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Abstract 

We consider a variation of the subset selection problem in ranking and selection, where 
motivated by recently developed global optimization approaches applied to simulation 
optimization, our objective is to identify the top-m out of k designs based on simulated output.  
Using the optimal computing budget framework, we formulate the problem as that of 
maximizing the probability of correctly selecting all of the top-m designs subject to a constraint 
on the total number of samples available.  For an approximation of this correct selection 
probability, we derive an asymptotically optimal allocation procedure that is easy to implement. 
Numerical experiments indicate that the resulting allocations are superior to other methods in the 
literature, and the relative efficiency increases for larger problems.  
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 1.  Introduction 

We consider the problem of selecting the top m out of k designs, where the performance of each 
design is estimated with noise (uncertainty). The primary context is simulation, where the goal is 
to determine the best allocation of simulation replications among the various designs in order to 
maximize the probability of selecting all top-m designs. This problem setting falls under the 
well-established branch of statistics known as ranking and selection or multiple comparison 
procedures (cf. Bechhofer, Santner, and Goldsman 1995). In the context of simulation, 
Goldsman and Nelson (1998) provide an overview of this field; see also Andradottir et al. 
(2005).   

 The primary motivation for the setting considered in this paper comes from some recent 
developments in global optimization that, when applied to the simulation setting, require the 
selection of an “elite” subset of good candidate solutions in each iteration of the algorithm.  
Examples of these include genetic algorithms (Holland 1975, Chambers 1995), the cross entropy 
method (CE, see Rubinstein and Kroese 2004), the model reference adaptive search method 
(MRAS, cf. Hu, Fu, and Marcus 2006ab), and more generally, evolutionary population-based 
algorithms that require the selection of an “elite” population in the evolutionary process (see Fu, 
Hu, and Marcus 2006).  Instead of trying to find a subset that contains the single best among a 
currently generated set of candidate solutions, the objective is to find an optimal subset such that 
all members are among the best performers in that candidate set.  The reason for this requirement 
is that this entire subset is used to update the subsequent population or sampling distribution that 
drives the search for additional candidates.  A subset with poor performing solutions will result 
in an update that leads the search in a possibly misleading direction.  The overall efficiency of 
these types of simulation optimization algorithms depends on how efficiently we simulate the 
candidates and correctly select the top-m designs. The algorithm developed herein is generic 
enough that it can be integrated with any such simulation-based evolutionary optimization search 
algorithms.   

 Most of the ranking-and-selection research has focused on identifying the best design. 
Typical of these are two-stage or sequential procedures that ultimately return a single choice as 
the estimated optimum, e.g., Dudewicz and Dalal (1975) and Rinott (1978).  Even the traditional 
“subset selection” procedures aim at identifying a subset that contains the best design, dating 
back to Gupta (1965), who presented a single-stage procedure for producing a subset (of random 
size) containing the best design with a specified probability.  Extensions of this work relevant to 
the simulation setting include Sullivan and Wilson (1989), who derive a two-stage subset 
selection procedure that determines a subset of maximum size m that, with a specified 
probability, contains designs that are all within a pre-specified amount of the optimum.  This 
indifference zone procedure approach also results in a subset of random size, and the designs are 
assumed to follow a normal distribution, with independence between designs assumed and 
unknown and unequal moments.  The primary motivation for such procedures is screening, 
whereby the selected subset can be scrutinized further to find the single optimum.  This is in 
contrast to the motivation for our setting, as alluded to earlier. More recently, these procedures 
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have also been incorporated into simulation optimization, but in a different manner, where the 
ranking-and-selection procedure is incorporated in order to be able to make statistically valid 
inferences rather than driving the actual optimization process itself; see, e.g., Buchholz and 
Thümmler (2005), Boesel, Nelson, and Kim (2003), and Nelson et al. (2001), who also consider 
the setting of unknown and unequal variances; see the references therein for the cases of known 
or unknown but equal variances.   Swisher, Jacobson, and Yücesan (2003) includes a discussion 
of subset selection in the context of simulation optimization along this vein.  Note that these 
approaches are still focused on selecting a subset containing the single best.  As a result, the 
selected subset may also contain very poor solutions, which can affect the convergence rate of 
procedures such as MRAS and the CE method when applied to the simulation optimization 
setting, where the use of the selection procedures are in the iterative updating steps and not in the 
final determination of the optimum.   

