs very slowly
even when we go up to k-exchanges with & = 6. For example, to solve a QAP with n = 42
(instance sko42), each run of this implementation takes about 8 seconds for £ = 4 whereas
Implementation 3 takes only 0.025 second per run. Additional preliminary tests yielded that this
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implementation is not as competitive as other implementations and we decided not to perform a
thorough testing of the algorithm.

In the second implementation of the VLSN search algorithm, we maintain only those
paths which have negative costs. For many combinatorial optimization problems, maintaining
only negative cost paths is sufficient to enumerate negative cost cycles (improved neighbors), but
this is not true for the QAP due to the non-linearity in the cost structure. Our computational
testing revealed that maintaining only negative cost paths is not a good heuristic to enumerate
negative cost cycles. Thus, we did not performed a thorough testing of this implementation.

Our preliminary testing revealed that Implementation 3 and 4 exhibited the best overall
behavior and deserved a thorough testing. The following details of implementation 3 are worth

mentioning. Recall from Section 4 that we keep only o’ best paths in P*. We used the Max Heap

data structure (Cormen et al. [2001]) to store these paths. We found that . = 1 gives fairly good
results and hence we used this value. In addition, we used only those paths whose path cost is not
more than 0.5% of the best objective function value of the QAP found so far. We found that using

higher cost paths rarely leads to negative cost cycles. Finally, when we examined paths in 7 to

enumerate cycles of length & and find several negative cost cycles, we use the least cost negative
cycle to obtain the next solution. As far as Implementation 4 is concerned, we implemented it in
the straightforward fashion but before enumerating paths, we eliminate all negative cycles of
length 2 by performing 2-exchanges.

Accuracy of the Solution

We applied Implementation 3 and 4 to the 132 benchmark instances in QAPLIB, of these
98 were instances of symmetric QAP and the remaining were for the asymmetric case. We
applied multiple runs of each implementation and ran them for a specified amount of time. For
the symmetric instances, we ran our algorithm for 1 hour for n < 40 and for 2 hours for n > 40.
The running times for the asymmetric instances were 1.5 hours for » < 40 and for 3 hours for n >
40. Figures 4 and 5, respectively, give the results of these algorithms for symmetric and
asymmetric instances and compare our solutions with the solutions obtained by the 2-exchange
algorithm (20PT) and the best-known solutions (BKS). The columns titled BestGap, AvgGap,
nRuns, %Best, respectively, give the percent deviation of the best solution found in all runs with
respect to the best known solution, average deviation over solutions found in all runs, the number
of runs, and the percentage of the solutions found which were best known solutions. We can
derive the following conclusions from these tables.

e Implementation 3 exhibited the best overall performance. It obtained the best-known
solutions in 74 out of 98 symmetric instances and in 24 out of 34 asymmetric instances.
Its average error was the lowest and it found the best-known solutions with the maximum
frequency.
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e Implementation 3 is found to exhibit superior performance compared to 20PT in terms of
the gap of the best solution found by algorithm with the best-known solution. For 25
symmetric instances, Implementation 3 obtained better solutions than 20PT, and for only
2 symmetric instances 20PT obtained better solutions than Implementation 3. Similarly,
for 10 asymmetric instances implementation 3 obtained better solutions than 20PT, and
for only 1 asymmetric instance 20PT obtained better solution than Implementation 3.

e Implementation 3 is also found to be better than 20PT in terms of the average gap and
the frequency of finding best-known solution. The average of AvgGap of Implementation
3 was 7.6%, whereas this number for 20PT was 11.05% for the symmetric instances and
these numbers were 6.42% and 7.49% respectively for the asymmetric instances. Finally,
whereas Implementation 3 found best-known solution with an average frequency of
17.13% in symmetric case, this number for 20PT was 11.85% in symmetric case. For
asymmetric case, Implementation 3 found best-known solution with an average
frequency of 1.97%, whereas this number for 20PT was 0.46%.

e Implementation 4 also exhibited superior performance with respect to 20PT, but its
overall performance was worse than Implementation 3. Implementation 4 runs very fast
and it terminates in a fraction of second for most problem sizes, but the solutions
obtained using this method are not as robust as those obtained using Implementation 3.

