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We present a new deflected subgradient scheme for generating good quality dual solutions for linear pro-
gramming (LP) problems and utilize this within the context of large-scale airline crew planning problems

that arise in practice. The motivation for the development of this method came from the failure of a black-box-
type approach implemented at United Airlines for solving such problems using column generation in concert
with a commercial LP solver, where the software was observed to stall while yet remote from optimality. We
identify a phenomenon called dual noise to explain this stalling behavior and present an analysis of the desirable
properties of dual solutions in this context. The proposed deflected subgradient approach has been embed-
ded within the crew pairing solver at United Airlines and tested using historical data sets. Our computational
experience suggests a strong correlation between the dual noise phenomenon and the quality of the final solu-
tion produced, as well as with the accompanying algorithmic performance. Although we observed that our
deflected subgradient scheme yielded an average speed-up factor of 10 for the column generation scheme over
the commercial solver, the average reduction in the optimality gap over the same number of iterations was
better by a factor of 26, along with an average reduction in the dual noise by a factor of 30. The results from
the column generation implementation suggest that significant benefits can be obtained by using the deflected
subgradient-based scheme instead of a black-box-type or standard solver approach to solve the intermediate
linear programs that arise within the column generation scheme.
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1. Introduction
Consider the following discrete optimization prob-
lem, which represents a set-partitioning problem with
side constraints (SPP-SC) (see Nemhauser and Wolsey
1999):

SPP-SC: Minimize cT x

subject to Ax = e�

Dx ≤ d�

x ∈ Bn


(1)

Here, the variables x ∈ Bn represent binary decision
variables, with an associated cost vector c. The first set
of equality constraints in problem SPP-SC represent
set-partitioning constraints with the coefficients aij of
the m×n matrix A being either zero or one, depend-
ing on whether variable xj participates in constraint i
or not, and where e is a vector of ones. The second set

of some r inequality restrictions are side constraints
that arise out of certain designated goals pertaining
to alternative multiobjective requirements, beyond the
cost-minimization objective of SPP-SC.
A typical airline planning instance of SPP-SC is the

multiobjective airline crew pairing optimization prob-
lem, where the columns Aj of A are generated to sat-
isfy delineated crew pairing legality restrictions. More
specifically, this problem seeks an optimal assign-
ment of crew pairings to different flight segments,
subject to various contractual and FAA-mandated
crew scheduling regulations. In practice, airlines are
interested in finding a (near-optimal) solution that
would satisfy certain utilization, manpower availabil-
ity, and quality-of-work-life (QWL) requirements such
as schedule regularity, in addition to minimizing crew
costs that include hotel, per diem, and traditional met-
rics such as flight-time-credit (FTC), and a variety of
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other segment and duty-based penalties and incen-
tives. Vance et al. (1997) provide more details on these
crew pairing costs, and Klabjan et al. (2001, 2002)
consider such crew pairing problems with additional
regularity and time-window restrictions, as well as
include some aspects related to the aircraft-routing
problem.
We will restrict the scope of our study in this paper

to the pure set-partitioning problem SPP, whose struc-
ture poses the main challenge in solving large-scale
instances to near optimality. The current analysis can
be readily extended to deal with the more restricted
and realistic model SPP-SC. In practice, to main-
tain feasibility, we add nonnegative slack variables s,
along with a corresponding large positive undercov-
erage penalty P to the objective function, where P is
typically chosen to be considerably larger than the
cost of any legal pairing that can be generated for
the given problem. This results in the following aug-
mented formulation of SPP:

SPP: Minimize cT x+ Ps

subject to Ax+ s = e�

s ≥ 0� x ∈ Bn


(2)

We now present a brief summary of relevant crew
pairing concepts used in crew scheduling applica-
tions. A crew duty represents an approximate day’s
worth of work and consists of a legal sequence of
flight segments and flight connections. Layovers repre-
sent rest periods between successive duty schedules
and these accrue both crew and hotel costs. A crew
pairing is a sequence of crew duties, along with any
intermediate layovers, which begins and ends at the
same crew domicile. Duties and layovers have to
satisfy a variety of FAA-mandated and contractual
set of crew rules, such as “8-in-24” restrictions (no
more than eight hours of flying time in any rolling
24-hour window), night-flying limitations, and max-
imum duty limits. For a more detailed discussion of
crew duties, crew rules, connections, and layovers, we
refer the reader to Vance et al. (1997) and the FAA
website (http://www.faa.gov).
Typically, the universe of crew pairings is huge

and may run in the order of trillions for even mod-
est problem sizes. A standard solution approach for
crew scheduling problems is to first use a column
generation-based procedure to solve a linear pro-
gramming relaxation of SPP and to then continue
solving the underlying discrete optimization problem
using branch-and-price techniques (Barnhart et al.
1998) along with follow-on fixing strategies (Vance
et al. 1997). Makri and Klabjan (2004) describe some
of the computational challenges associated with col-
umn generation approaches for solving practical crew
scheduling applications. Also, the Carmen Systems

group of Boeing, Inc. reports results that demonstrate
their considerable success in solving massively sized
railroad crew scheduling problems using column gen-
eration techniques (Kohl 2003).
Given the nature of the problem and various other

business requirements, a sequential planning process
has been traditionally followed, starting with a gross-
day approximation where every flight is assumed to
operate every day, and ending with a final solution
that represents crew pairings that cover each of the
flight segments by date. However, recent advances
in computer hardware and new column generation
algorithms and techniques have facilitated obviat-
ing traditional sequential and suboptimal crew plan-
ning approaches, and to directly solve the multiob-
jective crew scheduling problem in its entirety within
a reasonable amount of computational time. Further-
more, this success has enabled the solution of large
optimization problems that arise from integrated air-
line planning models that cross traditional boundaries
between different airline business areas.
The problem instances we consider in this paper

are from weekly and monthly crew pairing prob-
lems that pertain to United Airlines’s flight sched-
ules. These are large-scale SPP instances that directly
address a typical week’s abstracted problem or the
scheduling problem for an entire month. The lat-
ter choice is made when a large number of dated
exceptions are present in the schedule, which usu-
ally occurs during holiday seasons or during months
that contain several scheduling changes. In fact, the
intensely competitive nature of the airline industry
has typically resulted in an increase in the frequency
of such demand-driven dynamic scheduling changes
to optimally match supply and demand. Typically, the
number of flight segments in such data sets range
from 5,000–15,000 after applying preprocessing tech-
niques. As an additional complication, we also allow
limited “dead-heading,” wherein crew members are
transported between stations, usually on commercial
flights, allowing for more connection options in gen-
erating feasible pairings. In the problem instances we
solve, the segments from the entire United Airlines’s
flight schedule for the month are available as poten-
tial candidates for dead-heading. Note that the dead-
head segments for a crew pairing do not participate
in the coverage constraints, but only affect the associ-
ated cost coefficient.
Another aspect of problem SPP in practice is that

the size of the problem alone does not determine the
difficulty of the problem. The resulting nonlinearity
and structure of crew rules, the cost-objective struc-
ture, the trade-off between competing objectives, the
sparsity of the flight segment network, peaking effects
due to the hub-and-spoke airline structure, among
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other problem aspects, can greatly influence the frac-
tionality of the relaxations, run times, and storage
requirements.