 To reiterate, instead of selecting the very best design from a given set or finding a subset that 
is highly likely to contain the best design, the objective in this papers is to find all top-m designs. 
About the only substantive work we are aware of addressing this problem is Koenig and Law 
(1985), who along the lines of the procedure in Dudewicz and Dalal (1975), develop a two-stage 
procedure for selecting all the m best designs (see also Law & Kelton 2000 for an overview of 
the procedure).  The number of additional simulation replications for the second stage is 
computed based on a least favorable configuration, resulting in very conservative allocations, so 
that the required computational cost is much higher than actually needed.  

 To improve the efficiency of allocating simulation replications among competing designs, 
Chen et al. (1997, 2000), Chen and Kelton (2000), Chick and Inoue (2001ab), Hyden and 
Schruben (2000), Lee and Chew (2003), Trailovic and Pao (2004), and Fu et al. (2006) have 
approached the ranking-and-selection problem from the perspective of allocating a fixed number 
of simulation replications in order to maximize the probability of correct selection, under a 
framework called “optimal computing budget allocation.”  Intuitively, to ensure a high 
probability of correct selection, a larger portion of the computing budget should be allocated to 
those designs that are critical in the process of identifying the best design.  In terms of traditional 
ranking and selection, for example, this results in the use of both the means and variances in the 
allocation procedures (for normally distributed design performances), rather than just the 
variances, as in Dudewciz and Dalal (1975) and Rinott (1978).  However, all of this work has 
focused on selecting the single best, and there has been no research involving subset selection.  
This paper aims to fill this gap by providing an efficient allocation procedure for selecting the m 
best designs.   Note that among the selected m designs, there is no further ranking done within 
the set.  Again, this is consistent with the requirements of the CE method and MRAS approach, 
as well as other evolutionary population-based methods that require an “elite” population of 
some type.   

 The paper is organized as follows.  In the next section, we formulate the optimal computing 
budget allocation problem for selecting the top-m designs. Section 3 derives an allocation 
scheme based on approximating the correction selection probability and then carrying out an 
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asymptotic analysis. The performance of the technique is illustrated with a series of numerical 
examples in Section 4. Section 5 concludes the paper. 

 

2. Problem Statement 

We introduce the following notation: 

 T = total number of simulation replications (budget), 

 k = total number of designs, 

 m = number of top designs to be selected in the optimal subset, 

 Sm = set of m (distinct) indices indicating designs in selected subset, 

 Ni = number of simulation replications allocated to design i, 

 Xij = j-th simulation replication for design i, 

 iJ  = ∑
=

iN

j
ij

i

X
N 1

1 , sample mean for design i, 

 Ji = mean for design i, 

 σ i
2  = variance for design i, 

 δi,j = iJ  - jJ . 

 The objective is to find a simulation budget allocation that maximizes the probability of 
selecting the optimal subset, defined as the set of m (< k) best designs, for m a fixed number.  
Our approach is developed based on Bayesian setting (e.g., Inoue and Chick 1998). The mean of 
the simulation output for each design,  Ji, is assumed unknown and treated as a random variable, 
whose posterior distribution is updated as simulation proceeds. Without loss of generality, we 
will take as the m best designs those designs with the m smallest means (but this is unknown), so 
that in terms of our notation, the correct selection event is defined by Sm containing all of the m 
smallest mean designs: 

CSm ≡ { } = { II
mm Sj

ji
Si

JJ
∉∈

≤ )( iSiiSi
JJ

mm ∉∈
≤ minmax }.     (1) 

The optimal computing budget allocation (OCBA) problem is given by 

   P{CS
kNN ,,1

max
L

m} 

                        s.t. N1 + N2 + ⋅⋅⋅ + Nk = T.        (2) 
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Here N1 + N2 + ⋅⋅⋅ + Nk denotes the total computational cost assuming the simulation execution 
times for different designs are roughly the same. This formulation implicitly assumes that the 
computational cost of each replication is constant across designs. The simulation budget 
allocation problems given in Chen et al. (2000) is actually a special case of (2) with m = 1. For 
notational simplification, we will drop the “m” in P{CSm} in the remaining discussion. 

 Note that rank order within the subset is not part of the objective.  In this paper, we will take 
Sm to be the m designs with the smallest sample means.  Let 

ri
J  be the r-th smallest (order 

statistic) of { 1J , 2J ,..., kJ }, i.e., 
1i

J  ≤ 
2i

J  ≤ ... ≤
ki

J .  Then, the selected subset is given by 

Sm ≡ { i1, i2, ..., im }.          

