

Edinburgh Research Explorer

Binarized Support Vector Machines

Citation for published version:
Carrizosa, E, Martin-Barragan, B & Morales, DR 2010, 'Binarized Support Vector Machines', INFORMS
Journal on Computing, vol. 22, no. 1, pp. 154-167. https://doi.org/10.1287/ijoc.1090.0317

Digital Object Identifier (DOI):
10.1287/ijoc.1090.0317

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
INFORMS Journal on Computing

Publisher Rights Statement:
© Carrizosa, E., Martin-Barragan, B., & Morales, D. R. (2010). Binarized Support Vector Machines. INFORMS
Journal on Computing, 22(1), 154-167. 10.1287/ijoc.1090.0317

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Apr. 2024

https://doi.org/10.1287/ijoc.1090.0317
https://doi.org/10.1287/ijoc.1090.0317
https://www.research.ed.ac.uk/en/publications/da6add84-37c5-4f88-821c-4874a70767d4

INFORMS Journal on Computing
Vol. 22, No. 1, Winter 2010, pp. 154–167
issn 1091-9856 �eissn 1526-5528 �10 �2201 �0154

informs ®

doi 10.1287/ijoc.1090.0317
©2010 INFORMS

Binarized Support Vector Machines
Emilio Carrizosa

Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, 41012 Sevilla, Spain,
ecarrizosa@us.es

Belen Martin-Barragan
Departamento de Estadística, Universidad Carlos III de Madrid, 28903 Getafe, Madrid, Spain,

belen.martin@uc3m.es

Dolores Romero Morales
Saïd Business School, University of Oxford, Oxford OX1 1HP, United Kingdom,

dolores.romero-morales@sbs.ox.ac.uk

The widely used support vector machine (SVM) method has shown to yield very good results in super-
vised classification problems. Other methods such as classification trees have become more popular among

practitioners than SVM thanks to their interpretability, which is an important issue in data mining.
In this work, we propose an SVM-based method that automatically detects the most important predictor vari-

ables and the role they play in the classifier. In particular, the proposed method is able to detect those values and
intervals that are critical for the classification. The method involves the optimization of a linear programming
problem in the spirit of the Lasso method with a large number of decision variables. The numerical experience
reported shows that a rather direct use of the standard column generation strategy leads to a classification
method that, in terms of classification ability, is competitive against the standard linear SVM and classification
trees. Moreover, the proposed method is robust; i.e., it is stable in the presence of outliers and invariant to
change of scale or measurement units of the predictor variables.
When the complexity of the classifier is an important issue, a wrapper feature selection method is applied,

yielding simpler but still competitive classifiers.

Key words : supervised classification; binarization; column generation; support vector machines
History : Accepted by Amit Basu, former Area Editor for Knowledge and Data Management; received February
2006; revised January 2008, July 2008; accepted December 2008. Published online in Articles in Advance
April 7, 2009.

1. Introduction and Literature Review
Classifying objects or individuals into different classes
or groups is one of the aims of data mining. This topic
has been addressed in different areas such as statistics,
operations research, and artificial intelligence. A gen-
eral introduction of data mining can be found in
Hand et al. (2001).
We focus on the well-known so-called supervised

classification problem, usually referred as discrimi-
nant analysis by statisticians, where we have a set of
objects � and the aim is to build a classification rule
that predicts the class membership cu of an object u
into one of a predefined set of classes � by means
of its predictor vector xu. The predictor vector x takes
values in a set X, which is usually assumed to be
a subset of �p, such as �0�1	p. The components xl,
l= 1�2� � � � � p, of the predictor vector x are called pre-
dictor variables. The other piece of information defin-
ing u is the class cu to which object u belongs. In this
paper, we restrict ourselves to the case in which two
classes exist, � = �−1�1	, since the multiclass case can
be reduced to a series of two-class problems, as has

been suggested, e.g., in Hastie and Tibshirani (1998),
Herbrich (2002), and Vapnik (1998).
Information about the objects in � is available only

in a subset I , called the training sample, where both
predictor vector and class-membership of the objects
are known. With this information, the classification
rule must be built.
The support vector machines (SVM) (Cortes and

Vapnik 1995) approach is based on margin maximiza-
tion, which consists in finding the separating hyper-
plane that is farthest from the closest object. SVM has
been shown to be a very powerful tool for super-
vised classification. The most popular versions of SVM
embed, via a kernel function, the original predictor
variables into a higher (possibly infinite) dimensional
space (Herbrich 2002). In this way, one obtains classi-
fiers with good generalization properties but, in gen-
eral, can be hard to interpret.
In some application fields, practitioners such as

doctors or businessmen may be very unwilling to
use a classifier they cannot interpret. For them, data
mining methods sometimes proceed like a black box,

154

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 155

so they would not feel confident enough to use clas-
sifiers unless they can interpret them somehow.
For instance, it is easy to interpret and manage

queries such as
• Is predictor variable l1 big?
• Is predictor variable l2 small?
• Does predictor variable l3 attain a very extreme

value?
In these queries, the concept of “big,” “small,” and
“extreme value” must be quantified, e.g., in the form

Is predictor variable l greater than or equal to b? (1)

This type of query is used, e.g., in classification trees
(CART). Because of its very intuitive graphical display,
practitioners can interpret the classifier and describe
how it works. Moreover, they can detect the values of
a predictor variable critical for the classification.
In this paper, we work in an SVM-based framework

where the feature space is defined by binarizing each
predictor variable, i.e., by transforming each numer-
ical predictor variable l into a large series of binary
variables, obtained by making queries of type (1) for
many different cutoffs b. Because we are using SVM
after binarizing the predictor variables, we call our
method binarized support vector machines (BSVM).
Our aim is to show that if SVM is run after such

binarization, the resulting classifier has valuable prop-
erties concerning classification ability, interpretability,
and robustness.
First, the numerical experience reported in §4 shows

that BSVM yields lower misclassification rates than
classification trees and is competitive (in other words,
better in most cases we tested) against linear SVM.
Second, BSVM takes us a step forward toward

interpretability of SVMs. Because the obtained classi-
fication rule is based on queries of type (1), the criti-
cal values and intervals of the predictor variables are
identified, as done by classification trees.
Third, BSVM is linear in the sense that it yields a

classification rule that is linear in the features selected,
and it can be seen as a linear SVM after transforming
the variables via a nonlinear mapping. Such mapping,
which can be visualized by means of a graphical pro-
cedure, is valuable in terms of interpretability because
it shows the way each predictor variable influences
the classifier. The capability of BSVM to capture non-
linearities presents an advantage with respect to the
standard linear SVM, with important consequences in
the classification ability as shown in our numerical
results.
Finally, the use of queries of type (1) in our method

makes it appealing in terms of robustness against out-
liers and changes of scale in the data. The numer-
ical experience reported shows that our procedure
behaves as classification trees and clearly better than

linear SVMs in the presence of outliers. Moreover,
whereas the linear SVM is influenced by the scale in
the data—even a linear change of scale in the predic-
tor variables may change the classifier and thus the
classification ability of the SVM methodology—our
proposal yields a classifier that is invariant to change
of scale, in the sense that if the data were modified by
a monotonic (non)linear transformation, the classifier
obtained would be the same.
Note that the binarization procedure as proposed in

this paper is applied to each predictor variable sepa-
rately. Hence, interactions between predictor variables
are not taken into account. Introducing them in the
model adds extra computational complexity that is
outside the scope of this paper.
The idea of binarizing continuous predictor vari-

