

MIT Sloan School of Management

Working Paper 4386-02
July 2002

VERY LARGE-SCALE NEIGHBORHOOD SEARCH FOR THE

QUADRATIC ASSIGNMENT PROBLEM

Ravindra K. Ahuja, Krishna C. Jha, James B. Orlin and Dushyant Sharma

© 2002 by Ravindra K. Ahuja, Krishna C. Jha, James B. Orlin and Dushyant Sharma. All rights reserved. Short
sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit

including © notice is given to the source."

This paper also can be downloaded without charge from the
Social Science Research Network Electronic Paper Collection:

http://ssrn.com/abstract_id=xxxxxx

 1

Very Large-Scale Neighborhood Search for the Quadratic Assignment Problem

Ravindra K. Ahuja1, Krishna C. Jha2, James B. Orlin3, and Dushyant Sharma4

Abstract

The Quadratic Assignment Problem (QAP) consists of assigning n facilities to n locations so as to
minimize the total weighted cost of interactions between facilities. The QAP arises in many
diverse settings, is known to be NP-hard, and can be solved to optimality only for fairly small
size instances (typically, n ≤ 25). Neighborhood search algorithms are the most popular heuristic
algorithms to solve larger size instances of the QAP. The most extensively used neighborhood
structure for the QAP is the 2-exchange neighborhood. This neighborhood is obtained by
swapping the locations of two facilities and thus has size O(n2). Previous efforts to explore larger
size neighborhoods (such as 3-exchange or 4-exchange neighborhoods) were not very successful,
as it took too long to evaluate the larger set of neighbors. In this paper, we propose very large-
scale neighborhood (VLSN) search algorithms where the size of the neighborhood is very large
and we propose a novel search procedure to heuristically enumerate good neighbors. Our search
procedure relies on the concept of improvement graph which allows us to evaluate neighbors
much faster than the existing methods. We present extensive computational results of our
algorithms on standard benchmark instances. These investigations reveal that very large-scale
neighborhood search algorithms give consistently better solutions compared the popular 2-
exchange neighborhood algorithms considering both the solution time and solution accuracy.

1 Ravindra K. Ahuja, Industrial and Systems Engg., University of Florida, Gainesville, FL 32611, USA.
2 Krishna C. Jha, Industrial and Systems Engg., University of Florida, Gainesville, FL 32611, USA.
3 James B. Orlin, Sloan School of Management, MIT, Cambridge, MA 02139, USA.
4 Dushyant Sharma, Operations Research Center, MIT, Cambridge, MA 02139, USA.

 2

1. INTRODUCTION

 The Quadratic Assignment Problem (QAP) is a classical combinatorial optimization
problem and is widely regarded as one of the most difficult problems in this class. Given a set N
= {1, 2, ..., n}, and nxn matrices F = {fij}, D = {dij}, and B = {bij}, the QAP is to find a
permutation φ of the set N which minimizes:

 z(φ) =
1 1

n n

i j= =
∑ ∑ fijdφ(i)φ(j) +

1

n

i=
∑ biφ(i). (1)

 The QAP arises as a natural problem in facility layout. In this context, the set N
represents a set of n facilities (numbered 1 through n) that need to be assigned to locations
(numbered 1 through n). The matrix F = {fij} represents the flow between different facilities, and
the matrix D = {dij} represents the distance between locations. For example, if the facilities are
departments in a campus, then the flow fij could be the average number of people walking daily
from department i to department j. The decision variable φ(i), 1 ≤ i ≤ n, represents the location
assigned to facility i. Since there are n facilities and n locations and a facility can be assigned to
exactly one location, there is a one-to-one correspondence between feasible solutions of QAP and
permutations φ.

Observe that (1) consists of two terms. The first term is the sum of n2 flow costs between
n facilities (the term fijdφ(i)φ(j) represents the cost of flow from facility i to facility j). The second
term considers the cost of erecting facilities which may be location-dependent. The matrix B =
{bij} represents the cost of creating facility i at location j. Hence, the QAP is to find an
assignment of facilities to locations so as to minimize the total cost of flow between the facilities
and the cost of erecting the facilities. The matrices F and D are typically symmetric matrices but
are not required to be so. In our algorithms, we allow asymmetric instances and thus do not
assume that fij = fji or dij = dji. However, for the sake of simplicity, we will assume in Sections 2
through 6 that we are working with symmetric QAPs. In Section 7, we will study asymmetric
QAPs.

 In addition to the facility layout, the QAP arises in many other applications, such as the
allocation of plants to candidate locations, backboard wiring problem, design of control panels
and typewriter keyboards, turbine balancing, ordering of interrelated data on a magnetic tape, and
others. The details and references for these and additional applications can be found in Malucelli
[1993], Pardalos, Rendl and Wolkowicz [1994], Burkard et al. [1998], and Cela [1998]. Given the
wide range of applications and the difficulty of solving the problem, the QAP has been
investigated extensively by the research community. The QAP is known to be NP-hard, and a
variety of exact and heuristic algorithms have been proposed. Exact algorithms for solving QAP
include approaches based on (i) dynamic programming (Christofides and Benavent [1989]); (ii)
cutting planes (Bazaraa and Sherali [1980]); and (iii) branch and bound (Lawler [1963], Pardalos
and Crouse [1989]). Among these, the branch and bound algorithms are the most successful, but
they are generally unable to solve problems of size larger than n = 25.

 3

 Since the applications of the QAP often give rise to problems of size far greater than 25,
there is a need for good heuristics for QAP that can solve larger size problems. A wide variety of
heuristic approaches have been developed for the QAP. These can be classified into the following
categories: (i) construction methods (Buffa, Armour and Vollmann [1964], Muller-Merbach
[1970]); (ii) limited enumeration methods (West [1983], Burkard and Bonniger [1983]); (iii)
GRASP (greedy randomized adaptive search procedure) (Li, Pardalos, and Resende [1994]); (iv)
simulated annealing methods (Wilhelm and Ward [1987]); (v) tabu search methods (Skorin-
Kapov [1990], Taillard [1991]); (vi) genetic algorithms (Fleurent and Ferland [1994], Tate and
Smith [1985], Ahuja, Orlin, and Tewari [1998], Drezner [2001]); and (vii) ant systems
(Maniezzo, Colorni, and Dorigo [1994]). The tabu search method of Taillard [1991], the GRASP
method of Li, Pardalos, and Resende [1994], and the genetic algorithm by Drezner [2001] are the
most accurate heuristics among these methods.

As observed in the survey paper of Burkard et al. [1998], the current neighborhood search
meta-heuristic (tabu search and simulated annealing) algorithms for the QAP use the 2-exchange
neighborhood structure in the search. A permutation φ′ is called a 2-exchange neighbor of the
permutation φ if it can be obtained from φ by switching the values of two entries in the
permutation φ. It is easy to see that the number of 2-exchange neighbors of a permutation is
O(n2). There has been very limited effort in the past to explore larger neighborhood structures for
the QAP as the time needed to identify an improved neighbor becomes too high. In this paper, we
investigate the neighborhood structure based on multi-exchanges, which is a natural
generalization of the 2-exchanges. A multi-exchange is specified by a cyclic sequence C = i1 - i2 -
… - ik - i1 of facilities such that ip ≠ iq for p ≠ q. This multi-exchange implies that facility i1 is
assigned to the location φ(i2), facility i2 to φ(i3), and so on, and finally facility ik is assigned to
φ(i1). The location of all other facilities is not changed. We denote by φC the permutation obtained
by applying the multi-exchange C to the permutation φ. In other words,

φC(i) = φ(i) for i ∈ N \{i1, …, ik},
φC(ip) = φ(ip+1) for p = 1,…, k-1, and (2)
φC(ik) = φ(i1).

We define the length of a multi-exchange as the number of facilities involved in the
corresponding cyclic sequence. For example, the cyclic sequence C = i1 - i2 - … - ik - i1 has length
k. We also refer to a multi-exchange of length k as a k-exchange. Figure 1 illustrates an example
of a 3-exchange. We note that a k-exchange can be generated by k different cyclic sequences. For
example, the 3-exchange shown in Figure 1 can be generated by any of the sequences 3-7-6-3, 7-
6-3-7, and 6-3-7-6.

 4

Figure 1. (a) Initial assignment of facilities to locations.
 (b) Assignment after the cyclic exchange 3-7-6-3.

Given a positive integer 2 ≤ K ≤ n, the K-exchange neighborhood structure consists of all
the neighbors of a permutation obtained by using multi-exchanges of length at most K. We note
that the two-exchange neighborhood structure is contained in the K-exchange neighborhood

structure. The number of neighbors in the K-exchange neighborhood structure is Ω((1)!
n

K
K

 
− 

 
).

This number is very large even for moderate values of K. For example, if n = 100 and K = 10,
then the K-exchange neighborhood may contain as many as 6x1018 neighbors. This neighborhood
structure falls under the category of very large-scale neighborhood (VLSN) structures where the
size of the neighborhood is too large to be searched explicitly and we use implicit enumeration
methods to identify improved neighbors.