 We assume that the simulation output samples {Xij} are normally distributed and independent 
from replication to replication, i.e., Xi1, Xi2,..., XiNi, are i.i.d. N(Ji, σ i

2 ), as well as independent 
across designs.  The normality assumption is typically satisfied in simulation, because the output 
is obtained from an average performance or batch means, so that Central Limit Theorem effects 
usually hold. 

 

3.  Approximate Asymptotically Optimal Allocation Scheme 

To solve the OCBA problem (2), we estimate P{CS} using the Bayesian model presented in 
Chen et al. (2000) and He et al. (2006). After the simulation is performed, a posterior distribution 
for the unknown mean Ji, p( Ji | Xij, j=1,...,Ni), is constructed based on two pieces of information: 
(i) prior knowledge of the system’s performance, and (ii) current simulation output. Thus, in the 
Bayesian framework, the probability of correct selection defined by (1) is given by 

P{CS} = P{ iJ~ < jJ~ , i ∈ Sm and j ∉ Sm},        (3) 

where iJ~ , i=1,...,k, denotes the random variable whose probability distribution is the posterior 
distribution of design i. As in Chen et al. (2000), we assume that the unknown mean Ji has a 
conjugate normal prior distribution and consider non-informative prior distributions, which 
implies that no prior knowledge is available about the performance of any design before 
conducting the simulations, in which case the posterior distribution of Ji is (cf. DeGroot 1970) 

iJ~  ~ N( iJ , 
i

i

N

2σ
). 

 After the simulation is performed, iJ  can be calculated,  can be approximated by the 
sample variance, and the P{CS} given by Equation (3) can then be estimated using Monte Carlo 
simulation. However, since estimating P{CS} via Monte Carlo simulation is time-consuming 
and the purpose of budget allocation is to improve simulation efficiency, we adopt an 
approximation of P{CS} using a lower bound. 

2
iσ
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3.1  Approximating the Probability of Correct Selection 

For a constant c, 

  P{CS} = P{ iJ~ < jJ~ , i ∈ Sm and j ∉ Sm} 

   ≥ P{ iJ~ < c and jJ~  > c,  i ∈ Sm and j ∉ Sm} 

   = ∏
∈

≤
mSi

i cJP }~{  ∏
∉

≥
mSi

i cJP }~{  ≡ APCSm,     (4) 

where the last line is due to independence across designs.  We refer to this lower bound for 
P{CS}, which can be computed easily and eliminates the need for extra Monte Carlo simulation, 
as the Approximate Probability of Correct Selection for m best (APCSm).  Determining an 
appropriate value for c will be deferred to later this section. Using the approximation given by 
Equation (4), the OCBA problem (2) becomes 

     
kNN ,,1

max
⋅⋅⋅

∏
∈

≤
mSi

i cJP }~{  ∏
∉

≥
mSi

i cJP }~{  

  s.t. N1 + N2 + ⋅⋅⋅ + Nk = T.         (5) 

Now we solve OCBA problem (5), assuming the variables {Ni} are continuous.  

 

3.2  Asymptotically Optimal Solution 

For notation simplification, we define the variable iδ = iJ  - c, i=1,2,…,k. 

For i∈ Sm,   

P( iJ~ < c)= ∫ ∞−

0

)(2

1
i

N
σπ

i

)(2

)(
2

2

i
i

i

N

x

e
σ

δ−
−

dx   

 = ∫
∞

)( 2
1

i

i

i

N
σ

δ
π

2

2t

e
−

dt, 

and for i ∉ Sm,   
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P( iJ~ > c) = ∫
∞

0 )(2

1
i

N
σπ

i

)(2

)(
2

2

i
i

i

N

x

e
σ

δ−
−

dx 

 = ∫
∞

−

)( 2
1

i

i

i

N
σ

δ
π

2

2t

e
−

dt. 

Now let F be the Lagrangian relaxation of (5), with Lagrange multiplier λ: 

F =∏
∈

≤
mSi

i cJP }~{  · ∏
∉

≥
mSi

i cJP }~{   -  λ( N∑
=

k

i 1
i-T) 

   = ∏
∈ mSi

∫
∞

)( 2
1

i

i

i

N
σ

δ
π

2

2t

e
−

dt · ∏
∉ mSi

∫
∞

−

)( 2
1

i

i

i

N
σ

δ
π

2

2t

e
−

dt   -  λ( N∑
=

k

i 1
i-T). 

