
This article was downloaded by: [128.173.125.76] On: 21 February 2014, At: 11:56
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Optimal Constrained Pruning Strategy for Decision
Trees
Hanif D. Sherali, Antoine G. Hobeika, Chawalit Jeenanunta,

To cite this article:
Hanif D. Sherali, Antoine G. Hobeika, Chawalit Jeenanunta, (2009) An Optimal Constrained Pruning Strategy for Decision
Trees. INFORMS Journal on Computing 21(1):49-61. http://dx.doi.org/10.1287/ijoc.1080.0278

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2009, INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
http://dx.doi.org/10.1287/ijoc.1080.0278
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

INFORMS Journal on Computing
Vol. 21, No. 1, Winter 2009, pp. 49–61
issn 1091-9856 �eissn 1526-5528 �09 �2101 �0049

informs ®

doi 10.1287/ijoc.1080.0278
©2009 INFORMS

An Optimal Constrained Pruning
Strategy for Decision Trees

Hanif D. Sherali
Grado Department of Industrial and Systems Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061, hanifs@vt.edu

Antoine G. Hobeika
Via Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24061, hobeika@vt.edu

Chawalit Jeenanunta
Sirindhorn International Institute of Technology, Thammasat University, Bangkadi, Pathum Thani 12121, Thailand,

chawalit@siit.tu.ac.th

This paper is concerned with the optimal constrained pruning of decision trees. We present a novel 0–1 pro-
gramming model for pruning the tree to minimize some general penalty function based on the resulting

leaf nodes, and show that this model possesses a totally unimodular structure that enables it to be solved as a
shortest-path problem on an acyclic graph. Moreover, we prove that this problem can be solved in strongly poly-
nomial time while incorporating an additional constraint on the number of residual leaf nodes. Furthermore, the
framework of the proposed modeling approach renders it suitable to accommodate different (multiple) objective
functions and side-constraints, and we identify various such modeling options that can be applied in practice.
The developed methodology is illustrated using a numerical example to provide insights, and some computa-
tional results are presented to demonstrate the efficacy of solving generically constrained problems of this type.
We also apply this technique to a large-scale transportation analysis and simulation system (TRANSIMS), and
present related computational results using real data to exhibit the flexibility and effectiveness of the proposed
approach.

Key words : decision analysis; analysis of algorithms; programming; integer; transportation
History : Accepted by Amit Basu, former Area Editor for Knowledge and Data Management; received August
2005; revised October 2006, March 2007, July 2007; accepted February 2008. Published online in Articles in
Advance August 8, 2008.

1. Introduction and Motivation
Decision trees are popularly used in data mining sce-
narios for the purpose of classifying data or building
regression models to extract useful information, and
have been widely applied in a variety of contexts such
as medical diagnosis, signal and image pattern recog-
nition, and demographic studies in transportation
planning. The construction of such trees typically fol-
lows a two-phase process: a tree-growing step followed
by a pruning procedure (some exceptions are discussed
below). In the tree-growing step, a training data set
is progressively partitioned into nodes according to
a classification scheme based on a set of designated
independent variables that represent certain attributes
of interest. (For example, in a transportation planning
context where the data points represent households,
the independent variables could record attributes such
as the household size or the number of members in
the household that fall within different age groups.)
At each iterative step in this process, a leaf node of
the current tree is selected and is partitioned into

two subnodes based on some identified independent
variable taking on values lesser than or greater than
a specified split value. The ultimate objective is to
generate a tree that classifies within each of its leaf
nodes a set of data points that bear some common
resemblance with respect to certain dependent vari-
ables that measure relevant performance characteris-
tics. (In the aforementioned transportation planning
context, the dependent variables could represent the
number of trips made by the household or the time
spent performing different activities over a 24-hour
horizon.) This is achieved by attempting to minimize
some classification error function, as for example, the
(weighted) sum of squared differences between each
dependent variable value and its mean value among
the data points residing within each leaf node. (Equa-
tion (5) in §3 provides a formal mathematical defini-
tion.) Hence, each partitioning step is executed in a
manner such that the resulting decrement in this error
function is maximized. This process continues until all

49

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

borrego
Typewritten Text
Copyright by INFORMS. Sherali, Hanif D.; Hobeika, Antoine G.; Jeenanunta, Chawalit. An Optimal Constrained Pruning Strategy for Decision Trees. INFORMS Journal on Computing 2009 21:1, 49-61. doi: 10.1287/ijoc.1080.0278

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
50 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

the current leaf nodes are sufficiently refined, whence
they are declared to be terminal nodes.
The resulting tree purposefully overfits the data.

Consequently, a subsequent pruning strategy is ap-
plied to collapse the tree to a desired extent. The focus
in this paper is on conducting an optimal constrained
pruning of decision trees. In general, such trees might
be classification trees, where the dependent variables
are categorical, or might be regression trees, where the
dependent variables are numerical and where one
might be further interested in developing a functional
mapping from the independent to the dependent vari-
ables to enable a prediction of the latter in terms of
the former (see Breiman et al. 1984, Murthy 1998 for a
treatise on decision trees).
A prominent decision tree development procedure

that has been widely applied in practice is the classifi-
cation and regression tree (CART) algorithm, which is
described in Breiman et al. (1984). Given a tree T that
is grown via the foregoing procedure, the CART algo-
rithm recommends two alternative schemes for reduc-
ing or pruning this tree, namely, the cross-validation
approach and the independent test sample approach. For
small sample sizes, it is recommended to use the
cross-validation approach, in which some 10 different
trees are usually grown, each built from a different
90% of the total sample data set. The prescribed tree is
then selected as the one that yields the lowest predic-
tion error or misclassification cost based on the entire
data set. However, when the sample size is very large,
Breiman et al. (1984) recommend the less computa-
tionally intensive independent test sample approach.
This method adopts the popular cost-complexity prun-
ing (CCP) technique, which repeatedly determines the
weakest nonterminal node junction of the tree in the
sense that such a node yields the smallest value of a
defined penalty function if the subtree rooted at this
node is collapsed into it. Performing this collapsing
step repeatedly produces a sequence of nested trees
leading to the single root node of the original tree.
In this sequence of nested subtrees, each subtree is
optimal in the sense that it has the least total cost
among all possible subtrees having the same number
of leaf nodes (i.e., having the same complexity). The
optimal tree is prescribed as the one that yields the
lowest prediction error among the resulting subtrees
based on classifying another independent test sam-
ple using each of these subtrees. Breiman et al. (1984)
and Breslow and Aha (1997) describe various other
(mostly heuristic) pruning methods that can be used
in this context, but by far, the most widely used tech-
nique is the aforementioned CCP method, which has
been implemented in many other systems such as S-
plus and OC1 as well (see Breiman et al. 1984).
Among several alternative criteria used for pruning

decision trees, one that has been extensively analyzed

is the minimum description length (MDL) principle,
which seeks to minimize the bits required to encode
the tree itself as well as to encode the classes of
records that reside in the leaf nodes. Quinlan and
Rivest (1989) discuss how to construct optimal deci-
sion trees based on this criterion, and Mehta et al.
(1995) propose an iterative bottom-up pruning pro-
cedure that is governed by this principle. Note that
using the approach presented in this paper, we can
minimize a general weighted sum of the encoding
lengths for the tree and for the records classified
within the leaf nodes, in addition to incorporating
alternative objective criteria and constraints. Other
examples of objective criteria that are used in data
mining contexts, which we can accommodate as well,
are the error rate and the standard error (see Ye 2003).
Here, based on a scheme for identifying a data point
as being erroneously misclassified within a given set
of points, the error rate (ER) is defined as the frac-
tion of data points that are in error, and the stan-
dard error is defined as

