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The best-fit heuristic is a simple yet powerful one-pass approach for the two-dimensional rectangular stock-
cutting problem. It had achieved the best published results on a wide range of benchmark problems until

the development of the approaches described in this paper. Here, we illustrate how improvements in solution
quality can be achieved by the hybridisation of the best-fit heuristic together with simulated annealing and
the bottom-left-fill algorithm. We compare and contrast the new hybrid approach with other approaches from
the literature in terms of execution times and the quality of the solutions achieved. Using a range of standard
benchmark problems from the literature, we demonstrate how the new approach achieves significantly better
results than previously published methods on almost all of the problem instances. In addition, we provide
results on 10 new benchmark problems to encourage further research and greater comparison between current
and future methods.
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1. Introduction
Cutting and packing motivates many areas of opera-
tions research and arises, amongst others, in the paper,
wood, glass, and metal industries. There have been
several articles that provide categorised bibliogra-
phies and general overviews for the research under-
taken under the term cutting and packing (Gilmore
1966, Golden 1976, Coffman et al. 1984, Dyckhoff
1990, Dowsland and Dowsland 1992, Sweeney and
Paternoster 1992, Lodi et al. 2002). Cutting and pack-
ing problems have many different formulations that
are usually distinguished by the dimensionality of
the problem. For example, the one-dimensional prob-
lem involves the subdivision of material stock lengths
(i.e., rods) into the required lengths such that the mate-
rial is utilised efficiently (Gilmore and Gomory 1961,
Belov and Scheithauer 2006). The two-dimensional
problem involves the placement of shapes onto one or
many sheets of material in order to maximise mate-
rial utilisation. The problem can be further classified
by the type of items that are to be placed. Whereas
the rectangular (or orthogonal) problem involves the
placement of rectangles onto rectangular stock sheets
(Baker et al. 1980, Hopper and Turton 1999), the irreg-
ular variant can involve items and sheets of any
two-dimensional form that may contain arcs, con-
cavities, and holes (Burke et al. 2006), and typi-
cally require more sophisticated geometric algorithms

(Bennell and Song 2008, Burke et al. 2007, Bennell
et al. 2001). Three-dimensional problems are gener-
ally constrained to the packing of boxes into regular
container boxes (i.e., pallet or lorry loading), although
the packing of irregular three-dimensional forms has
also been attempted (Stoyan et al. 2002). However,
this paper specifically addresses the two-dimensional
orthogonal stock-cutting problem that also has appli-
cations to dynamic memory allocation, multiproces-
sor scheduling problems, and other general layout
problems (Paull 1956, Coffman et al. 1978, Garey and
Johnson 1981, Coffman and Leighton 1989).
The orthogonal stock-cutting problem involves the

placement of rectangular objects onto a predefined
rectangular sheet. In general, the overall objective is
to produce as densely packed solutions as possible to
maximise material utilisation and therefore increase
profits. Automated approaches have utilised many
different techniques that include linear and dynamic
programming (Gilmore and Gomory 1961), heuristic
methods (Baker et al. 1980, Burke et al. 2004), artifi-
cial neural networks (Dagli and Poshyanonda 1997),
and metaheuristic approaches (Smith 1985, Burke and
Kendall 1999, Valenzuela and Wang 2001, Hopper
and Turton 2001, Iori et al. 2003) including simu-
lated annealing (Dagli and Hajakbari 1990). It has
been shown that automated solutions, produced with
these strategies, can often be better than those of their
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skilled human counterparts both in terms of pack-
ing quality and in the time taken to achieve solu-
tions (Roberts 1984, Li and Milenkovic 1995, Hower
et al. 1996).
The two-dimensional variant of the stock-cutting

problem that will be addressed in this paper uses a
stock sheet of fixed width but no fixed length (equiv-
alent to using a roll of material) and has the follow-
ing constraints: All of the rectangular objects must be
placed within the confines of the stock sheet, must
not overlap with each other, and may only be rotated
by 90�. It should also be noted that we do not restrict
solutions to guillotinable packings (where only hor-
izontal and vertical cuts that entirely span the stock
sheet are allowed). The objective is to place all rect-
angular items so that the overall length required is
minimised and that no constraints are violated. This
instance of the stock-cutting problem has been shown
to be NP-hard (Garey and Johnson 1979).