1.1. Motivation for Our Study
In the column generation (CG) process for solving
such large-scale crew pairing optimization problems,
we frequently observed the phenomenon of stalling
that practically results in the early termination of the
CG scheme, without finding even a feasible solution,
when used in conjunction with a commercial bar-
rier or simplex-based linear programming (LP) solver.
The stalling typically originates early in the solu-
tion procedure, when the LP solution after the first
few CG iterations turns out to be integral or nearly
integral. After such an iteration, due to the inherent
degeneracy in the problem, the LP objective does not
improve, even though the subproblem quite easily
generates tens of thousands of negative reduced-cost
columns. There have been several papers published
in the literature that deal with schemes to accelerate
CG techniques for SPP instances, but we have not
found any work that analyzes the properties of the
optimal dual solution in this context. Among related
research, Kohl (2003) presents computational results
that demonstrate the efficacy of using subgradient-
based approaches in commercial crew scheduling
applications. Hu and Johnson (1999) address stalling
and convergence issues with their CG scheme for air-
line crew pairing problems and propose an enhanced
subproblem approach that seeks to generate an
improved dual solution at every iteration. Merle et al.
(1999) propose a CG stabilization scheme to over-
come the slow convergence effects of Kelley’s (1960)
cutting-plane method in the presence of degeneracy
by including perturbation variables within the mas-
ter program, in concert with a convergent penalty-
based scheme to control the level of perturbation.
Barnes et al. (2002) solve an auxiliary nonlinear least
squares problem in their CG approach, leading to a
formulation that is impervious to degeneracy. Bara-
hona and Anbil (2000) employ the volume algorithm
heuristic to quickly find approximate primal and dual
solutions to the master program, and report a signif-
icant improvement in computational efficiency over
prior methods. Carvalho (2005) derives a family of
valid dual cuts that can accelerate CG and applies
this method in the context of the cutting-stock prob-
lem. Elhallaoui et al. (2005) suggest a dynamic con-
straint aggregation method that reduces the number
of set-partitioning constraints and present results in
the context of urban mass-transit scheduling. Amor
et al. (2006) attempt to generate deep dual-optimal
cuts for improving the effectiveness of their CG pro-
cedure, and test this approach on the cutting-stock
problem.

Another practical limitation with subgradient-based
schemes proposed in the literature is the number of
algorithmic parameters that need to be fine-tuned for
the sake of an industrial implementation. Typically,
the maintenance and updating of such parameter-
intensive methods diminishes over the years, leading
to a drop in solution quality, which often leads prac-
titioners to revert to suboptimal schemes based on
off-the-shelf LP solvers.
The main contributions of this work are to pro-

vide insights into the desirable characteristics of
a dual solution that can overcome the observed
stalling problem alluded above, and to develop
an efficient deflected subgradient-based optimization
strategy having relatively few parameters that can rea-
sonably achieve such a dual solution in practice.
The remainder of this paper is organized as fol-

lows. Section 2 presents the overall CG scheme and
discusses the stalling phenomenon in greater detail.
Section 3 describes a procedure for solving the master
program. Sample computational results are presented
in §4, and §5 concludes the paper with a summary
and directions for future research.

2. Column Generation Scheme
In lieu of solving problem SPP directly, we first solve
a continuous relaxation, R-SPP, of the problem using
a CG technique (see Nemhauser and Woolsey 1999)
and then use a branch-and-price heuristic technique
to find an acceptable integer solution to problem SPP.
In this CG approach for solving R-SPP, the master
problem, RMP, is a linear program that is a restriction
of R-SPP, where only a subset of up to some n′ < n
columns is included as shown below:

RMP: Minimize
n′∑

j=1
cjxj + P

m∑
i=1

si

subject to
n′∑

j=1
aijxj + si = 1

∀ i= 1� 
 
 
 �m�

xj ≥ 0 ∀ j = 1� 
 
 
 �n′�

si ≥ 0 ∀ i= 1� 
 
 
 �m


(3)

At any CG iteration l, RMP is solved to produce
an optimal (or near-optimal) dual solution �l. A pric-
ing subproblem, designated SP(�l), is then solved
that attempts to generate up to some p ≥ 1 pairings
that have the lowest reduced costs, �cj − ��l�TAj�,
where each column Aj of A satisfies all the mandated
crew pairing legality requirements. If no (or few) such
negative reduced columns exist, the CG procedure
terminates. Otherwise, the new columns are added
to the restricted master program, and RMP is reopti-
mized to find a new dual vector. The model RMP that
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results at the end of the CG procedure is chosen as the
root node problem for solving the discrete optimiza-
tion problem SPP. A branching scheme that guaran-
tees convergence for 0–1 set-partitioning problems is
the “follow-on” fixing technique based on a modified
Ryan-Foster’s rule (Vance et al. 1997). A branch-and-
price framework is typically used to solve SPP, where
the pricing module again utilizes the CG scheme to
find good integer solutions to SPP. The overall scheme
of the CG procedure is described below.
Step 1. Set l= 1, and si = 1 and �i = P ∀ i= 1� 
 
 
 �m.
Step 2. Solve the subproblem SP(�l) to generate up

to some p≥ 1 negative reduced cost columns and add
these to RMP. If fewer than some pmin such columns
are generated, terminate the procedure; otherwise,
proceed to Step 3.
Step 3. Set l ← l + 1. Solve RMP, possibly only to

near optimality, to generate a good quality dual solu-
tion �l. If ��l − �l−1�/m < �� , for some tolerance
�� > 0, or if l = lmax, a specified maximum number of
iterations, terminate the CG procedure, and if neces-
sary, re-solve RMP to optimality to find an optimal
primal-dual solution using any suitable LP solver, and
enter the branch-and-price routine. Otherwise, go to
Step 2.