√
ER�1−ER�/d, where d is the

total number of data points. Some additional objective
criteria, as motivated by our transportation planning
case study, are discussed in detail in §3, along with
related accompanying side-constraints.
Li et al. (2001) propose an interesting alterna-

tive dynamic-programming-based pruning (DPP) algo-
rithm. For each possible tree size defined in terms
of the number of leaf nodes, this routine recursively
determines a corresponding optimal pruned tree that
would have a minimal prediction error. Consequently,
the pruned trees produced by the CCP method are a
subset of the trees produced over the different recur-
sive stages of the DPP technique, where each stage is
defined based on the number of leaf nodes, and where
this number is decremented by a unit at each algo-
rithmic step. Hence, the CCP method does not deter-
mine optimal solutions for each designated number
of leaf nodes. Moreover, in the computational results
presented in Li et al. (2001), the DPP algorithm is
shown to perform better than the CCP procedure in
terms of classification accuracy. It is also worth not-
ing that the sequence of pruned trees produced by the
DPP approach are not necessarily nested, nor are they
unique, but as Li et al. (2001) argue, this issue is not
of concern in regard to the quality of these trees.
Our focus in this paper is also on the prun-

ing step, given that an (overfitted) decision tree
has already been generated via an appropriate tree-
growing process. However, in addition to minimizing
some defined penalty function over all the resulting
leaf nodes, we might be interested in also optimizing
certain secondary objective functions (or some com-
binations thereof) that examine other statistics related
to the classified data. Furthermore, we might be inter-
ested in imposing additional side-constraints govern-
ing alternative objective goals or related to the size,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 51

statistical properties, or structure of the resulting tree.
(Specific examples of such alternative objective func-
tions and constraints are discussed in §3.) In this
sense, the DPP and CCP methods as originally pre-
sented aim to minimize the misclassification error
subject to a constraint on the total number of leaf
nodes (where, as mentioned above, CCP solves this
problem only for a subset of possible restrictions on
the number of leaf nodes). To modify these methods
to handle more complex optimal constrained prun-
ing problems would require a customized revision of
the underlying methodology. For example, to accom-
modate additional constraints in the DPP approach,
we would need to appropriately redefine the dynamic
programming state space in terms of a multidimen-
sional vector having components corresponding to
each of the constraints, and restructure the accompa-
nying recursive equation (see Bertsekas 2001). On the
other hand, the mathematical programming frame-
work developed in this paper can automatically accom-
modate arbitrary side-constraints and also analyze
multiple objectives as necessary.
In the context of constrained pruning, Chou et al.

(1989) examine a tree-structured vector quantization
design problem for which they propose a heuristic
pruning procedure for minimizing the expected dis-
tortion subject to a single cost constraint. Lin et al.
(1992) have subsequently analyzed the complexity of
solving such problems. Using a dynamic program-
ming framework similar to that of Li et al. (2001),
they establish that when the single constraint sim-
ply restricts the number of final leaf nodes generated,
then the underlying problem can be solved in poly-
nomial time. On the other hand, under more intri-
cate single constraints that limit the entropy or the
expected depth of the leaf nodes, they demonstrate
that the pruning problem becomes NP-hard. How-
ever, no solution approaches are delineated for the
latter problems. In this paper, using an alternative 0–1
modeling approach, we not only establish the same
polynomial-time complexity for the problem involv-
ing the minimizing of a general misclassification or
distortion or encoding description function subject to
a constraint on the number of leaf nodes, but also, we
show how this model provides the facility to conduct
an optimal pruning subject to a variety of multiple
constraints.
The main contribution of this research, therefore, is

to develop a new concept of formulating a specially
structured 0–1 programming model for optimally
pruning decision trees based on specified objective
functions and restrictions that govern certain struc-
tural and statistical properties of the generated classifi-
cation tree. We demonstrate that the basic underlying
formulation possesses a totally unimodular struc-
ture that enables it to be solved as an equivalent

shortest-path problem on an acyclic graph. Further-
more, we show that this framework also permits solv-
ing the model with an additional constraint on the
number of leaf nodes in strongly polynomial time.
For problems having arbitrary side-constraints, the
basic problem structure greatly facilitates its solu-
tion, as demonstrated by our computational results.
Finally, we apply this general concept within the con-
text of a large-scale transportation analysis and simu-
lation system (TRANSIMS) (see Los Alamos National
Laboratory 2002a).
Since the writing of this paper, an associate editor

brought to our attention a manuscript by Zhang and
Huei-chuen (2005), wherein an alternative 0–1 pro-
gramming model is presented for pruning decision
trees to minimize an error function with respect to a
test set (without additional constraints). Their model
also possesses a totally unimodular structure as does
ours, although our model is more compact in rep-
resentation (see Remark 1 in §2 for a more detailed
comparison). However, Zhang and Huei-chuen (2005)
do not discuss the incorporation of additional side-
constraints or provide any implementation results;
rather, their focus is on presenting an alternative com-
plexity proof of the bottom-up pruning method due
to Quinlan (1988).
Before proceeding, it is important to emphasize

that our present focus is on the pruning step and
not on the tree-growing mechanism, although the lat-
ter naturally governs the final tree produced. The
motivation here is that the primary objective utilized
in our proposed modeling approach is to minimize
the misclassification error as addressed in the tree-
growing procedure, but along with the consideration
of other secondary objectives, in addition to certain
imposed side-constraints. Nonetheless, the joint con-
sideration of tree growing and pruning in an opti-
mization framework deserves further research. In this
connection, Rastogi and Shim (1998) describe a prun-
ing method, called PUBLIC, in which tree building
and pruning are integrated by using a lower bound
to determine a priori whether the subtree rooted at
a given node will be later pruned, and thereby obvi-
ating the expansion of such a node. The specific cri-
terion for which such a lower bound is derived is
the MDL objective discussed above. However, addi-
tional restrictions such as limiting the number of leaf
nodes cannot be automatically integrated within this
scheme. Nonetheless, their concept for jointly consid-
ering the tree-growing and pruning steps is novel and
deserves further research.
Adopting an alternative framework, Folino et al.

(1999, 2001, 2002) investigate the design of both serial
and parallel implementations of genetic algorithms
for heuristically evolving a population of trees with

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
52 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

respect to certain appropriately defined fitness func-
tions. Also, Fu et al. (2003a, b, 2006) propose cer-
tain novel modeling concepts and genetic algorithmic
approaches for constructing decision trees based on
very large data sets.
In another optimization-related tree construction

method, Bennett (1992) proposes a linear program-
ming model for determining linear-combination splits
at nodes for two-class decision trees. Also, Bennett
(1994) has studied how splitting decisions should
be made at each level of a given particular final
tree structure so that the resultant classification error
with respect to two classes of data points would be
minimized. The splits at each level are made using
general linear functions, and the problem is formu-
lated as a nonconvex multilinear program, which is
solved approximately using the Frank-Wolfe algo-
rithm. Bredensteiner and Bennett (1998) study a
related problem of splitting data comprised of two
classes of points using a separating hyperplane such
that the number of nonzero hyperplane coefficients
(which represents the number of features or attributes
used) is minimized, given a specified misclassifica-
tion error tolerance. The problem is formulated as a
parametric bilinear program, which is NP-hard, and a
heuristic based on the Frank-Wolfe method is adopted
to solve this problem. For further reading and surveys
on constructing decision trees, we refer the reader to
Breslow and Aha (1997), Li et al. (2001), Murthy (1997,
1998), and Safavin and Landgrebe (1991).
The remainder of this paper is organized as fol-

lows. In §2, we develop our basic 0–1 program-
ming model for optimally pruning decision trees, and
we analyze its structure and establish its solvabil-
ity with or without an additional constraint on the
number of leaf nodes in strongly polynomial time.
For more generally constrained problems, we provide
some computational experience to demonstrate the
efficacy of using our generic modeling approach. Sec-
tion 3 discusses the potential use of this optimiza-
tion model to conduct an optimal pruning based on
specified (possibly multiple) objective functions and
subject to desired side-constraints, and §4 illustrates
this approach using a numerical example. Section
5 describes a real-life transportation planning appli-
cation and presents related computational results.
Finally, §6 closes this paper with a summary and con-
clusions.