Above results seem to suggest that very large-scale neighborhood is overall more
effective than the traditional 2-exchange neighborhood. When both the algorithms are run for the
same time, the 20PT performs many more runs but still the best solution found is, on the average,
not as good as found by VLSN search in lesser number of runs. Hence the extra time taken by
VLSN search algorithm is more than justified by the better quality of the solutions obtained.

We will now describe some computational investigations we performed to understand the
behavior of our implementations.

Effect of Neighborhood Size

In our approach, the size of the neighborhood critically depends upon (i) the maximum
cycle length, and (ii) the number of paths maintained of a given length. The larger the cycle
length and the number of paths maintained, greater is the neighborhood, more is the running time,
and better is the quality of the solution obtained (in general). Hence it is worthwhile to examine
the effect of these two parameters on the running time and the solution quality.

In our first experiment, we considered six problems of the same size sko100a, sko100b,
sko100c, sko100d, sko100e, skol100f, and applied 100 runs of Implementation 3 with cycle
lengths varying from 2 to 7 and noted the average running time taken by the algorithm (per run)
and the average gap (per run). We kept the number of paths maintained by the algorithm as fixed
at n’. Figure 6 plots these two values as a function of cycle length. It is easy to see that the
average gap decreases significantly with the increase in cycle length until cycle length is 4, and
after that the average gap does not change much. We also observe that the running time of the
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algorithm increases linearly with the increase in the cycle length. We think that the cycle length
of 4 strikes a right balance between the solution accuracy and solution time and hence we used
this value in the computational results presented earlier.

22—+ — 1000
c21+ +800
S 2 3
S g +600 o
0 . T [
o 1.8 + - = s | 400 E
<471 +200 F

1.6 1 1 1 1 1 0

2 3 4 5 6 7
Cycle Length
—m— Awerage Gap (%) —e— Time (Sec) \

Figure 6: Effect of cycle length on time taken and solution quality
for 100 runs on problem sko100a-f.

Our second experiment was similar to the first experiment but we varied the number of
paths maintained by the algorithm while keeping the cycle length fixed at 4. Figure 7 gives a plot
of the average gap and average time per run when we performed 100 runs of Implementation 3 on
the six problems skol00a-f. We observe that the solution accuracy gradually improves as the
number of paths increase as well as the running time of algorithm increases linearly with the
number of paths maintained. We believe that maintaining n° paths is a good compromise between
solution quality and solution time and we used this value in our experiments.
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Figure 7: Effect of number of paths in each stage on time taken and
solution quality for 100 runs on problem sko100a-f.

In another experiment, we counted the number of improvement iterations with cycle
length 2, 3 and 4. Recall that our algorithm performs a 3-exchange when it fails to find 2-

18



exchange, and performs a 4-exchange when it fails to find a 3-exchange. The table shown in
Figure 8 gives these values for 10 benchmark instances on which we apply 100 runs of
Implementation 3. We observe that there are many more iterations with 2-exchanges compared to
3-exchanges, and many more 3-exchanges compared to 4-exchanges.

# of iterations of Cycle Length

Problem 2 3 4
chr22a 1614 151 49
kra30a 2283 123 30
kra30b 2306 125 32
nug30 2580 104 42
ste36a 3537 142 44
tho40 3839 124 35
wil50 5298 81 38
sko42 4246 150 64
sko100a 13232 270 70
tai100a 7267 274 75

Figure 8: Number of iterations with different implemented cycle length.