2. Simulated Annealing Enhancement
for the Best-Fit Heuristic

In this section, we present a description of our new
approach and discuss the strategy that we use. We
begin with a broad overview of the approach that
develops our previous work on the best-fit heuristic
(Burke et al. 2004). We use the bottom-left-fill heuristic
in conjunction with simulated annealing by drawing
upon work proposed by Hopper and Turton (2001).
Finally, we describe how these elements can be com-
bined to produce a strategy that outperforms other
approaches from the literature.

2.1. Overview of the Hybrid Method
The method that we describe in this section utilises
the best-fit heuristic (Burke et al. 2004) and the sim-
ulated annealing hybridised bottom-left-fill heuristic
proposed by Hopper and Turton (2001). A solution
is generated by a two-step process that, first of all,
applies the best-fit heuristic to place an initial number
of rectangles onto the stock sheet. Then, the remaining
unassigned rectangles are placed using the bottom-
left-fill heuristic with different input orderings as
guided by the simulated annealing search procedure.
The locations of the rectangles that are assigned to the
sheet in the initial best-fit stage of the process remain
fixed throughout and form the first part of the solu-
tion, whereas the rectangles placed during the second
stage will move locations according to the orderings
produced by simulated annealing.
In this paper, we use the best-fit heuristic as the ini-

tial step for our hybrid approach. Unlike Burke et al.
(2004), we now use floating point data. This makes the
heuristic up to five times slower than an integer rep-
resentation implementation. However, we can justify
this modification by the extra accuracy on the floating

point data sets (as used in some benchmark problems
in this paper) and also because the execution times
are still less than one second for all but the largest of
our problems.

2.2. The Simulated Annealing Bottom-Left-Fill
Hybridised Method

We hybridise the bottom-left-fill heuristic by using
simulated annealing to produce orderings that are
“decoded” into a solution and evaluated using the
bottom-left-fill heuristic. To obtain input sequences,
we assign a numerical identification to each rectangle.
Therefore, a sequence such as 4, 2, 5, 1, 3 describes
the solution obtained by the bottom-left-fill heuris-
tic packing the fourth rectangle first, the second rect-
angle second, and so forth. In the problem studied
in this paper, we allow rotations of 90� and encode
rectangle orientation by using a Boolean flag for each
rectangle within a solution sequence. Because of the
experiments of Hopper and Turton (2001), we seed
our simulated annealing approach by using a decreas-
ing height sequence.
In preliminary experiments, we hybridised the

bottom-left-fill algorithm with tabu search, simulated
annealing, and a genetic algorithm. Although all of
these performed well, the tabu search and the genetic
algorithm were less competitive than simulated
annealing. Therefore, this paper will specifically focus
on the experimentation using simulated annealing
only. The interested reader can find a more detailed
description of all the experiments in the Online Sup-
plement (available at http://joc.pubs.informs.org/
ecompanion.html).

2.2.1. Simulated Annealing Parameters. Our sim-
ulated annealing cooling scheme is reliant on the pro-
gress of the search. We accept worse solutions with a
probability of P(accept)= 1− ��E/T �, where �E is the
change in solution evaluation quality from the cur-
rent solution and T is the temperature. Initially, we set
T = 3. This value was established after a series of
experiments. Better solutions are always accepted.
The cooling operates after every iteration based on
whether we accept a neighbouring solution. If we
accept, then we geometrically cool the temperature
using a multiplier of 0.999. However, if the neigh-
bouring solution is not accepted, then we heat the
temperature by a multiplier of 1.0001. These val-
ues were chosen through initial testing and have
the effect of cooling quickly if we are accepting
many solutions (high temperature) and cooling more
slowly when fewer solutions are accepted. As the
search progresses, the temperature may become sta-
ble due to the rejection of more solutions, thus gen-
erating a more frequent heating process. However,
when the search moves to explore a different area
of the search space, the temperature may increase or
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decrease to reflect the acceptance occurring within
this new region. We find a neighbouring solution by a
random swap and an orientation flip with a probabil-
ity of 50% of the first random rectangle chosen. The
process is summarised as follows: Find one neighbour
of the current solution, evaluate the neighbour using
the bottom-left-fill heuristic, and find the change in
solution quality. If we accept the neighbour, we store
it as the current solution and cool. If we reject the
neighbour, we keep the current solution and heat.
Once again, the initial solution supplied is that of
the input rectangles sorted by decreasing height and
the best solution seen during the search is returned
at the end. Simulated annealing techniques have also
been applied to the orthogonal stock-cutting problem
in Lai and Chan (1996).