2. Optimal Constrained
Pruning Strategy

This section describes a 0–1 programming approach
for optimally pruning a given tree T based on var-
ious specified objectives, goals, and side-constraints.
To present the proposed methodology, let us begin by
introducing some notation and terminology.

Let T be the binary tree obtained via some tree-
growing procedure, and let �T represent its terminal
nodes, with cardinality � �T � ≡ m. For convenience in
notation, we will index the nodes of T as h = 0�
1� 	 	 	 �n, where node 0 represents the root node, and
denote this set of nodes by � = �0�1� 	 	 	 �n}. For any
h ∈� , let us define the following (standard) terminol-
ogy (see Bazaraa et al. 2005, for example):

p�h�= set of predecessor nodes of h ≡ set of nodes
(excluding h) that lie on the chain from h to
the root node 0 (p�0�=�).

pI �h�= immediate predecessor of node h ≡ first node
adjacent to h that lies on the chain from h to
the root node.

Th = subtree of T that is rooted at node h (includ-
ing h). (Hence, T0 ≡ T .)

b�h�= brother of node h (exists for h �= 0) = node
for which pI �b�h�� equals pI �h�. (Note that
b�b�h��= h because T is a binary tree.)

s�h�= set of successor nodes of h ≡ set of nodes in
Th − �h�≡ set of nodes u for which h ∈ p�u�.

sI �h�= the two immediate successors (or children) of
node h (if they exist), which are produced by
partitioning node h within the tree-growing
procedure.

Furthermore, for the sake of convenience, we will
henceforth refer to the (unique) chain from any
node u to a node v in T , including the nodes u and v,
by C�u → v�. When we wish to exclude nodes u,
or v, or both from this chain, we will use the nota-
tion C�u→ v�, C�u → v�, and C�u → v�, respectively.
Finally, the process of pruning a subtree Th that is
rooted at h by absorbing it within the node h will
be referred to as collapsing Th into h. Likewise, any
node that is a part of such a subtree Th (excluding the
node h) will be called a collapsed node.
Any legitimate pruning of the tree T will com-

prise of collapsing entire subtrees rooted at particular
nodes into these corresponding nodes, thereby pro-
ducing a resultant pruned tree, TPrune�E�, having E as
its set of leaf (or end) nodes. A formal definition of a
pruned tree is given below.
Definition 1. We will say that TPrune�E� is a pruned

tree of T having leaf nodes E iff:
(i) TPrune�E� is a subtree of T that contains the root

node 0, has E ⊆� as its set of leaf nodes, and is given
by

⋃
h∈E C�h→ 0�, and

(ii) for any node h �= 0 that is included in TPrune�E�,
we also have that its brother node b�h� is included
within TPrune�E�.
Observe that we require condition (ii) above to

ensure, along with condition (i), that any collapsed
node is part of an entire collapsed subtree that is
rooted at some node. In other words, (ii) equivalently
asserts that TPrune�E� is a binary tree.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 53

Now, let us define a set of binary variables as
follows:

zh =
{
1 if node h is selected as a leaf node�
0 otherwise� ∀h ∈� �

(1)

and consider the following system of constraints:

zh +
∑

u∈p�h�

zu = 1 ∀h ∈ �T � (2a)

zh binary ∀h ∈� 	 (2b)

Proposition 1 asserts that system (2) precisely char-
acterizes the set of pruned trees of T in the sense of
Definition 1.

Proposition 1. Let TPrune�E� be a pruned tree of T
having leaf nodes E. Define a (binary) vector z ∈ �0�1�n+1

having components zh = 1 if h ∈ E, and zh = 0 otherwise.
Then, z satisfies system (2). Conversely, consider any fea-
sible solution z to system (2). Define

E ≡ �h� zh = 1� (3a)

and let � be the subtree of T given by

� ≡ ⋃
h∈E

C�h→ 0�	 (3b)

Then, � is a pruned tree of T having leaf nodes E; i.e.,
� ≡ TPrune�E�.

Proof. See the appendix. �

The next result establishes a critical structural prop-
erty of system (2).

Proposition 2. The constraint matrix of system (2a)
is totally unimodular.

Proof. It is sufficient to show that a permutation
of the rows of (2a) yields an interval coefficient matrix
(see Nemhauser and Wolsey 1999); i.e., each column
has a set of consecutive ones as its nonzero elements.
To see this, arrange the nodes of T in a preorder list
structure P (see Bazaraa et al. 2005); i.e., for each node
u ∈ � , the set of successor nodes s�u� (and hence,
the subtree rooted at node u) immediately follows
u in the list. Suppose now that we write the con-
straints (2a) with h ∈ �T selected in order of its appear-
ance within P . Then, each variable zh, for h ∈ �T , has a
unit vector column, and each variable zu, for u
 �T ,
appears only in the set of consecutive constraints
written for h ∈ �T ∩ s�u�, where �T ∩ s�u� are the leaf
nodes of the subtree of T that is rooted at u. This
completes the proof. �

By Propositions 1 and 2, system (2) provides a
mathematical structure that affords a great deal of
flexibility in designing an optimal constrained prun-
ing strategy. Noting that any feasible solution to (2)

maps onto a pruned tree TPrune�E� as defined in Propo-
sition 1 via (3), we can ascribe any desired penalty
function f �h� to the leaf nodes of the prescribed
pruned tree (e.g., Breiman et al. 1984 describe one
such penalty function used with the CCP technique
that is based on a combination of the classification
error and the number of residual leaf nodes), and
choose to solve the pruning problem

PP1� Minimize
{ n∑

h=0
f �h�zh� system (2)

}
	 (4)

Note that for any h ∈ � , if h turns out to be a leaf
node of TPrune�E� (i.e., h ∈ E) as indicated by zh = 1,
then by examining the restrictions on the branches
in the chain C�h → 0� in T , we know precisely the
classification characteristics of node h and what data
points would be classified to reside within node h.
Moreover, because any solution to (2) produces a
legitimate pruned tree, it would result in a unique
classification of data into the leaf nodes h ∈ E given by
(3a). Note that we can consider a variety of penalty
functions, possibly in combination as multiple (pre-
emptive) objective functions, for formulating (4) as
described in §3. Moreover, by Proposition 2, (4) has a
structure that permits it to be solved in strongly poly-
nomial time as a special shortest-path problem on an
acyclic graph, even with an additional constraint on
the total number of leaf nodes that are permitted in
the final pruned tree. This is formally established and
illustrated subsequently below.

Proposition 3. Problem PP1 given by (4) can be re-
cast as a shortest-path problem on an acyclic graph having
m + 1 nodes and n + 1 arcs, where m ≡ ��T � and � =
�0�1� 	 	 	 �n�, and can thereby be solved in O�n� time.

Proof. Consider an ordering of the � �T � = m con-
straints in (2a) according to the preorder list P as
in the proof of Proposition 2, so that the coeffi-
cient matrix displays an interval matrix structure.
Label these rows as R1�R2� 	 	 	 �Rm. Now, let us
rewrite these constraints in the following equivalent
form using the indicated row operations: �−R1�R1 −
R2�R2 − R3� 	 	 	 �Rm−1 − Rm�Rm�, where we have
accommodated a single redundant row for conve-
nience (observe that the sum of these rows equals a
null equation). By the interval matrix structure (see
Nemhauser and Wolsey 1999), this resultant equa-
tion system displays a network-flow structure on a
graph G, having m + 1 nodes, one associated with
each row in the transformed system, and having n+ 1
arcs, one associated with each of the variables zh, h=
0�1� 	 	 	 �n. Furthermore, numbering the nodes of this
graph G as �0�1� 	 	 	 �m� according to the transformed
equations, and noting that the right-hand sides of
the transformed equations are respectively given by