Effect of the Speedup Technique

The reader may recall from Section 6 that we used a speedup technique to reduce
redundant enumeration of cycles. In this technique, we maintain only those valid paths i;,i,, ...., I
for which i, > i;. Lemma 2 showed that we would not miss any negative cycles even if we
maintain only valid paths. This proof relied on the assumption that we maintain all valid paths.
Since our algorithm maintains only n’ paths, we might miss some negative cycles and the
speedup technique may deteriorate the quality of the solutions obtained. We performed an
experiment to assess the effect of the speedup technique on the solution quality and solution time.
The table shown in Figure 9 gives these values for 10 benchmark instances. We applied 100 runs
on each benchmark instances and noted the average values. We observe that speedup technique
decreases the running time substantially but also worsens the solution quality. We believe that
overall it is advantageous to use the speedup technique since the saved time can be used to
perform more runs of the algorithm and improve the overall performance of the algorithm.
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Using Speedup Technique Without Speedup Technique
Problem | Average Gap | Time in Seconds | Average Gap | Time in Seconds
chr22a 10.00 1 9.13 5
kra30a 6.44 5 6.27 12
kra30b 4.26 5 4.05 12
nug30 3.19 5 2.92 12
ste36a 9.34 10 8.37 27
tho40 3.87 12 3.76 28
wil50 1.54 24 1.41 70
sko42 2.68 17 2.57 40
sko100a 1.87 283 1.78 962
tai100a 2.88 280 2.48 1191

Figure 9: Effect of accelerated path enumeration scheme.

9. CONCLUSIONS

In this paper, we develop a very large-scale neighborhood structure for the QAP. We
show that using the concept of improvement graph, we can easily and quickly enumerate multi-
exchange neighbors of a given solution. We develop a generic search procedure to enumerate and
evaluate neighbors and propose several specific implementations of the generic procedure. We
perform extensive computational investigations of our implementations and have found
concerning evidence that multi-exchange neighborhoods add value over the commonly used 2-

exchange neighborhoods.

Our implementations of multi-exchange neighborhood search algorithms are local
improvement methods. We wanted the focus of our research effort more on neighborhood
structure and less on specific implementations. Further possibilities for improvement could
possibly be obtained using ideas from tabu search (Glover and Laguna [1997]). We leave it as a
topic of future research. Neighborhood search algorithms have also been used in genetic
algorithms to improve the quality of the individuals in the population (Ahuja, Orlin, and Tiwari
[2000], and Drezner [2001]). Our neighborhood structure may be useful in these genetic
algorithms too.
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20PT Implementation 3 (Best an’ aths) | Implementation 4 (Best n paths)

