
Technical Report

R. Fourer · C. Maheshwari · A. Neumaier · D. Orban? · H. Schichl

Convexity and Concavity Detection in Computational Graphs

Tree Walks for Convexity Assessment

December 18, 2008

Abstract. We examine symbolic tools associated with two modeling systems for mathematical programming,
which can be used to automatically detect the presence or absence of convexity and concavity in the objective
and constraint functions, as well as convexity of the feasible set in some cases. The coconut solver system
Schichl (2004b) focuses on nonlinear global continuous optimization and possesses its own modeling language
and data structures. The Dr.ampl meta-solver (Fourer and Orban, 2007) aims to analyze nonlinear differ-
entiable optimization models and hooks into the ampl Solver Library (Gay, 2002). Our symbolic convexity
analysis may be supplemented, when it returns inconclusive results, with a numerical phase that may detect
non-convexity. We report numerical results using these tools on sets of test problems for both global and local
optimization.

1. Introduction

We consider continuous deterministic optimization problems of the form

minimize
x∈Rn

f(x)

subject to cE(x) = 0
cI(x) ≥ 0,

(1.1)

and are interested in two cases. In the first, the structure of the problem is such that finding a global
minimizer is tractable. In the second, the objective f and constraint functions cE and cI are smooth
and the problem is either so large or so nonlinear that we are content with local solutions. We are also
interested in determining what information can be available on the problem based on its representation
in a modeling language such as ampl (Fourer et al., 2002).

During the solution process, it is useful to have as much information as possible on the structure of the
objective and constraint functions. Convexity and concavity, if present, have important consequences
for the structure of the problem and the nature of solutions. The Karush-John first order optimality
conditions simplify (Neumaier and Schichl, 2003) if some constraint functions are known to be convex
or concave. If the objective function is convex, all equality constraints are linear and all inequalities
are concave, every local minimum is also global. Convexity of the objective or constraint functions may
influence the core linear algebra techniques used to solve subproblems at each iteration.

R. Fourer: Northwestern University, Department of Industrial Engineering and the Management Sciences, Evanston IL,
USA. E-mail: 4er@iems.northwestern.edu

C. Maheshwari: India Institute of Technology, Department of Mechanical Engineering, Guwahati, India. E-
mail: chandrakant721@yahoo.com

A. Neumaier: University of Vienna, Department of Mathematics, Vienna, Austria. E-
mail: Arnold.Neumaier@univie.ac.at

D. Orban: GERAD and École Polytechnique de Montréal, Département de Mathématiques et Génie Industriel, Montréal
(Québec), Canada. E-mail: Dominique.Orban@gerad.ca

H. Schichl: University of Vienna, Department of Mathematics, Vienna, Austria. E-mail: hermann.schichl@esi.ac.at

? Research partially supported by NSERC Discovery Grant 299010-04

mailto:4er@iems.northwestern.edu
mailto:chandrakant721@yahoo.com
mailto:Arnold.Neumaier@univie.ac.at
mailto:Dominique.Orban@gerad.ca
mailto:hermann.schichl@esi.ac.at

2 R. Fourer et al.

As a convention, we use the terminology constraint function to denote one of the functions ci appearing
in the constraints of (1.1) for i ∈ E ∪ I. In contrast, a constraint is a condition such as ci(x) = 0 or
ci(x) ≥ 0 defining a subset of Rn. In the present context, we will use two interpretations of the term
convexity. In the first, we are concerned with the convexity of the constraint function ci. In the second,
we examine the convexity of the set {x ∈ Rn | ci(x) = 0} or {x ∈ Rn | ci(x) ≥ 0}. The latter
influences the convexity of the whole feasible set, which is an intersection of such subsets. The former
may influence the linear algebra used in the course of a numerical method to solve (1.1). For instance,
active-set methods will only consider a subset of the constraints at a time and will typically require
the solution of a system of linear equations with the Hessian of a Lagrangian as coefficient matrix. If
all constraint functions taking part in this Lagrangian are convex functions—irrespective of whether
or not the conditions imposed by means of those constraint functions define convex subsets of Rn—,
tailored solution methods may be employed.

This report describes the convexity and concavity detection methods implemented in the inference
engines simple convexity of the coconut solver system (Schichl, 2004b) and in the Dr.ampl meta-
solver (Fourer and Orban, 2007).

The coconut environment (Schichl, 2004b,a) is an open source modular environment for global op-
timization aimed at the integration of the existing approaches to continuous global optimization and
constraint satisfaction. The application programmer’s interface (API) is designed to make the devel-
opment of the various module types independent of each other and independent of the internal model
representation. It is a collection of C++ classes protected by the LGPL license model, so that it could
be used as part of commercial software. It also possesses an interface to the ampl and gams modeling
languages. The simple convexity module is one of its inference modules, implementing some of the
methods described in this article. One of the small supplementary programs, analyze convexity, can
be used for convexity analysis of optimization and constraint satisfaction problems.

Dr.ampl (Fourer and Orban, 2007) is an optimization problem analysis layer that builds upon the
tools offered by the ampl Solver Library (Gay, 2002) to provide tools for convexity assessment but
also for problem classification and simplification. In particular, it offers some level of nonlinear pre-
processing that goes beyond the default ampl presolve. By categorizing problems, it is able to offer
solver recommendation to the user. Dr.ampl is licensed under the LGPL. Its convexity assessment
is twofold. First, a symbolic proving analysis is performed. If the latter is inconclusive, a numerical
disproving analysis is performed. We present both in great detail in the next sections.

Detection methods naturally have their limitations, which we will discuss, but the implementations
described below are flexible enough to be expanded as experience grows.

The application of symbolic mathematics to the detection of properties of optimization problems has
been described by Stoutmeyer (1978) and one of those properties is convexity. Other studies are under
way concerning automatic convexity and concavity detection. Nenov et al. (2004) assess convexity
based on the notion of the Hessian sign. The approach of Grant et al. (2006, 2008); Grant and Boyd
(2008); Mattingley and Boyd (2008) is more constructive and describes a framework to build convex
functions and disciplined convex problems. Chinneck (2001) approaches the problem with a heuristic
point of view and attempts to disprove convexity.

This paper is organized as follows. Section 2 recalls the definition and usage of a directed acyclic graph
when processing nonlinear expressions. Section 3 summarizes general rules allowing the convexity or
concavity of the composition of functions to be inferred. Section 4 applies these rules to the many op-
erators found in modeling languages for nonlinear programming while §5 examines numerical methods
to disprove convexity. Preliminary numerical experience is reported in §7 and some concluding remarks
are given in §8.