2.3. The Proposed Hybrid Packing Strategy
We presented a brief overview of the hybrid strategy
in §2.1. In this section, we present a more detailed
description of the approach and discuss its motiva-
tion. In Burke et al. (2004), we compare the best-fit
heuristic to the previous best-performing approaches
in the literature. These were bottom-left-based meta-
heuristic methods (Jakobs 1996; Hopper and Turton
1999, 2001; Valenzuela and Wang 2001). In the com-
parison, we showed that the best-fit heuristic is able to
consistently outperform these approaches when used
on problems of medium to very large sizes and that
it is able to achieve solutions that can be within 2% of
optimal. However, the best-fit heuristic obtains worse
solutions for smaller problems (i.e., those involving
less than 50 shapes). Motivated by these observations,
we developed a packing strategy that can further
improve upon the best-fit heuristic by utilising the
respective strengths of both the best-fit heuristic and
metaheuristic bottom-left methods. We summarise the
advantages and disadvantages of the two strategies
in Table 1.
As mentioned above, we experimented with three

different metaheuristics, but we just present the simu-
lated annealing method here because it was the most
effective.
Given an orthogonal stock-cutting problem involv-

ing n rectangles, we propose a two-phase approach to

Table 1 Advantages and Disadvantages of the Best-Fit and Metaheuristic Bottom-Left Heuristics

Best-fit heuristic (phase 1) Metaheuristic bottom-left methods (phase 2)

Advantages Disadvantages Advantages Disadvantages

Produces best published results on a
range of medium/large standard
benchmark problems

Worse solutions found when
problem size <50

Optimal solutions found on small
problems

Does not represent the best approaches on
medium/large problems

Fast solutions obtained ≈1,000
rectangles/second

Untidy arrangements at end of
packing

Can execute for as long as user
allows

Similar input sequences may produce
vastly differing solutions

No parameters Definition of search parameters is required

generate solutions. In the first phase, we invoke the
best-fit heuristic. We allow best fit to pack n−m rect-
angles, where m is the number of rectangles that are
to be carried over to phase 2. Phase 2 involves the
packing of the remaining rectangles using simulated
annealing hybridised with the bottom-left-fill heuris-
tic for a suitable duration of time. At the commence-
ment of phase 2, it should be noted that we already
have the foundations of a solution because the best-
fit heuristic (phase 1) has already placed a number
of the rectangles on the sheet. These rectangles will
remain unchanged during the guided search proce-
dure of phase 2.
The reasoning for this approach can be seen in

Table 1. Phase 1 aims to utilise best fit’s ability to pro-
duce high-quality solutions in fast execution times.
The termination of the best-fit process, before all rect-
angles are packed, aims to reduce the untidy arrange-
ments that usually occur during the latter stages of
best-fit solutions due to the smaller number of rectan-
gles that are available for selection. We allow a small
subproblem to be passed to the simulated anneal-
ing method of phase 2, thus limiting the difficulties
that these methods have with excessively large search
spaces and enabling a good phase 2 partial solution
to be found relatively quickly. This is then concate-
nated to the partial solution of phase 1 to create our
overall solution. Although other factors may also be
important, such as sheet width or relative size of
the problem shapes, we can see how the proposed
model aims to promote the advantages of both meth-
ods while inhibiting their disadvantages. The transi-
tion from one phase to the other is guided by the
m variable. If m = 0, then all rectangles are packed
using phase 1, the best-fit heuristic (Burke et al. 2004).
However, if m ≥ n, then we only use phase 2, and
the approach can therefore be considered as using
only the simulated annealing bottom-left-fill strategy.
From the observations of Burke et al. (2004), we can
make the following prediction: If m > 50, then we
will probably obtain a worse solution than if we used
the stand-alone best-fit heuristic; therefore, an effec-
tive value for m may be somewhere in the range
0<m< 50. Our experiments varied the value of the
phase switch variable m to test our assumption that
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Inputs:
x, y: sheet dimensions
n: number of rectangles
m: phase switch
s: phase 2 duration

Phase 1 (until n– m rectangles
have been packed)

Phase 1 solution skyline
m rectangles

Input sequence

Metaheuristic module
(initially seeded by

height-decreasing order)

Bottom-left-fill
heuristic

Solution

Simulated annealing
Initial temperature = 3

Cooling = 0.999
Reheat = 1.0001

Phase 2 (for s seconds)

Best-fit
heuristic

Figure 1 A Summary of the Proposed Strategy

a value in the range 0 < m < 50 should produce bet-
ter results. The conclusion is that the best setting for
m is between 20 and 40 using 60-second durations.
Because of these results, we set m to 30 for the exper-
iments of §4.1. A summary of our proposed approach
is shown in Figure 1.