ables is not new at all in the field of classifica-
tion. Indeed, classification trees are precisely based
on the strategy of defining, for different predictor
variables, appropriate cutoffs. Moreover, binarizing is
also natural in other classification procedures such as
neural networks, where the well-known step activa-
tion function, already at the heart of the perceptron
method, allows one to discretize any predictor vari-
able or combination of them. Binarizing continuous
predictor variables has also been proposed in the so-
called rule extraction procedures within SVM (Barakat
and Diederich 2004, 2005; Fung et al. 2005; Martens
et al. 2007; Núñez et al. 2002) and neural networks
(Andrews et al. 1995, Baesens et al. 2003, Craven
and Shavlik 1997). When a rule extraction method is
applied to a classifier, one obtains an alternative clas-
sifier that hopefully has a similar behavior on data
but is more interpretable because it is based on simple
rules such as those derived from queries of type (1).
Whereas our method shares with rule extraction pro-
cedures the aim of enhancing interpretability of the
output of an SVM, we are not proposing to replace the
SVM classifier by a more interpretable one that, based
on queries of type (1), mimics the behavior of the
SVM classifier; instead, we are proposing a binariza-
tion in the data via queries of type (1) and by obtain-
ing the SVM classifier for such transformed data. This
way, we increase interpretability with respect to stan-
dard SVM and, as shown in our numerical experience,
provide a competitive method in terms of misclassifi-
cation rates.
As far as we are aware, there is no paper using this

way binarization for support vector machines; thus,
our strategy is new in the context of SVM.
The classifier proposed in this paper, BSVM, is de-

scribed in §2, where we analyze the interpretability
of the proposed method and propose a visualization
tool for plotting the role of a predictor variable in the
classifier. Because the number of features to be con-
sidered may be huge, the BSVM method yields an

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
156 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

optimization problem with a large number of decision
variables. In §3, a column generation-based algorithm
is proposed to solve such an optimization problem.
Numerical results are presented in §4; they illustrate
the classification ability and the desirable properties
of BSVM, and show that the proposed approach gives
a classifier that is competitive against the standard lin-
ear SVM or classification trees. When the complexity
of the classifier is an important issue, a wrapper fea-
ture selection method is applied to reduce the number
of features used in the classifier at the expense of a
mild loss in the classification ability. Conclusions and
some lines for future research are discussed in §5.

2. Binarized Support Vector Machines
Queries of type (1) are simple and, hence, are by
themselves easy to interpret. In §2.1, we introduce
a classifier that is made up by queries of this type.
We propose in §2.2 a visualization tool that graphi-
cally represents the role any original predictor vari-
able plays in the classifier. The search for a good
classifier is based on SVM ideas, as described in §2.3.

2.1. Using Simple Queries
In practical applications, simple classification rules
based on queries of type (1) are very desirable because
of their interpretability. For example, a doctor would
say that having high blood pressure is a symptom of
disease. Choosing the threshold b from which a spe-
cific blood pressure would be considered high is not
usually an easy task.
We theoretically consider all the possible queries of

type (1), mathematically formalized by the function

�lb�x�=

1 if xl ≥ b�

0 otherwise,
(2)

for b ∈ � and l = 1�2� � � � � p. In what follows, each
function of type �lb is called feature.
Our method constructs a classifier after binariz-

ing all predictor variables. This binarization proce-
dure could be done in a tedious preprocessing step,
where all the possible features are created. Instead,
as will be seen later, we propose a method to generate,
by means of a dynamic process, only those features
that are more promising in terms of classification
ability.
The set of possible cutoff values b (and thus the

number of features) is, in principle, infinite. How-
ever, given a training sample I , many of those pos-
sible cutoffs will yield exactly the same classification
in the objects in I , which are the objects where infor-
mation is available. In this sense, given the training
sample I , for any given predictor variable l, all val-
ues of b between two consecutive values of l lead

to functions �lb that behave identically on the train-
ing sample I . Hence, if we construct for each predictor
variable l the finite set Bl of midpoints between con-
secutive values of l in the training sample I , it turns
out that the set of functions ��lb� b ∈ Bl	 is, on I , as rich
as the full set of step functions ��lb� b ∈ �	. Instead
of working with the full set of functions defined by
all possible cutoffs b ∈�, the family of features under
consideration in this paper is given by

� = ��lb� b ∈ Bl� l= 1�2� � � � � p	�
These features are used to classify in the following

way: each feature �lb has an associated weight �lb

measuring its contribution for the classification into
the class −1 or 1. The weighted sum of those features
plus a threshold � constitute the score function:

f �x�=����x�+�=
p∑

l=1

∑
�b∈Bl �xl≥b	

�lb +�� (3)

where ��x�= ��lb�x��b∈Bl� l=1�2�����p and ����x� denotes
the scalar product of vectors � and ��x�, ����x� =∑p

l=1
∑

b∈Bl
�lb�lb�x�=

∑p

l=1
∑

�b∈Bl �xl≥b	 �lb.
Objects will be allocated to class −1 if f �x� < 0 and

to class 1 if f �x� > 0. In case of ties, i.e., f �x� = 0,
objects can be allocated randomly or by some pre-
defined order. In this paper, following a worst-case
approach, they will be considered as misclassified.
For a certain predictor variable l, the coefficient �lb

associated to feature �lb represents the amount with
which the query “is xl ≥ b?” contributes to the score
function (3). Those predictor variables l for which �lb

are zero for all b ∈ Bl are not needed for the classifica-
tion and can be discarded. In other words, only those
values b for which the corresponding �lb are nonzero
can be considered as critical values, in terms of clas-
sification, in the predictor variable l. Moreover, the
magnitude of �lb enables us to quantify the impor-
tance of the cutoff point b to separate individuals of
classes 1 and −1.
To fix ideas, let us consider the Wisconsin Breast

Cancer Database from the UCI Machine Learning Re-
pository (Newman et al. 1998), with data from can-
cer diagnosis, as an example. Each individual has 30
predictor variables, which, in principle, are to be taken
into consideration. However, if we use BSVM, it turns
out that only some of these predictor variables are
shown to be relevant for the classification. In par-
ticular, with a specific choice of the parameter in
our model, only 12 have at least one nonzero �lb

and the other 17 remaining predictor variables can
be neglected. Tables 1 and 2 focus on two of these
relevant predictor variables, namely, Mean Concave
Points and Worst Radius. For instance, for predictor
variable Mean Concave Points and cutoff b = 0�0514,

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 157

Table 1 Cutoffs and Weights for Predictor
Variable Mean Concave Points

b �lb

0.0492 0.0279
0.0514 0.5140
0.0559 0.0615

the weight is 0.514. For predictor variable Worst
Radius, the only cutoff is b= 17�72 and the weight
is 0.1006. Because the output of the features pro-
posed in this paper is always binary, the importance
represented by the coefficient is always measured in
the same scale. This means that having Mean Concave
Points greater than or equal to 0.0514 is more impor-
tant for the classification than having Worst Radius
greater than or equal to 17.72. Moreover, for predic-
tor variable Worst Radius, the only important issue for
classification purposes is whether this variable takes a
value greater than or equal to its unique critical value,
namely, 17.72. In contrast, for variable Mean Concave
Points, other cutoffs are also used in the classifier.

2.2. Visualization Tool
The weight �lb gives insightful knowledge about how
predictor variable l together with the cutoff b influ-
ence the classification. In this section, we focus on the
influence of predictor variable l as a whole instead of
with a particular cutoff.
The role of predictor variable l in the score function

is modeled by the stepwise function

s �→ ∑
�b∈Bl � s≥b	

�lb� (4)

This stepwise function is useful because it approxi-
mates the most adequate mapping to be applied to
predictor variable l to optimize the classification task.
As an illustration, Table 3 shows, for predictor vari-
able Worst Texture, its cutoffs b, the corresponding
weights �lb, and the cumulative weights

∑
b′≤b �lb′ .