SN|Name |n| BKS |BestGap|AvgGap| nRuns |%Best|BestGap | AvgGap| nRuns |%Best|BestGap|AvgGap| nRuns |%Best
1|Chrl12a|12 9552 0| 45.76| 9,436,220/ 0.89 0] 31.212,824,741| 2.34 0| 28.98| 3,807,890| 1.45
2|Chrl12b|12 9742 0| 52.78| 8,402,658| 6.42 0| 45.37/3,002,710| 8.26 0| 44.38| 4,572,662 8.64
3|Chrl2c|12 11156 0] 34.92| 9,823,150| 0.32 0] 24.95/2,957,361| 0.76 0| 23.82| 3,907,786 0.52
4|Chrl5a|l15 9896 0| 50.10| 4,704,652| 0.07 0] 34.06/1,420,416| 0.38 0| 32.43| 2,021,011 0.41
5|Chr15b|15 7990 0| 60.11] 4,468,591| 0.17 0| 47.09/1,537,817| 0.25 0| 46.64| 2,266,858| 0.37
6|Chrl5c |15 9504 0| 61.61] 4920,512| 0.04 0] 43.86/1,395,482| 0.09 0| 41.79| 2,015,713] 0.19
7|Chr18a|18 11098 0| 66.83] 2,730,190| 0.01 0] 50.01] 779,653| 0.17 0| 49.76| 1,285,044| 0.06
8|Chr18b|18 1534 0| 14.91| 3,061,778 0.57 0 8.53| 749,002| 2.84 0| 14.34| 2,699,902| 0.92
9|Chr20a|20 2192 0| 47.81| 2,102,113| 0.00 0] 33.83] 531,198| 0.02 0| 43.11| 1,537,470| 0.00
10{Chr20b |20 2298 0| 41.48| 2,248,147| 0.00 0] 27.59| 545328| 0.00 0| 33.18| 1,304,395| 0.00
11{Chr20c |20 14142 0| 83.48| 1,638,126/ 0.08 0] 63.75] 537,304| 0.20 0| 68.17| 1,004,525| 0.23
12|Chr22a|22 6156 0| 13.75| 1,409,341| 0.00 0] 10.03] 321,233| 0.02 0| 12.73] 1,094,969 0.00
13|Chr22b|22 6194| 0.581 13.98| 1,524,784 0.00 0 9.55| 306,967| 0.00 0| 11.86] 935420| 0.00
14|Chr25a|25 3796 0| 57.88] 921,946/ 0.00 0] 44.08) 261,426| 0.00 0| 5294 700,777| 0.00
15|EIs19 [19(17212548 0| 25.63| 1,703,953| 1.91 0| 14.47| 298,488| 23.78 0| 24.86| 1,501,674| 1.91
16|Escl6a |16 68 0 3.54| 6,915,006 35.00 0 0.36(1,187,393| 94.63 0 3.54| 6,849,543| 35.00
17|Escl6b |16 292 0 0.01| 9,060,254 | 98.44 0 0.00(1,063,243|100.00 0 0.01| 8,988,691| 98.44
18|Escl6c¢ |16 160 0 1.15] 5,753,649| 53.58 0 0.25(1,140,441| 84.19 0 1.15| 5,702,568| 53.58
19|Escl6d |16 16 0 9.18| 7,089,066| 43.13 0 0.72|1,165,768| 94.29 0 9.18| 7,026,224| 43.13
20|Escl6e |16 28 0| 10.12| 8,572,391| 20.17 0 3.25(1,165,223| 60.37 0| 10.12| 8,502,350| 20.17
21|Esclé6f |16 0 0 0.0035,611,664|100.00 0 0.004,918,942|100.00 0 0.00{35,420,396(100.00
22|Escl6g|16 26 0 7.86| 7,348,488| 44.39 0 0.23(1,124,152| 97.03 0 7.86| 7,287,152| 44.39