Convexity and Concavity Detection in Computational Graphs 3

/.-,()*+×
~~}}

}}
}}

}}

��@
@@

@@
@@

@

/.-,()*++

}}||
||

||
||

|
// /.-,()*+−

��~~
~~

~~
~~

!!C
CC

CC
CC

CC

76540123sin // /.-,()*+÷
~~}}

}}
}}

}}

((PPPPPPPPPPPPPPP 76540123exp

��/.-,()*+x1 /.-,()*+x2

Fig. 2.1. A DAG representing the expression (2.1). A directed edge from a node to another indicates that
the first node is an operator and the second is one of the operands. This graph has 3 common expressions: x2,
x1/x2 and x1/x2 − ex2 . They are given by the nodes with more than one incident arc.

2. The Directed Acyclic Graph

The directed acyclic graph, or DAG, is a recursive data structure fit to hold nonlinear expressions in
such a way that evaluation and computation of partial derivatives by means of automatic differentia-
tion is efficient. Essentially, the DAG for an expression is the Kantorovich graph for that expression
(Kantorovich, 1957), in which the repeated occurence of a sub-expression is fully exploited. In this
context, it is also referred to as a computational graph (Bauer, 1974). As a simple example, borrowed
from Griewank (2000), consider the nonlinear expression of two variables

f(x1, x2) = (sin(x1/x2) + x1/x2 − ex2) (x1/x2 − ex2) . (2.1)

The DAG for (2.1) can be represented as in Fig. 2.1 where reuse of common sub-expressions is apparent.

As we see from Fig. 2.1, variables and constants are leaves of the DAG. All other nodes are operators,
such as the addition, division, multiplication or exponentiation. The terminology walking the DAG
refers to starting from the root and visiting each node in turn, in a prescribed order. As we show in
the next sections, convexity of a nonlinear expression such as (2.1) may be assessed by walking the
DAG for the expression. We deliberately use the terminology convexity assessment to denote processes
that attempt to prove and/or disprove convexity or concavity properties of a function. As already
mentioned, convexity assessment tools have their limitations. In the sequel, we present two different
types of convexity assessment tools that are applied together to ensure as conclusive results as possible.

By storing common expression only once, the DAG is advantageously used by ampl to store and
evaluate but also differentiate nonlinear expressions by means of automatic differentiation. The latter
makes extensive use of DAG walks and offers the possibility of evaluating gradients and Hessian-
vector products at a small multiple of the cost of evaluating the function value Griewank (2000). The
open source ampl Library (Gay, 2002) gives access to the various DAGS associated to a problem
and is available from www.netlib.org/ampl/solvers or netlib.sandia.gov/ampl/solvers. It is an
essential toolbox for the convexity assessment techniques described below. For instance, it also offers
the possibility to compute full Hessians, sparse or dense, in addition to Hessian-vector products, albeit
with more effort. To this end, it takes advantage of the group partially-separable structure of the
problem functions.

3. Convexity Detection

In this section, we review basic rules constituting sufficient conditions for the convexity or concavity
of the composition of two functions and how this is related to the internal representation of (1.1). By

http://www.netlib.org/ampl/solvers
http://netlib.sandia.gov/ampl/solvers

4 R. Fourer et al.

their recursive nature, these rules readily extend to the convexity or concavity of the composition of
an arbitrary number of functions.

Both in the coconut system and in the ampl modeling language, every nonlinear function playing
a role in (1.1) is represented as a directed acyclic graph (DAG) (Fourer and Orban, 2007; Gay, 2002;
Schichl and Neumaier, 2003). A fundamental tool towards convexity detection is bound propagation:
a technique by which it is possible to infer an overestimate of the range of a nonlinear function
given bounds on the variables on which it depends (Griewank, 2000; Fourer and Orban, 2007). Bound
propagation and the recursive rules described below for convexity detection are naturally related to
interval arithmetic and constraint programming.

For illustration purposes, we consider here a simple example and refer the interested reader to (Fourer
and Orban, 2007) for further information. In an ampl model, bounds on the variables −∞ ≤ xL

i ≤ xi ≤
xU
i ≤ +∞, i = 1, . . . , n, are specified and stored separately from other constraints. It is not difficult to

walk the DAG of an expression and propagate those bounds to obtain an estimate of the range of the
whole expression. To simplify, assume there is a single variable x and the explicit bounds−6 ≤ x ≤ 8 are
specified. Consider now the expression f(x) = exp(sin(1/x)). The bounds on x are first propagated into
the expression 1/x to produce −∞ ≤ 1/x ≤ ∞. Next, these last bounds are introduced into sin(1/x)
to yield −1 ≤ sin(1/x) ≤ 1 and finally into the exponential, to give 0.367879 ≤ f(x) ≤ 2.718282.
Since the exponential is nondecreasing, the lower bound is e−1 while the upper bound is e. This
very simple example illustrates the need for an additional tool in bound propagation: a monotonicity
assessment tool. In turn, assessing monotonicity may require bound propagation. In essence, constants
can be considered as both nondecreasing and nonincreasing. Variables are nondecreasing expressions.
We can now build upong these two base cases and reason recursively. For instance, the sum of two
nondecreasing functions is nondecreasing. The sine of an expression f is nondecreasing if either

(a) f is nondecreasing and cos(f) ≥ 0, or
(b) f is nonincreasing and cos(f) ≤ 0,

and so forth. All operators supported by a given modeling language may be covered in this way. Both
the bound propagation and monotonicity assessment are features of Dr.ampl and their design is
covered in (Fourer and Orban, 2007).

In what follows, for any given (possibly nonlinear) function f : Rn → R, we assume that we have a
means to infer a range [f, f] such that for all x ∈ domf , f ≤ f(x) ≤ f , where −∞ ≤ f ≤ f ≤ +∞.
A generic pseudo-code sample to parse a DAG could be represented as in Fig. 3.1, which serves as
a template for the implementation of a convexity-proving engine. In this generic pseudo-code, we
assumed that each node has two children for simplicity of exposition. In practice, some operators are
unary while others have more than two children. For example, division has two children, the absolute
value has a single child and the minimum of a number of expressions has a variable number of children.

The convexity detection procedure is to descend through all nodes of the DAG in forward mode after
bound propagation. The ranges of the intermediate nodes are used to aid convexity detection. We
distinguish the properties linear, convex, concave, and unknown convexity status. Note that a linear
function is both convex and concave.