2.1. Dual Noise Phenomenon in
Column Generation

Consider a large instance of SPP in the absence of
the dead-heading option. In this case, every feasi-
ble pairing will have to cover at least two segments.
Now, consider a CG scheme that produces an integer-
feasible LP solution x̄ after a few iterations. Let us
assume that all the slack variables take values of
zero in this solution, or equivalently, assume that we
have preprocessed the input data set to eliminate
all uncoverable flight segments from consideration to
ensure the existence of such an x̄ for the resulting
SPP instance. Such an integral LP solution to this
problem is also an extreme point LP solution hav-
ing at most �m/2� basic variables at unity (because
each Aj -column has at least two nonzero entries), and
therefore, at least �m/2� basic variables are equal to
zero. This situation represents a highly degenerate
extreme point, and we shall show that the quality
of the corresponding dual-optimal solution and the
choice of the subproblem methodology for generat-
ing columns can greatly inhibit any improvement in
the LP objective in subsequent iterations of the CG
scheme.
Toward this end, let J represent the index set of

the unit integer-valued variables in an optimal solu-
tion to Problem RMP, where �J � ≤ �m/2�. Let us exam-
ine the characteristics of the dual solution under

this situation by analyzing RD, the dual to problem
RMP:

RD: Maximize
m∑

i=1
�i

subject to
m∑

i=1
aij�i ≤ cj ∀ j = 1� 
 
 
 �n�

�i ≤ P ∀ i= 1� 
 
 
 �m�

� unrestricted


(4)

Note that RD is a relaxation of the dual problem
associated with the unrestricted master program that
includes all possible columns because only a subset of
all possible dual constraints are considered here. Let
us define the set Sj to be the index set of the rows of
SPP that contain the variable xj . Because x̄ is an opti-
mal solution to RMP, any dual-optimal solution �∗ to
RD is characterized by the following linear system,
denoted �∗�J �:

∑
i∈Sj

�∗
i = cj ∀ j ∈ J �

∑
i∈Sj

�∗
i ≤ cj ∀ j � J �

�∗
i ≤ P ∀ i= 1� 
 
 
 �m


(5)

As an illustrative example, consider the following
four-segment SPP that arises from a gross-day crew
pairing problem, where the rows are covered after the
first column generation iteration. Suppose that this
iteration adds exactly two pairings containing the first
two and last two segments, respectively, with iden-
tical high costs of P/2. Therefore, the set of dual-
optimal solutions to RMP at this iteration satisfies

�∗
1 +�∗

2 = P/2� (6a)

�∗
3 +�∗

4 = P/2� (6b)

�∗
i ≤ P� i= 1� 
 
 
 �4
 (6c)

One possible solution that satisfies these conditions is
given by

�∗
1 =�∗

3 = P/4+�� (6d)

�∗
2 =�∗

4 = P/4−�� (6e)

where

−3P
4

≤ � ≤ 3P
4


 (6f)

In particular, setting � = 3P/4 gives us �∗
1 = �∗

3 = P ,
and �∗

2 =�∗
4 =−P/2, which is an extreme point dual-

optimal solution. Suppose now that we proceed to the
next step of solving the subproblem with this dual
solution and generate two new pairings x3 and x4,
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with the first pairing having a cost of c3 and cover-
ing segments 1 and 3, and the second pairing having
a cost of c4 and covering segments 2 and 4. Hence,
x3 will have a reduced cost of c3−2P , and x4 will have
a reduced cost of c4 + P . This implies that any pair-
ing of the type x3 will have a negative reduced cost
and will enter the matrix as long as c3 < 2P , a large
number, whereas x4 will not enter the matrix unless
c4 is highly negative (<− P ), which is almost unreal-
izable in practice. In particular, c3 = P and c4 = 0 will
result in the interesting situation where x3 enters the
matrix, leading to no improvement in the objective
(although it cuts off the current optimal dual solu-
tion). Let us assume that there exists an additional
legal pairing x5 having a cost of zero that covers all
the segments in the sequence 2, 4, 1, and 3. The partial
path of x5 containing its first two segments resem-
bles x4 and is a candidate that is likely to be elimi-
nated by the heuristic CG subproblem schemes that
employ labeling-based resource-constrained shortest-
path methods in practice (see Desrosiers et al. 1995),
because after the stage of generating the first two seg-
ments, it will have accumulated an unfavorably high
reduced-cost estimate.
Figure 1 illustrates the highly nonlinear fluctuation

in reduced-cost estimates of partial pairings observed
within the subproblem heuristic associated with a his-
torical United Airlines weekly crew scheduling data
set. The figure shows the variation in the reduced-cost
estimate after each label extension that adds another
flight segment to the pairing. Thicker lines delineate
pairings that exhibit extreme variations. Each of the
pairings shown in the figure successfully priced out
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Figure 1 Progress in the Reduced-Cost Estimate of Partial Pairings Within the Subproblem Heuristic

with a negative reduced cost at the end of the labeling
heuristic.
This example illustrates the potential pitfalls of a

black-box-type application of a commercial LP solver
within an implementation of such a dynamic CG pro-
cedure. We term this phenomenon dual noise, whereby
certain inordinately high dual component magnitudes
dominate the reduced-cost estimate of a partial pair-
ing, rendering the original objective cost component
insignificant in comparison and resulting in poor
columns being generated. Note also that in the pres-
ence of significantly high dual noise, the subprob-
lem scheme would need to process a significantly
higher number of partial pairings to add any mean-
ingful subset of columns to the matrix that might
lead to an improvement in the objective value. Fur-
thermore, as explained in the sequel, the addition of
columns driven by dual noise tends to generate weak
inequalities in the dual space, which results in a near-
stationary dual solution as well.
For the large crew scheduling problems we tackle

here, the cardinality of J is typically close to m/5,
leading to substantially higher degeneracy and dual
noise. In such instances that we solved for United
Airlines, the black-box solver approach had to be
abandoned due to a persistent stalling of the objec-
tive value. Furthermore, in a typical dynamic CG
implementation, whenever we reach the preset col-
umn storage limit, columns having high reduced costs
are replaced by those that are newly generated. Doing
so creates further problems because the presence of
dual noise clouds the quality of columns, render-
ing such column replacement schemes ineffective.
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In practice, the reduction of dual noise allows us to
significantly reduce the preset storage limit, without
any adverse impact on the quality of the solution to
SPP. In general, interior point dual solutions seem
to better suit column generation schemes in the con-
text of SPP when compared with extreme point solu-
tions obtained via the simplex method. Furthermore,
dual solutions obtained via subgradient optimization
procedures have yielded better results in large SPP
instances when compared with those obtained using a
commercial optimization software package. A similar
conclusion has been independently observed in other
commercial crew pairing applications on the basis of
several empirical tests (Hjorring 2004) and in vehicle-
routing and staffing problems (Gunluk et al. 2004).
From the previous example, it is clear that not