Algorithms based on very large-scale neighborhood structures have been successfully
used in the context of several combinatorial optimization problems (see Ahuja et al. [2002], and
Deineko and Woeginger [2000] for surveys in this area). One of the tools used in performing
search over very large-scale neighborhood structures is the concept of the improvement graph. In
this technique, we associate a graph, called the improvement graph G(φ), with each feasible
solution φ of the combinatorial optimization problem. The improvement graph G(φ) is
constructed such that there is a one-to-one correspondence between every neighbor of φ to some
directed cycle (possibly satisfying certain constraints) in the improvement graph G(φ). We also
define arc costs in the improvement graph so that the difference in the objective function value of
a neighboring solution and the solution φ is equal to the cost of the constrained cycle
corresponding to the neighbor. This transforms the problem of finding an improved neighbor into
the problem of finding a negative cost constrained cycle in the improvement graph (assuming that
the combinatorial optimization problem is a minimization problem). The concept of the
improvement graph was first proposed by Thompson and Orlin [1989] for a partitioning problem,
where a set of elements is partitioned into several subsets of elements so as to minimize the sum
of the objective functions of the subsets. This technique has been used to develop several VLSN
search algorithms for specific partitioning problems such as the vehicle routing problem
(Thompson and Psaraftis [1993], Ibaraki et al. [2002]) and the capacitated minimum spanning
tree problem (Ahuja, Orlin, Sharma [2001a, 2001b]). The concept of improvement graph was also

1

3

2 3 4

5 6 7 8

2

8 7 5

6 4 1

1

6

2 3 4

5 6 7 8

2

8 3 5

7 4 1

(a) (b)

1

3

2 3 4

5 6 7 8

2

8 7 5

6 4 1

1

6

2 3 4

5 6 7 8

2

8 3 5

7 4 1

(a) (b)

 5

used by Talluri [1996] and Ahuja et al. [2001c] to search very large-scale neighborhoods as in
fleet assignment problems arising in airline scheduling. Ergun [2001] also proposed several
improvement graphs for the vehicle routing problem and machine scheduling problems.

In this paper, we study the use of the improvement graph for the multi-exchange
neighborhood structure for the QAP. However, our current application of the improvement graph
is different than previous applications. In previous applications, the improvement graph satisfied
the property that the cost of the multi-exchange was equal to the cost of the corresponding
(constrained) cycle in the improvement graph. This property is not ensured for the improvement
graph for the QAP. Rather, the cost of the cycle is a very good approximation of the cost of the
multi-exchange, and allows us to enumerate good neighbors quickly. The improvement graph
also allows us to evaluate the cost of a neighbor faster than using a normal method. Typically,
evaluating a k-exchange neighbor for the QAP takes O(nk) time; but using the improvement
graph we can do it in O(k) average time per neighbor.

We developed a generic search procedure to enumerate neighbors using improvement
graphs. We also developed several implementations of the generic search procedure which
enumerate the neighborhoods exactly as well as heuristically. We present a detailed
computational investigation of local improvement algorithms based on our neighborhood search
structures. Our investigations yield the following conclusions: (i) locally optimal solutions
obtained using multi-exchange neighborhood search algorithms are superior to those obtained
using 2-exchange neighborhood search algorithms; (ii) generally increasing the size of the
neighborhood structure improves the quality of local optimal solutions but after a certain point
there are diminishing returns; and (iii) enumerating a restricted subset of neighbors is much faster
than enumerating entire neighborhood and can develop improvements that are almost as good.

This paper is organized as follows. In Section 2, we describe the improvement graph data
structure for the QAP. We present a generic heuristic search procedure for the K-exchange
neighborhood structure for the QAP in Section 3. In Section 4, we describe several specific
implementations of the generic search procedure. In Section 5, we describe the neighborhood
search algorithm based on the generic search procedure. Section 6 describes an acceleration
technique we use to speed up the performance of the algorithm. For the simplicity of derivations,
in Sections 2 through 6, we analyze and discuss the algorithms for symmetric cases only, which
can be easily generalized for asymmetric cases. In Section 7, we present the corresponding
expressions for the general case (both symmetric and asymmetric instances). We provide and
analyze the computational results from our implementations in Section 8. Section 9 summarizes
our contributions.

2. IMPROVEMENT GRAPH

 One of the main contributions of this paper is the development of the improvement graph
to enumerate multi-exchanges for the QAP. In this section, we describe how to construct the
improvement graph, and how it may help us in evaluating multi-exchanges quickly. This section

 6

as well as the following sections requires some network notations, such as cycles and paths. We
will use the graph notation given in the book by Ahuja, Magnanti, and Orlin [1993] and refer the
reader to this book for the same.

 Given a permutation φ and a k-exchange C, we denote the cost of the cyclic exchange by
Cost(φ, C). This cost term represents the difference between the objective function values of φC
and φ, that is,

Cost(φ, C) = z(φC) – z(φ) = 2 * ()() ()() ()
1

C C

n

ij i ji j
i C j

f d dφ φφ φ
∈ =

−∑∑ . (3)

Clearly, the cost of the k-exchange C can be computed in time O(kn). We will show that
using improvement graphs, the cost of C can be computed in O(k2) time. This time can be further
reduced to an average of O(k) time. Since we choose k to be much smaller than n, the
improvement graph allows us to evaluate multi-exchanges substantially faster than standard
methods. In fact, it also leads to dramatic improvements in the running time to identify traditional
2-exchanges.

 We associate an improvement graph G(φ) = (N, A) with φ, which is a directed graph
comprising of the node set N and the arc set A. The node set N contains a node i for every facility
i, and the arc set A contains an arc (i, j) for every ordered pair of nodes i and j in N. Each multi-
exchange C = i1 – i2 - … - ik – i1 defines a (directed) cycle i1 – i2 - … - ik – i1 in G(φ) and,
similarly, each (directed) cycle i1 – i2 - … - ik – i1 in G(φ) defines a multi-exchange i1 – i2 - … - ik
– i1 with respect to φ. Thus, there is a one-to-one correspondence between multi-exchanges with
respect to φ and cycles in G(φ). We will, henceforth, use C to denote both a multi-exchange and a
cycle in G(φ), and its type will be apparent from the context.

 An arc (i, j) ∈ A signifies that the facility i moves from its current location to the current
location of facility j. In view of this interpretation, a cycle C = i1 – i2 - … - ik – i1, signifies the
following changes: facility i1 moves from its current location to the location of facility i2, facility
i2 moves from its current location to the location of facility i3, and so on. Finally, facility ik moves
from its current location to the location of facility i1.

 We now associate a cost ijcφ with each arc (i, j) ∈ A. Ideally, we would like to define arc

costs so that the cost of the multi-exchange C with respect to the permutation φ is equal to the
cost of cycle C in G(φ). However, such a possibility would imply that P = NP because the multi-
exchange neighborhood structure includes all feasible solutions for an instance of the QAP. We
will, instead, define arc costs so that the cost of the multi-exchange is “close” to the cost of the
corresponding cycle. We define ijcφ as follows: it is the change in the cost of the solution φ when

facility i moves from its current location to the location of facility j and all other facilities do not
move. Observe that this change indicates that after the change there is no facility at location φ(i)

 7

and the location φ(j) has two facilities. Thus, to determine the cost of the change, we need to take
the difference between the costs of interactions between facility i and other facilities, before and
after the change. Let φ′ denote the solution after the change. Then, φ′(l) = φ(l) for l ≠ i and φ′(i) =

φ(j). Note that φ′ is not a permutation because φ′(i) = φ′(j). We define ijcφ = z(φ′) – z(φ). Thus,

ijcφ = z(φ′) – z(φ) = 2 * ()() () () ()
1

n

il j l i l
l

f d dφ φ φ φ
=

−∑ , (4)

which captures the change in the cost of interaction from facility i to other facilities.

 The manner in which we define arc costs in the improvement graph does not ensure that
the cost of the cycle C in G(φ), given by (,) C iji j cφ

∈∑ , will equal Cost(φ, C). The discrepancy in

these two cost terms arises because when defining the arc cost ijcφ we assume that the facility i

moves from its current location to the location of facility j but all other facilities do not move. But
in the multi-exchange C several facilities move and we do not correctly account for the cost of
flow between facilities in C. We, however, correctly account for the cost of flow between any two
facilities if one of the two facilities is not in C. We show next that the cost term Cost(φ, C) can be

computed by adding a corrective term to (,) C iji j cφ
∈∑ .

Cost(φ, C) = z(φC) – z(φ) = 2 * ()() ()() ()
1

C C

n

ij i ji j
i C j

f d dφ φφ φ
∈ =

−∑∑

 = 2 * ()() ()() ()Cij i ji j
i C j C

f d dφ φφ φ
∈ ∉

−∑ ∑ + 2 * ()() ()() ()C Cij i ji j
i C j C

f d dφ φφ φ
∈ ∈

−∑ ∑

 = 2 *
(,) C

ij
i j

cφ

∈
∑ – 2 * ()() ()() ()Cij i ji j

i C j C
f d dφ φφ φ

∈ ∈
−∑ ∑

 + 2 * ()() ()() ()C Cij i ji j
i C j C

f d dφ φφ φ
∈ ∈

−∑ ∑ . (5)

The equation (5) shows that we can determine the cost of a multi-exchange C by first
determining the cost of the cycle C in G(φ), which is (,) C iji j cφ

∈∑ , and then correcting it using the

second term given in equation (5). This corrective term can be computed in time O(k2) if C is a k-
exchange.

 Let us now remark on the usefulness of the improvement graph. First, it allows us to

determine the approximate cost of a multi-exchange C quickly. The cost term (,) C iji j cφ
∈∑ is a

reasonable estimate of the cost of the multi-exchange C. To see this, observe from (5) that the
corrective term Cost(φ, C) − (,) C iji j cφ

∈∑ contains O(k2) interactions between facilities. However, n

facilities have O(n2) interactions between them. If we choose k to be a relatively small fraction of
n, then the corrective term (on the average) will be substantially smaller than the total cost and the

 8

cost of the cycle C in G(φ) will be a good estimate of the cost of the multi-exchange C. For
example, if n = 100 and k = 5, then there are 9,900 interactions between facilities and only 20 of
them are counted incorrectly. If we use k = 10, then about 100 of them are counted incorrectly
which is only 1% of the total interactions between facilities. Thus, the improvement graph allows
us to enumerate extremely large set of neighbors quickly using approximate costs, and the
approximation in costs is quite small.