Every node is considered as a function taking input from its child nodes, and we distinguish whether
the elementary function represented by the node on its range has some convexity property, and whether
its arguments have certain convexity properties. The recursive argument relies on the fact that leaves
of the DAG can only be constants or variables, which are linear expressions and thus both convex and
concave. Based on this knowledge, the following rules help decide whether the composite function f ◦g
possesses convexity properties (Boyd and Vandenberghe, 2004).

Rule I. If the function f defined by the current node depends on one argument only and is convex
on the range of its argument then f ◦ g is convex if either

Convexity and Concavity Detection in Computational Graphs 5

int OperatorProcessor(node) {

switch(node->operator) {
case leaf: /* Variable or constant */

return appropriate_value;

case other;
OperatorProcessor(node->left); /* left child */
OperatorProcessor(node->right); /* right child */
process(node->operator);

}
}

Fig. 3.1. Generic pseudo-code for parsing a DAG, assuming two children per node.

(a) the child function g is linear,
(b) the child function g is convex and f is nondecreasing over [g, g],
(c) the child function g is concave and f is nonincreasing over [g, g],

Rule II. If the function f defined by the current node depends on one argument only and is concave
on the range of its argument then f ◦ g is concave if either
(a) the child function g is linear,
(b) the child function g is convex and f is nonincreasing over [g, g],
(c) the child function g is concave and f is nondecreasing over [g, g],

Similar rules can be stated for multivariate functions f(g1(x), . . . , gm(x)). In this case, we denote [g, g]
the domain [g1, g1]× . . .× [gm, gm] ⊆ Rm.

Rule III. If the function f defined by the current node depends on several arguments g1, . . . , gm and
is convex over [g, g] then f ◦ g is convex if for all i = 1, . . . ,m either
(a) the child function gi is linear,
(b) f is nondecreasing in its i-th argument over [gi, gi] and the child function gi is convex,
(c) f is nonincreasing in its i-th argument over [gi, gi] and the child function gi is concave.

Rule IV. If the function f defined by the current node depends on several arguments g1, . . . , gm and
is concave over [g, g] then f ◦ g is concave if for all i = 1, . . . ,m either
(a) the child function gi is linear,
(b) f is nondecreasing in its i-th argument over [gi, gi] and the child function gi is concave,
(c) f is nonincreasing in its i-th argument over [gi, gi] and the child function gi is convex.

Using the prototype in Fig. 3.1, it becomes possible to infer the required monotonicity properties
(Fourer and Orban, 2007).

4. Convexity Information for Elementary Functions

In the following we give a list of the elementary functions that the algorithm can currently exploit.
Most of the rules below are inferred from Rule I–Rule IV or (Boyd and Vandenberghe, 2004). Unless
stated in the following rules, convexity and concavity are inconclusive. We use the notation f > 0,
f < 0 and f 6= 0 where f is a function as a shorthand for f(x) > 0, f(x) < 0 and f(x) 6= 0 for all
x ∈ domf respectively. We first cover basic operators.

Unary minus. −f is convex if and only if f is concave. It is concave if and only if f is convex.

Sum. A sum f(x) =
∑n
i=1 fi(x) of convex functions is convex. If all the children fi are convex then

f is convex. Because of the previous property, if all the children fi are concave, then f is concave.

6 R. Fourer et al.

Product. If g is a constant function, fg is convex if and only if [f is convex and g ≥ 0] or [f is concave
and g ≤ 0]. It is concave if and only if [f is concave and g ≥ 0] or [f is convex and g ≤ 0]. If g is
not constant, the product need not be convex or concave.

Quotient. If g is a constant function, f/g is convex if and only if [f is convex and g > 0] or [f is
concave and g < 0]. It is concave if and only if [f is convex and g < 0] or [f is concave and g > 0].
If f is constant and g 6= 0 is non-constant, then f/g is convex if [f ≥ 0 and g > 0 is concave] or
[f ≤ 0 and g < 0 is convex]. It is concave if [f ≥ 0 and g < 0 is convex] or [f ≤ 0 and g > 0 is
concave].

We now examine all functions which can be represented by nodes of the DAG in our implementations.

Minimum. The minimum of a finite number of concave functions is concave.

f(x) = min {c, f1(x), f2(x), . . . , fn(x)} ,

where c is a constant. The function f is concave if either all fi, i = 1, . . . , n are concave, or if f
i
≥ f

for each nonconcave fi. Otherwise, nothing can be concluded.

Maximum. The maximum of a finite number of convex functions is convex.

f(x) = max {c, f1(x), f2(x), . . . , fn(x)} ,

where c is a constant. The function f is convex if either all fi, i = 1, . . . , n are convex, or if f i ≤ f
for each nonconvex fi. Otherwise, nothing can be concluded.

Absolute value, Square, Hyperbolic cosine. f(x) = |x|, f(x) = x2 and f(x) = cosh(x) are a
convex functions, decreasing on R− and increasing on R+. Hence, f ◦ g is

(a) convex if either g is linear, g is convex and g ≥ 0, or g is concave and g ≤ 0.
(b) concave if either g is convex and g ≤ 0, or g is concave and g ≥ 0.

Square root. f(x) =
√
x, x ≥ 0 is concave. The function f ◦ g is concave if g is concave. Note that

g ≥ 0 must hold. Moreover, f ◦ g is convex if g is convex and quadratic.

Exponential. f(x) = ex is convex increasing. The function f ◦ g is convex if g is convex.

Gauss. f(x) = e−(x−m)2/s2 with s > 0 is concave if x ∈ [m− s/
√

2,m+ s/
√

2] and convex otherwise.
Moreover, f is increasing for x ≤ m and decreasing for x ≥ m. Therefore f ◦ g is convex if either
(a) g is concave and g ≥ m+ s/

√
2,

(b) g is convex and g ≤ m− s/
√

2.
Similarly, f ◦ g is concave if [g, g] ⊆ [m− s/

√
2,m+ s/

√
2] and either

(a) g is linear,
(b) g is convex and g ≥ m,
(c) g is concave and g ≤ m.

Logarithm. f(x) = log(x), x > 0 is concave increasing. Therefore, f ◦ g is concave if g is concave.
Note that g > 0 must hold.