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
54 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

z2 z4

z6 z5

z1

z0

z3
1 034

4

5 6

3

1 2

0

2

(a) Classification tree (b) Acyclic graph G for the shortest-path problem

Figure 1 Decision Tree and Acyclic Graph G for Illustrating
Proposition 3

�−1�0� 	 	 	 �0�1�, we have that node m has a sup-
ply of 1, node 0 has a demand of 1 (supply of −1),
and the remaining nodes are transshipment nodes in
the transformed problem (see Bazaraa et al. 2005, for
example, for this standard network representation).
Moreover, by the nature of the transformation, each
column of zh, h ∈� , has a −1 and +1 entry, appear-
ing in that order in the transformed rows. Hence, each
arc begins at a node that has a higher index than
the node at which it ends. Therefore, the graph is
acyclic. Consequently, the transformed problem seeks
a shortest path from node m to node 0 on this result-
ing acyclic graph, and displays a topological ordering of
nodes �m� 	 	 	 �1�0� (i.e., arcs go from earlier nodes to
later nodes in this ordered list). By Ahuja et al. (1993)
(see Theorem 4.3, p. 108), this problem can be solved
in O�n� time. �

To illustrate the construction in the proof of Propo-
sition 3, consider the decision tree depicted in Fig-
ure 1(a), having n = 6 and m = 4. The set of leaf
nodes is given by �T = �3�5�6�2�, where these nodes
are arranged according to the preorder list P as in
the proof of Proposition 2. The corresponding sys-
tem (2) with the rows R1� 	 	 	 �R4 labeled as in the
proof of Proposition 3, and the resulting equivalent
system after performing the designated row opera-
tions, are given in Figure 2. The latter system rep-
resents the constraints for the shortest-path problem
on the acyclic graph G depicted in Figure 1(b), where
the �m + 1� = 5 nodes of G are associated with the

0

1

2

3

4

R1: z3 + [z1+ z0] = 1

R2: z5 + [z4 + z1+ z0] = 1

R3: z6 + [z4 + z1+ z0] = 1

R4: z2 + [z0] = 1

–R1: –z3 – z1– z0 = –1

R1– R2: z3 – z5 – z4 = 0

R2 – R3: z5 – z6 = 0

R3 – R4: z6 – z2 + z4 + z1 = 0

R4: z2 + z0 = 1

System (2)

Nodes

Transformed system

of G:

Figure 2 System (2) and Its Transformed Form for the Decision Tree
of Figure 1

rows of the transformed system as displayed in Fig-
ure 2, and the �n+ 1�= 7 arcs are associated with the
columns of the variables z0� z1� 	 	 	 � z6 in this system.

Proposition 4. Given any penalty function f �h�,
h ∈� , Problem PP1 with an additional constraint on
the number of leaf nodes of the type

∑
h∈� zh ≥ Emin, or∑

h∈� zh ≤ Emax, or
∑

h∈� zh = Emax, for some parameters
Emin and Emax ∈ �1� 	 	 	 �m�, can be solved in O�mn� time.

Proof. For an arbitrary penalty function f �h�,
h ∈ � , Sherali (1991) presents an algorithm for the
shortest-path problem identified in (the proof of)
Proposition 3 that determines the best q-step path
from node m to node 0 for all values of 1≤ q ≤m
in (strongly) polynomial time of overall complexity
O�mn�. Noting that the best q-step path for each such
value of q ∈ �1� 	 	 	 �m� corresponds to an optimal solu-
tion to Problem PP1 with the additional constraint
that precisely q of the z-variables equal one, we can
therefore solve (4) with the additional stated con-
straints in the proposition in O�mn� time. �

In the following section, we shall discuss differ-
ent possible objective functions and side-constraints
that can be accommodated within Problem PP1 in a
general strategic pruning approach. Note that even
in cases when we might incorporate additional side-
constraints that might no longer preserve a network-
flow structure, the resultant problem still has a special
totally unimodular set-partitioning substructure that
promotes its solvability (see Nemhauser and Wolsey
1999). In general, such a 0–1 integer program with
a few side-constraints could be solved to optimal-
ity quite effectively using a standard package such
as CPLEX (version 9.0; 2005), although in theory, the
underlying problem with arbitrary side-constraints
becomes NP-hard. To illustrate the efficacy of solv-
ing Problem PP1 under such arbitrary additional side-
constraints that augment system (2), we conducted
the following experiment.
We generated a test-bed of binary decision trees T

by randomly selecting the number of nodes at each
depth or level of the tree that are declared to be leaf
nodes of T . In this scheme, if l = 0�1� 	 	 	 �L denotes
the levels of the constructed binary tree T , and nl

and el, respectively, represent the number of nodes and
the number of leaf nodes at level l, we begin with
n0 = 1 and e0 = 0, and then recursively, given nl−1
and el−1 < nl−1 for l ∈ �1� 	 	 	 �L�, we set nl = 2�nl−1 −
el−1�, and randomly generate el ∈ �0� 	 	 	 �nl −1�, except
that we set eL = nL. Hence, m ≡ ��T � =∑L

l=1 el and n ≡
�� � − 1=∑L

l=1 nl. The function values f �h�, ∀h ∈ � ≡
�0�1� 	 	 	 �n� were generated randomly to be integers
in the interval �1�25�. The resultant Problem PP1 was
cast in the transformed format of a shortest-path prob-
lem on an acyclic graph G having m + 1 nodes and
n+ 1 arcs as described in the proof of Proposition 3,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 55

Table 1 Computational Effort in CPU Seconds for Solving Problem PP1
with Arbitrary Side-Constraints

(K� t)

Problem ��T � =m �� � = n+ 1 K = 0 (1�1) (1�2) (3�1) (3�2) (5�1) (5�2)

1 51 101 0 0 0 0 0 0 0
2 64 127 0 0 0 0 0 0 0
3 72 143 0 0 0 0 0 0 0
4 82 163 0 0 0 0 0 0 0
5 89 177 0 0 0 0 0 0 0
6 101 201 0 0 0 0 0 0 0
7 108 215 0�01 0�01 0�01 0�01 0�01 0�01 0�01
8 111 221 0�01 0�01 0�01 0�01 0�01 0�01 0�01
9 129 257 0�01 0�01 0�01 0�01 0�01 0�01 0�01
10 260 519 0�01 0�01 0�01 0�01 0�01 0�01 0�01
11 299 597 0�02 0�02 0�02 0�02 0�02 0�02 0�02
12 327 653 0�02 0�02 0�02 0�02 0�02 0�02 0�02

and to this problem, we appended some K ∈ �1�3�5�
arbitrary side-constraints of the form

∑n
h=0 %khzh ≤ 'k,

k = 1� 	 	 	 �K, where the %kh-coefficients were randomly
generated so that %kh ∈ �0�1� for problems of type t = 1
and %kh ∈ �0�1�2�3� for problems of type t = 2, and
where 'k, ∀k = 1� 	 	 	 �K were uniformly generated as
integers in the intervals �1�5� and �1�12� for t = 1
and 2, respectively. The problems were solved using
the commercial package CPLEX (2005), version 9.0, on
a Dell Precision 650 workstation having a Xeon™ CPU
2.40 GHz and 1.50 GB of RAM. Table 1 presents the
results obtained, including for the case K = 0 (no side-
constraints). Note that all problems ranging in size to
about 500 nodes and 1,000 arcs were solved within
0.02 CPU seconds.
Remark 1. In concluding this section, we comment

further on the alternative 0–1 integer programming
(IP) model of Zhang and Huei-chuen (2005) that was
mentioned in §1. In contrast with system (2), which
compactly captures the required characteristics delin-
eated in Definition 1 of a pruned tree as established
by Proposition 1 for formulating Problem PP1, Zhang
and Huei-chuen (2005) explicitly model each such
property identified in Definition 1 using additional
variables and constraints. As a result, their IP model
has 2�n + 1� variables and 3�n + 1� − m + 1 con-
straints (in contrast with n + 1 variables and m con-
straints for our model, where m is typically much
smaller than n). Furthermore, although their model
without additional constraints also displays a total
unimodular structure, we are able to show via our
model formulation that the underlying pruning prob-
lem can be solved in polynomial time even with
an additional side-constraint on the number of leaf
nodes, as established in Proposition 4. In addition,
because our model explicitly tracks the leaf nodes of
the pruned tree, which is an important characteris-
tic of the tree, it facilitates the adoption of different
objective functions and side-constraints as delineated
in §3. This is elusive in the model due to Zhang and

Huei-chuen (2005), where the binary decision vari-
ables are defined to simply indicate whether a node
belongs to the final tree or not, which would there-
fore require additional model manipulations to iden-
tify the leaf nodes. Besides, the focus in Zhang and
Huei-chuen (2005) is to use their IP formulation to
establish a new optimality proof of the bottom-up
pruning method due to Quinlan (1988), as opposed
to actually modeling and solving the types of con-
strained pruning problems addressed herein. �

3. Alternative Objective Functions
and Side-Constraints

In §1, we mentioned several objective functions and
constraints that arise within the context of machine
learning and data mining applications of decision
trees. In this section, we describe some additional
objective functions and constraints that can be uti-
lized in concert with the proposed optimal pruning
problem formulation, which are, in particular, moti-
vated by a practical transportation planning applica-
tion. In §5, we provide computational results utilizing
such objective and constraint functions in the context
of this application.