all dual-optimal solutions are equally desirable. For
example, a choice of � = 0 in the foregoing illustra-
tion would have resulted in all components of the
dual solution taking a positive value of P/4. This
choice significantly improves the possibility of gener-
ating better columns via the subsequent subproblem
and, consequently, achieving a nonzero improvement
in the LP objective. Interestingly, this dual solution
also has the smallest Euclidean norm among all alter-
native dual-optimal solutions. (For brevity, “norm”
and �·� will denote the Euclidean norm throughout
the paper.) A key observation is that, in practice, we
would like to work with dual solutions that have
norms of low magnitude. It is our experience that
minimal norm dual solutions lead to reduced dual
noise. This can be intuitively explained as follows. We
would like to improve the effectiveness of the sub-
problem heuristic by actively seeking dual solutions
that do not dominate the reduced-cost estimates of
partial pairings, and thereby limit the occurrence of
large partial reduced-cost variations over the labeling
steps. Moreover, we would like to generate columns
that lead to deep cuts in the dual space. Denoting �∗

as the set of optimal dual solutions to a current RMP,
note that we would ultimately like to find a � ∈ �∗

such that for some j , we obtain a negative reduced
cost cj −�T Aj = cj −

∑
i∈Sj

�i. Generating such a neg-
ative reduced-cost column and adding

∑
i∈Sj

�i ≤ cj to
the dual problem would yield a dual cut. We would
like to cut off as much of the current �∗ as possible,
and therefore, we would like to find an enterable col-
umn index j for which max�∈�∗�cj −

∑
i∈Sj

�i < 0; i.e.,
�cj −min�∈�∗

∑
i∈Sj

�i < 0. Hence, noting that the com-
ponents of � tend to be nonnegative at optimality due
to the covering (≥) tendency of the set-partitioning
constraints, if we use a � ∈�∗ having relatively small
components that yet generates a negative reduced-
cost column, then this will likely yield a strong cut
giving a dual ascent. Noting that the dual objec-
tive function is to maximize eT �, we could therefore

choose to find an optimal dual solution that among
alternative optima, minimizes ���2; i.e., we could
consider solving

MDN: Minimize ���2
subject to � ∈�∗


(7)

Problem MDN may be burdensome to use in practice.
Instead, we can find a near-optimal solution to the
following dual quadratic program, DQP, which is the
dual to RMP that is augmented by a quadratic term,
where ! is a small positive penalty on the dual norm:

DQP: Maximize eT � − !

2
���2

subject to AT � ≤ c�

� ≤ Pe�

� unrestricted


(8)

We can also thereby measure the dual noise for a
selected dual solution �∗ using the dual noise factor ",
given by

"= ��∗�
��∗

min�
� (9)

where �∗
min is a dual-optimal solution having the

smallest Euclidean norm. We expect that a subprob-
lem heuristic that uses any dual-optimal (or near-
optimal) solution having a relatively small value of "
to generate negative reduced-cost columns will result
in relatively strong cuts in the dual space.
Note that problem DQP is a concave QP maximiza-

tion problem. In lieu of problem DQP, we can equiv-
alently examine its Dorn dual formulation to obtain
the following QP extension of RMP (see Bazaraa et al.
2006, for example):

MQP: Minimize cT x+ PeT s+ !

2
zT z

subject to Ax+ s+!z= e�

x� s ≥ 0� z unrestricted


(10)

Observe that problem RMP can be viewed as a special
case of MQP with ! = 0. Solving MQP using some
positive ! is equivalent to adding a perturbation !z
to the constraints in (3) and including a quadratic
penalty term in the objective that limits such a per-
turbation. This form is related to ideas that attempt to
stabilize column generation. Merle et al. (1999) pro-
pose an alternative perturbation scheme and penal-
ize the rectilinear norm of the perturbation vector.
Likewise, Barnes et al. (2002) propose a nonnegative
least squares (NNLS) problem that aims to minimize
a perturbation measure over the set of active con-
straints. Also, interestingly, Gunluk et al. (2004) report
an improvement in the performance of their CG proce-
dure for a vehicle-routing problem by using a heuristic
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discounting scheme that effectively reduces the mag-
nitude of the optimal dual vector.
Here, we choose to solve the Lagrangian duals to

RMP and MQP using a new deflected subgradient
optimization method that is presented below. Note
that the optimality conditions for MQP with respect to
the z-variable column requires that z=�, so that sim-
ilar to the case of RMP, we obtain a Lagrangian dual
subproblem that involves only the (x, s)-variables. The
deflected subgradient scheme that we propose not
only yields near-optimal dual solutions to RMP and
MQP having a small Euclidean norm but is also com-
putationally inexpensive when compared with a com-
mercial LP solver applied to solving problem RMP.
Moreover, on an average, we obtain a reduction of
more than 75% in dual norm values when compared
with this commercial solver as we shall see in §4. We
combine this deflected subgradient method with an
efficient implementation of the resource-constrained
shortest-path approach for solving the column gen-
eration subproblem, which manages dual noise in an
efficient manner without significantly increasing the
computational burden.

3. A Deflected Subgradient Method
for Solving Linear Programs

In this section, we present some promising subgradi-
ent-based methods for solving the Lagrangian duals
to problems MQP and RMP. These approaches are
nondifferentiable optimization (NDO) methods that
involve moving along deflected subgradient (DSG)
directions to derive near-optimal, minimum-norm
dual solutions to RMP and MQP in the context of col-
umn generation.
Baker and Sheasby (1999) have shown that by

applying exponential smoothing to the subgradient
vector, the convergence process can be accelerated.
The volume algorithm (VA) of Barahona and Anbil
(2000) is based on an efficient approximation scheme
similar to Baker and Sheasby’s (1999) method of expo-
nential smoothing, and uses moving averages to gen-
erate an estimate of the primal vector along with
a heuristic dual solution. However, the VA in its
original form does not guarantee primal or dual con-
vergence, but could be modified to obtain dual con-
vergence. For example, Sherali and Lim (2004) have
enhanced the VA concept by viewing it as a special
case of the deflected subgradient approach in the dual
space, and have accordingly embedded the VA dual
update scheme in the convergent variable-target value
method (VTVM) developed by Sherali et al. (2000) to
obtain encouraging results. In §4, we provide some
comparative computational results using this scheme
as well.