Sine. f(x) = sin(x). The function f◦g is neither convex nor concave if either g−g > π or sin(g) sin(g) <
0. If g − g ≤ π, sin(g) ≥ 0 and sin(g) ≥ 0, then f ◦ g is concave if either

(a) g is linear,
(b) g is convex and cos(g) ≤ 0,
(c) g is concave and cos(g) ≥ 0.
If g − g ≤ π, sin(g) ≤ 0 and sin(g) ≤ 0, f ◦ g is convex if either

(a) g is linear,
(b) g is concave and cos(g) ≤ 0,
(c) g is convex and cos(g) ≥ 0.

Convexity and Concavity Detection in Computational Graphs 7

Cosine. f(x) = cos(x). The function f ◦ g is neither convex nor concave if either g − g > π or
cos(g) cos(g) < 0. If g − g ≤ π, cos(g) ≥ 0 and cos(g) ≥ 0, f ◦ g is concave if either

(a) g is linear,
(b) g is convex and sin(g) ≤ 0,
(c) g is concave and sin(g) ≥ 0.
If g − g ≤ π, cos(g) ≤ 0 and cos(g) ≤ 0, f ◦ g is convex if either

(a) g is linear,
(b) g is concave and sin(g) ≤ 0,
(c) g is convex and sin(g) ≥ 0.

Tangent. f(x) = tan(x) is concave increasing on every interval of the form (−π/2 + kπ, kπ] and
convex increasing on every interval of the form [kπ, π/2 + kπ), k ∈ Z. Thus f ◦ g is nonconvex and
nonconcave if either g − g > π/2 or tan(g) tan(g) < 0. If g − g ≤ π/2, f ◦ g is
(a) convex if tan(g) ≥ 0, tan(g) ≥ 0 and g is convex,
(b) concave if tan(g) ≤ 0, tan(g) ≤ 0 and g is concave.

Arc sine. f(x) = asin(x) is concave increasing on [−1, 0], concave increasing on [0, 1] and undefined
outside [−1, 1]. Thus f ◦ g is

(a) convex if g is convex and 0 ≤ g ≤ g ≤ 1,
(b) concave if g is concave and −1 ≤ g ≤ g ≤ 0.

Arc cosine. f(x) = acos(x) is convex decreasing on [−1, 0], concave decreasing on [0, 1] and undefined
outside [−1, 1]. Thus f ◦ g is
(a) convex if g is concave and −1 ≤ g ≤ g ≤ 0,
(b) concave if g is convex and 0 ≤ g ≤ g ≤ 1.

Arc tangent. f(x) = atan(x) is convex increasing on R− and concave increasing on R+. Thus f ◦ g
is
(a) convex if g is convex and g ≤ 0,
(b) concave if g is concave and g ≥ 0.

Arc tangent of a quotient. f(x, y) = atan(y/x) is declared inconclusive for now.

Hyperbolic sine. The same rules as for the odd positive power apply.

Hyperbolic tangent. f(x) = tanh(x) is convex increasing on R− and concave increasing on R+.
Thus, f ◦ g is
(a) convex if g is convex and g ≤ 0,
(b) concave if g is concave and g ≥ 0.

Inverse hyperbolic sine. f(x) = asinh(x) is convex increasing on R− and concave increasing on
R+. Thus, f ◦ g is
(a) convex if g is convex and g ≤ 0.
(b) concave g is concave and g ≥ 0.

Inverse hyperbolic cosine. f(x) = acosh(x) is concave increasing for x ≥ 1. Thus f ◦ g is concave
if g is concave. Note that g ≥ 1 must hold.

Inverse hyperbolic tangent. f(x) = atanh(x) is concave increasing on (−1, 0] and convex increas-
ing on [0, 1). It is undefined outside (−1, 1). Thus f ◦ g is
(a) convex if g is convex and 0 ≤ g ≤ g < 1,
(b) concave if g is concave and −1 < g ≤ g ≤ 0.

Even positive power. f(x) = x2k, k ∈ N, is
(a) constant if k = 0,
(b) convex everywhere, decreasing on R− and increasing on R+.

8 R. Fourer et al.

We eliminate the case k = 0 for then f ◦ g is constant. Hence f ◦ g is convex if g is linear, or g is
convex and g ≥ 0, or g is concave and g ≤ 0,

Even negative power. f(x) = x−2k, k ∈ N0, is convex increasing on R− and convex decreasing on
R+. Hence f ◦ g is
(a) convex if g is convex and g ≤ 0, or g is concave and g ≥ 0.
(b) concave if g is convex and g ≥ 0, or g is concave and g ≤ 0.

Odd positive power. f(x) = x2k+1, k ∈ N, is
(a) linear if k = 0,
(b) concave increasing on R− and convex increasing on R+ if k > 0.
If k = 0, f ◦ g = g has the convexity properties of g. If k > 0, f ◦ g is
(a) convex if g is convex and g ≥ 0,
(b) concave if g is concave and g ≤ 0.

Odd negative power. f(x) = x−2k−1, k ∈ N, is concave decreasing on R− and convex decreasing on
R+. Hence, f ◦ g is
(a) convex if g is concave and g ≥ 0,
(b) concave if g is convex and g ≤ 0.

Power 1. f(x) = αx, α > 0. For 0 < α < 1, f ◦ g is convex if g is concave. For α ≥ 1, f ◦ g is convex
if g is convex.

Nonintegral power. f(x) = xα, α ∈ R\Z, is undefined if x < 0. Whenever g ≥ 0, f ◦ g is convex if
either
(a) α > 1 and g is convex,
(b) α < 0 and g is concave,
and f ◦ g is concave if either
(a) 0 < α < 1 and g is concave,
(b) α < 0 and g is convex.

Power 3. If either f or g is constant, fg reduces to one of the previous cases. The other cases are
treated as inconclusive for now.

5. Convexity Disproving

If the systematic rules of §4 happen to fail for the function under consideration, convexity is incon-
clusive. This does not mean that the function is nonconvex, nor does it mean that it is concave. On
the other hand, we might try, by other means, to disprove convexity. This has been done for ampl
models in the mProbe (Chinneck, 2001) software, by sampling function values on feasible line segments
and checking that the definition of convexity is satisfied. In Dr.ampl it is possible to arrange for a
convexity disprover to be called on all those problem functions for which the symbolic phase returned
an inconclusive result. The convexity disprover is a user-supplied module with a prespecified prototype
required to return the value 0 in case of success and a positive value in case of failure in disproving
local convexity. For instance, the user might write a function similar to that used by mProbe and plug
it into Dr.ampl. Because the objective and constraint functions are typically more complicated than
quadratic functions, a possibility is to disprove convexity for given values of the variables. For instance,
let ψ denote a problem function. Since we are assuming that ψ is twice continuously differentiable,
we have access to the Hessian matrix ∇2ψ(x) for a given value of x, e.g., x = 0, the starting point
specified by the user, or any other value in the domain of ψ. The function ψ is convex at this particular
x if and only if ∇2ψ(x) is positive semi-definite. Even though this latter property is intricate to assess
numerically, we may attempt to verify whether or not it fails to hold. If it does fail to hold, we have a
proof—subject to rounding errors—that ψ is not convex at x, and therefore that ψ is not convex. In
order to see whether ∇2ψ(x) is positive semi-definite or not, we might attempt to compute its Cholesky

Convexity and Concavity Detection in Computational Graphs 9

factorization. If the factorization exists, the matrix is positive definite and ψ is convex at x. However,
the cost of the numerical method employed to attempt to disprove convexity should not be substantial
compared to the cost of solving the problem.