3.1. Objective Functions
A common objective function used with decision trees
concerns minimizing an appropriate misclassification
error measure. For example, suppose that we have a
training data set D ≡ �1� 	 	 	 � d� comprised of d obser-
vations, and that we are interested in conducting a
classification based on some p performance charac-
teristics (dependent variables) Yj , j = 1� 	 	 	 � p. Let Yij

denote the value of the variable Yj for the ith obser-
vation ∀ i = 1� 	 	 	 � d, j = 1� 	 	 	 � p. Furthermore, let sj

denote an estimate of 1/[variance of Yj] (e.g., as
derived from Yij , i = 1� 	 	 	 � d) ∀ j = 1� 	 	 	 � p. Then,
denoting by Dh the subset of D that would be parti-
tioned into node h were it to become a leaf node of
the pruned tree, we can define a misclassification error
function as follows:

f1�h� ≡
p∑

j=1

∑
i∈Dh

sj

(
Yij − �YDhj

)2 ∀h ∈� �

where �YDhj ≡
∑

i∈Dh
Yij

�Dh�
	 (5)

For example, in the transportation planning appli-
cation discussed in §5 (and alluded in §1), the train-
ing data set D pertains to survey households, and the
variables Yj , j = 1� 	 	 	 � p represent performance char-
acteristics of the households with respect to activities
such as the total number of trips made or the total
amount of time spent at home or work, etc., over a

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
56 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

24-hour horizon. The use of (5) then attempts to clas-
sify households having similar characteristics within
the terminal nodes of the tree.
To compose a suitable objective function for Prob-

lem PP1, we could impose a constant penalty % > 0
for each leaf node created by defining

f2�h�≡ %� (6a)

so that
∑

h f2�h�zh ≡ %
∑

h zh. Then, as in the CCP
method, we could adopt f �h�= f1�h�+f2�h� within (4)
for a suitable penalty parameter % > 0. Alternatively,
in lieu of using a constant % for each node h as in
(6a), we can use a factor

%h ≡ % · (depth of node h)� (6b)

where the depth of a node h is the number of arcs on
the chain C�h→ 0�. Then, by defining the function

f3�h�≡ %h ∀h ∈� � (6c)

we could likewise use this in combination with f1�h�
to yield f �h�= f1�h�+f3�h�, which would tend to pro-
duce relatively more breadthwise expanded trees. In
this same spirit, we can choose to minimize the max-
imum depth over the leaf nodes subject to additional
constraints that restrict the minimal resulting tree size
by solving

PP2� Minimize
{
.� .≥f3�h�zh ∀h∈� � system (2)�

plus additional constraints
}
	 (7)

Another possible objective function can be based
on some particular important characteristic Yj∗ , j∗ ∈
�1� 	 	 	 � p�, which we might be interested in maximiz-
ing with respect to a given synthetic data set D′ when
it is assigned to the leaf nodes of the pruned tree.
In our transportation planning application, the total
number of trips over a day is one such characteris-
tic, and we might be interested in maximizing the
minimum total value of this measure over the leaf
nodes, subject to the restriction that we create at least
some Emin leaf nodes. Defining D′

h as the subset of D′

that would be ascribed to node h, given that node h
becomes a leaf node of the prescribed pruned tree,
and letting Y ′

ij∗ represent the value of the attribute Yj∗
for each data point i ∈ D′, we can construct the merit
function

f4�h�≡ ∑
i∈D′

h

Y ′
ij∗� ∀h ∈� � (8)

and then solve the problem

PP3� Maximize
{

.� . ≤ f4�h�zh ∀h ∈� �

∑
h∈�

zh ≥ Emin� and system (2)
}

	 (9)

In a likewise fashion, suppose that a decision tree is
developed using a training data set D for the purpose
that it will be subsequently used to classify another
synthetic data set D′, where the elements of D′ that
fall into each leaf node will be matched with elements
of D that reside in the same leaf node to generate
some relevant information (e.g., travel activity pat-
terns in the context of transportation planning) for
the synthetic data elements. In this regard, we might
not want to have too many data elements from D′

being matched with relatively fewer elements in D
within any leaf node so as to avoid excessive duplica-
tions of generated information (e.g., too many similar
activity patterns in the aforementioned transportation
planning example). Therefore, defining Dh and D′

h as
above, we might wish to minimize the sum over all
the leaf nodes of the ratios of the number of syn-
thetic versus training data observations that fall into
the same leaf node, leading to

f5�h�≡ �D′
h�

�Dh�
∀h ∈� 	 (10)

Other side-constraints on the number of leaf nodes
can be imposed along with (2) when using the objec-
tive to minimize

∑
h∈� f5�h�zh, to obviate simply col-

lapsing the tree to the root node. Alternatively, we
can also minimize the maximum of these ratios at the
resultant leaf nodes by solving the following modified
pruning problem (for some parameter Emin�:

PP4� Minimize
{

.� . ≥ f5�h�zh ∀h ∈� �

∑
h∈�

zh ≥ Emin� and system (2)
}

	 (11)

We can also handle multiple objectives via a suit-
able goal-constrained or weighting scheme. For exam-
ple, letting D∗ be the total misclassification error of
the original tree T , we could compose a pruned tree
that minimizes the objective function characterized
by f5, say, as given by (10), while requiring the error
of the resulting pruned tree to increase by no more
than some permissible tolerance 100/% of the origi-
nal error 0∗, say, where / ≥ 0. This can be achieved
by solving the following pruning problem:

PP5� Minimize
{ n∑

h=0
f5�h�zh�

n∑
h=0

f1�h�zh ≤ 0∗�1+/��

along with system (2)
}

	 (12)

In the same spirit, multiple objective functions that
are ordered by some preemptive priority scheme
can be handled via an equivalent nonpreemptive
weighted sum of objective functions, with weights

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 57

computed as prescribed in Sherali and Soyster (1983).
Alternatively, we can sequentially minimize these
functions in turn while imposing constraints (simi-
lar to (12)) that restrict each previously considered
objective function to take on values no greater than
(or simply equal to) the corresponding optimal value
found when this function was treated (in turn) as
the model’s objective function. We illustrate both
these options in §4.