 The improvement graph also allows us to determine the correct cost of a multi-exchange
faster than it normally takes to compute its cost. Normally, to compute the cost of a multi-
exchange takes O(kn) time as we would need to update the cost interactions between k facilities
(that move) with other facilities. However, using (5) we can compute the cost of a multi-exchange
in O(k2) time. For example, if n = 100 and k = 10, then we can compute the cost of a multi-
exchange about 10 times faster which can make substantial difference in an algorithm’s
performance.

 The benefits we derive from the use of improvement graph come at a cost: we need to
construct the improvement graph and calculate arc costs. It follows from (4) that we can construct
the improvement graph from scratch in O(n3) time. But we need to compute the improvement
graph from scratch just once. In all subsequent steps, we only update the improvement graph as
we perform multi-exchanges. We show in the next lemma that updating the improvement graph
following a k-exchange takes only O(kn2) time. We also show in Section 8 that our neighborhood
search algorithms use small values of k (4 and 5) only as on the benchmark instances higher
values do not add extra benefit. Hence, it takes O(n2) time to update the improvement graph,
which is quite efficient in practice. Thus, the time needed to construct and update the
improvement graph is relatively small, and is well justified by the savings we obtain in
enumerating and evaluating multi-exchanges.

Lemma 1: Given the improvement graph G(φ) and a k-exchange C with respect to φ, the
improvement graph G(φC) can be constructed in O(kn2) time.

Proof: The improvement graphs G(φ) and G(φC) have the same set of nodes and arcs. They differ
only in arc costs. Each arc (i, j) ∈ G(φC) is one of the following two types: (i) either i ∈ C or j ∈
C, and (ii) i ∉ C and j ∉ C. There are 2k(n – k) = O(nk) arcs of type (i), and O(n2) arcs of type (ii).
Using (4), we can determine the cost of a type (i) arc in O(n) time, thus giving a total time of
(n2k) to compute the cost of all type (i) arcs. We show next that we can determine the cost of a
type (ii) arc in O(k) time, which also yields a total time of O(n2k) to compute the costs of all type
(ii) arcs.

C

ijcφ = 2 * ()() () () ()
1

C C

n

il j l i l
l

f d d
φ φ φ φ

=
−∑

 = 2 * ()() () () ()il j l i l
l C

f d dφ φ φ φ
∉

−∑ + 2 * ()() () () ()C Cil j l i l
l C

f d d
φ φ φ φ

∈
−∑

 9

 = 2 * ()() () () ()
1

n

il j l i l
l

f d dφ φ φ φ
=

−∑ – 2 * ()() () () ()il j l i l
l C

f d dφ φ φ φ
∈

−∑

 + 2 * ()() () () ()C Cil j l i l
l C

f d d
φ φ φ φ

∈
−∑

 = 2 * ijcφ
 – 2 * ()() () () ()il j l i l

l C
f d dφ φ φ φ

∈
−∑ + 2 * ()() () () ()C Cil j l i l

l C
f d d

φ φ φ φ
∈

−∑ . (6)

Since we already know ijcφ and C, and C is a k-exchange, we can evaluate (6) in O(k)

time, which establishes the lemma. ♦

3. IDENTIFYING PROFITABLE MULTI-EXCHANGES

 Our algorithm for the QAP is a neighborhood search algorithm and proceeds by
performing profitable multi-exchanges. To keep the number of multi-exchanges enumerated
manageable, we first enumerate 2-exchanges, followed by 3-exchanges, and so on, until we
reach a specified value of k, denoted by K, which is the largest size of the multi-exchanges we
wish to perform. This enumeration scheme is motivated by the consideration that we look for
larger size multi-exchanges when smaller size multi-exchanges cannot be found. In this section,
we describe a generic search procedure for enumerating and identifying multi-exchanges using
improvement graphs.

 Our method for enumerating multi-exchanges with respect to a solution φ proceeds by
enumerating directed paths of increasing lengths in the improvement graph G(φ), where, the
length of a path is the number of nodes in the path. Observe that each path P = i1 – i2 - … - ik in
the improvement graph has a corresponding cycle in the improvement graph i1 – i2 - … - ik – i1
obtained by joining the last node of the path with the first node in the path; this cycle also
defines a multi-exchange with respect to φ. Let C(P) denote the multi-exchange defined by the
path P.

 Our method for enumerating cycles of increasing lengths performs the following three
steps repeatedly for increasing values of k, starting with k = 2. Let Sk denote a set of some paths
of length k in G(φ). We start with S1 = {1, 2, …, n}, which is the set of n paths of length 1, each
consisting of a singleton node.

Path Extension: We consider each path P ∈ Sk-1 one by one and “extend” it by adding one node
to it. To extend a path P = i1 – i2 - … - ik-1, we add the arc (ik-1, ik) for each ik ∈ N\{i1, i2,…, ik-1},
and obtain several paths of length k. Let E(P) denote the set of all paths obtained by extending
the path P. Further, let Pk =

1P S

E(P)
k −∈
∪ .

 10

Cycle Evaluation: Each path P ∈ Pk yields a corresponding multi-exchange C(P). We evaluate

each of these multi-exchanges and determine whether any of them is a profitable multi-
exchange. If yes, we return the best multi-exchange and stop; otherwise we proceed further.

Path Pruning: In this step, we prune several paths in the set Pk which are less likely to lead to

profitable multi-exchanges. We call a procedure, PathSelect(Pk), that takes as an input the set of

paths Pk enumerated in the previous step and selects a subset Sk of it. This subset of paths will be

extended further in the next iteration for the next higher value of k. We describe in Section 4
several ways to implement the PathSelect procedure. Path pruning is critical to keep the number
of paths enumerated manageable.

 The following algorithmic description summarizes the steps of our heuristic search
procedure, which we call the K-exchange search procedure.

procedure K-exchange search;
begin

k ← 1;

let S1 ← N be the set of paths of length 1;

C* ← φ and W* ← 0;
while Sk is non-empty and k < K and W* ≥ 0 do
begin

 k ← k+1;

Pk ← 1P S E(P)k −∈∪ ;

let Pmin ∈ Sk be the path such that Cost(φ, C(Pmin)) = min{Cost(φ, C(P)): P ∈ Pk};

if W* > Cost(φ, C(Pmin)) then W* ← Cost(φ, C(Pmin) and C* ← C(Pmin);

Sk ← PathSelect(Pk);
end;
return C*;

end.

Figure 2: The generic search procedure for identifying profitable multi-exchanges.

 Observe that in this procedure, the value of K is a parameter and can be specified by the
user. Increasing the value of K may in general improve the quality of local optimal solutions
obtained, but our computational investigations show that there are diminishing returns after K =
4; hence K = 4 is a good value to be used in the search procedure. For another implementation
(Implementation 4) of PathSelect as discussed in Section 4, we keep the value of K = 5. Also
observe that the algorithm terminates in two ways: C* is empty or C* is nonempty. If C* is empty,
then it implies that the algorithm has failed to find a profitable multi-exchange and the current
solution φ is locally optimal. If C* is nonempty, then it implies that the algorithm found a
profitable multi-exchange C*.

 11

 We now analyze the complexity of the algorithm. Let p denote the maximum number of
paths in any Sk. The while loop executes at most K times. In each execution of the while loop, it
takes O(pn) time to compute the set Pk and it may contain as many as pn paths. Since computing

the cost of k-exchange for each P ∈ Pk takes O(k2) time, we require O(k2pn) time to find a

profitable k-exchange, if any. We shall show in Section 4 that the subroutine PathSelect takes
O(pn log(pn)) time. Since for most situations considered by us log(pn) < k2, the running time of
the algorithm is O(k2pn).

 It is easy to see that if we ignore the time taken by the procedure PathSelect, then the
bottleneck operation in the generic search procedure is to evaluate the cost Cost(φ, C(P)) of each
path P ∈ Pk. Since C(P) is a k-exchange with respect to the solution φ, using (5) we can

determine its cost in O(k2) time. We will next show that we can determine the cost of k-exchange
C(P) in O(k) time.

 The generic search procedure proceeds by enumerating paths in G(φ). Each path P = i1 –
i2 - … - ik in G(φ) defines a “path exchange” with respect to the solution φ in an obvious manner,
which is the same as the k-exchange C = i1 – i2 - … - ik – i1 except that we do not perform the last
move of shifting facility ik from its current location to the location of facility i1. Alternatively,
φP(il) = φ(il+1) for all l = 1, 2,…, k-1, and φP(i) = φ(i) for all i ∈ N \ {i1, i2, …, ik-1}. We denote the
cost of the path exchange P with respect to the solution φ by Cost(φ, P). Hence,

Cost(φ, P) = z(φP) – z(φ) = 2 * ()P P () ()() ()
P 1

n

ij i ji j
i j

f d dφ φφ φ
∈ =

−∑∑ . (7)

Observe that φP and φC(P) differ only in the location of the facility ik. This observation
allows us to compute the cost of the cyclic exchange C(P) from the cost of the path exchange P in
O(k) time using the following expression:

Cost(φ, C(P)) – Cost(φ, P) = 2 *

1ki icφ

 + 2 * () ()()C P 11
() () () ()() () () ()

C
k kk
i j i j i ji j i j

j
f d d d dφ φ φ φφ φ φ φ

∈
− − −∑ . (8)

Now suppose that we extend the path P to P′ = i1 – i2 - … - ik – ik+1 by adding the node

ik+1. Then, we can determine the cost of the path P′ from the cost of the path P in O(k) time using
the following expression:

Cost(φ, P′) – Cost(φ, P) = 2 *
1k ki ic

+

φ

+ 2 * () ()()P P 11
() () () ()() () () ()

P
k k kk k
i j i j i ji j i j

j
f d d d d′ ++

φ φ φ φφ φ φ φ
∈

− − −∑ . (9)

In our enhanced version, we maintain the cost of each path P enumerated by the
algorithm. Given the cost of path P, we can determine the cost of the cycle C(P) in O(k) time.