23|Escl6h|16 996 0 0.00| 7,922,830(100.00 0 0.00(1,051,718|100.00 0 0.00| 7,857,457(100.00
24|Escl6i |16 14 0 1.09| 8,107,025| 96.53 0 0.00(1,712,511|100.00 0 1.09| 8,041,288| 96.53
25|Escl6j |16 8 0| 15.49| 9,128,130| 54.33 0 1.28| 940,748| 94.90 0| 15.47| 9,037,786| 54.34
26|Esc32a|32 130 0| 23.16| 591,484 0.00 0] 13.48| 105,197| 0.13 0| 23.16] 589,319| 0.00
27|Esc32b|32 168 0| 28.83] 573,480| 0.49 0] 15.60] 119,828| 3.89 0| 28.83] 571,874| 0.49
28|Esc32c |32 642 0 0.40| 806,970| 82.10 0 0.01| 116,680| 99.87 0 0.40| 804,161| 82.10
29|Esc32d|32 200 0 6.42| 789,986 4.49 0 3.57| 115,082| 21.64 0 6.42| 787,713| 4.49
30|Esc32e |32 2 0 0.00| 1,862,801(100.00 0 0.00| 118,660|100.00 0 0.00| 1,858,335(100.00
31|Esc32f |32 2 0 0.00| 1,861,132(100.00 0 0.00| 118,654|100.00 0 0.00| 1,858,965(100.00
32|Esc32g|32 6 0 0.64| 1,868,071| 98.08 0 0.00| 116,371|100.00 0 0.64| 1,865,820| 98.08
33|Esc32h|32 438 0 3.93| 732,021 1.55 0 2.00f 82,942| 9.08 0 3.93| 728,741 1.55
34|Esc64a |64 116 0 1.48| 302,102| 48.88 0 0.14] 21,571] 95.69 0 1.48| 301,986| 48.88
Figure 4: Computational results for symmetric instances. Contd ...
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20PT Implementation 3 (Best an’ paths) | Implementation 4 (Best n paths)
SN| Name | n | BKS |BestGap | AvgGap| nRuns [%Best(BestGap|AvgGap| nRuns |%Best(BestGap|AvgGap| nRuns |%Best
35 |[Esc128 [128 64 0| 13.10 38,994| 8.27 0 5.61 1,850| 33.89 0| 13.09| 39,101 8.26
36 |[Hadl2 | 12| 1652 0 1.31| 8,903,617| 4.97 0 0.72(1,571,863| 18.01 0 1.20/6,737,857| 6.69
37 |Hadl4 | 14| 2724 0 0.87| 4,681,890| 13.68 0 0.48| 979,815| 32.92 0 0.82(3,890,031| 14.49
38 |Hadl6 | 16| 3720 0 0.90| 3,046,483| 13.75 0 0.48| 674,610 26.19 0 0.87|2,658,712| 13.81
39 |Hadl8 | 18| 5358 0 1.10| 2,224,949| 2.66 0 0.78| 407,788| 5.32 0 1.07/2,016,232| 2.88
40 (Had20 | 20| 6922 0 1.19| 1,662,491| 2.27 0 0.84| 289,189| 6.76 0 1.17]1,435,751| 2.29
41 |Kra30a | 30| 88900 0 7.70| 508,286| 0.02 0 5.99| 82,846| 0.20 0 7.70| 507,363 0.02
42 |Kra30b | 30| 91420 0 5.76| 505,339 0.00 0 4.13| 83,349 0.04 0 5.76| 504,516 0.00
43 |Nugl2 | 12 578 0 5.29/10,480,616| 1.35 0 3.48|2,387,442| 6.50 0 4.85|6,507,051| 2.36