3.2. Additional Side-Constraints
Within the context of Problem PP1, or problems of the
type PP2, PP3, or PP4 given, respectively, by (2), (7),
(9), and (11), we could impose various additional suit-
able restrictions. For example, to restrict the number
of leaf nodes to control the size of the resulting tree,
we could include the constraint∑

h∈�
zh ≥ Emin� or

∑
h∈�

zh ≤ Emax�

or
∑
h∈�

zh = Emax�
(13)

as addressed in Proposition 4. For example, when
solving Problem PP3 defined by (9), the role played
by the restriction

∑
h∈� zh ≥ Emin is to preserve a tree

having at least a certain size with respect to its termi-
nal nodes, where omitting this constraint from Prob-
lem PP3 would result in the tree T being collapsed to
a single node. Likewise, when minimizing the error
measure defined by (5), we would like to force the tree
to be pruned to a specified maximum size imposed by
a side-constraint of the type

∑
h∈� zh ≤ Emax. Observe

that the DPP procedure discussed in §1 determines
optimal solutions to the particular Problem PP1 with
the additional constraint

∑
h∈� zh = Emax simultane-

ously for all possible values of Emax, and the CCP
method solves this problem only for some subset of
such values (see Li et al. 2001 and the illustrative
example given in §4). On the other hand, our model-
ing approach directly determines an optimal solution
for any of the foregoing constraints having specified
particular parameter values. Moreover, we can more
generally accommodate an arbitrary set of some K
constraints∑

h∈�
%khzh ≤ 'k for k = 1� 	 	 	 �K� (14)

for some suitable parameters %kh and 'k ∀k = 1� 	 	 	 �K,
h ∈� . For example, one such constraint k ∈ �1� 	 	 	 �K�
might restrict the average depth of the leaf nodes,
given by using (6b) with %≡ 1 as[∑

h∈�
%hzh

]/[∑
h∈�

zh

]
≤1 (15)

for some specified parameter 1. Hence, in this case,
we would have %kh = �%h − 1� ∀h ∈ N , and 'k ≡ 0
in (14).

Likewise, with the same motivation as for (10) and
(11), we can optimize some desired objective function
while restricting the values of the ratios identified in
(10) at leaf nodes by

setting zh = 0 whenever
�D′

h�
�Dh�

> R∗

for any h ∈� � (16)

where R∗ is some suitable positive parameter. Some-
times, we might like to preserve certain leaf nodes
E1 ⊆ �T . For example, there might be leaf nodes of T
that classify either senior citizens, or minors, or some
peculiar demographic characteristic of interest such
as households having only two workers and a total
income of no more than $50,000 in a transportation
planning context, which might likely be collapsed
when solving a problem of type (12), for example.
However, because of the special nature of these leaf
nodes from a statistical record point of view, we might
prefer to preserve such nodes in the pruned tree. In
such a case, we can simply impose the restriction

zh = 1� ∀h ∈ E1	 (17)

Likewise, we might wish to enforce that certain nodes
E0 of T do not turn out to be leaf nodes (i.e., they
are either collapsed, or are preserved as nontermi-
nal nodes of the prescribed pruned tree). This can
be accommodated by setting zh = 0 ∀h ∈ E0. Equa-
tion (16) motivates a special case of this genre. We
have accommodated all such constrained formula-
tions in a software package designed for transporta-
tion planning purposes as reported in §5.

4. Illustrative Example
Consider the example presented by Li et al. (2001),
pertaining to the classification tree T that is depicted
in Figure 3. The number displayed in parentheses
within each node is the node index, while the number
below it is an error measure. Suppose that we restrict
the number of leaf nodes to five, while minimizing the
total resultant error measure. Noting (2), this would
lead to the following optimization model:

Minimize F1�z�≡ 38z0+ 16z1+ 13z2+ 10z3
+ 9z5+ 3z6+ 2z7 + 5z8+ 4z9
+ 3z10+ 2z11+ 2z12 (18a)

subject to z7 + �z3+ z1+ z0�= 1� (18b)

z11+ �z8+ z3+ z1+ z0�= 1� (18c)

z12+ �z8+ z3+ z1+ z0�= 1� (18d)

z4+ �z1+ z0�= 1� (18e)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
58 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

(0)
38

(3)
10

(4)
0

(5)
9

(6)
3

(7)
2

(8)
5

(9)
4

(10)
3

(11)
2

(12)
2

(13)
0

(14)
0

(1)
16

(2)
13

Figure 3 Classification Tree for the Illustrative Example

z13+ �z9+ z5+ z2+ z0�= 1� (18f)

z14+ �z9+ z5+ z2+ z0�= 1� (18g)

z10+ �z5+ z2+ z0�= 1� (18h)

z6+ �z2+ z0�= 1� (18i)

14∑
h=0

zh = 5� (18j)

z binary� (18k)

where the objective function coefficients in (18a) are
the error measures, constraints (18b)–(18i), and (18k)
represent system (2), and constraint (18j) restricts the
total number of leaf nodes to equal five. This problem
has two alternative optimal solutions given, respec-
tively, by z1

∗ and z2
∗ identified below, having an objec-

tive value of 19:

z1
∗
4 = z1

∗
5 = z1

∗
6 = z1

∗
7 = z1

∗
8 = 1� (19a)

z2
∗
2 = z2

∗
4 = z2

∗
7 = z2

∗
11 = z2

∗
12 = 1	 (19b)

Note that this agrees with the solution given by Li
et al. (2001) for the stage corresponding to five leaf
nodes, but is obtained directly, without necessarily
having to simultaneously discover the pruned trees
for all other possible values of the number of leaf
nodes. Furthermore, note that the CCP method would
skip the case of five leaf nodes as discussed by Li et al.
(2001) and would therefore not offer any solution to
this particular problem.
Next, consider a secondary objective function

F2�z� ≡∑14
h=0 chzh, with ch = 1 ∀h ∈ �T , and ch = 0 oth-

erwise, and suppose that we wish to minimize F1�z�
given by (18a) with the first priority, and among all

alternative optimal solutions, we would like to min-
imize F2�z�. We can solve this preemptive priority
problem via a composite objective function of the
type to

Minimize�F1�z�+5F2�z�� �18b − k��� (20)

where from the analysis of Sherali and Soyster (1983),
we can take 5 < 1/�F2max− F2min�, where F2min ≤ F2�z�≤
F2max ∀z. For example, taking 5 = 0	1< 1/�8− 0�, and
solving (20) using the software CPLEX (2005), we
directly obtain the desired solution z1∗ given by (19a).
Alternatively, after having found the optimal value
of 19 for the objective function F1, we could next solve
the following problem as discussed in §3.1: Minimize
�F2�z�� F1�z�= 19� �18b−k��, which again produces the
solution given by (19a).

5. Transportation Planning Case
Study and Computational Results

In §2, we have described an approach for formu-
lating suitable 0–1 optimization models to conduct
the pruning of decision trees. Various objective func-
tions along with desired side-constraints can be used
within this context as discussed in §3. In this sec-
tion, we present some details and results for our
proposed methodology as applied to a large-scale
transportation planning system called TRANSIMS
(transportation analysis and simulation system), which
is an integrated package of travel forecasting mod-
els and is designed to provide transportation planners
with comprehensive information on traffic impacts,
congestion, and pollution (Los Alamos National
Laboratory 2002a).
In particular, the Activity Generator module in

TRANSIMS develops a list of activities for each
member of a synthetic household over a 24-hour
horizon. The training data D in this context are com-
prised of survey households for which information
related to demographic and activity characteristics for
each household member is available. These attributes,
which are used to partition the internal nodes of
the tree at the different levels, include the house-
hold size, income, density, the number of vehicles
owned, and the number of household members in
different specified age groups. The CART algorithm
is applied within TRANSIMS to build a classifica-
tion tree, by virtue of which each survey household
is effectively placed into one of the tree’s terminal
nodes. Another synthetic data set D′, comprising the
so-called synthetic households, is then generated based
on certain available census information pertaining to
the metropolitan area under study. By assigning D′

to the leaf nodes of the developed tree T according to
the demographic branching decisions in T , each syn-
thetic household is matched with a survey household,