 12

Further, when we extend any path P, then the cost of the extended path too can be computed in
O(k) time. Thus, the running time of the generic search procedure is O(K 2| |K k

k=∑ P), plus the
time taken by the subroutine PathSelect.

4. SPECIFIC IMPLEMENTATIONS

In Section 3, we presented a generic search algorithm to identify a profitable multi-
exchange. We can derive several specific implementations of the generic version by
implementing the procedure PathSelect(Pk) differently. The procedure PathSelect(Pk) accepts as
an input a set of paths Pk and returns a subset Sk of these paths. We describe next several ways in
which PathSelect can be implemented.

Implementation 1 (All Paths): In this version, we define PathSelect(Pk) to be Pk itself; that is,
we select all the paths to be taken to the next stage. This version guarantees that we will always
find a profitable multi-exchange if it exists. However, the number of paths enumerated by the
algorithm increase exponentially with k and it takes too long to find profitable k-exchanges for k
≥ 6 even for n = 25.

Implementation 2 (Negative Paths): In this version, the subroutine PathSelect(Pk) returns only
those paths which have negative cost; that is, PathSelect(Pk) = {P ∈ Pk: Cost(φ, P) < 0} where φ
is the current solution. This version is motivated by the intuition that if there is a profitable multi-
exchange C = i1 – i2 - … - ik – i1, then there should exist a node in this sequence, say node il, so
that each of the paths il – il+1, il – il+1 – il+2, …, il – il+1 – il+2 - … - il+k has a negative cost. Though
results of this type are valid for many combinatorial optimization problems, it is not true for the
QAP. However, it is a reasonable heuristic to eliminate paths that are less likely to yield
profitable multi-exchanges.

Implementation 3 (Best αn2 Paths): In this version, we sort all the paths in Pk in the non-
decreasing order of path costs, and select the first αn2 paths, where α is a specified constant. For
example, if α = 2, then we select the best 2n2 paths. This version is motivated by the intuition that
the paths with lower cost are more likely to yield profitable multi-exchanges. The choice of α
allows us to strike a right tradeoff between the running time and the solution quality. Higher
values of α will increase the chances of finding profitable multi-exchanges but also increase the
time needed to find a profitable multi-exchange. Our computational results presented in Section 8
indicate that α = 1 is a good choice considering both the running time and solution quality. We
have used max heap data structure to keep αn2 paths in a stage. Hence if there are pn possible
paths (as discussed in Section 3), it takes pnlog(pn) time to store αn2 best paths in a heap.

Implementation 4 (Best n Paths): In this implementation, we select the best path in Pk starting
at node i for each 1 ≤ i ≤ n. Therefore, the set Sk contains at most one path starting at each node in
N. Note that in Implementation 3, it is possible that many low cost paths contain the same set of
arcs making the search less diverse. Allowing each node to be the starting point of a different path
can add some diversity to the heuristic search process.

 13

5. THE NEIGHBORHOOD SEARCH ALGORITHM

In this section, we describe our neighborhood search algorithm (Figure 3) for the QAP.
Our algorithm starts with a random permutation (obtained by generating pseudorandom numbers
between 1 and n and rejecting the numbers already generated) and successively improves it by
performing profitable multi-exchanges obtained by using the K-exchange search procedure, until
the procedure fails to produce a profitable multi-exchange.

algorithm QAP-neighborhood-search;
begin

generate an initial random permutation φ;
construct the improvement graph G(φ);
while K-exchange search returns a non-empty multi-exchange C do
begin

replace the permutation φ by the permutation φC;
update the improvement graph;

end;
return the permutation φ;

end;

Figure 3. The neighborhood Search algorithm for the QAP.

Let us perform the running time analysis of the algorithm. The initial construction of the
improvement graph takes O(n3) time. The time needed by the procedure K-exchange search is
O(K2p), where p is the maximum number of paths maintained by the procedure during any
iteration (see Section 3). For Implementation 3 of PathSelect, p ≤ αn2 and this procedure requires
O(K2n2) time per iteration (that is, per improvement). For Implementation 4 of the PathSelect, p ≤
n2, and the procedure again takes time O(K2n2). Updating the improvement graph takes O(n2K)
time (see Section 2).

 Each execution of the QAP-neighborhood-search algorithm yields a locally optimal
solution of the QAP with respect to the neighborhood defined by the K-exchange search
procedure. The solution obtained depends upon the initial random permutation φ and the version
of the PathSelect procedure we use. We refer to one execution of the algorithm as one run. Our
computational investigations revealed that if we apply only one run of the algorithm, then the
solution method is not very robust. The QAP in general has an extremely large number of locally
optimal solutions even if the size of the neighborhood is very large. Each run produces a locally
optimal solution which is a random sample in the solution space of locally optimal solutions. To
obtain a robust locally optimal solution, we need to perform several runs of the algorithm and use
the best locally optimal solution found in these runs.

6. ACCELERATING THE SEARCH ALGORITHM

 In this section, we describe a method to speedup the performance of the generic search
algorithm and also its specific implementations. The speedup uses the fact that several paths give
the same multi-exchange. For example, all the paths i1 – i2 – i3 – i4, i2 – i3 – i4 – i1, i3 – i4 – i1 – i2,
and i4 – i1 – i2 – i3 imply the same multi-exchange i1 – i2 – i3 – i4 – i1 when we connect the last
node of these paths to the first node of the path. In general, a k-exchange can be represented by k
different paths. Since our generic search algorithm enumerates k-exchanges by enumerating
paths, we may obtain the same k-exchange several times during the search process through

 14

different paths. To avoid repeated enumeration of the multi-exchanges, our search algorithm
maintains certain kinds of paths, called valid paths, defined as follows:

Valid Paths: A path i1 – i2 - … - ik is a valid path if i1 ≤ ij for every 2 ≤ j ≤ k.

Our generic search algorithm enumerates only valid paths. The following lemma shows
that we do not miss any multi-exchanges by maintaining valid paths only.

Lemma 2: Any multi-exchange can be enumerated by maintaining only valid paths.

Proof: Consider a multi-exchange j1 – j2 - … - jk. Let jl = min {jh: 1 ≤ h ≤ k}. Now define i1 = jl, i2
= jl+1, …, ik = jl+k, where all subscript mathematics is modulo (k+1). It follows from the definition
of jl that each of the paths i1, i1 – i2, i1 – i2 – i3, … , i1 – i2 - … - ik is a valid path. Hence starting at
node i1 we can gradually build i1 – i2 - … - ik by maintaining only valid paths, and joining node ik
to node i1 gives us the desired multi-exchange. ♦

 We can easily modify the generic search algorithm so that it only enumerates valid paths.
In this modified algorithm, when we consider adding the arc (ik, ik+1) to the path i1 – i2 - … - ik, we
compare i1 with ik+1. If i1 ≤ ik+1, we add the arc; otherwise we do not add it. It can be noted that
above lemma holds if we enumerate all paths. However, as we keep only αn2 paths in each stage,
there may be the cases when we might miss a profitable multi-exchange. Our experiment shows
that loss in missed improvements is well compensated by the gain in time. The computational
results presented in Section 8 show that enumerating only valid paths decreases the running time
of the generic search algorithm substantially.

7. EXPRESSIONS FOR THE ASYMMETRIC QAP

 In the previous sections, we gave expressions for calculating various cost terms for
symmetric instances of QAP. In this section, we give expressions for the asymmetric QAP. We
state the expressions without proof since their logic is similar to those for the symmetric case.

 For the asymmetric case, we will replace the expressions (3)-(9) by the following
expressions (3′)-(9′) respectively.

Cost(φ, C) = z(φC) – z(φ) = () ()()() () () ()() () () ()
1

C C C C

n

ij i j ji j ii j j i
i C j

f d d f d dφ φ φ φφ φ φ φ
∈ =

− + −∑∑ (3′)

ijcφ = z(φ′) – z(φ) = () ()()() () () () () () () ()
1

n

il j l i l li l j l i
l

f d d f d dφ φ φ φ φ φ φ φ
=

− + −∑ . (4′)

Cost(φ, C) =
(,) C

ij
i j

cφ

∈
∑ – () ()()() () () ()() () () ()C Cij i j ji j ii j j i

i C j C
f d d f d dφ φ φ φφ φ φ φ

∈ ∈
− + −∑ ∑ +

 ()() ()() ()C Cij i ji j
i C j C

f d dφ φφ φ
∈ ∈

−∑ ∑ + ()() ()() ()C Cji j ij i
i C j C

f d dφ φφ φ
∈ ∈

−∑ ∑ (5′)

 15

C

ijcφ = ijcφ
 – () ()()() () () () () () () ()il j l i l li l j l i

l C
f d d f d dφ φ φ φ φ φ φ φ

∈
− + −∑ +

 () ()()() () () () () () () ()C C C Cil lij l i l l j l i
l C

f d d f d dφ φ φ φ φ φ φ φ
∈

− + −∑ (6′)

Cost(φ, P) = z(φP) – z(φ) = () ()()P P P P() () () ()() () () ()
P 1

n

ij i j ji j ii j j i
i j

f d d f d dφ φ φ φφ φ φ φ
∈ =

− + −∑∑ (7′)

Cost(φ, C(P)) – Cost(φ, P) =
1ki icφ + () ()()C P 11

() () () ()() () () ()
C

k kk
i j i j i ji j i j

j
f d d d dφ φ φ φφ φ φ φ

∈
− − −∑ +

 () ()()C P 11
() () () ()() () () ()

C
k kk

ji j i j ij i j i
j

f d d d dφ φ φ φφ φ φ φ
∈

− − −∑ (8′)

Cost(φ, P′) – Cost(φ, P) =
1k ki ic

+

φ + () ()()P P 11
() () () ()() () () ()

P
k k kk k

i j i j i ji j i j
j

f d d d d′ ++
φ φ φ φφ φ φ φ

∈
− − −∑ +

 () ()()P P 11
() () () ()() () () ()

P
k k kk k

ji j i j ij i j i
j

f d d d d′ ++
φ φ φ φφ φ φ φ

∈
− − −∑ (9′)

8. COMPUTATIONAL TESTING

In this section, we describe computational results of the neighborhood search algorithms
developed by us. We implemented all of our algorithms in C and ran them on IBM SP machine
(model RS6000) with a processor speed of 333 MHz. We tested the algorithms on 132 benchmark
instances available at the QAPLIB, the library of QAP instances maintained by the Institute of
Mathematics, Graz University of Technology (http://www.opt.math.tu-graz.ac.at/qaplib/). Our
computational results include analyzing the CPU times taken by our algorithms, quality of the
solutions obtained by them as well as understanding the behavior of the VLSN search algorithms.