We propose a plot of function (4) to gain insight
about the contribution of predictor variable l to the
classifier. This plot is a valuable tool to practitioners
who can use it to interpret the classifier and describe
the role every predictor variable plays in the classi-
fication. In particular, it allows a direct choice of the
relevant predictor variables and detection of critical
values and intervals.
In Figure 1, we show for each of the 12 relevant pre-

dictor variables, i.e., those with at least one nonzero

Table 2 Cutoffs and Weights for Predictor
Variable Worst Radius

b �lb

17.720 0.1006

Table 3 Weights and Cumulative Weights for
Predictor Variable Worst Texture

b �lb

∑
b′≤b �lb′

20.845 0.1117 0.1117
22.860 0.1508 0.2626
25.725 0.2514 0.5140
27.530 0.0279 0.5419

�lb, its contribution to the score function. Predictor
variables Mean Concave Points, Worst Area, and Worst
Concave Points are the most important, whereas Worst
Texture and Worst Perimeter have a medium impor-
tance. Using this graphical representation, in predictor
variable Mean Concave Points, we can detect a critical
value that, as said in the previous section, is at point
0.0514. In the case of Worst Texture, in the interval
between 21 and 27, the importance of this predictor
variable grows up little by little, whereas outside this
interval it remains constant. We can say that in this
case we have a critical interval instead of a critical
cutoff.
We have also plotted the median (represented by

a star) and the mean (represented by a cross) in Fig-
ure 1. It can be seen how, although the mean or the
median are sometimes good choices for cutoffs, this
does not happen in general, and BSVM prefers other
choices.
Graphical representations such as Figure 1 can pro-

vide insight into the role a predictor variable plays in
the classifier.
In Figure 2, we present three different scenarios

found by applying the proposed method to other pub-
licly available databases. More details can be found
in §4. In the first case, there is just one value that
is critical for classification. The second instance sug-
gests an S-shaped transformation, similar to Worst
Texture in Figure 1; it identifies a critical interval
within which the behavior is linear. Other types of
mappings, harder to interpret, are possible, of course.
This is the case of the third function, which suggests
a logarithmic transformation.
Summing up, we have proposed a classifier that,

using simple queries of type (1), allows us to visualize
the role every predictor variable plays in the classifi-
cation. Now it is time to describe the procedure for
finding the weights �lb associated to each predictor
variable and cutoff. We follow an SVM-based frame-
work, developed in the next section.

2.3. Support Vector Machines
To choose � and �, we follow an SVM-based
approach, which consists of finding the separating
hyperplane that maximizes the margin in the feature
space, i.e., the space of the images ��xu� of the objects
u in the training sample I . The use of margin maxi-
mization is theoretically motivated by the bounds on

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
158 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

9.71 17.1025 24.495 31.8875 39.28
–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

Mean texture

0 0.0503 0.1006 0.1509 0.2012

Mean concave points

0.1115 0.8019 1.4923 2.1826 2.873

Radius standard error

6.802 140.6515 274.501 408.3505 542.2

Area standard error

7.93 14.9575 21.985 29.0125 36.04

Worst radius

12.02 21.4 30.78 40.16 49.54

Worst texture

50.41 100.6075 150.805 201.0025 251.2

Worst perimeter

185.2 1,202.4 2,219.6 3,236.8 4,254

Worst area

0.0712 0.109 0.1469 0.1847 0.2226

Worst smoothness

0 0.313 0.626 0.939 1.252

Worst concavity

0 0.0727 0.1455 0.2183 0.291

Worst concave points

0.1565 0.2833 0.4101 0.537 0.6638

Worst symmetry

Figure 1 Contribution of Predictor Variables

the generalization ability (Shawe-Taylor et al. 1998;
Vapnik 1995, 1998), where the probability of misclassi-
fying a forthcoming individual is bounded by a func-
tion that is decreasing in the margin. The so-called
hard margin SVM approach proposes the choice of the
separating hyperplane with maximal margin, i.e., the
hyperplane that correctly classifies all objects in I and

0 1 2 3
–1.0

–0.5

0

0.5

1.0

0 50 100 150
–1

0

1

2

3

50 100 150 200
–1

0

1

2

3

4

250

Figure 2 Transformations Suggested by the Method

is farthest from the closest object. In contrast, the so-
called soft margin approach allows some objects to
be misclassified. We use this latter version as it has
been empirically shown to avoid overfitting, a phe-
nomenon that happens when a low misclassification
rate in I does not generalize to forthcoming objects.
The soft margin maximization problem is formulated

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 159

in this paper by

min ���+C
∑
u∈I

�u

s.t. cu�����xu�+��+ �u ≥ 1 ∀ u ∈ I�

�u ≥ 0 ∀ u ∈ I�

� ∈�N � � ∈��

(5)

where the decision variables are the weight vector �,
the threshold value �, and perturbations �u associated
with the misclassification of object u ∈ I . �·� denotes
the L1 norm, C is a constant that trades off the mar-
gin in the correctly classified objects and the pertur-
bations �u, and N =∑p

l=1 ��Bl�, where ��S� denotes the
cardinality of a set S.
An appropriate value of C is chosen here, as

detailed in §4.1, by inspecting a wide range of val-
ues and then measuring the performance with respect
to misclassification rates, assessed by cross-validation
(Kohavi 1995).
SVM seeks the separating hyperplane maximizing

a function of the distances. There are many differ-
ent possible choices for the distance function, which
lead to different variants of SVM (Carrizosa 2008).
The distance between points has usually been consid-
ered in the literature as the Euclidean norm, yield-
ing the margin to be measured by the Euclidean
norm as well, but other norms such as the L1 norm
and the L� norm have been considered and success-
fully applied. See, for instance, Bennett (1999), Bradley
and Mangasarian (1998), Carrizosa et al. (2008),
Mangasarian (2000, 1965), Smola et al. (1998), Weston
et al. (1999), and the references therein. Moreover, the
choice of the L� norm to measure distances yields
the minimization of the L1 norm of �. In this sense,
the problem is equivalent to the use of the L1 norm
regularization, also called lasso penalty (Hastie et al.
2001, Tibshirani 1996).
Contrary to the Euclidean case, in which a max-

imal margin hyperplane can be found by solving a
quadratic program with linear constraints if, as in this
paper, the L1 norm regularization is used, then an
optimal solution of the corresponding optimization
problem can be found by solving a linear program-
ming (LP) problem. In Pedroso and Murata (2001),
empirical results show that “in terms of separation
performance, L1, L�, and Euclidean norm-based SVM
tend to be quite similar.” Moreover, the L1 norm
regularization contributes to sparsity in the classi-
fier, yielding � with many components equal to zero;
see, for instance, Bradley and Mangasarian (1998),
Fung and Mangasarian (2004), or Mangasarian and
Thompson (2006, p. 315) which states that “one of
the principal advantages of 1-norm support vector
machines (SVMs) is that, unlike conventional 2-norm
SVMs, they are very effective in reducing input space
features for linear kernels.”

Because �·� is the L1 norm, problem (5) can be for-
mulated as the following LP problem:

min
p∑

l=1

∑
b∈Bl

��+
lb +�−

lb�+C
∑
u∈I

�u

s.t.
p∑

l=1

∑
b∈Bl

��+
lb −�−

lb�c
u�lb�x

u�

+�cu + �u ≥ 1 ∀ u ∈ I�

�+
lb ≥ 0 ∀ b ∈ Bl� ∀ l= 1�2� � � � � p�

�−
lb ≥ 0 ∀ b ∈ Bl� ∀ l= 1�2� � � � � p�

�u ≥ 0 ∀u ∈ I�

� ∈��

(6)

After finding the maximal margin hyperplane in
the feature space defined by � , the score function has
the form described in (3).
As said before, for each feature, the absolute value

of its coefficient indicates the importance of that fea-
ture for the classification. In particular, features whose
corresponding coefficient is zero can be seen as irrel-
evant for classification purposes. Using basic linear
programming theory, it is easy to see that the num-
ber of features with a nonzero coefficient is not larger
than the number of objects in the training sample.