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 59

and this matching is then used to generate activity
patterns for the members of the synthetic households
over a 24-hour horizon.
For this case study using TRANSIMS, we inves-

tigated the use of different objective functions and
side-constraints as delineated in §3 to optimally prune
the generated classification tree. Our implementation
uses JAVA along with the MySQL server version 4.0
(http://www.mysql.com/) and lp solve 2.0 (Berke-
laar 1997), which is written in JAVA under the Lesser
GNU Public License. The developed software, called
CART-VT, allows a user to load the survey data
in an Excel file format. Using the survey (training)
data set comprised of demographic information for
3,470 households that was available from studies con-
ducted on the Portland, Oregon transportation net-
work (see Los Alamos National Laboratory 2002b), we
constructed the tree T using the CART algorithm. This
was accomplished in about 34 minutes for our sur-
vey data on a Dell 400SC 2.8 GHz computer having
1 GB of memory, using Rehat Linux 7.3, and it pro-
duced a tree T having 100 leaves and 199 nodes. Sub-
sequently, for illustrative purposes, we matched some
23,656 synthetic households (comprising the synthetic
data set D′) to the survey households residing at the
leaf nodes, while optimally pruning this tree using
different practical compositions of objective functions
and side-constraints of the type discussed in §3. The
computational effort for all these runs (a sample of
which is described below) remained under five CPU
minutes, including the effort for data manipulation
and model generation. (Note that a major component
of this effort is due to manipulating the data for the
given 23,656 synthetic households comprising D′. As
evidenced by the results reported in §2, the proposed
optimization model itself can be solved very quickly
using an efficient solver such as CPLEX 2005.)
For the pruning step in our software, CART-VT,

the user can select to minimize the total error func-
tion (using f1 in (5)); minimize the total number of
leaf nodes (using f2 in (6a)); minimize the maximum
depth of the leaf nodes (using f3 in (6c)); maximize
the minimum sum of values for some selected char-
acteristic variable (designated as Yj∗ in §3.1) over the
leaf nodes (using f4 in (8) along with Problem PP3
in (9); here, for example, Yj∗ might represent the total
number of trips for any household or data point);
minimize the sum over all the leaf nodes of the ratios
of the total number of synthetic households and the
survey households that fall into the same leaf node
(using f5 in (10)); minimize the maximum over the
leaf nodes of the ratio of the total number of synthetic
households and the survey households that fall into
the same leaf node (using Problem PP4 in (11), for
example); or optimize any weighted sum of the avail-
able objective functions, where the total weight sums
to one.

0

1 2

3 4

19

9

20

10

Figure 4 The Optimally Pruned Tree for Illustration 1

The side-constraints that are accommodated within
CART-VT impose a bound on the total number of leaf
nodes (via (16)); a bound on the depth of each leaf
node (via (6b) or (15)); a bound on the ratio of the
error (with respect to the survey data) of the new tree
and that of the original tree (see (12)); and a bound
on the ratio of the total number of synthetic house-
holds and the survey households that fall into the
same leaf node (for each leaf node) (see (16)). The user
can select a lower bound, an upper bound, or both for
each side-constraint. In addition, the user can select to
either preserve or prohibit some special original leaf
nodes to be leaf nodes in the optimally pruned tree
(see (17)).
We investigated different models by composing

suitable weighted objective functions with various
appropriate combinations of side-constraints. Below,
we provide two illustrations.

Illustration 1. Suppose that we minimize the total
number of leaf nodes while preserving a certain origi-
nal leaf node that contains some special demographic
characteristic, for example, householders comprised
of only two workers having a total income of no
more than $50,000, and each being of age less than
30 years. This special demographic characteristic falls
into node 19 (of the 199 nodes in T). The optimally
pruned tree is shown in Figure 4. This same pruned
tree is obtained when the objective is to minimize the
maximum depth of the leaf nodes while preserving
node 19.

Illustration 2. Another objective function that
might be of interest from a statistical viewpoint is
to minimize the error measure (with respect to the
survey data) of the new tree, subject to the side-
constraint that the ratio of the total number of syn-
thetic households and the survey households that fall
into the same leaf node be less than or equal to some
value (say, seven) for all the leaf nodes. The resulting
tree (not depicted because of its complexity) provides
a matching that does not duplicate the generated
activity patterns more than seven times. If we impose
an additional side-constraint that limits the depth of
each leaf node to be less than or equal to five to limit

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
60 INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS

0

1 2

5 6

29

13

30

14

57 58

11 12

23 24 27 28

43 44 51 52 53 54 55 56

Figure 5 The Optimally Pruned Tree for Illustration 2

the extent to which the nodes are sequentially parti-
tioned, the optimally pruned tree obtained is shown
in Figure 5.

6. Summary and Conclusions
We have presented a 0–1 programming approach to
optimally prune decision trees, while considering a
variety of (possibly multiple) objective functions, as
well as side-constraints that control the size, statis-
tical characteristic, and structural properties of the
resultant tree. We have shown that the basic model
that seeks to minimize some general penalty function
possesses a totally unimodular interval matrix-based
set-partitioning structure, which is transformable to
a shortest-path problem on an acyclic graph. More-
over, this model with an additional constraint gov-
erning the number of leaf nodes in the final tree can
be solved in O�mn� time, where m is the number of
leaf nodes in the original tree. For more generally con-
strained problems, we have exhibited empirically that
the underlying model structure facilitates the efficient
solution of large-scale problems using an off-the-shelf
commercial software such as CPLEX (2005). To moti-
vate this modeling approach, we have also described
a variety of objective functions and side-constraints
that can be used in practice, formulated in terms of
the model variables that are predicated on the impor-
tant key feature of whether or not a node turns out
to be a leaf node. This has been illustrated through
a numerical example, as well as in the context of a
real-life transportation planning system.
For future research, we recommend the testing of

this optimal constrained pruning strategy in differ-
ent data mining and classification contexts where
decision trees are utilized in practice, including the
formulation of specialized merit/penalty objective
functions and side-constraints that are appropriate
for such particular applications. Another avenue of
useful research is to explore modeling frameworks
for jointly performing the tree-growing and pruning

strategies subject to various side-constraints in com-
posing an optimal decision tree (see Rastogi and Shim
1998 for some guidelines along this direction).

Acknowledgments
This research was supported by the National Science Foun-
dation under Grant DMI-0094462 and by the Federal High-
way Administration. The authors gratefully acknowledge
the constructive comments of the associate editor and a
referee that have led to a significant improvement in the
contents of this paper, as well as the assistance of Ahmed
Ghoniem with some of the computations.

Appendix. Proof of Proposition 1
Let TPrune�E� be a pruned tree of T having leaf nodes E, and
define the binary vector z ∈ �0�1�n+1 to have components
zh = 1 ∀h ∈ E, and zh = 0 otherwise. Let us show that z sat-
isfies (2a). Toward this end, consider any h ∈ �T and let us
examine the chain C�h→ 0� in T . Let v be the first node in
this chain that exists within TPrune�E� (see Figure A.1(a)). If
v = h itself, then v ≡ h ∈ E, while E∩p�h�=�, and so, zh = 1
and zu = 0 ∀u ∈ p�h�. Hence, (2a) holds true. Otherwise, if
v �= h, then we know that the nodes on C�h→ v�, in partic-
ular, are all collapsed nodes. Let v′ ∈ sI �v� be the immediate
successor of node v that lies on C�h → v� (possibly, v′ ≡ h).
Because v′ is a collapsed node, we have that b�v′� is also
a collapsed node by condition (ii) of Definition 1. In fact,
together with condition (i) of Definition 1, this implies then
that v ∈ E, while E ∩ p�v� = �. Consequently, zv = 1 while
zh = 0 and zu = 0 ∀u ∈ p�h�, u �= v. Hence, again we have
that (2a) is satisfied.
Conversely, let z be any feasible solution to (2) and define

E and � as in (3a) and (3b). Hence, by construction, � is a
subtree of T that contains the root node 0. Next, let us show
that E is precisely the set of leaf nodes of � . Again, by the
construction process (3b), we know that the set {leaf nodes
of �}⊆ E. On the contrary, if any e1 ∈ E is not a leaf node of
� , then there must exist some e2 ∈ E for which e1 ∈C�e2 → 0�.
Moreover, by tracing along successor nodes in T starting
from the node e2, let e3 ∈ �T be such that e2 ∈ C�e3 → 0�
(possibly, e3 ≡ e2). By applying (2) to e3, because �e1� e2� ⊆
�e3�∪ p�e3�, we must have that ze1