3.1. Dual-Norm-Based Deflected Subgradient
Method (DSG)

Consider the following linear program LP, which rep-
resents RMP in convenient form, and its correspond-
ing Lagrangian Dual LD:

LP: Minimize cT x

subject to Ax = b�

x ∈ �X�

(11)

where

�X = �x& 0≤ x ≤ e 


LD: Maximize�'���& � unrestricted � (12)

where '��� is given by the optimal value to the
Lagrangian subproblem:

LS���: Minimize�cT x+�T �b−Ax�& x ∈ �X 
 (13)

The method we propose is an implicit variable tar-
get value approach that can be used to quickly gener-
ate good-quality solutions to LD in practice. Our goal
is to construct a sequence of incumbent dual vectors
by using the product of the Euclidean norms of the
incumbent dual vector and the current search direc-
tion to assess an implicit target value for determin-
ing the step size for generating the next dual vector,
where the search direction is derived using a suitable
convex combination of the current subgradient and
the previous direction. We provide some motivation
for this choice of step length below.

3.1.1. Choice of Step Length. Given a nondiffer-
entiable concave function '���, and a search direc-
tion vector d belonging to the subdifferential at �,
we obtain the following inequalities by the concavity
property of ' and using the Cauchy-Schwarz inequal-
ity, where �∗ solves LD:

'��∗�− '���≤ ��∗ −��T d ≤ ���∗�+ �����d�
 (14)

For any dual solution �, let us define an implicit target
value difference

(T = T − '���� (15)

where T is an implicit target value at any particular
iteration, with the restriction that it cannot be lesser
than some

Tmin = '���+)�T �d�2 (16)

for a given �T > 0. Let the implicit target value be
such that (T = )����d�, so that

T ≡ '���+)����d� and

T ≥ Tmin ⇒ )��� ≥ 2�T �d�� (17)

where ) is a factor prescribed below depending on
two possibilities that can arise.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 2

1 
Fe

br
ua

ry
 2

01
4,

 a
t 1

2:
09

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Subramanian and Sherali: Effective Deflected Subgradient Optimization Scheme
572 INFORMS Journal on Computing 20(4), pp. 565–578, © 2008 INFORMS

Case 1. ��∗� ≤ ���. In this case, (14) yields '��∗�−
'���≤ 2����d�, and noting (17), we therefore obtain
an implicit target value T that is an upper bound on
the optimal objective value by selecting ) ≥ 2.
Case 2. ��� < ��∗�. This implies from (14) that

'��∗� − '��� ≤ 2��∗��d�. Depending on the current
dual norm, two subcases arise.
Case 2a. 2����d� ≤ '��∗�−'���≤ 2��∗��d�. In this

situation, by (17) a choice of ) ≤ 2 yields an implicit
target value T that is a lower bound on the optimal
Lagrangian dual value.
Case 2b. '��∗� − '��� ≤ 2����d� ≤ 2��∗��d�. This

situation is similar to Case 1, so again, a choice of
) ≥ 2 results in an implicit target value T that is an
upper bound on the optimal objective.
Motivated by these cases, we select a value of ) = 2

to construct our implicit target value as prompted by
(17) according to

T ≡ '� ���+ 2� ����dt� at iteration t�

with Tmin ≡ '� ���+ 2�T �dt�2� (18)

where �� and dt (to be specified) are, respectively, the
incumbent dual vector and the search direction at iter-
ation t. The prescribed dual update scheme is then
given by

�t+1 = �� + +,T − '� ���-

�dt�2
dt = �� + 2+� ����dt�

�dt�2
dt

= �� + 2+� ���
�dt�

dt� (19)

where 0 < +min ≤ + ≤ 1 is a suitable step-length
parameter. This yields the following bounds on the
resulting norm of the dual solution by the Cauchy-
Schwartz inequality:

�1− 2+� ≤ ��t+1�
� ��� ≤ �1+ 2+�

⇒ −2+≤ ��t+1�−� ���
� ��� ≤ 2+
 (20)

Starting with �1 = 0, t = 1, and d1 = g1, the dual
update (19) results in a sequence of dual solutions that
attempts to improve the Lagrangian dual objective
function '�·� by adopting a prescribed step of length
2+� ��� along the normalized DSG direction dt/�dt� at
iteration t. Note that whenever T is less than Tmin as
defined in (18), we use Tmin in lieu of T in (19), giving
the dual update scheme

�t+1 = �� + 2+�T dt
 (21)

As far as the direction dt is concerned, several
deflection schemes have been prescribed in the lit-
erature (see, for example, the discussion in Sherali

and Choi 1996). Any of these schemes could be used
in the above method. We shall adopt an exponential
smoothing scheme that appears to empirically accel-
erate dual convergence, with the added simplification
of simply choosing the step-length parameter + itself
as the coefficient for the smoothing scheme. Under
this approach, the direction dt is derived as a convex
combination of the current subgradient direction and
the previous search direction vector, as given below:

dt = +gt + �1−+�dt−1� (22)

where gt is a subgradient of ' at �t , which is ob-
tained by solving the Lagrangian subproblem given
by (13), and + is the current step-length parameter.
Letting xt be an optimal solution to LS(�t), we can use
gt = b−Axt . Observe that dt is essentially a deflected
subgradient direction given by �1/+�dt = gt + /dt−1,
where / ≡ �1−+�/+. The resulting expression is of a
similar general type to the alternative specific proce-
dures used in Baker and Sheasby (1999) and Barahona
and Anbil (2000).
Note that if we use any convergent variable-target-

based scheme (such as that in the VTVM method
of Sherali et al. 2000, for example), the resultant
deflected subgradient methodology based on (22)
satisfies the requirement for convergence to a dual-
optimal solution (Sherali and Lim 2004). Using the
self-correcting target scheme (18) in concert with (19),
(21), and (22) reduces the number of algorithmic
parameters by at least two when compared with the
VTVM scheme.
To summarize the proposed deflected subgradient

method for optimizing LD, we start with an initial
dual incumbent �� ≡ 0 as the iterate �t at t = 1, and
define '̄ ≡ '� ���, set �T = 1, and use d1 ≡ g1 as the
search direction. The dual solution is then updated at
any iteration t by taking a positive step length pro-
portional to the incumbent dual solution’s norm in
the normalized DSG direction as stated below, where
we have used (18), (19), and (21) to obtain (23a):

�t+1 =





�� + 2+
� ���
�dt�

dt if � ��� ≥ �T �dt� and

�� + 2+�T dt otherwise.