Furthermore, the Karush-Kuhn-Tucker (KKT) (Walker 1999) conditions of this problem can be 
stated as follows. 

For i∈ Sm,  

i
≠
∈

ij
Sj m ∉ mSjN

F
∂
∂ = ·∏ ≤j cJP }~{ ∏ ≥j cJP }~{ ·

π22
1 )(2

2

2

i
i

i

Ne
σ
δ

−

i

i

σ
δ 2

1−
iN - λ   = 0.   (6) 

For i ∉ Sm,  

i ∈ mSjN
F

∂
∂ =  ∏ ≤j cJP }~{ · ·∏ ≥j cJP }~{

≠
∉

ij
Sj m π22

1− )(2
2

2

i
i

i

Ne
σ
δ

−

i

i

σ
δ 2

1−
iN - λ  = 0.     (7) 

Also, 
λ∂

∂F = 0 returns the budget constraint   =0. TN
k

i
i −∑

=1

 To examine the relationship between Ni and Nj for i ≠ j, we consider three cases: 

(1) i∈ Sm, and j∉ Sm: 

Equating the expressions in Equations (6) and (7), 

  ·∏ ≤r cJP }~{
≠
∈

ir
Sr m ∉ mSr

∏ ≥r cJP }~{ ·
π22

1 )(2
2

2

i
i

i

Ne
σ
δ

−

i

i

σ
δ 2

1−
iN - λ    
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  = ∏
∈ mSr

≤r cJP }~{ · ·∏ ≥r cJP }~{
≠
∉

jr
Sr m π22

1− )(2
2

2

j
j

j

Ne
σ

δ
−

j

j

σ
δ

2
1−

jN - λ.    

Simplifying, 

   }~{ cJP j ≥ ·
)(2

2

2

i
i

i

N
σ
δ

−

e 2
1−

iN = ·}~{ cJP i ≤
)(2

2

2

j
j

j

Ne
σ

δ
−

j

j

σ

δ−
2

1−
jN .    

i

i

σ
δ

Taking the log on both sides,  

 log( }~{ cJP j ≥ ) 2

2

2 i

ii N
σ

δ
− +log(

i

i

σ
δ )-

2
1 log(Ni)=log( )}~{ cJP i ≤ 2

2

2 j

jj N
σ

δ
− +log(

j

j

σ
δ−

)-
2
1 log(Nj). (8) 

Now, we consider the asymptotic limit T→ ∞ with Ni = αiT,  = 1.  Substituting for N∑ =
k
i i1α i, 

Equation (8) becomes  

 log( }~{ cJP j ≥ ) T
i

ii
2

2

2σ
αδ

− +log(
i

i

σ
δ )-

2
1 log( Tiα ) 

  =log( )}~{ cJP i ≤ T
j

jj
2

2

2σ
αδ

− +log(
j

j

σ
δ−

)-
2
1 log( Tjα ). 

Dividing by T,  

 
T
1 log( }~{ cJP j ≥ ) i

i

i α
σ
δ

2

2

2
− +

T
1 log(

i

i

σ
δ )-

T2
1 log( Tiα ) 

  =
T
1 log( )}~{ cJP i ≤ j

j

j α
σ

δ
2

2

2
− + 

T
1 log(

j

j

σ
δ−

)-
T2
1 log( Tjα ).     

and then taking T → ∞ yields 

  2

2

i

i

σ
δ αi = 2

2

j

j

σ
δ

αj . 

Therefore, we obtain the ratio between αi and αj or between Ni and Nj as: 

j

i

N
N  = 

j

i

α
α  = 

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

jj

ii

δσ
δσ  for i∈ Sm, and j∉ Sm.      (9) 
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(2) Both i, j ∈ Sm and i ≠ j.: 

From Equation (6), 

 
iN

F
∂
∂ =

jN
F

∂
∂ =0 yields  

   ·∏
≠
∈

≤

ir
Sr

r
m

cJP }~{ ∏
∉

≥
mSr

r cJP }~{ ·
π22

1 )(2
2

2

i
i

i

Ne
σ
δ

−

)(
2
i

i

σ
iN

δ
2

3

i

i

N

σ - λ  

   =  ∏ ·
≠
∈

≤

jr
Sr

r
m

cJP }~{ ∏
∉

≥
mSr

r cJP }~{ ·
π22

1 )(2
2

2

j
j

j

Ne
σ

δ
−

)(
2
j

j

N
σ

δ

j

2
3

j

j

N

σ
- λ. 