+ ze2
≤ 1, which is a con-

tradiction, because by assumption, �e1� e2� ⊆ E implies that
ze1

= ze2
= 1. Hence, E ≡ {leaf nodes of �}, and so, � satisfies

condition (i) of Definition 1.
To complete the proof, let us verify that condition (ii) of

Definition 1 holds true by showing that for any node h ∈ � ,
h �= 0, we also have that b�h� ∈ � . Toward this end, consider
any h ∈ � , h �= 0 and let v be the immediate predecessor of
h on c�h→ 0� (see Figure A.1(b)). Because C�v → 0�∩E =�,
we have from (3a) that

zu = 0 ∀u ∈C�v → 0�	 (21)

Now, by tracing successor nodes in T starting from b�h�,
suppose that we reach a leaf node e ∈ �T (see Figure A.1(b)),
so that

C�e → 0�⊇C�b�h�→ 0�≡ b�h�∪C�v → 0�	

From (2), we have

ze +
∑

u∈C�e→b�h��

zu + zb�h� +
∑

u∈C�v→0�

zu = 1	 (22)

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Sherali, Hobeika, and Jeenanunta: An Optimal Constrained Pruning Strategy for Decision Trees
INFORMS Journal on Computing 21(1), pp. 49–61, © 2009 INFORMS 61

0

v

v′

h

(a)

0

e

v

h

(b)

b(v′)

b(h)

Figure A.1 Illustration for the Proof of Proposition 1

Therefore, on the contrary, if b�h�
 � , then because we
have shown above that E is the set of leaf nodes of � , we
would have that b�h�
 E, and so by (3a), zb�h� = 0. Moreover,
we similarly have that C�e → b�h��∩ � =�, and so,

ze +
∑

u∈C�e→b�h��

zu + zb�h� = 0	

This, together with (21), asserts that the entire left-hand side
in (22) is zero, a contradiction. Hence, b�h� ∈ � , and this
completes the proof. �

References
Ahuja, R. K., T. L. Magnanti, J. B. Orlin. 1993. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Englewood Cliffs,
NJ.

Bazaraa, M. S., J. J. Jarvis, H. D. Sherali. 2005. Linear Programming
and Network Flows, 3rd ed. John Wiley & Sons, New York.

Bennett, K. P. 1992. Decision tree construction via linear program-
ming. Proc. 4th Midwest Artificial Intelligence Cognitive Sci. Soc.
Conf., Utica, IL, Southern Illinois University Carbondale, Car-
bondale, 97–101.

Bennett, K. P. 1994. Global tree optimization: A non-greedy decision
tree algorithm. Comput. Sci. Statist. 26 156–160.

Berkelaar, M. 1997. lp_solve 2.0. http://www.cs.wustl.edu/
∼javagrp/help/LinearProgramming.html.

Bertsekas, D. P. 2001. Dynamic Programming and Optimal Control.
Athena Scientific, Belmont, MA.

Bredensteiner, E. J., K. P. Bennett. 1998. Feature minimization within
decision trees. Comput. Optim. Appl. 10(2) 111–126.

Breiman, L., J. H. Friedman, L. A. Olshen, C. J. Stone. 1984. Classifi-
cation and Regression Trees. Wadsworth & Brooks, Pacific Grove,
CA.

Breslow, L. A., D. W. Aha. 1997. Simplifying decision trees: A sur-
vey. Knowledge Engrg. Rev. 12(1) 1–40.

Chou, P. A., T. Lookabaugh, R. M. Gray. 1989. Optimal pruning
with applications to tree-structured source coding and model-
ing. IEEE Trans. Inform. Theory 35(2) 229–315.

CPLEX. 2005. Using the CPLEX Linear Optimizer, version 9.0.
CPLEX Optimization, Inc., Incline Village, NV.

Folino, G., C. Pizzuti, G. Spezzano. 1999. A cellular genetic pro-
gramming approach to classification. Proc. Genetic and Evolu-
tionary Comput. Conf., GECCO99, Orlando, FL, Morgan Kauf-
mann, San Francisco, 1015–1020.

Folino, G., C. Pizzuti, G. Spezzano. 2001. Parallel genetic pro-
gramming for decision tree induction. Proc. 13th Internat. Conf.
Tools with Artificial Intelligence, Dallas, IEEE Computer Society,
Washington, D.C., 129–135.

Folino, G., C. Pizzuti, G. Spezzano. 2002. Improving induc-
tion decision trees with parallel genetic programming. Proc.
10th Euromicro Workshop on Parallel, Distributed Network-based
Processing, IEEE Computer Society, Washington, D.C., 181–187.

Fu, Z., B. Golden, S. Lele, S. Raghavan, E. Wasil. 2003a. A genetic
algorithm-based approach for building accurate decision trees.
INFORMS J. Comput. 15(1) 3–22.

Fu, Z., B. Golden, S. Lele, S. Raghavan, E. Wasil. 2003b. Geneti-
cally engineered decision trees: Population diversity produces
smarter trees. Oper. Res. 51(6) 894–907.

Fu, Z., B. Golden, S. Lele, S. Raghavan, E. Wasil. 2006. Diversifi-
cation for better classification trees. Comput. Oper. Res. 33(11)
3185–3202.

Li, X., J. Sweigart, J. Teng, J. Donohue, L. Thombs. 2001. A dyna-
mic programming based pruning method for decision trees.
INFORMS J. Comput. 13(4) 332–344.

Lin, J., J. A. Storer, M. Cohn. 1992. Optimal pruning for tree-
structured vector quantization. Inform. Processing Management
28 723–733.

Los Alamos National Laboratory. 2002a. Transportation Analysis
Simulation System (TRANSIMS) version: TRANSIMS-LANL-
3.0. Los Alamos, NM.

Los Alamos National Laboratory. 2002b. Transportation Analy-
sis Simulation System (TRANSIMS): Portland Study Reports.
Los Alamos, NM.

Mehta, M., J. Rissanen, R. Agrawal. 1995. MDL-based decision
tree pruning. Proc. First Internat. Conf. Knowledge Discovery and
Data Mining �KDD�, Montreal, AAAI Press, Menlo Park, CA,
216–221.

Murthy, S. K. 1997. On growing better decision trees from data.
Ph.D. dissertation, University of Maryland, College Park.

Murthy, S. K. 1998. Automatic construction of decision trees from
data: A multi-disciplinary survey. Data Mining Knowledge Dis-
covery 2(4) 345–389.

Nemhauser, G. L., L. A. Wolsey. 1999. Integer and Combinatorial Opti-
mization, 2nd ed. John Wiley & Sons, New York.

Quinlan, J. R. 1988. Simplifying decision trees. B. Gaines, J. Boose,
eds. Knowledge Acquisition for Knowledge-Based Systems. Aca-
demic Press, London, 239–252.

Quinlan, J. R., R. L. Rivest. 1989. Inferring decision trees using
the minimum description length principle. Inform. Comput. 80
227–248.

Rastogi, R., K. Shim. 1998. PUBLIC: A decision tree classifier that
integrates building and pruning. Proc. 24th VLDB �Very Large
Data Bases� Conf., New York, Morgan Kaufman Publishers, San
Francisco, 404–415.

Safavin, S. R., D. Landgrebe. 1991. A survey of decision tree clas-
sifier methodology. IEEE Trans. Systems, Man, Cybernetics 21(3)
660–674.

Sherali, H. D. 1991. On the equivalence between some shortest path
problems. Oper. Res. Lett. 10(2) 61–65.

Sherali, H. D., A. L. Soyster. 1983. Preemptive and nonpreemptive
multi-objective programs: Relationships and counter examples.
J. Optim. Theory Appl. 39(2) 173–186.

Ye, N. 2003. Handbook of Data Mining. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ.

Zhang, Y., H. Huei-chuen. 2005. Decision tree pruning via inte-
ger programming. Working paper, Department of Management
Sciences, University of Iowa, Iowa City.

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

12
8.

17
3.

12
5.

76
]

on
 2

1
Fe

br
ua

ry
 2

01
4,

 a
t 1

1:
56

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