3. Column Generation
Problem (6) is a large-scale linear program, which
may be solved by any method that can handle SVM
with the L1 norm regularization, including general-
purpose LP procedures or more ad hoc methods;
see, e.g., Fung and Mangasarian (2004). In this paper,
we propose problem (6) to be solved by the well-
knownmathematical programming tool called column
generation, initially introduced for the cutting-stock
problem (Gilmore and Gomory 1961) and success-
fully used, under different variants, in different works
on support vector machines such as Bi et al. (2004),
Bradley and Mangasarian (2000), Demiriz et al. (2002),
and Mangasarian and Thompson (2006). A brief dis-
cussion on how column generation is tailored to solve
problem (6) follows.
Instead of solving problem (6) directly, which has a

high number of decision variables, the column gener-
ation technique solves a series of reduced problems,
where decision variables corresponding to features in
the set � are iteratively added as needed.
For F ⊂ � , let master problem (6-F) be problem (6)

with the family of features F . In each iteration, we first
solve problem (6-F). The next step is to check whether
the current solution is optimal for problem (6) or not
and, in the latter case, generate a new feature �,
improving the objective value of the current solu-
tion. The generated feature is added to the family of

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
160 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

features F . This process is repeated until optimality is
reached.
To generate new features, we use the dual formu-

lation of problem (6),

max
∑
u∈I

!u

s.t. −1≤∑
u∈I

!uc
u��xu�≤ 1 ∀� ∈� �

∑
u∈I

!uc
u = 0�

0≤ !u ≤C u ∈ I �

(7)

The dual formulation of the master problem (6-F)
only differs from this one in the first set of constraints,
which should be attained ∀� ∈ F instead of ∀� ∈� .
Let ��∗��∗� be an optimal solution of master

problem (6-F), and let �!∗
u�u∈I be the values of the

corresponding optimal dual solution. If the optimal
solution of the master problem (6-F) is also optimal
for problem (6), then for every feature � ∈� the con-
straints of the dual problem (7) will hold; i.e.,

−1≤∑
u∈I

!∗
uc

u��xu�≤ 1� (8)

Denote "��� =∑
u∈I !∗

uc
u��xu�. If ��∗��∗� is not opti-

mal for problem (6), then the most violated constraint
gives us information about which feature is promis-
ing and could be added to F , in the sense that adding
such a feature to the set F would yield, at that iter-
ation, the highest improvement of the objective func-
tion. Thus, we wish to generate a new feature � ∈ � ,
maximizing �"����.
In the remainder of this section, we give a more

detailed description of our implementation of the col-
umn generation algorithm.

3.1. Initial Set of Features
In the column generation procedure, new features are
sequentially added to the problem based on the dual
values of the current solution. The column generation
technique starts with an initial master problem, i.e.,
a set of features F0 must be chosen to initialize the
algorithm. We have chosen to start with one feature
per predictor variable, with the cutoff set equal to its
median in the objects of I .

3.2. Generation of Features
Finding the best � ∈ � reduces to finding a predic-
tor variable l and a cutoff b ∈ Bl such that �"��lb��,
with �lb defined by (2), is maximal. This can be done
by full inspection of the set ��lb+l

��lb−l
� l= 1�2� � � � � p	,

where, for each predictor variable l, the cutoff b+l
(respectively, b−l) is the value in Bl for which "��lb� is
highest (respectively, lowest). In this section, we focus

on a given predictor variable l and describe an algo-
rithm for finding the cutoff b+l , maximizing "��lb�.
Finding b−l can be done in a similar way.
First, we sort all the objects in decreasing order by

the values of the predictor variable l. Denote by u�i�
the object in ith position. For simplicity, suppose
there are not repeated values; i.e., xu�1�

l > x
u�2�
l > · · ·>

x
u���I��
l . The case with repeated values will be analyzed
later.
Once l is fixed and all the objects are sorted by

the values of the predictor variable l, the value "��lb�
can be efficiently calculated with a recursive proce-
dure. Indeed, for certain i ∈ �1�2� � � � � ��I�	, we have
"��lbi+1� = "��lbi

�+ !∗
u�i+1�c

u�i+1�, where bi denotes the
cutoff chosen as �xu�i� + xu�i+1��/2. Moreover, since !∗

u

is nonnegative for all u ∈ I , we have that "��lbi+1� ≥
"��lbi

� whenever cu�i+1� = 1. Hence, checking whether
�lbi

is a maximum is not needed for every i but only
for those i such that cu�i� = 1 and cu�i+1� =−1.
In the case in which there are repeated values in

�xu
l � u ∈ I	, the rule above does not apply. Let i and t

be such that x
u�i−1�
l > x

u�i�
l = x

u�i+1�
l = · · · = x

u�i+t�
l >

x
u�i+t+1�
l . Note that in the set of objects where predictor
variable l has the same value, there could be objects
belonging to different classes. In this case, the value
b= bi must be checked, whatever the value of cu�i+t+1�.
However, if cu�i� = cu�i+1� = · · · = cu�i+t� and cu�i+t+1� = 1,
we know that setting b= bj for any j = i� i+1� � � � � i+t
will be improved by setting b= bi+t+1. This means that
b = bi does not give a maximum of "��lb�. Only if
cu�i� = 1 and cu�i+t+1� =−1 is it worth considering b= bi

as a candidate to be the maximum.
The minimization of " is done analogously. For

example, in case of no repeated values, candidates to
be a minimum correspond to objects u�i� belonging
to class −1, where the next object u�i+ 1� belongs to
class 1.
Taking into account all these considerations, we

obtain, for a fixed predictor variable l given the
dual values !∗

u, the algorithm described below, which
finds the cutoff b+l (and, respectively, b

−
l) for which

"��lb+l
� (respectively, "��lb−l

�) is maximal (respectively,
minimal).

Algorithm 1 (Choosing two cutoffs for xl)
Step 0. Sort the objects decreasingly by xl� x

u�i�
l .

Step 1. Set i← 1, sum← 0, max← 0, min← 0, i+ ← i,
and i− ← i.

Step 2. Set sum← sum+!∗
u�i�c

u�i�.
Step 3.

Step 3.1. If xu�i�
l = x

u�i+1�
l , then, go to Step 4.

Step 3.2. Otherwise, if for some t > 0, xu�i−t−1�
l <

x
u�i−t�
l = · · · = x

u�i�
l < x

u�i�−1
l and there exists j with j =

1� � � � � t and cu�i� �= cu�i−j�, then:
• If sum > max, then set max ← sum and i+ ← i.
• If sum < min, then set min ← sum and i− ← i.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 161

Step 3.3. Otherwise,
• if cu�i� = 1, cu�i+1� = −1 and sum > max, then

set max ← sum and i+ ← i.
• if cu�i� = −1, cu�i+1� = 1 and sum < min, then

set min ← sum and i− ← i.
Step 4. Set i ← i + 1. If i ≤ ��I�, then go to Step 2.

Otherwise, STOP: b+l = bi+ and b−l = bi− .

We may notice that Step 0 can be performed in a
preprocessing stage of running time O��I � log��I ��� for
all calls to Algorithm 1 for predictor variable l. Hence,
considering such sorting as preprocessing, it follows
that each call to Algorithm 1 runs in O��I �� time
because Step 3 is performed at most once for each
object in the training sample, and the calculations
there involving Step 0 can be performed in constant
time.