44 |Nugl4 | 14| 1014 0 5.02| 6,045,903 0.44 0 3.42|1,096,624| 0.95 0 4.70|3,920,230| 0.86
45 [Nugl5 | 15| 1150 0 4.46| 4,738,236| 1.46 0 2.79(1,005,809| 4.94 0 4.02(3,224,136| 1.97
46 (Nugl6a| 16| 1610 0 4.86| 3,835,499| 0.28 0 3.43| 698,454 1.61 0 4.56(2,729,922| 0.53
47 [Nugl6éb| 16| 1240 0 5.40| 3,854,426 3.12 0 3.64| 756,449| 6.98 0 4.93/2,615,318| 4.06
48 (Nugl7 | 17| 1732 0 4.24| 3,103,273| 0.08 0 2.73| 553,263| 1.08 0 4.01(2,283,745| 0.14
49 [Nugl8 | 18| 1930 0 4.44)| 2,633,371| 0.17 0 3.09| 467,170 0.85 0 4.15(1,876,454| 0.25
50 (Nug20 | 20f 2570 0 4.19| 1,856,594 0.22 0 3.04| 342,835| 0.67 0 3.97(1,386,350| 0.26
51 [Nug21 | 21| 2438 0 4.58| 1,481,678 0.11 0 3.14| 283,327 0.29 0 4.35|1,188,565| 0.14
52 |Nug22 | 22| 3596 0 3.72| 1,195,612| 0.50 0 2.71| 244,287 1.37 0 3.59(1,015,230| 0.53
53 |Nug24 | 24| 3488 0 467, 967,896 0.10 0 3.31| 181,818| 0.70 0 4.45| 787,586 0.26
54 |Nug25 | 25| 3744 0 3.90| 842,354| 0.05 0 2.64| 160,132 0.42 0 3.80| 726,571 0.06
55|Nug27 | 27| 5234 0 4.33| 626,472| 0.04 0 3.27| 115,644| 0.40 0 4.16| 527,571 0.11
56 |Nug28 | 28| 5166 0 451 579,278| 0.01 0 3.30| 100,579| 0.19 0 4.32| 481,522| 0.02
57 [Nug30 | 30| 6124 0 4.19| 453,552| 0.01 0 3.06| 86,179| 0.03 0 4.10| 398,408, 0.01
58 [Roul2 | 12|235528 0 5.64|10,263,930| 0.69 0 4.25\2,348,174| 1.83 0 4.65(4,692,485| 1.09
59 |Roul5 | 15|354210 0 6.90| 5,230,145, 0.37 0 5.26|1,081,279| 0.93 0 6.06|2,631,306| 0.57
60 [Rou20 | 20725522 0 4.86| 2,114,540 0.01 0 3.34| 344,848 0.02 0 4.36(1,256,472| 0.01
61 [Scrl2 12| 31410 0 7.03| 9,411,221| 5.05 0 4.67(2,337,375| 11.82 0 4.8214,371,642| 16.64
62 (Scrl5 15| 51140 0| 10.24| 4,273,122| 1.76 0 7.66(1,070,211| 6.80 0 7.65(2,114,390| 5.51
63 |Scr20 | 20|110030 0 9.86| 1,709,033| 0.06 0 6.22| 378,005/ 0.21 0 6.52| 896,590 0.18
64 |Sko42 | 42| 15812] 0.101 3.53| 294,068| 0.00 0 2.73| 53,925/ 0.01 0.101 3.48| 270,262 0.00
65 |Sko49 | 49| 23386| 0.162 3.08| 176,442| 0.00| 0.154 244| 33,002| 0.001 0.162 3.03| 165,944| 0.00
66 |Sko56 | 56| 34458] 0.430 296/ 108,971 0.00] 0.163 2.39] 20,623] 0.00] 0.261 2.92| 103,033] 0.00
Figure 4 (contd.): Computational results for symmetric instances. Contd ...