Table 2 Test Data from the Literature

Data source Problem category Test problems given No. of rectangles Optimal height Object dimensions

Hopper and Turton (2001) C1 P1, P2, P3 16 or 17 20 20× 20
C2 P1, P2, P3 25 15 40× 15
C3 P1, P2, P3 28 or 29 30 60× 30
C4 P1, P2, P3 49 60 60× 60
C5 P1, P2, P3 72 or 73 90 60× 90
C6 P1, P2, P3 97 120 80× 120
C7 P1, P2, P3 196 or 197 240 160× 240

Valenzuela and Wang (2001) Nice P1, P2, P3, P4, P5, P6 25, 50, 100, 200, 500, 1,000 100 100× 100
Path P1, P2, P3, P4, P5, P6 25, 50, 100, 200, 500, 1,000 100 100× 100

Ramesh Babu and Ramesh Babu (1999) P1 50 375 Width = 1,000

Burke et al. (2004) N1 10 40 40× 40
N2 20 50 30× 50
N3 30 50 30× 50
N4 40 80 80× 80
N5 50 100 100× 100
N6 60 100 50× 100
N7 70 100 80× 100
N8 80 80 100× 80
N9 100 150 50× 150
N10 200 150 70× 200
N11 300 150 70× 200
N12 500 300 100× 300
N13 3,152 960 640× 960

3. Benchmark Test Data
To evaluate our proposed approach, we use a wide
range of benchmark test problems from the litera-
ture from four different sources (see Table 2). This
mirrors the data used in Burke et al. (2004) so as to
provide consistent comparisons. Hopper and Turton
(2001) provide seven categories of problem with each
category containing three instances of similar size.
Valenzuela and Wang (2001) provide floating point
data sets of both similarly dimensioned rectangles
(named “nice” data) and vastly differing dimensions
(named “path” data). Although these problems are
designed for the guillotine variant of the problem,
they provide floating point data that can demonstrate
our method’s ability to handle such problems with-
out inaccuracy and also provide further benchmark-
ing opportunities. Each category has data ranging
from 25 to 1,000 rectangles (Valenzuela and Wang
2001). Ramesh Babu and Ramesh Babu (1999) use
a test problem to compare their genetic algorithm-
based method against the method proposed by Jakobs
(1996). We also use 13 problems presented in Burke
et al. (2004) that contain few large rectangles and
many smaller rectangles. These problems have been
generated through the subdivision of one large “solu-
tion” rectangle to create the individual rectangular
pieces (this is often known as a “perfect packing”).
Therefore, the optimal solution is known.
We also provide 10 new test problems to promote

further comparison between future packing methods.
For the first five of these problems, MT1–MT5, the
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Table 3 New Test Data with Unknown Optimal Heights

New test No. of Lower-bound Object
problem rectangles height dimensions

MT1 100 492�63 400× 600
MT2 150 760�90 300× 900
MT3 200 767�31 400× 900
MT4 300 1�174�94 600× 1,300
MT5 500 1�264�86 800× 1,400

optimal solution is not known (a lower-bound height
is calculated by dividing the total area of the rect-
angles by the sheet width). The last five problems,
MT5–MT10, have been created through the dissection
of a larger rectangular object, so for these problems
the optimal height is known. Table 3 summarises the
first five data sets, MT1–MT5, for which the opti-
mal packing heights are unknown. The new data sets,
for which optimal solutions are known, are given
in Table 4. The data for all of these problems can be
found in the Online Supplement.