Neighborhood search algorithms need some feasible solution as the starting solution. We
generated random permutations of n numbers and used them as starting solutions. Further we
implemented a multi-start version of the neighborhood search algorithm, where we apply the
neighborhood search algorithm multiple times with different starting solutions, called different
runs, and select the best solution found in these runs. Number of runs depend on the size of the
problem instance.

In Section 4, we propose four implementations of the generic VLSN search algorithm for
the QAP. The first implementation maintains all the paths enumerated in the search process. We
found that the number of paths grows very quickly with k and the algorithm runs very slowly
even when we go up to k-exchanges with k = 6. For example, to solve a QAP with n = 42
(instance sko42), each run of this implementation takes about 8 seconds for k = 4 whereas
Implementation 3 takes only 0.025 second per run. Additional preliminary tests yielded that this

 16

implementation is not as competitive as other implementations and we decided not to perform a
thorough testing of the algorithm.

In the second implementation of the VLSN search algorithm, we maintain only those
paths which have negative costs. For many combinatorial optimization problems, maintaining
only negative cost paths is sufficient to enumerate negative cost cycles (improved neighbors), but
this is not true for the QAP due to the non-linearity in the cost structure. Our computational
testing revealed that maintaining only negative cost paths is not a good heuristic to enumerate
negative cost cycles. Thus, we did not performed a thorough testing of this implementation.

Our preliminary testing revealed that Implementation 3 and 4 exhibited the best overall
behavior and deserved a thorough testing. The following details of implementation 3 are worth
mentioning. Recall from Section 4 that we keep only αn2 best paths in Pk. We used the Max Heap

data structure (Cormen et al. [2001]) to store these paths. We found that α = 1 gives fairly good
results and hence we used this value. In addition, we used only those paths whose path cost is not
more than 0.5% of the best objective function value of the QAP found so far. We found that using
higher cost paths rarely leads to negative cost cycles. Finally, when we examined paths in Pk to

enumerate cycles of length k and find several negative cost cycles, we use the least cost negative
cycle to obtain the next solution. As far as Implementation 4 is concerned, we implemented it in
the straightforward fashion but before enumerating paths, we eliminate all negative cycles of
length 2 by performing 2-exchanges.

Accuracy of the Solution

 We applied Implementation 3 and 4 to the 132 benchmark instances in QAPLIB, of these
98 were instances of symmetric QAP and the remaining were for the asymmetric case. We
applied multiple runs of each implementation and ran them for a specified amount of time. For
the symmetric instances, we ran our algorithm for 1 hour for n ≤ 40 and for 2 hours for n > 40.
The running times for the asymmetric instances were 1.5 hours for n ≤ 40 and for 3 hours for n >
40. Figures 4 and 5, respectively, give the results of these algorithms for symmetric and
asymmetric instances and compare our solutions with the solutions obtained by the 2-exchange
algorithm (2OPT) and the best-known solutions (BKS). The columns titled BestGap, AvgGap,
nRuns, %Best, respectively, give the percent deviation of the best solution found in all runs with
respect to the best known solution, average deviation over solutions found in all runs, the number
of runs, and the percentage of the solutions found which were best known solutions. We can
derive the following conclusions from these tables.

• Implementation 3 exhibited the best overall performance. It obtained the best-known
solutions in 74 out of 98 symmetric instances and in 24 out of 34 asymmetric instances.
Its average error was the lowest and it found the best-known solutions with the maximum
frequency.

 17

• Implementation 3 is found to exhibit superior performance compared to 2OPT in terms of
the gap of the best solution found by algorithm with the best-known solution. For 25
symmetric instances, Implementation 3 obtained better solutions than 2OPT, and for only
2 symmetric instances 2OPT obtained better solutions than Implementation 3. Similarly,
for 10 asymmetric instances implementation 3 obtained better solutions than 2OPT, and
for only 1 asymmetric instance 2OPT obtained better solution than Implementation 3.

• Implementation 3 is also found to be better than 2OPT in terms of the average gap and
the frequency of finding best-known solution. The average of AvgGap of Implementation
3 was 7.6%, whereas this number for 2OPT was 11.05% for the symmetric instances and
these numbers were 6.42% and 7.49% respectively for the asymmetric instances. Finally,
whereas Implementation 3 found best-known solution with an average frequency of
17.13% in symmetric case, this number for 2OPT was 11.85% in symmetric case. For
asymmetric case, Implementation 3 found best-known solution with an average
frequency of 1.97%, whereas this number for 2OPT was 0.46%.

• Implementation 4 also exhibited superior performance with respect to 2OPT, but its
overall performance was worse than Implementation 3. Implementation 4 runs very fast
and it terminates in a fraction of second for most problem sizes, but the solutions
obtained using this method are not as robust as those obtained using Implementation 3.

 Above results seem to suggest that very large-scale neighborhood is overall more
effective than the traditional 2-exchange neighborhood. When both the algorithms are run for the
same time, the 2OPT performs many more runs but still the best solution found is, on the average,
not as good as found by VLSN search in lesser number of runs. Hence the extra time taken by
VLSN search algorithm is more than justified by the better quality of the solutions obtained.

 We will now describe some computational investigations we performed to understand the
behavior of our implementations.

Effect of Neighborhood Size

In our approach, the size of the neighborhood critically depends upon (i) the maximum
cycle length, and (ii) the number of paths maintained of a given length. The larger the cycle
length and the number of paths maintained, greater is the neighborhood, more is the running time,
and better is the quality of the solution obtained (in general). Hence it is worthwhile to examine
the effect of these two parameters on the running time and the solution quality.

In our first experiment, we considered six problems of the same size sko100a, sko100b,
sko100c, sko100d, sko100e, sko100f, and applied 100 runs of Implementation 3 with cycle
lengths varying from 2 to 7 and noted the average running time taken by the algorithm (per run)
and the average gap (per run). We kept the number of paths maintained by the algorithm as fixed
at n2. Figure 6 plots these two values as a function of cycle length. It is easy to see that the
average gap decreases significantly with the increase in cycle length until cycle length is 4, and
after that the average gap does not change much. We also observe that the running time of the

 18

algorithm increases linearly with the increase in the cycle length. We think that the cycle length
of 4 strikes a right balance between the solution accuracy and solution time and hence we used
this value in the computational results presented earlier.

1.6
1.7
1.8
1.9

2
2.1
2.2

2 3 4 5 6 7

Cycle Length

Av
g.

 G
ap

 (%
)

0

200

400

600

800

1000

Ti
m

e
(S

ec
)

Average Gap (%) Time (Sec)
Figure 6: Effect of cycle length on time taken and solution quality
for 100 runs on problem sko100a-f.

Our second experiment was similar to the first experiment but we varied the number of
paths maintained by the algorithm while keeping the cycle length fixed at 4. Figure 7 gives a plot
of the average gap and average time per run when we performed 100 runs of Implementation 3 on
the six problems sko100a-f. We observe that the solution accuracy gradually improves as the
number of paths increase as well as the running time of algorithm increases linearly with the
number of paths maintained. We believe that maintaining n2 paths is a good compromise between
solution quality and solution time and we used this value in our experiments.

1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.8

1.81

0.5n2 n2 1.5n2 2n2 2.5n2 3n2
of paths

Av
g.

 G
ap

 (%
)

0
100
200
300
400
500
600
700
800

Ti
m

e(
Se

c)

Avg Gap(%) Time(Sec)

Figure 7: Effect of number of paths in each stage on time taken and
solution quality for 100 runs on problem sko100a-f.

In another experiment, we counted the number of improvement iterations with cycle
length 2, 3 and 4. Recall that our algorithm performs a 3-exchange when it fails to find 2-

 19

exchange, and performs a 4-exchange when it fails to find a 3-exchange. The table shown in
Figure 8 gives these values for 10 benchmark instances on which we apply 100 runs of
Implementation 3. We observe that there are many more iterations with 2-exchanges compared to
3-exchanges, and many more 3-exchanges compared to 4-exchanges.

 # of iterations of Cycle Length
Problem 2 3 4
chr22a 1614 151 49
kra30a 2283 123 30
kra30b 2306 125 32
nug30 2580 104 42
ste36a 3537 142 44
tho40 3839 124 35
wil50 5298 81 38
sko42 4246 150 64

sko100a 13232 270 70
tai100a 7267 274 75

Figure 8: Number of iterations with different implemented cycle length.