22




20PT Implementation 3 (Best an’ paths) | Implementation 4 (Best n paths)
SN| Name | n BKS [BestGap|AvgGap| nRuns |%Best|BestGap AvgGap| nRuns |%Best|BestGap AvgGap| nRuns |%Best
67 |Sko64 64| 48498 0.421 2.70 68,901| 0.00] 0.293 2.20| 12,162| 0.00{ 0.400 2.68| 66,537 0.00
68 |Sko72 72 66256 0.420 2.65 45,817 0.00| 0.546 2.21 7,832| 0.00] 0.420 2.64| 44,570, 0.00
69 |Sko81 81 90998 0.510 2.27 31,087 0.00{ 0.440 1.91 5,273| 0.00 0.510 2.26| 30,521 0.00
70 |Sko90 90| 115534 0.535 2.23 21,473 0.00{ 0.460 1.89 3,425| 0.00f 0.535 222 21,126/ 0.00
71|Sko100a|100| 152002 0.617 2.08 14,955/ 0.00( 0.529 1.74 2,180 0.00( 0.617 2.07| 14,750, 0.00
72 |Sko100b|{100| 153890 0.516 2.02 15,110, 0.00( 0.377 1.71 2,222| 0.00f 0.516 2.02| 14,908, 0.00
73 |Sko100c|{100| 147862 0.580 2.30 14,843| 0.00| 0.511 1.96 2,182 0.00( 0.580 2.29| 14,633 0.00
74 |Sko100d|100| 149576 0.646 2.07 15,170, 0.00f 0.513 1.74 2,179 0.00f 0.646 2.07| 15,038, 0.00
75 |Sko100e|100| 149150| 0.581 2.31 14,820| 0.00| 0.457 1.94 2,187 0.00f 0.581 230 14,615 0.00
76 |Sko100f|100| 149036| 0.780 2.03 15,299, 0.00f 0.573 1.71 2,215 0.00f 0.666 2.02| 15,083 0.00
77 |Ste36a | 36 9526 0.252| 12.02| 238,239| 0.00 0 9.07| 44,939 0.01 0.252| 12.02| 239,827| 0.00
78 |Ste36b | 36 15852 0| 21.46| 213,196| 0.01 0| 15.95| 47,338 0.18 0| 21.46| 214,163 0.01
79 |Ste36¢c | 36| 8239.11 0.132 9.46| 226,567| 0.00 0 7.24| 45428 0.00] 0.132 9.46| 227,512| 0.00
80 |Tail2a | 12| 224416 0 8.93|10,073,866| 2.12 0 6.88(1,715,403| 4.79 0 7.86|4,651,037| 3.09
81 |Tail5a | 15| 388214 0 4.81| 5,387,038| 0.12 0 3.41| 986,214| 0.40 0 4.07|2,661,777| 0.15
82 |Tail7a | 17| 491812 0 5.69| 3,620,256 0.05 0 4.22| 627,478 0.21 0 4.89(1,846,451| 0.17
83 [Tai20a | 20| 703482 0 6.03| 2,214,371 0.00 0 4.37| 340,557 0.02 0 5.11|1,147,683| 0.01
84 |Tai25a | 25| 1167256 0 5.57| 1,109,310| 0.00 0 4.08| 173,744 0.00 0 4.76| 609,159 0.00
85 (Tai30a | 30| 1818146| 0.456 5.06| 615,703 0.00[ 0.532 3.84| 78,638| 0.00 0 447\ 371,344| 0.00
86 [Tai35a | 35| 2422002 1.083 5.10| 387,154| 0.00| 0.687 3.72| 46,236| 0.00 1.075 4.47| 237,949| 0.00
87 |Tai40a | 40| 3139370 1.358 5.05| 254,304/ 0.00( 0.906 3.68| 28,821| 0.00 1.357 4.56| 169,185/ 0.00
88 |Tai50a | 50| 4941410 1.897 497| 253,480 0.00 1.437 3.71| 26,559| 0.00 1.863 4.46| 170,079| 0.00
89 |Tai60a | 60| 7208572 2.177 4.72| 138,643| 0.00 1.658 3.54| 13,200| 0.00 1.902 4201 91,441 0.00
90 |Taib4c | 64| 1855928 0 0.44| 416,518 6.09 0 0.42| 27,985 6.19 0 0.44| 418,391 6.09
91 |Tai80a | 80|13557864| 2.037 3.76 56,268| 0.00 1.558 2.78 4,484| 0.00 1.713 3.22| 36,122 0.00
92 |Tail00a {100|21125314 1.969 3.42 27,534| 0.00 1.608 249 1,789| 0.00 1.707 3.03| 19,184 0.00
93 |Tai256¢ |256|44759294|  0.175 0.43 3,626/ 0.00] 0.175 0.41 168| 0.00( 0.175 0.43 3,392 0.00
94 |Tho30 | 30| 149936 0 485 432,914| 0.01 0 3.72| 86,314 0.03 0 4.60| 336,287 0.01
95|Tho40 | 40| 240516 0.341 4.67| 174,638 0.001 0.091 3.70| 35,056| 0.00] 0.043 4.46| 142,400/ 0.00
96 |Thol50 |150| 8133484 0.877 242 3,578/ 0.00f 0.814 212 469 0.00( 0.900 2.39 2,589 0.00
97 |Wil50 50 48816| 0.213 1.66 18,331 0.00{ 0.086 1.37/ 30,101 0.00f 0.123 1.65| 149,664/ 0.00
98 |Will00 [100] 273038 0.363 1.10 15,005/ 0.00f 0.347 0.95 2,031 0.00f 0.363 1.10] 14,921 0.00