4. Experimentation and Results
In this section, we compare the results obtained using
the proposed method with the results from previous
work. To make this comparison, we have opted for
a dual-evaluation approach where we use the height
of the solution obtained and the secondary measure
of the total area underneath the skyline. The main
objective is to minimise the height of the packing,
but as several different arrangements may have iden-
tical heights, the area under the skyline can also be
important because it quantifies the amount of wasted
space. Two example solutions having identical heights
but differing skyline areas are shown in Figure 2.
The solution on the right of Figure 2 is more desir-
able as more of the sheet is usable for future cutting
processes.
Therefore, based on these observations, the follow-

ing evaluation function has been defined:

Solution Evaluation

=Total Height+(Area Under Skyline/Sheet Width)�
Although both solutions of Figure 2 require the same
total height, the left-hand solution has a large amount
of wasted space and therefore achieves an evaluation

Table 4 New Test Data with Known Optimal Heights

New test No. of Optimal Object
problem rectangles height dimensions

MT6 100 500 400× 500
MT7 150 500 400× 500
MT8 200 800 500× 800
MT9 300 800 600× 800
MT10 500 800 700× 800

value of 36+ �2�156/60� = 71�9. The right-hand solu-
tion has no wasted areas and thus obtains a far
better evaluation of 36 + �1�800/60� = 66. For prob-
lems that have been created from the dissection of
a larger rectangle (where the optimal solution is
known), the optimal evaluation value is twice that of
the optimal height. All of the techniques discussed in
this paper use this evaluation function for compar-
isons where lower evaluation values indicate better
solutions. All experiments have been conducted on
a 2 GHz Pentium 4 computer with 256 MB RAM.

4.1. Evaluation of the Hybrid Simulated
Annealing Approach on Test Problems
from the Literature

Our experiments aimed to compare our pro-
posed simulated annealing hybrid method to other
approaches from the literature, including the stand-
alone best-fit heuristic as proposed in Burke et al.
(2004) and the metaheuristic bottom-left-fill methods
proposed in Hopper and Turton (2001). The best and
average solution of 10 runs is given for all the prob-
lems from the literature in Table 5. The best solution
for each method is given in the final two columns as
a percentage over optimal, and the best-performing
method is highlighted in bold.
Table 5 shows that of the 47 problems from the

literature, our proposed hybrid method can signifi-
cantly improve upon 41 of these (approximately 87%).
Of the problems not improved upon by phase 2 of
our approach, one problem achieves a very good solu-
tion by using best fit alone and can only be beaten by
achieving the optimal solution (C2P2).
For some other problems, there are very small rect-

angles at the top of the stock sheets that consume all
of the 30 rectangles, which are operated on by the sim-
ulated annealing second phase, and therefore there is
not enough scope for improvement (e.g., N10, N11,
N12, N13). For these problems, we can increase the
phase switch variable, but this will also require longer
execution times to achieve suitable exploration and
exploitation of the search space. We extend our exper-
imentation for these problems in §4.2.
Table 6 compares the average solutions achieved

by the new hybrid simulated annealing algorithm to
one of the best-performing approaches in the litera-
ture, the metaheuristic bottom-left-fill algorithm (our
phase 2 method), which was proposed by Hopper
and Turton (2001). The best average result is shown
in bold. In Table 6, we present two different ver-
sions of the Hopper and Turton (2001) algorithm
(using tabu search and simulated annealing). We have
also used shading in Table 6 to indicate all of the
problem instances involving fewer than 30 rectan-
gles, because for these problems, both algorithms will
perform equally. Our hybrid approach will not use
the best-fit heuristic (phase 1) because we have fixed
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Height = 36, area = 1,800Height = 36, area = 2,156

Figure 2 Two Solutions of Identical Total Height but Vastly Different Skyline Area Evaluations

the phase switch variable m at value 30 (see above).
Indeed, this is evident from Table 6 because both algo-
rithms achieve similar average solutions. The most
interesting problems occur when there are greater
than 30 rectangles, which allows the proposed hybrid
approach to utilise the respective advantages of both
phases. In most of the data sets, our approach obtains
much better average solutions than the metaheuris-
tic bottom-left-fill algorithms on problems with more
than 30 rectangles. In the final data set of bench-
mark problems (Burke et al. 2004), the proposed
algorithm achieves improved results on over half of
the problems and is competitive on the remaining
problems. However, the two metaheuristic bottom-
left-fill approaches compare better on this set of prob-
lems. The reason for this is due to the nature of the
data. Each of these problems only involves relatively
few large rectangles and many smaller rectangles that
can be used to fill holes. Therefore, it can place the
larger rectangles in any orientation and in poten-
tially poor layouts, but because of the vast number of
smaller rectangles, the holes can easily be filled to pro-
duce good layouts. The first three data sets (Hopper
and Turton 2001, Valenzuela and Wang 2001, Ramesh
Babu and Ramesh Babu 1999) do not share this prop-
erty, so the metaheuristic bottom-left-fill algorithm
cannot perform as well compared with the proposed
approach that utilises best fit to lay the foundations of
a good solution. We have shown that our simulated
annealing hybrid method can achieve better solutions
than best fit alone and metaheuristic bottom-left-fill
alone on most problems with only 60 seconds of addi-
tional execution time.
As an example, Figure 3 shows the best solution