Effect of the Speedup Technique

The reader may recall from Section 6 that we used a speedup technique to reduce
redundant enumeration of cycles. In this technique, we maintain only those valid paths i1,i2, …., ik
for which ik > i1. Lemma 2 showed that we would not miss any negative cycles even if we
maintain only valid paths. This proof relied on the assumption that we maintain all valid paths.
Since our algorithm maintains only n2 paths, we might miss some negative cycles and the
speedup technique may deteriorate the quality of the solutions obtained. We performed an
experiment to assess the effect of the speedup technique on the solution quality and solution time.
The table shown in Figure 9 gives these values for 10 benchmark instances. We applied 100 runs
on each benchmark instances and noted the average values. We observe that speedup technique
decreases the running time substantially but also worsens the solution quality. We believe that
overall it is advantageous to use the speedup technique since the saved time can be used to
perform more runs of the algorithm and improve the overall performance of the algorithm.

 20

 Using Speedup Technique Without Speedup Technique
Problem Average Gap Time in Seconds Average Gap Time in Seconds
chr22a 10.00 1 9.13 5
kra30a 6.44 5 6.27 12
kra30b 4.26 5 4.05 12
nug30 3.19 5 2.92 12
ste36a 9.34 10 8.37 27
tho40 3.87 12 3.76 28
wil50 1.54 24 1.41 70
sko42 2.68 17 2.57 40

sko100a 1.87 283 1.78 962
tai100a 2.88 280 2.48 1191

Figure 9: Effect of accelerated path enumeration scheme.

9. CONCLUSIONS

In this paper, we develop a very large-scale neighborhood structure for the QAP. We
show that using the concept of improvement graph, we can easily and quickly enumerate multi-
exchange neighbors of a given solution. We develop a generic search procedure to enumerate and
evaluate neighbors and propose several specific implementations of the generic procedure. We
perform extensive computational investigations of our implementations and have found
concerning evidence that multi-exchange neighborhoods add value over the commonly used 2-
exchange neighborhoods.

Our implementations of multi-exchange neighborhood search algorithms are local
improvement methods. We wanted the focus of our research effort more on neighborhood
structure and less on specific implementations. Further possibilities for improvement could
possibly be obtained using ideas from tabu search (Glover and Laguna [1997]). We leave it as a
topic of future research. Neighborhood search algorithms have also been used in genetic
algorithms to improve the quality of the individuals in the population (Ahuja, Orlin, and Tiwari
[2000], and Drezner [2001]). Our neighborhood structure may be useful in these genetic
algorithms too.

Acknowledgements

The project was also partly funded by the National Science Foundation Grants # DMI-
9900087, DMI-0085682, DMI-9820998, and the Office of Naval Research Grant ONR N00014-
98-1-0317.

 21

2OPT Implementation 3 (Best αn2 paths) Implementation 4 (Best n paths)
SN Name n BKS BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best

1 Chr12a 12 9552 0 45.76 9,436,220 0.89 0 31.21 2,824,741 2.34 0 28.98 3,807,890 1.45
2 Chr12b 12 9742 0 52.78 8,402,658 6.42 0 45.37 3,002,710 8.26 0 44.38 4,572,662 8.64
3 Chr12c 12 11156 0 34.92 9,823,150 0.32 0 24.95 2,957,361 0.76 0 23.82 3,907,786 0.52
4 Chr15a 15 9896 0 50.10 4,704,652 0.07 0 34.06 1,420,416 0.38 0 32.43 2,021,011 0.41
5 Chr15b 15 7990 0 60.11 4,468,591 0.17 0 47.09 1,537,817 0.25 0 46.64 2,266,858 0.37
6 Chr15c 15 9504 0 61.61 4,920,512 0.04 0 43.86 1,395,482 0.09 0 41.79 2,015,713 0.19
7 Chr18a 18 11098 0 66.83 2,730,190 0.01 0 50.01 779,653 0.17 0 49.76 1,285,044 0.06
8 Chr18b 18 1534 0 14.91 3,061,778 0.57 0 8.53 749,002 2.84 0 14.34 2,699,902 0.92
9 Chr20a 20 2192 0 47.81 2,102,113 0.00 0 33.83 531,198 0.02 0 43.11 1,537,470 0.00

10 Chr20b 20 2298 0 41.48 2,248,147 0.00 0 27.59 545,328 0.00 0 33.18 1,304,395 0.00
11 Chr20c 20 14142 0 83.48 1,638,126 0.08 0 63.75 537,304 0.20 0 68.17 1,004,525 0.23
12 Chr22a 22 6156 0 13.75 1,409,341 0.00 0 10.03 321,233 0.02 0 12.73 1,094,969 0.00
13 Chr22b 22 6194 0.581 13.98 1,524,784 0.00 0 9.55 306,967 0.00 0 11.86 935,420 0.00
14 Chr25a 25 3796 0 57.88 921,946 0.00 0 44.08 261,426 0.00 0 52.94 700,777 0.00
15 Els19 19 17212548 0 25.63 1,703,953 1.91 0 14.47 298,488 23.78 0 24.86 1,501,674 1.91
16 Esc16a 16 68 0 3.54 6,915,006 35.00 0 0.36 1,187,393 94.63 0 3.54 6,849,543 35.00
17 Esc16b 16 292 0 0.01 9,060,254 98.44 0 0.00 1,063,243 100.00 0 0.01 8,988,691 98.44
18 Esc16c 16 160 0 1.15 5,753,649 53.58 0 0.25 1,140,441 84.19 0 1.15 5,702,568 53.58
19 Esc16d 16 16 0 9.18 7,089,066 43.13 0 0.72 1,165,768 94.29 0 9.18 7,026,224 43.13
20 Esc16e 16 28 0 10.12 8,572,391 20.17 0 3.25 1,165,223 60.37 0 10.12 8,502,350 20.17
21 Esc16f 16 0 0 0.00 35,611,664 100.00 0 0.00 4,918,942 100.00 0 0.00 35,420,396 100.00
22 Esc16g 16 26 0 7.86 7,348,488 44.39 0 0.23 1,124,152 97.03 0 7.86 7,287,152 44.39
23 Esc16h 16 996 0 0.00 7,922,830 100.00 0 0.00 1,051,718 100.00 0 0.00 7,857,457 100.00
24 Esc16i 16 14 0 1.09 8,107,025 96.53 0 0.00 1,712,511 100.00 0 1.09 8,041,288 96.53
25 Esc16j 16 8 0 15.49 9,128,130 54.33 0 1.28 940,748 94.90 0 15.47 9,037,786 54.34
26 Esc32a 32 130 0 23.16 591,484 0.00 0 13.48 105,197 0.13 0 23.16 589,319 0.00
27 Esc32b 32 168 0 28.83 573,480 0.49 0 15.60 119,828 3.89 0 28.83 571,874 0.49
28 Esc32c 32 642 0 0.40 806,970 82.10 0 0.01 116,680 99.87 0 0.40 804,161 82.10
29 Esc32d 32 200 0 6.42 789,986 4.49 0 3.57 115,082 21.64 0 6.42 787,713 4.49
30 Esc32e 32 2 0 0.00 1,862,801 100.00 0 0.00 118,660 100.00 0 0.00 1,858,335 100.00
31 Esc32f 32 2 0 0.00 1,861,132 100.00 0 0.00 118,654 100.00 0 0.00 1,858,965 100.00
32 Esc32g 32 6 0 0.64 1,868,071 98.08 0 0.00 116,371 100.00 0 0.64 1,865,820 98.08
33 Esc32h 32 438 0 3.93 732,021 1.55 0 2.00 82,942 9.08 0 3.93 728,741 1.55
34 Esc64a 64 116 0 1.48 302,102 48.88 0 0.14 21,571 95.69 0 1.48 301,986 48.88

 Figure 4: Computational results for symmetric instances. Contd ...