(23a)

't+1 =min
x∈�X

�cT x+�T
t+1�b−Ax� = cT xt+1+�T

t+1gt+1�

where gt+1 ≡ b−Axt+1
 (23b)

If 't+1 > '̄� then set �� =�t+1 and '̄ = 't+1
 (23c)

Let dt+1 = +gt+1+ �1−+�dt� and reiterate
 (23d)

In practice, we also use the projected quadratic-fit
line search during the first 1,000 iterations to accel-
erate convergence, as described in Lim and Sherali
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(2006). Note that the dual update in (23a) requires
a step from the incumbent dual vector, unlike most
other subgradient optimization schemes that adopt a
step length along the (deflected) subgradient direction
from the most recent dual vector. We observed that
the latter scheme, while being competitive in terms
of the final solution gap, tends to produce relatively
larger dual norms in practice. Furthermore, (20) spec-
ifies that the bounds on the norm of the next dual iter-
ate in the DSG scheme are proportional to the norm of
the dual vector from which we step. Toward the aim
of obtaining relatively smaller dual norms, especially
when solving Problem MQP, we can modify (23a) in
light of (20) by stepping from the most recent dual
vector �t (and also defining T and Tmin with �� ← �t

in (18)) whenever ��t�< � ���. This leads to the alter-
native update scheme:

�t+1 =




�� + 2+

� ���
�dt�

dt if � ��� ≥ �T �dt� and

�� + 2+�T dt otherwise�

(23e)

where

�� =




�t if ��t�< � ��� and

�� otherwise

(23f)

In our proposed procedure using either (23a) or
(23e) and (23f), the value of + is initially set to 1.0,
and is periodically halved whenever the incumbent
objective improvement falls below a threshold level as
shown below. Specifically, let �' = 0
1 be a threshold
value for the ascent in incumbent objective achieved
over the most recent 0min = 10 iterations, below which
the value of + is halved. The value of 0 that represents
the next iteration to check for updating + is initial-
ized at 0min+1= 11, the previous incumbent reference
value is initialized at '̂ = '̄, and the minimum per-
missible value for + is set at +min = 10−4. Then, the
scheme for managing + operates as follows, where
'̄ represents the current incumbent objective value at
iteration t. If t = 0 , then do: If '̄ − '̂ < �'� then set
+ ←max�+min�+/2 ; else, retain +. Also, reset '̂ ← '̄
and increment 0 ← t+ 0min.
The DSG procedure can be terminated when

maxi=1�


�m �dti� < �d, where �d is some small positive
tolerance or if we reach a specified maximum itera-
tion limit.
In lieu of directly solving the Lagrangian dual

LD formulated for the linear program RMP, we can
alternatively solve a similar Lagrangian dual formu-
lated for MQP using the same approach, along with
the modifications specified by (23e) and (23f), with-
out any significant increase in computational effort
required per iteration. We present some computa-
tional experience on applying the prescribed algorith-
mic strategies to both LD and the Lagrangian dual to
MQP in the next section.

Convergence to an optimal solution can be induced
by using the following two-phase approach. In
phase I, the implicit target value DSG heuristic de-
scribed above can be run for up to tImax iterations.
We can then switch over to the convergent VTVM-
based target value algorithm of Lim and Sherali (2006)
for phase II, using the same deflected subgradient-
based direction. In this process, the implicit target
value obtained at the end of phase I can be gainfully
employed as the initial target value for phase II. Given
the heuristic nature of phase I, and the demonstrated
effectiveness of the Lim and Sherali (2006) procedure,
this phase II augmentation serves as a useful practical
safeguard in attaining good quality dual solutions via
the overall two-phase scheme, besides simply ensur-
ing theoretical convergence. An alternative approach
would be to use the dual estimate obtained at the end
of phase I to initialize the dual simplex method in
phase II, in lieu of using a convergent NDO procedure
such as VTVM.

4. Computational Experience
In this section, we provide sample results on five
large-scale crew pairing SPP test sets that are derived
from historical schedules at United Airlines. We also
embed the proposed DSG scheme for RMP and MQP
within ACRUZER©, United’s Parallel Crew Pairing
Solver, to evaluate its performance within the CG
framework described in §2 using five other real-life
proprietary test cases selected from a variety of fleet
types and different operational crew regulations. In
addition, we compare the performance of DSG to that
of the interior point barrier solver and the dual sim-
plex solver in CPLEX 9.1. In this context, we report
statistics on the percentage optimality gap after every
1,000 iterations of the DSG scheme and the CPU
run time after 3,000 iterations, as well as the per-
centage ratio of the DSG method’s final dual norm
to the corresponding value obtained for the barrier
solver of CPLEX 9.1. To focus purely on algorith-
mic performance, all DSG runs were made with no
prior knowledge of the optimal solution, no prepro-
cessing of the problem or exploitation of inherent
network structures to reduce its size, and starting
with a zero dual vector in each case. For our imple-
mentation, we have used a Linux-based Intel Pen-
tium 4, 2.6 GHz computer having 1.5 GB of RAM,
and with serial processing only. The CPLEX barrier
solver was applied to solve the five SPP examples to
optimality using default parameter settings and with
no crossover to the simplex method. We also present
results for the MQP-based approach and the conver-
gent VTVM scheme.
Table 1 presents statistics for the computational

time and the solution value obtained by solving the
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Table 1 Computational Results Using CPLEX-Barrier to Solve the LP
Relaxation of SPP to Optimality

Final CPU time
Data set Rows Columns objective Dual norm (sec.)