achieved by both the best-fit heuristic alone and the
proposed hybrid method on the data set C5P1 from
Hopper and Turton (2001). From Figure 3(a), it can
be seen that by applying the best-fit heuristic alone,
a very good overall solution can be generated (three
units above optimal). Also, it is apparent that the
heuristic produces very dense packings at the bottom
of the sheet. However, at the top of the packing,
there are fewer rectangles for the heuristic to select

from, and therefore the arrangement begins to suffer
from holes and thus wastage. Figure 3(b) shows the
results of applying the simulated annealing bottom-
left-fill method to the last 30 rectangles of the ini-
tial packing given by the best-fit heuristic. In less
than 60 seconds, the simulated annealing method can
improve upon the best-fit heuristic’s attempt at pack-
ing the last 30 rectangles both in terms of total pack-
ing height and sheet area required. The proposed
simulated annealing hybridised method yielded a
solution height of 91 units for this problem, which is
only one unit above the “perfect packing” (optimal)
solution of 90 units.

4.2. Extended Experiments on Benchmark
Problems from the Literature

In §4.1, we produced new best solutions for the
majority of the literature benchmark problems. In this
section, we extend our experiments for all of the prob-
lems for which the simulated annealing bottom-left-
fill method was unable to improve upon the best-fit
heuristic’s results. We conduct experiments using a
phase switch value of the last 150 rectangles and
allow five minutes’ execution time. In allowing more
rectangles into the second phase, each iteration takes
longer due to the extra collision detection required.
The best and average solutions of 10 runs for each
of these extended experiments are shown in Table 7
(best results are in bold).
From Table 7, the proposed approach (with altered

parameters) improved over the stand-alone best-fit
heuristic on four of the five problems. In §4.1, we
discussed the solution given for problem C2P2. With
the new parameters, we can see that we were able to
find the optimal solution for this problem by allow-
ing more time to explore the search space. It should
be noted that only phase 2 is active in this problem
because the problem size is smaller than m.
In §4.1, we observed that the problems N10–N13

had the property that small rectangles are passed to
phase 2 of our proposed simulated annealing method,
and thus the approach did not appear to have
enough scope for improvement. However, increasing
the value of the phase switch variable has created
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Height = 93 Area = 5,444 Eval. = 183.73 Height = 91 Area = 5,419 Eval. = 181.33

(b) Best fit + simulated annealing bottom-left fill(a) Best-fit heuristic

Figure 3 Solutions Obtained by (a) the Solitary Best-Fit Heuristic and (b) the Best-Fit Heuristic Hybridised with Simulated Annealing Bottom-Left Fill
on Problem C5P1

enough scope for improvement on three of these
problems when using our proposed hybrid approach.
For example, the height of the solution obtained for
N10 is only one unit above optimal. We were unable
to improve upon the largest of our problems, N13.
Further improvements may be found by extending
the experiments in a similar manner, but this is
ultimately a time-versus-quality decision that would
depend on the user’s requirements.

4.3. Experiments on New Test Problems
In our fourth set of experiments, we further analyse
the improvements that the proposed hybrid method
can achieve with larger periods of time and by

Table 7 Results of Extended Experiments Using m= 150 and Run Times of Five Minutes

Best fit+ simulated annealing
Best-fit heuristic bottom-left fill (m= 150, 5-min. run)

Best solution Best solution

Test data set Size Height Area Eval. Height Area Eval. Avg. eval.