By default, Dr.ampl supplies a convexity disprover that follows a similar yet inherently different
numerical approach by attempting to exhibit a direction of negative curvature, i.e., a direction d ∈ Rn
such that dT∇2ψ(x)d < 0. To that end, it formulates the quadratic optimization problem with trust-
region constraint

minimize
d∈Rn

gTd+ 1
2d
T∇2ψ(x)d

subject to ‖d‖22 ≤ ∆,
(5.1)

where ‖ · ‖2 and ∆ > 0 are the Euclidean norm and a trust-region radius respectively. The vector g
may be chosen as ∇ψ(x), or another appropriate vector as we discuss below. This quadratic program
is in turn approximately solved by means of the truncated conjugate gradient of Steihaug (1983) and
Toint (1981), often used in nonlinear optimization implementations. On large problems, solving (5.1) is
typically faster than computing a sparse Cholesky factorization but the latter may be favored on small
problems since then, there is no reason to truncate the conjugate gradient iterations. Alternatively,
one might elect to choose ∆ = +∞.

An improved convexity disprover is available if the user chooses to use the Generalized Trust-Region
Lanczos method gltr (Gould et al., 1999), now part of the galahad optimization library (Gould
et al., 2003a). This algorithm may be set to stop once it hits the trust-region boundary, in which case
it reduces to the standard disprover, or to further explore the boundary in order to improve on the
current iterate. At a potentially slightly higher computational cost, gltr may return more accurate
results.

In both the truncated conjugate gradient and the gltr, numerical errors are accounted for by declaring
that d is a direction of negative curvature as soon as dT∇2ψ(x)d ≤ −100ε where ε is the machine
epsilon—typically, ε ≈ 2 · 10−16 on architectures implementing the IEEE double precision standard. In
both algorithms, the role of the trust-region is to bound the numerical effort invested into disproving
convexity. Its radius is chosen as

∆ = max(10, ‖∇ψ(x)‖22/10).

The point x at which convexity is thus assessed is chosen to be feasible with respect to the bound
constraints of problem (1.1), if any. Note that bound constraints may be present because no presolve
was performed and the original problem had bound constraints, because presolve did not eliminate
some of them, or because bounds on the variables appeared as a result of presolving other expressions
in the problem. Note also that dr.ampl attempts to further tighten bounds or simplify them (Fourer
and Orban, 2007). It is the latter tighter bounds that are referred to in this section.

For comparison purposes, it should be kept in mind that in most cases, the conjugate gradient approach,
the truncated Lanczos approach and even the Cholesky factorization approach have minimal cost
compared to that of solving the problem with a given optimization method. The reason for this is that
in the course of the iterations of an optimization method to minimize the fuction ψ(x) unconstrained,
a single step would be typically computed by solving (5.1) or by attempting a factorization of ∇2ψ(x)
and performing backsolves to obtain the solution to a linear system of equations. Many such steps are
typically required to solve the problem.

Two outcomes may occur in the solution of (5.1). If, while following the conjugate-gradient or Lanczos
path, the boundary of the trust region is met without having found any direction of negative curvature,
disproof of convexity is declared inconclusive. If a direction of negative curvature is encountered in
the process, this direction is followed until the boundary of the trust region is met. At that point,
the minimization ends and the disprover reports that negative curvature was found. This disproves
positive semi-definiteness of the Hessian matrix ∇2ψ(x), convexity of ψ about x, and thus convexity of
ψ. Of course, this numerical process is local in the sense that only convexity of ψ about x is assessed.

10 R. Fourer et al.

However, the function, if it is not quadratic, might very well be convex around x and nonconvex in
other feasible regions. To circumvent this additional difficulty, a number of different regions are chosen
by selecting a number of points x1, . . . , xp satisfying the bound constraints and repeating the above
conjugate gradient or Lanczos minimization for each of them. In later releases of Dr.ampl, feasibility
of these points with respect to other constraints will be able to be enforced as well.

An appropriate choice of the vector g in (5.1) may be important. Indeed, the natural choice g = ∇ψ(x)
often leads to a minimization ending in a single iteration because ‖g‖ is too large and the first direction
taken by both algorithms is d0 = −g. To circumvent this difficulty and give the disprover more of a
chance to identify negative curvature, a random vector g may be chosen.

Proving and disproving convexity are tools of different nature which may work jointly to ensure that
as few cases as possible are missed, while keeping the computational load moderate in the disproving
phase. In the case where convexity is deemed to hold in the symbolic phase, we can be sure that the ob-
jective function is convex. Another possible outcome is where convexity cannot be proved symbolically,
but the numerical procedure succeeds in disproving it. In this case, we know for a fact that the function
is nonconvex. A final possibility, where convexity could neither be proved symbolically, nor disproved
numerically is a totally inconclusive case. The latter occurs on problems which are either convex but
not encompassed by the rules of §4, or on nonconvex problems for which a region of nonconvexity has
not been identified.

Because of the uncertainty inherent to finite-precision arithmetic, we believe that such numerical pro-
cedures should not be used for convexity proving. Indeed, because of roundoff errors, the Cholesky
factorization of a positive definite matrix may fail if the smallest eigenvalue is sufficiently small. Simi-
larly, gltr computes the curvature along a direction by evaluating dot products of the form pT∇2ψ(x)p
for some vectors p. Because of cancellation, even if ∇2ψ(x) is positive definite, this dot product may
evaluate to some positive number that rounds down to zero or even to a negative number. This un-
certainty makes it difficult to differentiate between a curvature value which is actually negative and a
“false negative.”

It goes without saying that the procedures outlined in this section can equally be applied for disproving
concavity. This is achieved by changing the sign of the function ψ everywhere.