CREW1 10�683 102�400 393�378�04 186�889 141
CREW2 4�673 59�255 64�777�34 83�350�4 167
CREW3 15�360 163�373 533�734�24 658�642 401
CREW4 15�511 69�989 483�587�12 72�319�1 201
CREW5 2�296 20�334 942�110�23 1�935�920 17

LP relaxation of SPP to optimality using the bar-
rier solver option of CPLEX 9.1. Table 2 displays
the results for solving the same LP relaxation via its
Lagrangian dual using a stand-alone version of the
proposed DSG solver. We can observe from Table 2
that the DSG method found a dual solution to within
10% of the optimal objective value after no more than
3,000 iterations for all the data sets. Furthermore, the
Euclidean norm of the DSG-generated dual vector is
significantly smaller than that generated by CPLEX
(where the former is expressed as a percentage of the
latter in the penultimate column of Table 2), being
about 6%–43% of the latter value in magnitude, and
yielding an average reduction factor of 4.5 in the
dual noise factor " (see Equation (9)). Furthermore,
as evident from Table 3, it is possible to generate
smaller dual norms by solving the Lagrangian dual to
MQP, where we have used a relatively small value of
!= 10−7, and applied (23e) and (23f) instead of (23a)
for MQP. When compared with Table 2, we obtained a
decrease in the optimality gap for the largest CREW3
instance but with some degradation in solution qual-
ity for the other four cases. The last column of Table 3
indicates a reduction in the magnitude of the dual
norm in all cases, yielding an average decrease of 24%
beyond the dual norms generated by solving LD.
Although greater reductions in the magnitude of the
dual norm may be possible by using larger values
for !, using disproportionately large values of this
parameter could lead to increasingly suboptimal solu-
tions. We recommend solving the Lagrangian dual
to Problem MQP whenever a significant reduction in
dual noise is critical for avoiding stalling of the col-
umn generation scheme. We report on such examples
later in Table 5.

Table 2 Results for the DSG Solver Using an Iteration Limit of 3,000

Gap-1,000 Gap-2,000 Gap-3,000 Dual norm CPU time (sec.)
Data set % % % % ratio for 3,000 iter.

CREW1 0�62 0�35 0�27 8�64 30
CREW2 6�99 1�30 0�57 19�00 18
CREW3 8�37 6�05 6�05 5�62 48
CREW4 1�45 0�91 0�79 34�95 21
CREW5 48�28 16�20 8�38 42�73 3

Table 3 Results for the DSG Solver Applied to the
Lagrangian Dual of Problem MQP

MQP/LD dual CPU time (sec.)
Data set Gap-3,000 % norm % ratio for 3,000 iter.

CREW1 0�61 60�53 30
CREW2 5�88 54�84 18
CREW3 5�89 95�02 49
CREW4 1�27 76�08 21
CREW5 9�07 94�59 3

Next, we present in Table 4 the performance of
the convergent VTVM method using the generalized
Polyak-Kelley cut (GPKC) scheme, as described in
Lim and Sherali (2006). The DSG method performs
significantly better in terms of run time and solution
quality for these crew planning instances, where the
goal is to quickly obtain good dual solutions. In all
our test cases, the phase I solution itself was within an
acceptable tolerance. However, to provide a practical
safeguard, and to ensure theoretical convergence to
optimality (or near optimality), we recommend run-
ning the two-phase DSG-VTVM scheme or the DSG-
dual simplex scheme described in §3.
Finally, Table 5 compares the performance of

the ACRUZER© crew solver using CPLEX-barrier,
CPLEX-dual simplex, and the DSG scheme applied
to each of RMP and MQP. A relative complementar-
ity tolerance of 0.1 was used for the barrier method,
while the DSG scheme was run using a tolerance
value of �d = 0
05, and with an iteration limit of
2,000. All approaches, except the barrier-based solver,
used an advanced start to initialize any CG iteration,
either using the most recent basis for the dual sim-
plex method, or the most recent dual estimate for
the DSG approach. We have used a relatively large
value of ! = 10−4 for the MQP-based scheme within
ACRUZER to aggressively seek dual solutions hav-
ing small norm values and thereby analyze the resul-
tant behavior of the DSG scheme under low dual
noise conditions. The statistics presented in Table 5
are derived from the ACRUZER runs made on a
representative set of large-scale SPP instances that
were encountered in historical scheduling months.
Although the data sets in this section are proprietary,
a relatively simple way to generate synthetic SPP data
sets is to extract flight schedule data from the Official

Table 4 Results for the VTVM-GPKC Scheme

Data set Gap-3,000 % CPU time (sec.)

CREW1 4�34 89
CREW2 25�24 62
CREW3 14�86 162
CREW4 7�93 69
CREW5 52�0 7
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Table 5 Comparative Results Within ACRUZER

Data set Flight segments CG iterations RMP solver Final LP objective value Euclidean dual norm CPU time (minutes)

PIL67 2�000 10 BARRIER 2�291�459 2�260�587 4
SIMPLEX 2�513�306 2�383�343 14
DSG-RMP 2�330�865 560�658 2
DSG-MQP 2�311�708 317�958 2

PIL37 5�000 20 BARRIER 17�665�559 3�308�198 298
SIMPLEX 12�166�390 3�454�063 473
DSG-RMP 11�444�565 2�115�149 14
DSG-MQP 7�927�230 92�107 16

FLTAT 16�000 30 BARRIER 26�663�988 5�071�235 610
SIMPLEX 30�629�052 5�286�123 644
DSG-RMP 13�666�756 4�439�346 20
DSG-MQP 10�652�293 399�359 67

PIL20 10�000 40 BARRIER 272�271�820 5�686�905 516
SIMPLEX 291�986�340 5�849�908 428
DSG-RMP 99�237�572 4�387�686 39
DSG-MQP 2�313�577 83�969 54

STALL 5�000 60 BARRIER 7�003�305 2�506�208 377
SIMPLEX 3�257�468 2�752�465 358
DSG-RMP 308�713 87�107 14
DSG-MQP 439�265 89�151 26

Airline Guide website (http://www.oag.com) for any
particular week or month to generate the rows and
incorporate the FAA crew regulations as well as any
relevant contract-specific rules, if available, within the
subproblem procedure to generate realistic columns.
The data sets are arranged in increasing order of dif-
ficulty and represent different aircraft fleet types. All
examples except the FLTAT data set (which is based
on the crew regulations for flight attendant schedul-
ing), use pilot scheduling rules. Table 5 reports on
the problem size in terms of the number of flight
segments, the number of CG iterations performed
within ACRUZER, the final (optimal) LP objective
value achieved, the Euclidean dual norm obtained
after the penultimate CG iteration (i.e., before reop-
timizing the final RMP to optimality using CPLEX),
and the CPU run time for the CG scheme for each
of the four approaches. The final LP objective value
reported in Column 5 corresponds to the optimal LP
solution at the end of the CG procedure (computed
by solving the LP relaxation of the final RMP using
CPLEX). The CPU run time required to resolve the
continuous relaxation of the master problem to opti-
mality, as well as the run time within the subproblem
heuristic across all iterations, are included in the CPU
time reported in the final column. The last data set
(STALL) illustrates a real-life example in which the
CG procedure based on a commercial solver stalls and
fails to reasonably converge after a large number of
CG iterations.
Although the performance of the CPLEX-based

solvers was somewhat competitive for the small-
est data set (PIL67), we observed that as the SPP