C2P2 25 16 600 31�00 15 600 30�00 30�80
N10 200 152 10�567 302�96 152 10�551 302�73 302�77
N11 300 153 10�586 304�23 152 10�581 303�16 303�20
N12 500 306 30�431 610�31 304 30�288 606�88 607�00
N13 3�152 964 615�637 1�925�9 964 615�637 1�925�9 1�925�9

varying the value of m. We generate solutions for the
10 new test problems given in Tables 3 and 4 using
the proposed approach with values of 30, 50, and 100
rectangles for the phase switch variable m. To com-
pare how variations of computational time affect the
results, we use 60-, 300-, and 600-second phase 2 dura-
tions. Table 8 displays the results with the best result
for each of the durations highlighted (black text on
grey shading) and the best evaluation average for
each data set being highlighted (white text on black).
This identifies the phase switch value that performed
the best under each phase 2 time duration.
Table 8 shows that allowing longer time durations

in general will produce better average solutions given
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Table 8 Best and Average Results Using Phase 2 Durations of 60, 300, and 600 Seconds on the New Problems

999�85

Best fit+ simulated annealing bottom-left fill

60-second run 300-second run 600-second run

Best solution Best solution Best solution
Data No. of Phase
set shapes switch m Height Area Eval. Avg. eval. Height Area Eval. Avg. eval. Height Area Eval. Avg. eval.

MT1 100 30 503�08 198�729�6 999�90 1�001�28 502�78 198�626�9 999�34 1�001�36 503�08 198�574�8 999�51 1�000�79

50 501�38 199�053�4 999�01 1�001�31 502�50 199�153�5 1�000�38 1�001�49 502�50 198�559�3 998�90

100 504�50 199�437�8 1�003�09 1�006�92 504�50 199�024�8 1�002�06 1�004�70 502�88 199�352�5 1�001�26 1�002�63

MT2 150 30 775�20 231�146�9 1�545�69 1�549�14 773�70 231�126�6 1�544�12 1�544�80 774�00 231�059�3 1�544�20 1�544�50

50 774�00 230�946�8 1�543�82 1�548�40 773�20 230�840�4 1�542�67 1�545�88 772�80 230�876�5 1�542�39 1�545�30

100 781�50 232�762�1 1�557�37 1�560�56 780�90 231�832�8 1�553�68 1�558�23 779�70 232�071�8 1�553�27 1�557�91

MT3 200 30 793�20 313�991�5 1�578�18 1�582�21 793�00 313�508�1 1�576�77 1�579�05 794�10 313�836�8 1�578�69 1�579�80

50 794�00 313�337�4 1�577�34 1�581�23 796�00 313�531�9 1�579�83 1�582�36 794�00 313�368�5 1�577�42 1�581�48

100 793�00 313�505�3 1�576�76 1�580�67 790�60 312�996�5 1�573�09 1�578�56 790�30 312�690�7 1�572�03 1�575�14

MT4 300 30 1�199�00 714�773�0 2�390�29 2�390�97 1�198�00 715�312�0 2�390�19 2�390�45 1�198�00 715�012�0 2�389�69 2�390�21

50 1�200�00 715�022�0 2�391�70 2�392�79 1�197�00 714�443�0 2�387�74 2�390�25 1�197�00 715�158�0 2�388�93 2�390�13

100 1�211�00 720�719�0 2�412�20 2�414�83 1�198�00 715�015�0 2�389�69 2�392�50 1�199�00 714�488�0 2�389�81 2�391�65

MT5 500 30 1�286�60 1�020�656�6 2�562�42 2�563�63 1�285�60 1�020�681�0 2�561�45 2�561�83 1�286�60 1�020�261�4 2�561�93 2�563�60

50 1�283�10 1�021�290�7 2�559�71 2�563�03 1�283�20 1�020�722�6 2�559�10 2�559�75 1�282�50 1�020�353�7 2�557�94 2�559�29

100 1�285�00 1�022�023�3 2�562�53 2�564�48 1�283�40 1�021�242�7 2�559�95 2�562�39 1�282�80 1�020�929�0 2�558�96 2�561�89

MT6 100 30 512�25 203�351�0 1�020�63 1�022�84 512�93 203�303�9 1�021�19 512�77 203�451�1 1�021�40 1�022�17

50 518�06 204�174�6 1�028�49 1�029�95 518�07 204�032�7 1�028�15 1�029�32 517�17 203�872�5 1�026�85 1�028�06

100 530�39 206�802�9 1�047�39 1�050�49 527�48 206�714�3 1�044�27 1�047�22 525�25 206�668�7 1�041�93 1�048�11

MT7 150 30 508�16 201�621�9 1�012�22 1�012�67 507�19 201�631�8 1�011�27 1�011�75 507�08 201�600�3 1�011�08 1�011�45

50 509�29 202�175�7 1�014�73 1�015�69 508�56 201�864�1 1�013�22 1�014�55 508�49 202�030�2 1�013�57 1�014�27

100 514�16 202�695�8 1�020�90 1�022�02 512�02 203�152�6 1�019�91 1�021�52 512�87 203�155�2 1�020�76 1�022�40