Then, 

   }~{ cJP j ≤ ·
)(2

2

2

i
i

i

Ne
σ
δ

−

i

i

σ
δ 2

1−
iN = ·}~{ cJP i ≤

)(2
2

2

j
j

j

Ne
σ

δ
−

j

j

σ
δ

2
1−

jN .   

Following the analogous derivation that led to Equation (9) yields the same result 

     
j

i

N
N  = 

j

i

α
α  = 

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

jj

ii

δσ
δσ  for i, j ∈ Sm and i ≠ j.  (10) 

(3) i, j ∉ Sm, and i ≠ j: 

Again, following the same derivation procedures that led to Equations (9) and (10) yields 

     
j

i

N
N  = 

j

i

α
α  = 

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

jj

ii

δσ
δσ  for i, j ∉  Sm and i ≠ j.  (11) 

Thus, since Equations (9), (10), and (11) are identical, we write 

     
j

i

N
N  = 

j

i

α
α  = 

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

jj

ii

δσ
δσ ,  i, j ∈ {1, 2, ..., k}, and i ≠ j. (12) 

 In conclusion, if a solution satisfies Equation (12), then the KKT sufficient conditions must 
hold asymptotically, so that the corresponding solution is a locally optimal solution to the 
Lagrangian relaxation of the OCBA problem (5). We therefore have the following result. 
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Theorem 1.  The allocation given by (12) is asymptotically (as T → ∞) a locally optimal 
solution for OCBA problem (5), where iδ = iJ  - c, for c a constant, and the variances 

 are finite, i.e., APCSm is asymptotically maximized by the allocation given by 
(12). 

22
2

2
1 ,,, kσσσ K

 

3.3 Determination of c Value 

The parameter c impacts the quality of the approximation APCSm to P{CS}. Since APCSm is a 
lower bound of P{CS}, choosing c to make APCSm as large as possible is likely to provide a 
better approximation of APCSm to P{CS}. Figure 1 is provided to help explain our choice of c, 
by giving an example of probability density functions for , i = 1, 2, ..., k.  iJ~

 Note that APCSm is a product of P{ iJ~ < c} for i ∈ Sm and P{ iJ~  > c} for i ∉ Sm. Consider the 
case Var(

1

~
iJ ) = Var(

2

~
iJ ) = ... = Var(

ki
J~ ). For any c, P{

1

~
iJ  < c} > P{

2

~
iJ  < c} > ... > P{

mi
J~  < c}, 

and P{
1

~
+mi

J  > c} < P{
2

~
+mi

J  > c} < ... < P{
ki

J~  > c}. To prevent APCSm from being small, we 

want to choose c to avoid any of the product terms being too small, particularly for P{
mi

J~  < c} 

and P{
1

~
+mi

J  > c}, because one of these two terms is the smallest one in the product no matter 

what c is. A good choice of c is a number between 
mi

J and 
1+mi

J , because  

(i) if c = c' < 
mi

J , then  P{
mi

J~  < c'} < 0.5. The smaller (c' - 
mi

J ), the smaller P{
mi

J~  < c}, 
resulting in a negative impact on APCSm;  

(ii) if c = c" > 
1+mi

J , then  P{
1

~
+mi

J  > c"} becomes small and so does APCSm.  

With these considerations, one would like to maximize both (c - 
mi

J ) and (
1+mi

J  - c), or to 

maximize both P{
mi

J~  < c} and P{
1

~
+mi

J  > c}.  We choose c = (
mi

J +
1+mi

J ) / 2, which in theory 

maximizes {(c - 
mi

J )2 + (
1+mi

J  - c)2}, and in numerical testing results in good performance while 
requiring negligible computation cost. 
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Figure 1. An example of probability density functions for iJ~ , i = 1, 2,..., k,  c' <
mi

J < c <
1+mi

J < c".  

 

3.4 Sequential Allocation Scheme 

The allocation given by (12) assumes known variances.  In practice, a sequential algorithm is 
used to estimate these quantities using the updated sample variances.  Furthermore, the 
“constant” c and sample means are also updated during each iteration.  Each design is initially 
simulated with n0 replications in the first stage, and additional replications are allocated 
incrementally with ∆ replications to be allocated in each iteration. In summary, we have the 
following algorithm (assuming T-kn0 is a multiple of ∆). 