3.3. Implementation Details
The column generation algorithm has been imple-
mented as follows. The initial set of features F0 is built,
as described in §3.1, using features whose cutoffs are
the medians of the predictor variables. Then, prob-
lem (6-F0) is solved for such initial set of features. The
dual values of the optimal solution found are used to
generate new features.
In every step of the column generation algorithm,

instead of generating just one feature (the one max-
imizing �"�����, we generate two features for every
predictor variable l, given by the cutoffs b+l , b

−
l for

which "��lb� is, respectively, maximal and minimal.
This is done using Algorithm 1 as described in §3.2.
We do it for all the predictor variables, thus obtain-
ing 2p features. Those generated features having
�"����> 1 are added to F , and the LP problem (6-F)
is solved. These steps are repeated until all the gener-
ated features have �"���� ≤ 1, in which case we have
found an optimal solution of problem (6). A summary
of this column generation algorithm is presented next.

Algorithm 2 (Column generation)
Step 0. Set F0← ��1b∗1 ��2b∗2 � � � � ��pb∗p 	, where b

∗
l is the

median of the predictor variable l, for l = 1�2� � � � � p.
Set F ← F0.

Step 1. Solve problem (6-F). Let ��∗��∗� be its opti-
mal solution, with dual values !∗

u� ∀u ∈ I .
Step 2. For each l= 1�2� � � � � p do:

Step 2.1. Run Algorithm 1 to choose b+l and b−l .
Step 2.2. If "��lb+l

� > 1, then set F ← F ∪ ��lb+l
	.

Step 2.3. If "��lb−l
� <−1, then set F ← F ∪ ��lb−l

	.
Step 3. If F has been modified, then go to Step 1,

otherwise STOP: we have found an optimal solution
of problem (6).

In Step 1, we need to solve the LP problem (6-F).
In our numerical results, we have used CPLEX 8.1.0
as the LP solver.
Our numerical experience shows that the num-

ber of features used by our classifier, i.e., the ones

that have been generated by the BSVM and have a
nonzero coefficient in the classifier, is usually rather
large. To obtain a more simple classifier, we proceed
with a wrapper feature selection procedure in which
features are recursively deleted. In this procedure,
which has been successfully applied in standard SVM
(see Guyon et al. 2002), all the generated features with
zero coefficient in the classifier as well as the feature
with nonzero coefficient having the smallest absolute
value are eliminated. Then, the coefficients are recom-
puted by the optimization of the problem (6). This
elimination procedure is repeated until the number of
features with a nonzero coefficient is below a number
given in advance.
This wrapper procedure is applied only in §4.5,

where numerical results show that it allows one to
reduce the number of features used in the classifier at
the expense of a mild loss in the classification ability.

4. Numerical Results
4.1. Databases, Benchmarking Methods, and

Accuracy Measure
In this section, we illustrate the classification ability as
well as the most desirable properties of BSVM. With
this aim, a series of numerical experiments has been
performed using databases publicly available from
the UCI Machine Learning Repository (Newman et al.
1998). Nine different databases were used, namely,
the Sonar Database, called here sonar; the Cylinder
Bands Database, called here bands; the Credit Screen-
ing Database, called here credit; the Ionosphere
Database, called here ionosphere; the New Diag-
nostic Database, contained in the Wisconsin Breast
Cancer Databases, called here wdbc; the Cleveland
Clinic Foundation Database, called here cleveland;
the Boston Housing Database, called here housing; the
Pima Indians Diabetes Database, called here pima; and
the BUPA Liver-disorders Database, called here bupa.
Where there are missing values, which occurs, for

instance, in bands and credit, the objects with missing
values were removed from the database. In databases
such as bands and credit, some of the predictor vari-
ables were nominal. Each of these predictor variables
has been replaced by a set of binary variables in the
following way: For every possible value x̂ of the origi-
nal nominal predictor variable l, a new binary variable
is built taking value one when xl is equal to x̂ and zero
otherwise. The housing database is a typical regression
data set, but it is often used as a classification data set
where the class indicates whether the median value of
houses exceeds $21,000. Finally, for each database, the
final number of objects and the number of predictor
variables (all quantitative) can be found in the second
column of each table.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
162 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

All databases used are of small to moderate size.
Very large data sets do not seem to be so suitable
for a crude implementation of BSVM because column
generation methods are known to be time-consuming.
In practice, for databases of much larger size than
those used in these experiments, it might be conve-
nient to either select a subsample of data with manage-
able size or perform some dimensionality reduction
technique such as principal component analysis to
obtain an appropriate number of variables.
To compare the BSVM classifier with other classi-

fiers, we have tested the performance of three differ-
ent benchmarking methods: classification trees, both
with pruning (TreePr) and without pruning (TreeCr);
linear SVM; and a benchmarking method for the
SVM with the L1 norm regularization, namely, the
NLPSVM proposed in Fung and Mangasarian (2004).
The classification accuracy of each method is mea-
sured by the “leave-one-out correctness,” as done in
Fung and Mangasarian (2004). Below, we give a brief
description of this measure.
In the leave-one-out correctness, hereafter referred

to as looc, for each object, the training sample is equal
to the whole database except for this object, while the
testing sample is equal to the excluded object. For
each training sample, we construct a classifier that
will be applied in the corresponding testing sample,
returning a one if the only object in the testing sample
is correctly classified and zero otherwise. The looc is
equal to the percentage of correctly classified objects.
Because looc uses all but one object to build the clas-
sifier, the provided classification can be expected to
be close to the one of the classifier trained with the
complete data set.
Given a training sample, it remains to specify the

way the SVM as well as the BSVM classifiers are con-
structed. Problem (6), as well as the corresponding
optimization problem for the linear SVM, contains a
parameter that needs to be tuned, namely, the regular-
ization parameter C, which trades off misclassification
errors in the training sample with the generalization
error. As in Fung and Mangasarian (2004), we limit
the values of this parameter to the values 2i with i =
−12�−11� � � � �12. Parameter C is then chosen so that it
minimizes the misclassification rate after performing
10-fold cross-validation in the training data (which, as
said before, contains all but one object). It has been
empirically observed (e.g., Bradley and Mangasarian
1998, Colas et al. 2007, Fung and Mangasarian 2004)
that the choice of the parameter C may strongly influ-
ence the number of features selected. Hence, one
might have also chosen C by balancing misclassifica-
tion rates and number of features selected.

4.2. Classification Ability
In Table 4, we report the looc of both classification
trees, with and without pruning, linear SVM with

Table 4 Looc for BSVM and Benchmarking Methods

Size TreePr TreeCr SVM NLPSVM BSVM

sonar 208 × 60 71.63 65.38 78.37 — 90.38
bands 277 × 56 62.82 67.51 71.12 — 70.40
credit 653 × 43 86.22 83.31 85.91 — 87.75
ionosphere 351 × 34 89.17 86.32 84.90 88.00 92.31
wdbc 569 × 30 92.09 92.62 96.66 — 97.01
cleveland 297 × 13 78.79 68.69 84.51 85.90 81.44
housing 506 × 13 83.99 84.78 85.38 85.20 86.97
pima 768 × 8 76.43 72.92 76.17 77.10 72.66
bupa 345 × 6 67.83 66.67 69.28 68.80 74.78

normalized data, NLPSVM, and BSVM. Note that for
NLPSVM, we only have results on five databases—
the ones reported by Fung and Mangasarian (2004)
in their paper. From Table 4, we can see that BSVM
outperforms the three benchmarking methods in six
out of the nine databases we consider in this paper.
This happens in the ionosphere, the housing, and
the bupa databases. For the sonar, credit, and wdbc
databases, Fung and Mangasarian (2004) do not report
any results, but BSVM outperforms classification trees
and linear SVM. In these six databases, the increase
in accuracy of BSVM with respect to the best-reported
accuracy ranges from 0.35% for the wdbc database
up to 12.01% for the sonar database. For the bands
database, we are able to outperform classification trees
but not the linear SVM, which has an accuracy of
71.12%, whereas we have 70.40%. Similarly, for the
cleveland database, we are able to outperform clas-
sification trees, but linear SVM and NLPSVM have
a better classification accuracy, 84.51% and 85.90%,
respectively. That of BSVM is 81.44%. For the pima
database, BSVM underperforms the rest of the meth-
ods; the decrease in accuracy of BSVM with respect to
the best-reported accuracy is equal to 4.44%. As a sum-
mary, we conclude that BSVM can be seen as a CART-
like method (which may be very good for practitioners
because relevant predictor variables and critical val-
ues of them are identified) with a classification power
that is at least comparable to (and in some cases much
better than) competing benchmarking techniques such
as CART or other versions of SVM.