Before presenting more extensive numerical results in §7, let us take a brief look at a sample output
from Dr.ampl on problem elec from the COPS collection (Dolan et al., 2004). The problem, which
consists in arranging a given number of electrons on a sphere so as to minimize the total Coulomb
potential between the charged particles, is stated as

minimize
x,y,z

n−1∑
i=1

n∑
j=i+1

[
(xi − xj)2 + (yi − yj)2 + (zi − zj)2

]−1/2

subject to x2
i + y2

i + z2
i = r2, i = 1, . . . , n,

where n ∈ N0 is the number of electrons and r > 0 is the radius of the sphere. The objective function
of this problem is not convex and each constraint function is clearly convex. Note that by this, we do
not mean that they define a convex feasible set. The symbolic convexity-proving phase of Dr.ampl
on this problem with n = 100 produces the output of Fig. 5.1. In this output, we first see that the
objective is being minimized and there are no objectives being maximized. Dr.ampl was not able to
prove convexity of this objective function. In the second part of the report, all constraint functions were
proved convex. Since they all are equality constraints, we still expect the feasible set to be nonconvex.

The numerical convexity-disproving phase produces the output show in Fig. 5.2. In this output, the term
nonconvex is understood as both nonconvex and nonconcave. The first part of the report shows that
both convexity and concavity of the objective function were successfully disproved. The second part
shows that all constraint functions were rightfully claimed as being convex, since convexity disproving
failed.

Convexity and Concavity Detection in Computational Graphs 11

Symbolic Convexity Proving of Objectives and Constraints

Nonlinear objective ’coulomb_potential’ has not been proved convex or concave over the bound constraints.
Detected 0/1 nonlinear convex objectives being minimized,

0/0 nonlinear convex objectives being maximized,
0/1 nonlinear concave objectives being minimized,
0/0 nonlinear concave objectives being maximized,

Detected 0/0 nonlinear convex inequality constraint functions,
100/100 nonlinear convex equality constraint functions,

0/0 nonlinear concave inequality constraint functions,
0/100 nonlinear concave equality constraint functions.

Fig. 5.1. Symbolic convexity-proving phase on problem elec.

Numerical Convexity Disproving of Objectives and Constraints

Attempting to disprove convexity of objectives
Processing objective ’coulomb_potential’
Convexity was disproved numerically
Concavity was disproved numerically

In hindsight,
Detected 0/1 nonlinear convex objectives being minimized,

0/0 nonlinear convex objectives being maximized,
0/1 nonlinear concave objectives being minimized,
0/0 nonlinear concave objectives being maximized,
1/1 nonlinear nonconvex objectives being minimized,
0/0 nonlinear nonconvex objectives being maximized,
0/1 nonlinear inconclusive objectives being minimized,
0/0 nonlinear inconclusive objectives being maximized,
0/1 nonlinear objectives misclassified (0.0 %).

Attempting to disprove convexity of constraints
In hindsight,
Detected 0/0 nonlinear convex inequality constraint functions,

100/100 nonlinear convex equality constraint functions,
0/0 nonlinear concave inequality constraint functions,
0/100 nonlinear concave equality constraint functions.
0/0 nonlinear nonconvex inequality constraint functions.
0/100 nonlinear nonconvex equality constraint functions.
0/0 nonlinear inconclusive inequality constraint functions.
0/100 nonlinear inconclusive equality constraint functions.
0/100 nonlinear constraints misclassified (0.0 %).

Fig. 5.2. Numerical convexity-disproving phase on problem elec.

Note that any convexity disprover based on the Hessian matrix ∇2ψ(x) implicitly assumes that ψ is
twice continuously differentiable. This poses a difficulty for constraint functions of the form c(x, t) =
‖x‖ − t, where ‖ · ‖ is the Euclidian norm. Such functions are convex, and correctly identified as such
by the rules on the square root of §4. Constraint of the form ‖Ax− b‖− t ≤ 0 are typically referred to
as second-order cone constraints and occur frequently in practice (Lobo et al., 1998).

6. Convexity of the Feasible Set

Convexity assessment of the feasible set follows as a corollary to the convexity assessment of constraint New section

functions. The feasible set is viewed as an intersection of larger sets, each of which being defined by an
individual constraint. The foremost rule is thus that the intersection of finitely many convex sets is a
convex set. Therefore, if any one constraint cannot be proved to define a convex set, the convexity of
the whole feasible set is deemed inconclusive. In particular, if the convexity of a constraint function is
inconclusive, the convexity of the feasible set is inconclusive.

Both Dr.ampl and coconut transform inequality constraints so they take the general form cLi ≤
ci(x) ≤ cUi where cLi ∈ R ∪ {−∞} and cUi ∈ R ∪ {+∞}. Denoting as before ci and ci inferred lower

12 R. Fourer et al.

and upper bounds on the values of the constraint function ci, the set Ωi defined by this constraint is
convex if either (a) ci is a convex function and cLi ≤ ci, or (b) ci is a concave function and ci ≤ cUi .

An equality constraint is considered to (provably) define a convex set only if its constraint function is
affine. The feasible set will thus be deemed inconclusive if there exists a nonlinear equality constraint.

Note that if the problem contains constraints formulated as g(x) ≤ h(x), the latter is readily rephrased
g(x) − h(x) ≤ 0 or h(x) − g(x) ≥ 0. All of the above rules apply to either case. For instance, the
constraint function of the first reformulation will be deemed convex if and only if g is convex and h
is concave. If such is the case, the set defined by this constraint will be deemed convex. The second
case is similar; the set that it defines is convex if and only if h(x) − g(x) is concave, which occurs if
and only if g is convex and h is concave. The procedure is identical for equality constraints written as
g(x) = h(x).

7. Numerical Results

We present in this section results of the DAG parsing techniques outlined in the previous sections
on standard collections of medium to large-scale nonlinear programs. Dr.ampl results are given in
§7.2 while coconut results are reported in §7.3. The first series of tests, described in the next section,
validates the approach on a set of problems with known convexity properties. Problems in this set have
nonlinear objectives, nonlinear constraints, or both, and at least one of the objective or the feasible
set is verifiably convex.

All Dr.ampl tests were carried out on a Pentium IV 3.5GHz processor running Linux. The main
Dr.ampl executable and library were compiled with the Gnu gcc compiler version 4.0.3 and the
convexity disprover was compiled with the Gnu g95 Compiler version 4.0.1. For both compilers, level 3
optimization was used. For the purpose of double-checking results in the present development version
of the software, the convexity/concavity disproving phase is launched even when the symbolic phase
is conclusive. Of course, in practice, there is no need to do so.