OCBA-m Allocation Procedure 

INITIALIZE l←0; 

 Perform n0 simulation replications for all designs;  = nl
k

ll NNN === L21 0. 

LOOP WHILE < T  DO ∑
=

k

i

l
iN

1

 UPDATE Calculate sample means and sample variance using the new simulation output; 

  Compute c = (
mi

J +
1+mi

J ) / 2. 

 ALLOCATE  Increase the computing budget by ∆ and calculate the new budget allocation, 
, , …, , according to (12). 1

1
+lN 1

2
+lN 1+l

kN

 SIMULATE Perform additional max( - ,0) simulations for design i, i = 1,…,k;  
l← l +1. 

1+l
iN l

iN

END OF LOOP 

1iJ  miJ  1+miJ  kiJ  

1

~
iJ  miJ~  

1

~
+miJ  

kiJ~  

c c' c" 
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4.  Numerical Testing and Comparison with Other Allocation Procedures 

In this section, we test the OCBA-m algorithm by comparing it on several numerical experiments 
with different allocation procedures: Equal Allocation, which simulates all design alternatives 
equally; the Koenig and Law (1985) procedure denoted by KL; Proportional To Variance (PTV), 
which is a modification of KL that allocates replications proportional to the estimated variances; 
and the OCBA allocation algorithm for selecting only the best design (Chen et al. 2000), denoted 
by OCBA-1. For notational simplicity, we assume J[1] < J[2] < … < J[k], so design [1] is the best 
and correct selection would be Sm = {[1], [2], ..., [m]} (but this is unknown a priori).  

 

4.1 Computing Budget Allocation Procedures 

Equal Allocation 

The simulation budget is allocated equally to all designs, i.e., Ni = T/k for each i. The 
performance of equal allocation will serve as a benchmark for comparison. 

KL ( Koenig and Law 1985) 

The two-stage procedure of Koenig and Law (1985) selects a subset of specified size m, with 
probability at least P*, so that the selected subset is exactly the actual subset with the best 
(smallest) expected values, provided that J[m+1] - J[m] is no less than an indifference zone, d. As in 
our setting, the ordering within the selected subset does not matter.  

 In the first stage, all designs are simulated for n0 samples. Based on the sample variance 
estimate ( ) obtained from the first stage and given the minimum correct selection probability 
P*, the number of additional simulation samples for each design in the second stage is 
determined by: 

2
iS

 Ni = max(n0+1, ⎡ h3
2 2

iS ( n0) / d2 ⎤ ), for i = 1, 2,…, k,     (13) 

where ⎡•⎤ is the integer “round-up” function, and h3 is a constant that depends on k, P*, and n0.  

Proportional To Variance (PTV) 

This is a sequential modified version of the KL procedure, based on the observation that (13) 
implies that Ni is proportional to the estimated sample variances . Thus, the PTV procedure  
sequentially determines {N

2
iS

i} based on the newly updated sample variances by replacing the 
ALLOCATE step in the OCBA-m algorithm by 

  = C1+l
iN l 2

iS , for i = 1, 2,…, k,        
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where Cl is determined based on the total simulation samples equals to the given computing 
budget at iteration l. Note that the indifference-zone parameter has been removed in this 
modification in order to make it comparable to the other procedures.   

OCBA-1 (Chen et al. 2000) 

The sequential OCBA procedure of Chen et al. (2000) allocates the computing budget with the 
objective of selecting the best design, i.e., m = 1, for which extensive numerical testing has 
demonstrated its efficiency (e.g., Branke et al. 2006).  While it is not designed for m > 1, we test 
this procedure here for benchmarking purposes, and denote it be OCBA-1.  

 

4.2 Numerical Results 

To compare the performance of the procedures, we carried out numerical experiments for several 
typical selection problems. In comparing the procedures, the measurement of effectiveness used 
is the P{CS} estimated by the fraction of times the procedure successfully finds all the true m-
best designs out of 100,000 independent experiments. Because this penalizes incorrect selections 
equally – e.g., a subset containing the top-1, top-2, ..., and top-(m-1) designs and missing only 
the top-m design is treated no differently than a subset containing not a single of the top-m 
designs – in our numerical experiments, we also include a second measure of selection quality, 
the so-called expected opportunity cost E[OC], where  

 OC ≡  ∑ .
=

−
m

j
ji JJ

j
1

][ )(

This measure penalizes particularly bad choices more than mildly bad choices.  For example, 
when m = 3, a selection of {top-1, top-2, top-4} is better than {top-1, top-2, top-5}, and both are 
better than {top-1, top-3, top-5}.  Note that OC returns a minimum value of 0 when all the top-m 
designs area correctly selected. The estimated E[OC] is the average of OC estimate over the 
100,000 independent experiments. 