4.3. Interpretability
Classification trees are widely used in applied fields
as diverse as medicine (diagnosis), computer science
(data structures), botany (classification), and psychol-
ogy (decision theory), mainly because they are easy
to interpret. Therefore, high accuracy is not the only
desirable property of a classifier but also its inter-
pretability. BSVM improves largely the interpretabil-
ity of standard SVMs by the use of queries of type (1).
In this section, we illustrate how our method takes us
one step further toward interpretability via the use of
the visualization tool proposed in §2.2.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 163

70 80 90 100
–4

–2

0

2

4

40 60 80 100 120
–4

–2

0

2

4

50 100 150
–4

–2

0

2

4

20 40 60 80
–4

–2

0

2

4

50 100 150 200 250
–4

–2

0

2

4

0 5 10 15 20
–4

–2

0

2

4

Var. 1 Var. 2 Var. 3

Var. 4 Var. 5 Var. 6

Figure 3 Graphical Representation for bupa

To do this, we have considered two databases
with different characteristics, namely, bupa and sonar,
which have, respectively, 6 and 60 predictor variables.
Because the focus here is on interpretability and not
generalization ability, the whole database has been
used to build the classifier. Parameter C has been cho-
sen by 10-fold cross-validation in the whole database.
If SVM is performed, bupa uses all six predictor

variables; i.e., all predictor variables have an asso-
ciated nonzero weight. BSVM uses all six predictor
variables as well; we say that a predictor variable has
been used if there exists at least one feature associated
to this predictor variable that has a nonzero coefficient
in the classifier. The total number of features used by
BSVM is 62.
A quick look at Figure 3, with information from

bupa, allows us to say that predictor variables 3, 4,
and 5 have the strongest influence in the classifier. It is
particularly simple to analyze from the picture the
influence of predictor variable 3. Indeed, we can see
that predictor variable 3 presents an S-shaped form,
displaying linear behavior within the interval with
endpoints 0 and 25 and constant outside. Moreover,
the slopes are negative, meaning that the higher the
value of the predictor variable (up to 25), the stronger
the tendency to be classified in the negative class.
On top of that, we see that whether predictor vari-
able 3 takes a value of, say, 25 or, instead, a much
higher value turns out to be irrelevant for classifica-
tion purposes.
A similar behavior is detected for predictor vari-

able 4. From 0 to 25, the influence is linear, but after
that it is stable and finally jumps around value 45.
Now the slopes are positive, implying that the higher
the value of predictor variable 4, the stronger the ten-
dency to be classified in the positive class.
Predictor variable 5 shows a logarithmic behavior,

again with positive slopes and one critical value after
which the function remains almost constant.

In general, this example shows that the presence
of many cutoffs, as in predictor variables 3, 4, and 5,
is not an inconvenience for interpreting the classifier,
whose behavior is easily detected via the visualization
tool proposed.
Now, take the example of database sonar, which has

60 predictor variables. If SVM is performed, all 60 are
used again, whereas BSVM uses 98 features, involving
45 different predictor variables. Hence, BSVM is able
to make feature selection (it is able to detect as irrel-
evant for classification 25% of the predictor variables)
in a database where linear SVM would consider all
variables as relevant.
In Figure 4, the 45 used predictor variables are

shown, renumbered for convenience. A simple look to
this figure indicates that there are only 4 out of the 45
predictor variables with strong influence in the clas-
sifier, namely, predictor variables 11, 20, 26, and 36.
Predictor variables in positions 11 and 20 have just one
main critical value, whereas predictor variables 26 and
36 present an almost linear behavior in a clearly iden-
tified interval.
We see again that the use of BSVM allows us to

choose the relevant predictor variables, interpret the
way such variables influence the classifier, and detect
the critical values and intervals for each predictor
variable.

4.4. Size of the BSVM Classifier
Simplicity in the classifier is another desirable prop-
erty for practitioners. Because both BSVM and classi-
fication trees are based on simple queries of type (1),
the size of the resulting classifier is a good proxy for
their complexity.
In Table 5, we compare the size of the classifiers

constructed by BSVM and classification trees. We
report average results over all the objects, i.e., over all
the testing samples.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
164 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

0.06 0.13
–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

–1

0

1

Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6 Var. 7

Var. 8 Var. 9 Var. 10 Var. 11 Var. 12 Var. 13 Var. 14

Var. 15 Var. 16 Var. 17 Var. 18 Var. 19 Var. 20 Var. 21

Var. 22 Var. 23 Var. 24 Var. 25 Var. 26 Var. 27 Var. 28

Var. 29 Var. 30 Var. 31 Var. 32 Var. 33 Var. 34 Var. 35

Var. 36 Var. 37 Var. 38 Var. 39 Var. 40 Var. 41 Var. 42

Var. 43 Var. 44 Var. 45

0.11 0.23 0.15 0.30 0.21 0.42 0.20 0.40 0.18 0.37 0.23 0.45

0.34 0.68 0.36 0.71 0.38 0.36 0.70 0.36 0.71 0.51 0.50 1.00

0.50 0.99 0.51 1.00 0.52 1.00 0.52 1.00 0.51 1.00 0.52 1.00 0.54 1.00

0.52 1.00 0.51 1.00 0.50 1.00 0.53 1.00 0.50 0.96 0.48 0.93 0.52 1.00

0.50 1.00 0.49 0.94 0.51 1.00 0.51 0.98 0.47 0.92 0.41 0.82 0 0.38 0.77

0 0.35 0.70 0 0.36 0.72 0 0.16 0.33 0 0.05 0.10 0.03 0.07 0.03 0.02 0.04

0.02 0.04 0.01 0.03 0.02 0.04

0.73 0.99

0.01

Figure 4 Graphical Representation for sonar

For both classification trees, with and without prun-
ing, we report the total number of nodes in the final
tree as well as the number of leaf nodes. For the
BSVM classifier, we report the number of used predic-
tor variables as well as the number of used features.
In our opinion, the fairest comparison for the com-

plexity is to measure the number of nodes generated
by classification trees against the number of features