 22

2OPT Implementation 3 (Best αn2 paths) Implementation 4 (Best n paths)
SN Name n BKS BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best
35 Esc128 128 64 0 13.10 38,994 8.27 0 5.61 1,850 33.89 0 13.09 39,101 8.26
36 Had12 12 1652 0 1.31 8,903,617 4.97 0 0.72 1,571,863 18.01 0 1.20 6,737,857 6.69
37 Had14 14 2724 0 0.87 4,681,890 13.68 0 0.48 979,815 32.92 0 0.82 3,890,031 14.49
38 Had16 16 3720 0 0.90 3,046,483 13.75 0 0.48 674,610 26.19 0 0.87 2,658,712 13.81
39 Had18 18 5358 0 1.10 2,224,949 2.66 0 0.78 407,788 5.32 0 1.07 2,016,232 2.88
40 Had20 20 6922 0 1.19 1,562,491 2.27 0 0.84 289,189 6.76 0 1.17 1,435,751 2.29
41 Kra30a 30 88900 0 7.70 508,286 0.02 0 5.99 82,846 0.20 0 7.70 507,363 0.02
42 Kra30b 30 91420 0 5.76 505,339 0.00 0 4.13 83,349 0.04 0 5.76 504,516 0.00
43 Nug12 12 578 0 5.29 10,480,616 1.35 0 3.48 2,387,442 6.50 0 4.85 6,507,051 2.36
44 Nug14 14 1014 0 5.02 6,045,903 0.44 0 3.42 1,096,624 0.95 0 4.70 3,920,230 0.86
45 Nug15 15 1150 0 4.46 4,738,236 1.46 0 2.79 1,005,809 4.94 0 4.02 3,224,136 1.97
46 Nug16a 16 1610 0 4.86 3,835,499 0.28 0 3.43 698,454 1.61 0 4.56 2,729,922 0.53
47 Nug16b 16 1240 0 5.40 3,854,426 3.12 0 3.64 756,449 6.98 0 4.93 2,615,318 4.06
48 Nug17 17 1732 0 4.24 3,103,273 0.08 0 2.73 553,263 1.08 0 4.01 2,283,745 0.14
49 Nug18 18 1930 0 4.44 2,633,371 0.17 0 3.09 467,170 0.85 0 4.15 1,876,454 0.25
50 Nug20 20 2570 0 4.19 1,856,594 0.22 0 3.04 342,835 0.67 0 3.97 1,386,350 0.26
51 Nug21 21 2438 0 4.58 1,481,678 0.11 0 3.14 283,327 0.29 0 4.35 1,188,565 0.14
52 Nug22 22 3596 0 3.72 1,195,612 0.50 0 2.71 244,287 1.37 0 3.59 1,015,230 0.53
53 Nug24 24 3488 0 4.67 967,896 0.10 0 3.31 181,818 0.70 0 4.45 787,586 0.26
54 Nug25 25 3744 0 3.90 842,354 0.05 0 2.64 160,132 0.42 0 3.80 726,571 0.06
55 Nug27 27 5234 0 4.33 626,472 0.04 0 3.27 115,644 0.40 0 4.16 527,571 0.11
56 Nug28 28 5166 0 4.51 579,278 0.01 0 3.30 100,579 0.19 0 4.32 481,522 0.02
57 Nug30 30 6124 0 4.19 453,552 0.01 0 3.06 86,179 0.03 0 4.10 398,408 0.01
58 Rou12 12 235528 0 5.64 10,263,930 0.69 0 4.25 2,348,174 1.83 0 4.65 4,692,485 1.09
59 Rou15 15 354210 0 6.90 5,230,145 0.37 0 5.26 1,081,279 0.93 0 6.06 2,631,306 0.57
60 Rou20 20 725522 0 4.86 2,114,540 0.01 0 3.34 344,848 0.02 0 4.36 1,256,472 0.01
61 Scr12 12 31410 0 7.03 9,411,221 5.05 0 4.67 2,337,375 11.82 0 4.82 4,371,642 16.64
62 Scr15 15 51140 0 10.24 4,273,122 1.76 0 7.66 1,070,211 6.80 0 7.65 2,114,390 5.51
63 Scr20 20 110030 0 9.86 1,709,033 0.06 0 6.22 378,005 0.21 0 6.52 896,590 0.18
64 Sko42 42 15812 0.101 3.53 294,068 0.00 0 2.73 53,925 0.01 0.101 3.48 270,262 0.00
65 Sko49 49 23386 0.162 3.08 176,442 0.00 0.154 2.44 33,002 0.00 0.162 3.03 165,944 0.00
66 Sko56 56 34458 0.430 2.96 108,971 0.00 0.163 2.39 20,623 0.00 0.261 2.92 103,033 0.00

 Figure 4 (contd.): Computational results for symmetric instances. Contd ...

 23

2OPT Implementation 3 (Best αn2 paths) Implementation 4 (Best n paths)
SN Name n BKS BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best
67 Sko64 64 48498 0.421 2.70 68,901 0.00 0.293 2.20 12,162 0.00 0.400 2.68 66,537 0.00
68 Sko72 72 66256 0.420 2.65 45,817 0.00 0.546 2.21 7,832 0.00 0.420 2.64 44,570 0.00
69 Sko81 81 90998 0.510 2.27 31,087 0.00 0.440 1.91 5,273 0.00 0.510 2.26 30,521 0.00
70 Sko90 90 115534 0.535 2.23 21,473 0.00 0.460 1.89 3,425 0.00 0.535 2.22 21,126 0.00
71 Sko100a 100 152002 0.617 2.08 14,955 0.00 0.529 1.74 2,180 0.00 0.617 2.07 14,750 0.00
72 Sko100b 100 153890 0.516 2.02 15,110 0.00 0.377 1.71 2,222 0.00 0.516 2.02 14,908 0.00
73 Sko100c 100 147862 0.580 2.30 14,843 0.00 0.511 1.96 2,182 0.00 0.580 2.29 14,633 0.00
74 Sko100d 100 149576 0.646 2.07 15,170 0.00 0.513 1.74 2,179 0.00 0.646 2.07 15,038 0.00
75 Sko100e 100 149150 0.581 2.31 14,820 0.00 0.457 1.94 2,187 0.00 0.581 2.30 14,615 0.00
76 Sko100f 100 149036 0.780 2.03 15,299 0.00 0.573 1.71 2,215 0.00 0.666 2.02 15,083 0.00
77 Ste36a 36 9526 0.252 12.02 238,239 0.00 0 9.07 44,939 0.01 0.252 12.02 239,827 0.00
78 Ste36b 36 15852 0 21.46 213,196 0.01 0 15.95 47,338 0.18 0 21.46 214,163 0.01
79 Ste36c 36 8239.11 0.132 9.46 226,567 0.00 0 7.24 45,428 0.00 0.132 9.46 227,512 0.00
80 Tai12a 12 224416 0 8.93 10,073,866 2.12 0 6.88 1,715,403 4.79 0 7.86 4,651,037 3.09
81 Tai15a 15 388214 0 4.81 5,387,038 0.12 0 3.41 986,214 0.40 0 4.07 2,661,777 0.15
82 Tai17a 17 491812 0 5.69 3,620,256 0.05 0 4.22 627,478 0.21 0 4.89 1,846,451 0.17
83 Tai20a 20 703482 0 6.03 2,214,371 0.00 0 4.37 340,557 0.02 0 5.11 1,147,683 0.01
84 Tai25a 25 1167256 0 5.57 1,109,310 0.00 0 4.08 173,744 0.00 0 4.76 609,159 0.00
85 Tai30a 30 1818146 0.456 5.06 615,703 0.00 0.532 3.84 78,638 0.00 0 4.47 371,344 0.00
86 Tai35a 35 2422002 1.083 5.10 387,154 0.00 0.687 3.72 46,236 0.00 1.075 4.47 237,949 0.00
87 Tai40a 40 3139370 1.358 5.05 254,304 0.00 0.906 3.68 28,821 0.00 1.357 4.56 169,185 0.00
88 Tai50a 50 4941410 1.897 4.97 253,480 0.00 1.437 3.71 26,559 0.00 1.863 4.46 170,079 0.00
89 Tai60a 60 7208572 2.177 4.72 138,643 0.00 1.658 3.54 13,200 0.00 1.902 4.20 91,441 0.00
90 Tai64c 64 1855928 0 0.44 416,518 6.09 0 0.42 27,985 6.19 0 0.44 418,391 6.09
91 Tai80a 80 13557864 2.037 3.76 56,268 0.00 1.558 2.78 4,484 0.00 1.713 3.22 36,122 0.00
92 Tai100a 100 21125314 1.969 3.42 27,534 0.00 1.608 2.49 1,789 0.00 1.707 3.03 19,184 0.00
93 Tai256c 256 44759294 0.175 0.43 3,526 0.00 0.175 0.41 168 0.00 0.175 0.43 3,392 0.00
94 Tho30 30 149936 0 4.85 432,914 0.01 0 3.72 86,314 0.03 0 4.60 336,287 0.01
95 Tho40 40 240516 0.341 4.67 174,638 0.00 0.091 3.70 35,056 0.00 0.043 4.46 142,400 0.00
96 Tho150 150 8133484 0.877 2.42 3,578 0.00 0.814 2.12 469 0.00 0.900 2.39 2,589 0.00
97 Wil50 50 48816 0.213 1.66 18,331 0.00 0.086 1.37 30,101 0.00 0.123 1.65 149,664 0.00
98 Wil100 100 273038 0.363 1.10 15,005 0.00 0.347 0.95 2,031 0.00 0.363 1.10 14,921 0.00

 Figure 4 (contd.): Computational results for symmetric instances.

 24

2OPT Implementation 3 (Best αn2 paths) Implementation 4 (Best n paths)
SN Name n BKS BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best BestGap AvgGap nRuns %Best
1 bur26a 26 5426670 0 0.32 114,672 0.32 0 0.24 85,634 1.11 0 0.32 114,606 0.32
2 bur26b 26 3817852 0 0.41 122,308 0.29 0 0.30 87,293 0.58 0 0.41 122,247 0.29
3 bur26c 26 5426795 0 0.41 112,625 0.31 0 0.26 82,912 1.05 0 0.41 112,556 0.31
4 bur26d 26 3821225 0 0.47 119,809 0.28 0 0.29 87,760 0.54 0 0.47 119,743 0.28
5 bur26e 26 5386879 0 0.37 110,953 0.39 0 0.20 83,787 2.65 0 0.37 110,890 0.39
6 bur26f 26 3782044 0 0.46 119,957 0.66 0 0.24 87,391 3.07 0 0.46 119,891 0.66
7 bur26g 26 10117172 0 0.36 109,920 0.47 0 0.25 83,347 2.44 0 0.36 109,829 0.47
8 bur26h 26 7098658 0 0.46 116,744 0.95 0 0.35 93,540 4.50 0 0.46 116,677 0.95
9 lipa20a 20 3683 0 2.84 386,856 0.37 0 2.52 238,081 1.37 0 2.80 285,714 0.50