problem increased in size and complexity, the DSG-
based approach increasingly dominated the former
approach. The results from the last two data sets
(PIL20 and STALL) indicate the drastic failure of the
barrier- and simplex-based solvers in providing a
practically useful set of columns at the end of the pro-
cedure. Furthermore, the black-box CG approach fre-
quently had to be abandoned in practice for virtually
all large data sets because the preset column storage
limit was quickly reached and no significant improve-
ment in the objective was obtained beyond that point.
The DSG-based approach always yielded the small-
est norm, while the DSG-MQP combination, in partic-
ular, generated dual solutions having a significantly
smaller dual norm in all test cases with accompanying
relatively better or competitive RMP formulations. As
far as computational expense is concerned, the pro-
posed DSG-based methods outperformed the CPLEX
CG schemes by a factor of 20 for the more difficult
data sets (all except PIL67). Note that while Table 2
implies an average speed-up factor of about 10 when
using 2,000 DSG iterations in a stand-alone implemen-
tation, an embedded DSG scheme takes advantage of
an advanced-start capability from the previous itera-
tion, thereby further improving the relative computa-
tional performance over several iterations.
The improvement in the final solution quality

attained can be attributed to the ability of the DSG
scheme to limit dual noise, thereby generating rel-
atively better columns at every CG iteration. This
observation is supported by the strong correlation
observed in virtually all instances between small dual
norms as reported in Column 6 of Table 5 and the
LP objective value realized as reported in Column 5.
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Figure 2 Progress in the Objective Value Within ACRUZER Across the CG Iterations for the STALL Data Set

Furthermore, when we used MQP to seek dual solu-
tions having small norms, we observed a signifi-
cant improvement in solution quality in almost all
examples. In addition, the DSG-RMP solver required
about 30% lesser computational time on the aver-
age, due to the relatively faster convergence of the
RMP objective. In practice, to maintain a good bal-
ance between computational performance and solu-
tion quality, we recommend using MQP within the
CG procedure and to gradually reduce the value of !,
so that we approach a master program formulation
that more closely resembles RMP toward the end of
the procedure.
Figure 2 compares the trend in the objective value

across the CG iterations using each of the afore-
mentioned four approaches for the STALL data
set (we display the primal objective value for the
CPLEX-based approaches, and '̄ for the DSG-based
approaches except that at the final iteration of the
DSG procedures, we record the exact LP value
obtained via CPLEX), while Figure 3 compares the
value of the dual norm at the corresponding CG iter-
ations. The objective values in Figure 2 are plotted
on a logarithmic scale to highlight the substantial

performance difference between the CPLEX- and
DSG-based approaches. While the DSG-RMP scheme
always converged to within the preset tolerance, the
DSG-MQP approach terminated with relatively large
optimality gaps in four of the 60 CG iterations due
to the relatively large value of ! used in these tests.
Consequently, we observe a pronounced nonmono-
tonic trend in '̄ and the dual norm for a few iter-
ations in Figures 2 and 3, respectively. However, as
noted above, the objective value plotted after the final
iteration of the DSG-based schemes is the optimal LP
objective value obtained by reoptimizing RMP using
CPLEX, resulting in the final “jump” in Figure 2. (The
LP values reported in Table 5 are these exact final
optimal values.) The trend in these objective values
indicates that the CPLEX-based methods exhibit a rel-
atively slow rate of improvement even after 60 CG
iterations. The DSG-RMP method converged after
57 iterations, while the DSG-MQP method stabilized
after 25 iterations. Note that in the DSG-RMP case, the
relatively rapid improvement in the Lagrangian objec-
tive after about the 50th iteration in Figure 2 coin-
cides with an equally rapid reduction in dual norm
values in Figure 3. Furthermore, the CPLEX-based
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Figure 3 Variations in the Euclidean Norm of the Dual Solution Across the CG Iterations Within ACRUZER for the STALL Data Set

approaches are characterized by relatively high dual
noise throughout the procedure in Figure 3, which
correlates with the slow improvement in the objec-
tive function value and the relatively large gap from
optimality at termination as evident in Figure 2. We
observed a similar correlation in the general trends
of the objective values and the corresponding dual
norms in all the other examples as well.
Finally, we remark on the “production” robustness

and versatility of the DSG scheme presented in this
paper during industrial use. Proprietary versions of
the DSG scheme have been successfully employed
within the ACRUZER suite over the last four years
and have yielded significant crew cost savings (esti-
mated at $9.6 million per year and recording the low-
est FTC value in history at United Airlines after its
initial implementation), accompanied by an equally
significant improvement in quality-of-work-life met-
rics, as well as a reduction in the crew planning
cycle time at United Airlines. These successes have
resulted in the proposed DSG scheme being addi-
tionally deployed without any significant modifica-
tion within CG-based large-scale aircraft schedule

planning applications at United Airlines as well, and
has yielded equally successful results.

5. Conclusions and Future Research
We have proposed in this paper a new DSG scheme
to efficiently generate good solutions to LP relax-
ations that arise in the context of a CG procedure for
solving large-scale crew scheduling problems in prac-
tice. In particular, we have identified a phenomenon
called dual noise that causes a standard commercial-
solver-based CG approach implemented at United
Airlines to stall far from optimality, and we have
demonstrated that the proposed DSG scheme is able
to considerably mitigate the effects of the dual noise
phenomenon when used to solve the intermediate lin-
ear programs that arise within the CG scheme. The
DSG scheme possesses several attractive features in
comparison with other subgradient methods such as
the use of a self-correcting target value, a minimal
number of algorithmic parameters that need to be
tuned, and empirically observed accelerated conver-
gence to good-quality dual solutions. We have pre-
sented sample computational results to demonstrate
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that the proposed methodology provides a viable
alternative to a commercial LP solver within such air-
line crew planning applications.
Future research includes the possibility of modify-

ing the proposed DSG scheme to derive a stand-alone
theoretically convergent method without relying on
a safeguarded phase II implementation of a known
convergent procedure without compromising its
observed effective empirical performance. Although
the focus of the present work has been on large-scale
crew planning problems, the DSG scheme is equally
applicable to solving Lagrangian duals of general lin-
ear programs, such as relaxations that arise from 0–1
combinatorial problems in particular. It may also be
beneficial to adopt alternative deflection schemes of
the type described in Lim and Sherali (2006) and to
evaluate the relative performances of these methods
on a variety of optimization problems. Our prelimi-
nary steps in this direction based on results from test
sets from Beasley (1990) have proven to be promising.
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