Table 5 Size of Benchmarking Classifiers

TreePr TreeCr BSVM
leaf TreePr leaf TreeCr predictor BSVM

Size nodes nodes nodes nodes variables features

sonar 208 × 60 2.76 4�52 18.40 35�80 45�10 97.50
bands 277 × 56 8.95 16�91 28.81 56�62 23�40 78.80
credit 653 × 43 2.11 3�21 42.71 84�42 18�50 80.00
ionosphere 351 × 34 3.00 5�00 18.94 36�88 27�20 71.60
wdbc 569 × 30 5.45 9�90 16.00 31�00 26�00 74.20
cleveland 297 × 13 5.33 9�67 23.00 45�01 12�20 32.00
housing 506 × 13 4.58 8�16 33.84 66�67 12�00 68.30
pima 768 × 8 4.06 7�11 69.15 137�29 8�00 61.50
bupa 345 × 6 3.76 6�52 36.99 72�99 6�00 43.90

used by BSVM. As the results show, the size of the
classification tree with pruning is always smaller. For
the classification tree without pruning, in four out of
the nine databases, namely, credit, cleveland, pima,
and bupa, BSVM is smaller in size. In a fifth database,
housing, both classifiers are of similar size. The result-
ing complexity for BSVM should be balanced with
its better classification ability. From Table 4, BSVM
outperforms classification trees with pruning except
for the pima database, with an increase in accuracy
that ranges from 1.53% for the credit database up to
18.75% for the sonar database. Similarly, BSVM out-
performs classification trees without pruning except
for the pima database in which both methods have
basically the same accuracy. The increase in accuracy
of BSVM ranges from 2.19% for the housing database
up to 25.00% for the sonar database.
From the numerical experience reported, we can

assert that BSVM outperforms classification trees in
terms of its classification ability at the expense of a
higher complexity of the classifier, which is compara-
ble to the complexity of classification trees if no prun-
ing is performed.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 165

Table 6 Looc of BSVM After Reducing the Number of Features to a
Maximum of 30

Best (BSVM+ # of features
Size reported BSVM wrapper) in BSVM

sonar 208 × 60 78.37 90.38 87.50 97.50
ionosphere 351 × 34 89.17 92.31 92.02 71.60
cleveland 297 × 13 85.90 81.44 81.48 32.00
housing 506 × 13 85.38 86.97 86.76 68.30
bupa 345 × 6 69.28 74.78 73.04 43.90

4.5. Reducing the Number of Used Features
The complexity of the classifiers obtained by BSVM is
usually high because a high number of features may
be present in the rule, as we have discussed in the
previous section. With the aim of reducing the com-
plexity of the classifier obtained by our procedure,
we have performed several experiments implement-
ing the wrapping procedure described in §3.3. Due
to computational burden, we present results on five
databases. The selection of the databases has been
done based on the running times, and it does not affect
our conclusions. In Table 6, results on databases sonar,
ionosphere, cleveland, housing, and bupa are shown.
For convenience, we repeat some of the results

already given in previous tables. The third and fourth
columns of Table 6 report the best accuracy among
all three benchmarking methods as well as the one
of BSVM (when no wrapper procedure is applied),
both processed from the data in Table 4. The fifth
column reports the accuracy of BSVM when the size
of the classifier is reduced up to a maximum of 30
features. The sixth column contains the size (mea-
sured as number of used features) of the BSVM clas-
sifier, obtained from Table 5. From those results, we
can conclude that the classification ability of BSVM
slightly deteriorates. More specifically, the cleveland
database, which was one in which the linear SVM
outperformed BSVM, has essentially the same accu-
racy as before. This is not surprising because the aver-
age number of features used by BSVM is equal to
32, as reported in Table 5. For the ionosphere and
the housing databases, the looc remains almost the
same and, therefore, BSVM outperforms the best of
the three benchmarking methods while using at most
30 features. In the bupa database, the decrease in accu-
racy is equal to 1.74%, but even after this deteri-
oration, BSVM with wrapping procedure still gives
us the best accuracy. The conclusions for the sonar
database are similar. Thus, even with this limit on the
number of features, BSVM is still able to outperform
the three benchmarking methods except for the case
of the cleveland database in which, as happens with-
out wrapping, BSVM is outperformed by the linear
SVM and the NLPSVM.
We decided to further investigate those databases in

which the wrapping of the BSVM classifiers did not

Table 7 Looc for BSVM and Benchmarking Methods in Databases with
Outliers

Size TreePr TreeCr SVM BSVM

sonar 208 × 60 71.15 80.29 49.04 77.40
ionosphere 351 × 34 88.03 86.32 67.62 90.60
cleveland 297 × 13 74.07 74.41 52.19 80.13
housing 506 × 13 78.06 79.45 49.01 83.79
bupa 345 × 6 66.38 56.81 57.68 70.72

affect the accuracy, namely, the cleveland, ionosphere,
and housing databases. In the housing database, the
wrapped BSVM classifier, as said above, has the best
accuracy although its size is half of that from the tree
without pruning (which is the best of the two trees in
terms of accuracy). For cleveland and ionosphere, the
size was not competitive enough. Therefore, we fur-
ther reduced the number of used features to a maxi-
mum of 20. The looc of cleveland and ionospherewas
exactly the same as the one obtained when the number
of used features was limited to 30. This is especially
remarkable for the ionosphere database, in which we
can reduce the number of features to less than a third,
from 71�60 to at most 20, while the accuracy decreases
only by 0.29%.

4.6. Presence of Outliers
The classifier proposed in this paper is based on
threshold functions; thus, it seems that extreme obser-
vations, with very high or very low values, will not
have a strong influence in the classifier. To empirically
test this conjecture, a series of experiments has been
performed where some outliers were artificially intro-
duced. Every cell in the database was chosen to be an
outlier with probability 0.05. Those cells chosen were
modified by adding (times the range of its predic-
tor variable in the training sample. We present here
results for (= 10. For other values of (, we obtained
similar results and, therefore, do not report them here.
As in §4.5 and again due to computational bur-

den, we present results on five databases. In Table 7,
results on databases sonar, ionosphere, cleveland,
housing, and bupa are shown. We compare BSVM
against classification trees and linear SVM. We do not
report results on the NLPSVM because outliers are
not discussed in the paper of Fung and Mangasar-
ian (2004). The classification ability of the linear SVM
classifier dramatically worsens when introducing out-
liers and clearly underperforms the other two meth-
ods. Classification trees and BSVM are only slightly
affected. We outperform classification trees in all
databases except sonar. Therefore, our conjecture is
supported.

5. Conclusions and Further Research
In this paper, a new SVM-based tool for supervised
classification has been proposed. The classifier gives

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
166 INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS

insightful knowledge about the way the predictor
variables influence the classification. Indeed, the non-
linear behavior of the data is modeled by the BSVM
classifier using simple queries of type (1), easily inter-
pretable by practitioners.
In terms of generalization ability, BSVM is com-

petitive against classification trees and SVM because
it has a higher leave-one-out correctness in most
databases tested. Moreover, by its nature, BSVM is
an interesting tool when a good classification abil-
ity is required, but interpretability of the results is
also important. Indeed, even though the crude BSVM
may yield a large set of features with nonzero coeffi-
cients, we have shown that interpretability might also
be possible in this situation: we can use a graphical
method for getting insight about the role each predic-
tor variable plays in the classifier. If needed, a wrap-
ping procedure enables one to keep the number of
features used at a desired level at the expense of a
slight deterioration in the classification ability.
Concerning robustness, some numerical tests have

been performed to analyze how the classification abil-
ity (slightly) deteriorates when outliers exist. We can
conclude from the results that BSVM is much more
robust than linear SVM against outliers.
Several issues analyzed in this paper may deserve

further study. For instance, the sets Bl contain, by
definition, all midpoints among consecutive values
of each predictor variable in the training sample.
An adequate filtering in a preprocessing step would
reduce the computational burden, especially for large
data sets, and might help to reduce the overfitting that
a very complex model may produce.
The binarization procedure has been applied to

each predictor variable separately. If interactions be-
tween predictor variables are expected to be relevant,
more general binarization procedures might be con-
sidered. These issues, as well as extension to support
vector regression, will be addressed in the near future.