All coconut tests were carried out on a Pentium IV 3.4GHz processor running Linux. The coconut
system was compiled with the GNU C++ compiler version 4.0.3 without optimization. All testing was
performed on DAGs generated by ampl2dag and simplified by dag simplify.

7.1. Preliminary Validation

In order to validate the convexity engines implemented in Dr.ampl and coconut, we start by re-
porting convexity assessment results on a test set made of problems available in analytic form in the
literature, originating from the ampl translation of CUTEr models (Gould et al., 2003b), including some
Hock and Schittkowski (1981) problems and from Robert Vanderbei’s collection of nonlinear models
Vanderbei (2008). The problems could be divided into two categories: problems with no constraints
or with linear constraints only, and problems with at least one nonlinear constraint. Results on this
test set with coconut are reported in Table 7.1. We do not report Dr.ampl results separately since
they are nearly identical save for some variations in the CPU time. The few differences are detailed
below. The columns of Table 7.1 are as follows: n is the number of variables, m is the total number
of constraints, mn is the number of nonlinear constraints, nb is the number of bounds, “Obj” is the
convexity assessment of the objective function and #cvx, #gen and #inc are the number of convex,
general (both nonconvex and nonconcave) and inconclusive nonlinear constraints. The column Ω gives
the convexity assessment of the feasible set and t is the running time in seconds. All problems went
through the ampl presolve phase with default options, i.e., 10 passes.

Convexity and Concavity Detection in Computational Graphs 13

The convexity assessment of the objective function is reported as “Cvx” if it is found to be convex, “Lin”
if it is linear, and “Con” if it is constant—the problem is then a feasibility problem. All are minimization
problems. The convexity assessment of Ω is reported as “Unc” if the problem is unconstrained, “Lin” if
all constraint functions are linear, “Box” if the problem only has bound constraints, and “Cvx” if there
is at least one nonlinear constraint and if the feasible set is found to be convex. In both categories,
“Inc” means that the analysis in inconclusive.

A few comments are in order to clarify the origin of some of the problems and the variations between
the two sets of results.

Problems with names of the form xyz-2 are a variation on problem xyz in which the objective is moved
into the constraints. The result is a feasibility problem. When the objective is a convex function, it is
used to build a constraint which defines a convex set. For instance, Problem hs064 is the 64-th Hock
and Schittkowski problem, which has a convex objective and a convex feasible set, while hs064-2 is a
variation in which the problem is converted into a feasibility problem by imposing that the objective
be less than some prescribed value. The latter thus also has a convex feasible set.

Problem arwhead-l is a larger version of arwhead.

Problem argauss is the 9-th problem of Moré, Garbow, and Hillstrom (1981). Its feasible set is defined
by a level set of some convex Gaussian function. At the time of this writing, Gaussian functions are not
supported in Dr.ampl. On this problem, Dr.ampl cannot disprove the constraint function’s convexity
but can disprove its concavity; as a result, the convexity assessment of the feasible set is inconclusive.

In total, inconclusive results were drawn on five problems out of 171: allinitc, hs012, hs029, nb L1 eps
and optmass. We now comment on those cases in more detail.

The objective function of allinitc is a sum of polynomials and trigonometric functions. However, its
convexity could not be disproved due to the values of the variables—namely, zero. Upon setting the
initial variables to 1, Dr.ampl correctly disproves convexity.

The objective function of hs012 is the strictly convex quadratic x2 + y2 − xy. Symbolic convexity J
proving is inconclusive because of the cross term, as is numerical disproving. However, dr.ampl is able
to prove that the function is not concave.

The objective function of hs029 is nonconvex. It has the form −xyz. However, because of the initial
values of the variables—all zero—convexity cannot be disproved. Upon setting the initial variables to
(1, 1, 1), Dr.ampl correctly disproves convexity.

Problem nb L1 eps is a narrow band 3-dimensional beam pattern optimization problem. Its objective
function is a sum of Euclidian norms of linear terms. Dr.ampl is able to correctly prove that the
objective function is convex.

The objective function of optmass is diff-convex and thus, is neither convex nor concave. However,
convexity could not be disproved due to the values of the variables—namely, zero. Upon setting the
initial variables to 1, Dr.ampl correctly disproves convexity.

Table 7.1: Convexity assessment results on test set with known convexity
properties.

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

airport 84 42 42 84 Cvx 42 0 0 Cvx 0.08
airport3 84 43 43 84 Con 43 0 0 Cvx 4.39
allinitc 3 1 1 2 Inc 1 0 0 Cvx 0.01
ampl 2 2 1 2 Con 1 0 0 Cvx 0.00
antenna 363 481 157 1 Con 157 0 0 Cvx 2.94
argauss 3 1 1 0 Con 1 0 0 Cvx 0.00
arglina 100 0 0 0 Cvx 0 0 0 Unc 0.04

14 R. Fourer et al.

Table 7.1: Convexity assessment results on test set with known convexity
properties (continued.)