MT8 200 30 818�10 406�701�3 1�631�50 1�632�51 817�93 406�622�6 1�631�18 1�631�53 817�82 406�520�0 1�630�86 1�631�09

50 821�05 406�762�7 1�634�57 1�635�83 818�11 406�667�9 1�631�45 1�633�72 817�85 406�691�2 1�631�24 1�632�99

100 823�86 406�911�6 1�637�69 1�642�60 823�91 407�206�7 1�638�32 1�640�44 823�91 407�351�6 1�638�61 1�639�88

MT9 300 30 815�44 485�287�6 1�624�26 1�624�85 814�67 485�194�4 1�623�32 1�623�69 814�20 485�107�0 1�622�71 1�623�25

50 816�41 485�544�2 1�625�65 1�627�76 814�21 485�310�4 1�623�07 1�626�03 815�46 485�521�1 1�624�66 1�626�56

100 896�13 487�239�4 1�708�19 1�709�21 820�84 485�492�0 1�629�99 1�676�41 820�64 487�090�6 1�632�45 1�662�91

MT10 500 30 1�516�00 906�931�1 3�027�55 3�028�31 1�514�95 906�697�6 3�026�11 3�026�62 1�514�91 906�824�1 3�026�28 3�026�53

50 1�520�56 907�169�7 3�032�51 3�032�99 1�517�93 907�245�6 3�030�01 3�030�71 1�517�44 906�775�1 3�028�73 3�029�87

100 1�526�27 908�840�3 3�041�00 3�042�56 1�523�89 909�188�6 3�039�21 3�040�59 1�522�51 908�946�6 3�037�42 3�037�98

1�022�29

equal m values. This is not surprising given that the
simulated annealing search has more time to find good
solutions. However, it is more interesting to observe
how the best value of the phase switch variable m
changes with different time durations. The results
show that low values of m yield the best results given
only small time durations for phase 2. For some of
these problems, the best-fit heuristic creates solutions
with several holes during the latter stages of packing
that cannot be consumed when m is set to 30 rectan-
gles. To obtain further improvements, more rectangles
may be passed to phase 2, although inevitably this
requires longer execution times. This can be demon-
strated by observing the results for problems MT1
and MT4. With 60-second durations, the best aver-
ages for these two problems are achieved with m= 30

rectangles. However, if we allow a longer duration
of 600 seconds, both problems exhibit better aver-
age evaluations using an m value of 50 rectangles.
Increasing the number of rectangles passed to phase
2 can yield improvements, although ultimately this
depends somewhat on the quality of the solution
given by the best-fit heuristic and the properties of
the problem being solved. If the best-fit heuristic is
able to produce a very good solution with very few
holes toward the latter stages of the packing, then by
increasing the number of rectangles passed to phase
2, more of best fit’s desirable layout is destroyed and
must be rediscovered by the simulated annealing search.
This inevitably requires much longer search durations
and can often result in the simulated annealing being
unable to find an equivalent layout given reasonable
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time. The results indicate that this is especially the
case with problems created from the dissection of a
large rectangle (MT6–MT10) because the best aver-
age solutions are consistently obtained using an m
value of 30 rectangles. Also, the bottom-left-fill heuris-
tic becomes slower with a greater number of rectan-
gles due to the extra collision detection tests that are
required. This also favours smaller m phase switch
values.

5. Conclusions
We have previously demonstrated that the best-
fit heuristic outperforms other approaches on the
two-dimensional orthogonal stock-cutting problem
for problem instances with over 50 rectangles. For
smaller-sized problems, metaheuristic bottom-left-fill
methods were still superior. This paper has pro-
posed an approach that hybridises the best-fit heuris-
tic with simulated annealing. The proposed method
was tested on 47 test problems. For 41 of those prob-
lems, we made improvements on solution quality
when compared against best fit used in isolation. This
was possible with only a slight increase in the com-
putational time required. For some of the problem
instances, we extended the amount of time, which
enabled us to pass a greater number of rectangles to
the simulated annealing phase. This yielded further
improvements and produced four new best solutions.
We also introduced 10 new problems and set initial
benchmarks for them.
In summary, we have shown that a best-fit method-

ology, hybridised with simulated annealing, is able
to significantly improve upon the solutions given by
other approaches from the literature. It can also pro-
duce solutions that are less than 1% over optimum.
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