Acknowledgments
The authors thank the two anonymous referees and the asso-
ciate editor for their helpful comments to improve both the
exposition as well as the numerical results in §4. The authors
are grateful to Jingbo Wang and Rafael Blanquero for the
support they have offered to obtain some of the results
in §4. This work has been partially supported by projects
MTM2005-09362-C03-01 of the Ministerio de Educación y
Ciencia, Spain, and FQM-329 of Junta de Andalucía, Spain.

References
Andrews, R., J. Diederich, A. B. Tickle. 1995. A survey and critique
of techniques for extracting rules from trained artificial neural
networks. Knowledge Based Systems 8(6) 373–389.

Baesens, B., R. Setiono, C. Mues, J. Vanthienen. 2003. Using neu-
ral network rule extraction and decision tables for credit-risk
evaluation. Management Sci. 49(3) 312–329.

Barakat, N., J. Diederich. 2004. Learning-based rule-extraction from
support vector machines. Proc. 14th Internat. Conf. Comput. The-
ory Appl. �ICCTA 2004�, Alexandria, Egypt, http://espace.library.
uq.edu.au/view.php?pid=UQ:9624.

Barakat, N., J. Diederich. 2005. Eclectic rule-extraction from support
vector machines. Internat. J. Comput. Intelligence 2(1) 59–62.

Bennett, K. 1999. Combining support vector and mathematical
programming methods for induction. B. Schölkopf, C. Burges,
A. Smola, eds. Advances in Kernel Methods: Support Vector Learn-
ing. MIT Press, Cambridge, MA, 307–326.

Bi, J., T. Zhang, K. P. Bennett. 2004. Column-generation boost-
ing methods for mixture of kernels. Proc. 10th ACM SIGKDD
Internat. Conf. Knowledge Discovery Data Mining, Seattle, ACM,
New York, 521–526.

Bradley, P. S., O. L. Mangasarian. 1998. Feature selection via con-
cave minimization and support vector machines. Machine Learn-
ing Proc. 15th Internat. Conf. (ICML ’98), Morgan Kaufmann,
San Francisco, 82–90.

Bradley, P. S., O. L. Mangasarian. 2000. Massive data discrimination
via linear support vector machines. Optim. Methods Software 13
1–10.

Carrizosa, E. 2008. Support vector machines and distance mini-
mization. P. M. Pardalos, P. Hansen, eds. Data Mining and Mathe-
matical Programming, CRM Proc. Lecture Notes, Vol. 45. American
Mathematical Society, Providence, RI, 1–14.

Carrizosa, E., B. Martín-Barragán, D. Romero Morales. 2008. Multi-
group support vector machines with measurement cost: A biob-
jective approach. Discrete Appl. Math. 156(6) 950–966.

Colas, F., P. Paclík, J. N. Kok, P. Brazdil. 2007. Does SVM really
scale up to large bag of words feature spaces? M. R. Berthold,
J. Shawe-Taylor, N. Lavrac, eds. Advances in Intelligent Data Anal-
ysis VII, Lecture Notes in Computer Science, Vol. 4723. Springer,
Berlin, 296–307.

Cortes, C., V. Vapnik. 1995. Support-vector networks.Machine Learn.
20(3) 273–297.

Craven, M., J. Shavlik. 1997. Using neural networks for data min-
ing. Future Generation Comput. Systems 13(2–3) 211–229.

Demiriz, A., K. P. Bennett, J. Shawe-Taylor. 2002. Linear program-
ming boosting via column generation. Machine Learn. 46(1–3)
225–254.

Fung, G., O. L. Mangasarian. 2004. A feature selection Newton
method for support vector machine classification. Comput.
Optim. Appl. 28(2) 185–202.

Fung, G., S. Sandilya, R. Bharat Rao. 2005. Rule extraction from
linear support vector machines. Proc. 11th ACM SIGKDD Inter-
nat. Conf. Knowledge Discovery Data Mining, Chicago, ACM,
New York, 32–40.

Gilmore, P. C., R. E. Gomory. 1961. A linear programming approach
to the cutting-stock problem. Oper. Res. 9(6) 849–859.

Guyon, I., J. Weston, S. Barnhill, V. Vapnik. 2002. Gene selection
for cancer classification using support vector machines. Machine
Learn. 46(1–3) 389–422.

Hand, H., H. Mannila, P. Smyth. 2001. Principles of Data Mining.
MIT Press, Cambridge, MA.

Hastie, T., R. Tibshirani. 1998. Classification by pairwise coupling.
Ann. Statist. 26(2) 451–471.

Hastie, T., R. Tibshirani, J. Friedman. 2001. The Elements of Statis-
tical Learning: Data Mining, Inference, and Prediction. Springer,
New York.

Herbrich, R. 2002. Learning Kernel Classifiers. Theory and Algorithms.
MIT Press, Cambridge, MA.

Kohavi, R. 1995. A study of cross-validation and bootstrap for accu-
racy estimation and model selection. Proc. 14th Internat. Joint
Conf. Artificial Intelligence. Morgan Kaufmann, San Francisco,
1137–1143.

Mangasarian, O. L. 1965. Linear and nonlinear separation of pat-
terns by linear programming. Oper. Res. 13(3) 444–452.

Mangasarian, O. L. 2000. Generalized support vector machines.
A. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans, eds. Advances
in Large Margin Classifiers. MIT Press, Cambridge, MA, 135–146.

Carrizosa, Martin-Barragan, and Morales: Binarized Support Vector Machines
INFORMS Journal on Computing 22(1), pp. 154–167, © 2010 INFORMS 167

Mangasarian, O. L., M. E. Thompson. 2006. Massive data classi-
fication via unconstrained support vector machines. J. Optim.
Theory Appl. 131(3) 315–325.

Martens, D., B. Baesens, T. Van Gestel, J. Vanthienen. 2007. Com-
prenhensible credit scoring models using rule extraction from
support vector machines. Eur. J. Oper. Res. 183(3) 1466–1476.

Newman, D. J., S. Hettich, C. L. Blake, C. J. Merz. 1998. UCI
machine learning repository. Department of Information and
Computer Sciences, University of California, Irvine, Irvine,
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Núñez, H., C. Angulo, A. Català. 2002. Rule extraction from
support vector machines. Proc. Eur. Sympos. Artificial Networks
�ESANN’2002�, Bruges, Belgium, 107–112.

Pedroso, J. P., N. Murata. 2001. Support vector machines with differ-
ent norms: Motivation, formulations and results. Pattern Recog-
nition Lett. 22(12) 1263–1272.

Shawe-Taylor, J., P. L. Bartlett, R. C. Williamson, M. Anthony. 1998.
Structural risk minimization over data-dependent hierarchies.
IEEE Trans. Inform. Theory 44(5) 1926–1940.

Smola, A., T. T. Frieß, B. Schölkopf. 1998. Semiparametric support
vector and linear programming machines. M. J. Kearns, S. A.
Solla, D. A. Cohn, eds. Advances in Neural Information Processing
Systems 11. MIT Press, Cambridge, MA, 585–591.

Tibshirani, R. 1996. Regression shrinkage and selection via the
lasso. J. Royal Statist. Soc. Ser. B 58(1) 267–288.

Vapnik, V. N. 1995. The Nature of Statistical Learning Theory.
Springer-Verlag, New York.

Vapnik, V. N. 1998. Statistical Learning Theory. John Wiley & Sons,
New York.

Weston, J., A. Gammerman, M. O. Stitson, V. Vapnik, V. Vovk,
C.Watkins. 1999.Support vectordensity estimation.B.Schölkopf,
C. Burges, A. Smola, eds. Advances in Kernel Methods—Support
Vector Learning. MIT Press, Cambridge, MA, 293–305.