 Each of the procedures simulates each of the k designs for n0= 20 replications initially 
(following recommendations in Koenig and Law 1985 and Law and Kelton 2000). KL allocates 
additional replications in a second stage (so the total number is not fixed a priori), whereas the 
other procedures allocate replications incrementally by ∆=50 each time until the total budget, T, 
is consumed. For each level of computing budget, we estimate the achieved P{CS} and E[OC].   

 Since KL is a two-stage indifference-zone procedure, we must specify the values for the 
desired probability of correct selection, P*, and the indifference zone d to satisfy the condition 
that J[m+1] - J[m] ≥ d, where a smaller d implies a higher required computation cost based on 
Equation (13). In practice, the value of J[m+1] or J[m] is unknown beforehand, but for 
benchmarking purposes, we set d = J[m+1] - J[m], which leads to the minimum computational 
requirement (or maximum efficiency) for the procedure. As is done for the other procedures, the 
resulting P{CS} and E[OC] can be estimated over the 100,000 independent experiments.  Since 
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the required computation cost also varies from one experiment to another, we will indicate the 
average number of total replications based on the 100,000 independent experiments. 

 
Example 1. Equal variance 

There are 10 alternative designs, with distribution N(i, 62) for design i = 1, 2, …, 10. The goal is 
to identify the top-3 designs via simulation samples, i.e., m=3 in this example. 

 To characterize the performance of different procedures as a function of T, we vary T 
between 200 and 8000 for all of the procedures other than KL, and the estimated achieved 
P{CS} and E[OC] as a function of T is shown in Figure 2. For KL, we test two cases P* = 0.9 
and P* = 0.95, and the corresponding estimated P{CS} and E[OC] vs. the average total 
simulation replications are shown as two single points (the triangle and circle) in Figure 2. 

We see that all procedures obtain a higher P{CS} and lower E[OC] as the available 
computing budget increases. However, OCBA-m achieves the highest P{CS} and lowest E[OC] 
for the same amount of computing budget.  It is interesting to observe that OCBA-1, which 
performs significantly better than Equal Allocation and PTV when the objective is to find the 
single best design, fares worse in this example than these two allocations when the objective is 
changed to finding all the top-3 designs. Equal allocation performs almost identically to PTV, 
which makes sense, since the variance is constant across designs. Specifically, the computation 
costs to attain P{CS} = 0.95 for OCBA-m, OCBA-1, Equal, and PTV are 800, 3200, 1950, 2000, 
respectively.  

Not surprisingly, the performance of KL is along the performance curve of PTV, since KL 
basically allocate the computing budget based on designs' variance. However, KL achieves a 
substantially higher P{CS} than the desired level (e.g., exceeding 0.99 for the target minimum of 
P* = 0.9) by spending a much higher computing budget than actually needed, consistent with the 
fact that typical two-stage indifference-zone procedures are conservative. 
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Figure 2a. P{CS} vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 1.  
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Figure 2b. E[OC] vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 1.  
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Example 2. Variance increasing in value of mean 

This is a variant of Example 1. All settings are preserved except that the variance is 
increasing in the design index, so good designs have smaller variances. Specifically, the designs 
are distributed N(i , i2) for design i = 1, 2, …, 10. Again, m = 3. 

The test results shown in Figure 3 are qualitatively similar to those in Example 1. OCBA-m 
achieves the highest P{CS} for the same amount of computing budget. However, PTV (and KL) 
performs poorly in this example because good designs receive relatively less computing budget 
due to their smaller variances, which tend to slow down the process of distinguishing good 
designs. Specifically, the computation costs to attain P{CS} = 0.95 for OCBA-m, OCBA-1, 
Equal, and PTV are 350, 750, 700, 2250, respectively. 
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Figure 3a. P{CS} vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 2.  
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Figure 3b. E[OC] vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for example 2.  