Figure 4 (contd.): Computational results for symmetric instances.
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20PT Implementation 3 (Best on’ paths) [Implementation 4 (Best n paths)
SN |[Name | n BKS  [BestGapAvgGap| nRuns |%Best|BestGap/AvgGap| nRuns |%Best|BestGap AvgGap|nRuns |%Best
1 |bur26a | 26| 5426670 0 0.32| 114,672| 0.32 0 0.24| 85,634| 1.11 0 0.32{114,606| 0.32
2 |bur26b | 26| 3817852 0 0.41| 122,308| 0.29 0 0.30| 87,293| 0.58 0 0.41(122,247| 0.29
3 |bur26c | 26| 5426795 0 0.41| 112,625| 0.31 0 0.26| 82,912| 1.05 0 0.41112,556| 0.31
4 |bur26d| 26| 3821225 0 0.47| 119,809| 0.28 0 0.29| 87,760, 0.54 0 0.47(119,743| 0.28
5 |pur26e | 26| 5386879 0 0.37| 110,953| 0.39 0 0.20| 83,787 2.65 0 0.37(110,890| 0.39
6 |bur26f | 26| 3782044 0 0.46| 119,957| 0.66 0 0.24| 87,391 3.07 0 0.46(119,891| 0.66
7 |bur26g| 26| 10117172 0 0.36| 109,920| 0.47 0 0.25| 83,347 2.44 0 0.36(109,829| 0.47
8 |pur26h | 26| 7098658 0 0.46| 116,744 0.95 0 0.35| 93,540| 4.50 0 0.46(116,677| 0.95
9 |lipa20a| 20 3683 0 2.84| 386,856| 0.37 0 2.52| 238,081 1.37 0 2.80[285,714| 0.50
10 [lipa20b| 20 27076 0| 15.22| 364,584 4.27 0| 12.66| 277,407| 12.94 0| 14.80[233,970| 4.96
11 [lipa30a| 30 13178 0 2.02| 104,987 0.03 0 1.83| 54,075 0.24 0 2.02{104,939| 0.03
12 [lipa30b| 30 151426 0| 16.79| 102,598 1.88 0 1496, 56,856| 7.34 0| 15.94| 61,550| 4.03
13 |lipa40a| 40 31538 0.907 1.52| 43,018/ 0.00 0 1.36| 18,082| 0.01| 0.907 1.51| 36,566 0.00
14 |lipa40b| 40 476581 0| 18.64| 41,186| 1.26 0| 16.90| 19,034| 5.80 0| 18.23| 29,478| 2.03
15 |lipa50a| 50 62093 0.892 1.31| 42,978 0.00[f 0.849 1.17| 15,372| 0.00[ 0.892 1.30| 37,043| 0.00
16 [lipa50b| 50| 1210244 0| 18.67| 41,633| 0.46 0| 17.52| 16,644| 2.33 0| 18.40| 30,964| 0.70
17 |lipa60a| 60 107218] 0.844 1.11| 24,248| 0.00( 0.787 0.99 7,166| 0.00| 0.844 1.10| 21,339| 0.00
18 [lipa60b| 60| 2520135 0| 20.08| 24,046| 0.09 0] 19.22 7,938| 0.42 0 19.71| 16,725| 0.22
19 [lipa70a| 70 169755 0.775 0.96| 15,016/ 0.00f 0.725 0.86 4,056| 0.00] 0.773 0.95| 13,187 0.00
20 [lipa70b| 70| 4603200 0| 20.80| 14,644| 0.05 0] 19.94 4,358| 0.53 0 20.37| 9,767| 0.17
21 [lipa80a| 80 253195 0.678 0.85| 10,026/ 0.00] 0.628 0.75 2,335/ 0.00] 0.678 0.83| 8,510/ 0.00
22 [lipa80b| 80| 7763962 0| 21.69 9,701, 0.03 0| 20.92 2,451 0.08 0| 21.23| 6,214| 0.06
23 [lipa90a| 90 360630] 0.636 0.78 6,836/ 0.00] 0.581 0.69 1,412| 0.00] 0.636 0.77| 6,231 0.00
24 tail2b | 12| 39464925 0| 11.25/1,619,258| 3.03 0 8.941,682,704| 12.55 0| 10.35/953,511| 3.56
25 ttai20b | 20| 122455319 0| 17.45| 266,289| 0.60 0| 14.22| 207,118| 6.30 0 15.13|183,113| 0.88
26 tai25b | 25| 344355646 0| 16.24| 121,862| 0.03 0 12.10, 83,619| 0.59 0| 15.53| 89,529| 0.08
27 tai30b | 30| 637117113 0| 13.72| 65,700 0.00 0 9.06| 38,047 0.13 0| 12.65| 28,945| 0.00
28 tai35b | 35| 283315445 0 8.72| 40,095| 0.00 0 6.47| 23,213| 0.03 0 8.12| 31,932| 0.01
29 tai40b | 40| 637250948 0] 10.59| 24,696| 0.00 0 8.29| 13,527| 0.24 0| 10.18| 19,742| 0.01
30 taiSOb | 50| 458821517| 0.073 7.24| 23,734| 0.00] 0.058 5.73| 11,315/ 0.00] 0.073 7.10| 20,253| 0.00
31 tai60b | 60| 608215054 0.008 7.99| 12,713| 0.00f 0.038 6.16 4,863 0.00] 0.089 7.75| 10,853| 0.00
32 tai80b | 80| 818415043 1.594 6.11 4,988| 0.00f 0.844 5.27 1,597| 0.00] 1.594 6.01| 4,563 0.00
33 [tail00b(100(1185996137| 0.875 5.31 2,298 0.00] 0.653 4.43 563| 0.00[ 0.762 5.20| 2,116 0.00
34 tail50b|150| 498896643] 1.473 3.49 624| 0.00| 1.467 3.10 92| 0.00] 1.473 3.44 584| 0.00

Figure 5: Computational results for asymmetric instances.
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