10 lipa20b 20 27076 0 15.22 364,584 4.27 0 12.66 277,407 12.94 0 14.80 233,970 4.96
11 lipa30a 30 13178 0 2.02 104,987 0.03 0 1.83 54,075 0.24 0 2.02 104,939 0.03
12 lipa30b 30 151426 0 16.79 102,598 1.88 0 14.96 56,856 7.34 0 15.94 61,550 4.03
13 lipa40a 40 31538 0.907 1.52 43,018 0.00 0 1.36 18,082 0.01 0.907 1.51 36,566 0.00
14 lipa40b 40 476581 0 18.64 41,186 1.26 0 16.90 19,034 5.80 0 18.23 29,478 2.03
15 lipa50a 50 62093 0.892 1.31 42,978 0.00 0.849 1.17 15,372 0.00 0.892 1.30 37,043 0.00
16 lipa50b 50 1210244 0 18.67 41,633 0.46 0 17.52 16,644 2.33 0 18.40 30,964 0.70
17 lipa60a 60 107218 0.844 1.11 24,248 0.00 0.787 0.99 7,166 0.00 0.844 1.10 21,339 0.00
18 lipa60b 60 2520135 0 20.08 24,046 0.09 0 19.22 7,938 0.42 0 19.71 16,725 0.22
19 lipa70a 70 169755 0.775 0.96 15,016 0.00 0.725 0.86 4,056 0.00 0.773 0.95 13,187 0.00
20 lipa70b 70 4603200 0 20.80 14,644 0.05 0 19.94 4,358 0.53 0 20.37 9,767 0.17
21 lipa80a 80 253195 0.678 0.85 10,026 0.00 0.628 0.75 2,335 0.00 0.678 0.83 8,510 0.00
22 lipa80b 80 7763962 0 21.69 9,701 0.03 0 20.92 2,451 0.08 0 21.23 6,214 0.06
23 lipa90a 90 360630 0.636 0.78 6,836 0.00 0.581 0.69 1,412 0.00 0.636 0.77 6,231 0.00
24 tai12b 12 39464925 0 11.25 1,619,258 3.03 0 8.94 1,682,704 12.55 0 10.35 953,511 3.56
25 tai20b 20 122455319 0 17.45 266,289 0.60 0 14.22 207,118 6.30 0 15.13 183,113 0.88
26 tai25b 25 344355646 0 16.24 121,862 0.03 0 12.10 83,619 0.59 0 15.53 89,529 0.08
27 tai30b 30 637117113 0 13.72 65,700 0.00 0 9.06 38,047 0.13 0 12.65 28,945 0.00
28 tai35b 35 283315445 0 8.72 40,095 0.00 0 6.47 23,213 0.03 0 8.12 31,932 0.01
29 tai40b 40 637250948 0 10.59 24,696 0.00 0 8.29 13,527 0.24 0 10.18 19,742 0.01
30 tai50b 50 458821517 0.073 7.24 23,734 0.00 0.058 5.73 11,315 0.00 0.073 7.10 20,253 0.00
31 tai60b 60 608215054 0.008 7.99 12,713 0.00 0.038 6.16 4,863 0.00 0.089 7.75 10,853 0.00
32 tai80b 80 818415043 1.594 6.11 4,988 0.00 0.844 5.27 1,597 0.00 1.594 6.01 4,563 0.00
33 tai100b 100 1185996137 0.875 5.31 2,298 0.00 0.653 4.43 563 0.00 0.762 5.20 2,116 0.00
34 tai150b 150 498896643 1.473 3.49 624 0.00 1.467 3.10 92 0.00 1.473 3.44 584 0.00

 Figure 5: Computational results for asymmetric instances.

 25

REFERENCES

Aarts, E. H. L., and J. Korst. Simulated Annealing and Boltzman Machines: A Stochastic
Approach to Combinatorial Optimization and Neural Computing. Wiley, Chichester, 1989.

Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, New Jersey.

Ahuja, R. K., O. Ergun, J. B. Orlin, and A.P. Punnen. 2002. A survey of very large scale
neighborhood search techniques. To appear in Discrete Applied Mathematics.

Ahuja, R. K., J. B. Orlin, and A. Tiwari. 2000. A greedy genetic algorithm for the quadratic
assignment problem. Computers and Operations Research 27, 917-934.

Ahuja, R. K., J. B. Orlin, D. Sharma. 2001a. Multi-exchange neighborhood search algorithms for
the capacitated minimum spanning tree problem. Mathematical Programming 91, 71-97.

Ahuja, R. K., J. B. Orlin, D. Sharma. 2001b. A composite very large-scale neighborhood structure
for the capacitated minimum spanning tree problem. Submitted to Operations Research
Letters.

Ahuja, R. K., J. B. Orlin, D. Sharma. 2001c. A very large-scale neighborhood search algorithm
for the combined through-fleet assignment model. Submitted to INFORMS Journal on
Computing.

Armour, G. C., and E. S. Buffa. 1963. Heuristic algorithm and simulation approach to relative
location of facilities. Management Science 9, 294-309.

Bazara, M. S., and M. D. Sherali. 1980. Benders' partitioning scheme applied to a new
formulation of the quadratic assignment problem. Naval Research Logistics Quarterly 27,
29-41.

Bean, J. C. 1994. Genetic algorithms and random keys for sequencing and optimization. ORSA
Journal on Computing 6, 154-160.

Buffa, E. S., G. C. Armour, and T. E. Vollmann. 1964. Allocating facilities with CRAFT.
Harvard Business Review 42, 136-158.

Burkard, R. E. 1991. Location with spatial interactions: The quadratic assignment problem.
Discrete Location Theory (Eds. P. B. Mirchandani and R. L. Francis), John Wiley.

Burkard, R. E., and T. Bonniger. 1983. A heuristic for quadratic boolean programs with
applications to quadratic assignment problems. European Journal of Operations Research
13, 374-386.

Burkard, R. E., E. Cela, P. M. Pardalos, and L. S. Pitsoulis. 1998. The quadratic assignment
problem. In Handbook of Combinatorial Optimization 3, Edited by D. Z. Zhu and P. M.
Pardalos, Kluwer, 241-337.

Burkard, R. E., S. E. Karisch, and F. Rendl. 1997. QAPLIB - A quadratic assignment program
library. Journal of Global Optimization 10, 391-403.

 26

Cela, E. 1998. The Quadratic Assignment Problem – Theory and Algorithms, Kluwer Academic
Publishers.

Christofides, N., and E. Benavent. 1989. An exact algorithm for the quadratic assignment
problem. Operations Research 37, 760-768.

Cormen T. H., C. E. Leiserson, R. L. Rivest, C. Stein. 2001. Introduction to Algorithms, Second
Edition. The MIT Press.

Davis. L. 1991. Handbook of Genetic Algorithms. Van Nostrand, New York.

Deineko V. G., and G.J. Woeginger. 2000. A study of exponential neighborhoods for the
Travelling Salesman Problem and for the Quadratic Assignment Problem. Mathematical
Programming 87(3), 519-542.

Drezner, Z. 2001. A new genetic algorithm for the quadratic assignment problem. Technical
Report, College of Business and Economics, California State University-Fullerton, Fullerton,
CA 92834.

Ergun, O. 2001. New Neighborhood Search Algorithms Based on Exponentially Large
Neighborhoods. Operations Research Center, MIT

Fleurent, C., and J. A. Ferland. 1994. Genetic hybrids for the quadratic assignment problem.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American
Mathematical Society 16, 173-187.

Glover, F., and M. Laguna. 1997. Tabu Search. Kluwer Academic Publishers, Norwell, MA.

Ibaraki, T., M. Kubo, T. Masuda, T. Uno, and M. Yagiura. 2002. Effective local search
algorithms for the vehicle routing problem with general time window constraints. Working
Paper.

Lawler, E. L. 1963. The quadratic assignment problem. Management Science 9, 586-599.

Li, Y., P. M. Pardalos, and M. G. C. Resende. 1994. A greedy randomized adaptive search
procedure for the quadratic assignment problem. In "Quadratic Assignment and Related
Problems", Edited by P. M. Pardalos and H. Wolkowicz, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Americal Mathematical Society, 237-261.

Malucelli, F. 1993. Quadratic Assignment Problems: Solution Methods and Applications.
Unpublished Doctoral Dissertation, Departimento di Informatica, Universita di Pisa, Italy.

Maniezzo, V., A. Colorni, and M. Dorigo. 1994. The ant system applied to the quadratic
assignment problem. Tech. Rep. IRIDIA/94-28 , Université Libre de Bruxelles, Belgium.

Muller-Merbach, H. 1970. Optimale Reihenfolgen. Springer Verlag, Berlin, 158-171.

Nugent, C. E., T. E. Vollman, and J. Ruml. 1968. An experimental comparison of techniques for
the assignment of facilities to locations. Operations Research 16, 150-173.

 27

Pardalos, P. M., and J. Crouse. 1989. A parallel algorithm for the quadratic assignment problem.
Proceedings of the Supercomputing 1989 Conference, ACM Press, pp. 351-360.

Pardalos, P.M., F. Rendl, and H. Wolkowicz. 1994. The quadratic assignment problem. In
"Quadratic Assignment and Related Problems", edited by P. M. Pardalos and H. Wolkowicz,
DIMACS Series, American Mathematical Society, pp. 1-42.

Resende, M. G. C., P. M. Pardalos, and Y. Li. 1994. Fortran subroutines for approximate solution
of dense quadratic assignment problems using GRASP. ACM Transactions on Mathematical
Software 22, 104-118.

Skorin-Kapov, J. 1990. Tabu search applied to the quadratic assignment problem. ORSA Journal
on Computing 2, 33-45.

Taillard, E. 1991. Robust tabu search for the quadratic assignment problem. Parallel Computing
17, 443-455.

Talluri, K.T. 1996. Swapping applications in a daily fleet assignment. Transportation Science 31,
237-248..

Tate, D. E. and A. E. Smith. 1985. A genetic approach to the quadratic assignment problem.
Computers and Operations Research 22, 73-83.

Thompson, P. M., and J.B. Orlin. 1989. The theory of cyclic transfers. Operations Research
Center Working Paper, MIT.

Thompson, P. M., and H.N. Psaraftis. 1993. Cyclic transfer algorithms for multi-vehicle routing
and scheduling problems. Operations Research 41, 935-946.

West, D. H. 1983. Algorithm 608 : Approximate solution of the quadratic assignment problem.
ACM Transactions on Mathematical Software 9, 461-466.

Wilhelm, M. R., and T. L. Ward. 1987. Solving quadratic assignment problems by simulated
annealing. IEEE Transactions 19, 107-119.