 
Example 3. Variance decreasing in value of mean 

The third example is another variant of Examples 1 and 2, but this time the variance is 
decreasing in the design index, i.e., the distribution is N(i , (11-i)2) for design i = 1, 2, …, 10. 
Under this setting, good designs have larger variance. Again, m = 3. 

The test results shown in Figure 4 are similar to those in the previous examples, with again 
OCBA-m performing the best. However, in contrast to Example 2, PTV (and KL) performs 
relatively well in this example, because good designs receive much more computing budget due 
to their higher variances. On the other hand, OCBA-1 performs poorly, because it spends an 
excess amount of the computing budget to distinguish between the very top designs, since its 
objective is to find the best. In this example, the computation costs to attain P{CS} = 0.95 for 
OCBA-m, OCBA-1, Equal, and PTV are 1400, 7900, 3050, 2200, respectively. 
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Figure 4a. P{CS} vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 3.  
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Figure 4b. E[OC] vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 3.  
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Example 4. (s,S) inventory problem 

The fourth example is a typical (s, S) inventory policy problem based on the example that 
was introduced by Koenig and Law (1985) and later analyzed by Nelson and Matejcik (1995).  
We extend the size of that original example from 5 designs to 10 designs. When random demand 
brings the inventory of system i on hand down to si units, the inventory is reordered to level Si., 
for i = 1, 2, …, 10. The 10 systems are defined by the parameters (s1, s2, …, s10) = (20, 20, 20, 
40, 40, 40, 60, 60, 60, 80) and (S1, S2, ..., S10) = (30, 40, 50, 50, 60, 70, 70, 80, 90, 90), 
respectively. The systems with policy (s3, S3), (s6, S6) and (s2, S2) are the top-3 designs (m = 3). 

The test results shown in Figure 5 are similar to those in previous examples, in that OCBA-m 
is clearly the top performer again; however, this time OCBA-1 is the runner up by a slight 
margin.  The computation costs to attain P{CS} = 0.95 for OCBA-m, OCBA-1, Equal, and PTV 
are 500, 1200, 1650, 1350, respectively. 
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Figure 5a. P{CS} vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 4.  
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Figure 5b. E[OC] vs. T using four sequential allocation procedures and KL  
(triangle for P*=90% and circle for P*=95%) for Example 4.  

 
 
Example 5. Larger-scale problem 

This is a variant of Example 1 (constant variance), with the number of designs increased to 
50. The alternatives have distribution N(i , 102) for design i = 1, 2, …, 50, and m = 5. Since KL's 
performance basically follows that of PTV, but its required computing budget is far beyond the 
range we are considering here, we exclude KL from the numerical testing. 

Figure 6 depicts the simulation results. As in earlier examples, OCBA-m achieves the highest 
P{CS} and the lowest E[OC] with the same amount of computing budget; however, the 
performance gap between OCBA-m and other procedures is substantially greater. This is because 
a larger design space allows the OCBA-m algorithm more flexibility in allocating the computing 
budget, resulting in even better performance. On the other hand, OCBA-1 performs poorly, 
because it spends a lot of computing budget on distinguishing the very top designs, a tendency 
that is penalized even more for larger m. Again, since the variance is constant across designs, the 
performance of Equal and PTV are nearly indistinguishable.  In this example, the computation 
costs to attain P{CS} = 0.95 for OCBA-m, OCBA-1, Equal, and PTV are 4050, 31050, 27050, 
27200, respectively. 
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Figure 6a. P{CS} vs. T using four sequential allocation procedures for Example 5.  
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Figure 6b. E[OC] vs. T using four sequential allocation procedures for Example 5.  
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5.  Conclusions 

We present an efficient allocation procedure for identifying the top-m designs out of k 
(simulated) competing designs. The objective is to maximize the simulation efficiency, 
expressed as the probability of correct selection within a given computing budget. We propose a 
heuristic to approximate the associated correct selection probability, and then derive an 
asymptotically optimal allocation procedure for this approximate probability. Numerical testing 
indicates that the allocation procedure is significantly more efficient and robust than other 
methods in the literature, with the relative efficiency increasing in problem size.  Furthermore, 
although the procedure was derived based on an asymptotic derivation, the numerical results 
indicate that the procedure is effective even when the computing budget is small. Finally, the 
numerical results illustrate that the allocation specified by the original OCBA algorithm (Chen et 
al. 2000), designed for selecting the single best design, does not perform well in selecting the 
top-m designs, providing another motivation for the need of a new methodology when the 
objective is extended beyond selecting just the best design. 
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