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

arglina-2 100 1 1 0 Con 1 0 0 Cvx 1.98
arglinb 10 0 0 0 Cvx 0 0 0 Unc 0.00
arglinc 8 0 0 0 Cvx 0 0 0 Unc 0.00
arglinc-2 8 1 1 0 Con 1 0 0 Cvx 0.01
arwhead 100 0 0 0 Cvx 0 0 0 Unc 0.01
arwhead-l 5000 0 0 0 Cvx 0 0 0 Unc 0.23
aug2d 20192 9996 0 0 Cvx 0 0 0 Lin 1.64
aug2dc 20200 9996 0 198 Cvx 0 0 0 Lin 1.07
aug2dcqp 20200 9996 0 20200 Cvx 0 0 0 Lin 1.03
aug2dqp 20192 9996 0 20192 Cvx 0 0 0 Lin 1.01
batch 46 69 1 46 Cvx 1 0 0 Cvx 0.01
bdqrtic 1000 0 0 0 Cvx 0 0 0 Unc 0.07
biggsb1 1000 0 0 999 Cvx 0 0 0 Box 0.03
booth 2 1 1 0 Con 1 0 0 Cvx 0.00
bqp1var 1 0 0 1 Cvx 0 0 0 Box 0.00
braess 4 5 1 4 Con 1 0 0 Cvx 0.00
braess new 5 5 1 5 Con 1 0 0 Cvx 0.00
brownden 4 0 0 0 Cvx 0 0 0 Unc 0.00
bt3 5 3 0 0 Cvx 0 0 0 Lin 0.00
catenary 198 101 100 0 Con 100 0 0 Cvx 0.04
cb2 3 3 3 0 Lin 3 0 0 Cvx 0.00
cb3 3 3 3 0 Lin 3 0 0 Cvx 0.00
chaconn1 3 3 3 0 Lin 3 0 0 Cvx 0.00
chaconn2 3 3 3 0 Lin 3 0 0 Cvx 0.00
chenhark 1000 0 0 1000 Cvx 0 0 0 Box 0.04
cliff 2 0 0 0 Cvx 0 0 0 Unc 0.00
clplatea 4970 0 0 0 Cvx 0 0 0 Unc 0.57
clplateb 4970 0 0 0 Cvx 0 0 0 Unc 0.57
clplatec 4970 0 0 0 Cvx 0 0 0 Unc 0.58
cvxbqp1 10000 0 0 10000 Cvx 0 0 0 Box 0.32
cvxqp1 1000 500 0 1000 Cvx 0 0 0 Lin 0.13
cvxqp2 10000 2500 0 10000 Cvx 0 0 0 Lin 0.69
cvxqp3 10000 7500 0 10000 Cvx 0 0 0 Lin 1.15
demymalo 3 3 1 0 Lin 1 0 0 Cvx 0.00
dixon3dq 10 0 0 0 Cvx 0 0 0 Unc 0.00
dqdrtic 5000 0 0 0 Cvx 0 0 0 Unc 0.09
dqrtic 5000 0 0 0 Cvx 0 0 0 Unc 0.13
dtoc1l 14985 9990 0 0 Cvx 0 0 0 Lin 2.36
dtoc3 14996 9997 0 0 Cvx 0 0 0 Lin 0.88
engval1 5000 0 0 0 Cvx 0 0 0 Unc 0.23
fccu 19 8 0 0 Cvx 0 0 0 Lin 0.00
fir convex 11 243 91 1 Con 91 0 0 Cvx 0.07
genhs28 10 8 0 0 Cvx 0 0 0 Lin 0.00
gigomez1 3 3 1 0 Lin 1 0 0 Cvx 0.00
gouldqp2 699 349 0 699 Cvx 0 0 0 Lin 0.03
gouldqp3 699 349 0 699 Cvx 0 0 0 Lin 0.03
gpp 250 498 249 0 Cvx 249 0 0 Cvx 0.86
gridneta 8964 6724 0 325 Cvx 0 0 0 Lin 0.74
gridnetb 13284 6724 0 0 Cvx 0 0 0 Lin 0.71
gridnetc 7564 3844 0 2521 Cvx 0 0 0 Lin 0.41
hager1 10000 5000 0 0 Cvx 0 0 0 Lin 0.36
hong 4 1 0 4 Cvx 0 0 0 Lin 0.00
hs003 2 0 0 1 Cvx 0 0 0 Box 0.00
hs004 2 0 0 2 Cvx 0 0 0 Box 0.00

Convexity and Concavity Detection in Computational Graphs 15

Table 7.1: Convexity assessment results on test set with known convexity
properties (continued.)

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

hs011 2 1 1 0 Cvx 1 0 0 Cvx 0.00
hs012 2 1 1 0 Inc 1 0 0 Cvx 0.00
hs014 2 2 1 0 Cvx 1 0 0 Cvx 0.00
hs021 2 1 0 2 Cvx 0 0 0 Lin 0.00
hs022 2 2 1 0 Cvx 1 0 0 Cvx 0.00
hs028 3 1 0 0 Cvx 0 0 0 Lin 0.00
hs029 3 1 1 0 Inc 1 0 0 Cvx 0.00
hs030 3 1 1 3 Cvx 1 0 0 Cvx 0.00
hs034 3 2 2 3 Lin 2 0 0 Cvx 0.00
hs043 4 3 3 0 Cvx 3 0 0 Cvx 0.00
hs048 5 2 0 0 Cvx 0 0 0 Lin 0.00
hs049 5 2 0 0 Cvx 0 0 0 Lin 0.01
hs050 5 3 0 0 Cvx 0 0 0 Lin 0.00
hs051 5 3 0 0 Cvx 0 0 0 Lin 0.00
hs052 5 3 0 0 Cvx 0 0 0 Lin 0.00
hs053 5 3 0 5 Cvx 0 0 0 Lin 0.00
hs064 3 1 1 3 Cvx 1 0 0 Cvx 0.00
hs064-2 3 2 2 3 Con 2 0 0 Cvx 0.00
hs065 3 1 1 3 Cvx 1 0 0 Cvx 0.00
hs066 3 2 2 3 Lin 2 0 0 Cvx 0.00
hs072 4 2 2 4 Lin 2 0 0 Cvx 0.00
hs072-2 4 3 2 4 Con 2 0 0 Cvx 0.00
hs118 15 17 0 15 Cvx 0 0 0 Lin 0.00
hs21mod 7 1 0 6 Cvx 0 0 0 Lin 0.00
hs3mod 2 0 0 1 Cvx 0 0 0 Box 0.00
hues-mod 10000 2 0 10000 Cvx 0 0 0 Lin 336.84
huestis 10000 2 0 10000 Cvx 0 0 0 Lin 332.05
immun 19 6 0 19 Cvx 0 0 0 Lin 0.01
jbearing100 5000 0 0 5000 Cvx 0 0 0 Box 0.56
jbearing25 2500 0 0 2500 Cvx 0 0 0 Box 0.29
jbearing50 2500 0 0 2500 Cvx 0 0 0 Box 0.28
jbearing75 3750 0 0 3750 Cvx 0 0 0 Box 0.41
ksip 20 1000 0 1 Cvx 0 0 0 Lin 1.06
linear 24 20 0 20 Cvx 0 0 0 Lin 0.00
liswet1 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet10 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet11 10002 10000 0 0 Cvx 0 0 0 Lin 0.78
liswet12 10002 10000 0 0 Cvx 0 0 0 Lin 1.22
liswet2 10002 10000 0 0 Cvx 0 0 0 Lin 1.73
liswet3 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet4 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet5 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet6 10002 10000 0 0 Cvx 0 0 0 Lin 0.74
liswet7 10002 10000 0 0 Cvx 0 0 0 Lin 0.77
liswet8 10002 10000 0 0 Cvx 0 0 0 Lin 0.76
liswet9 10002 10000 0 0 Cvx 0 0 0 Lin 0.76
lotschd 12 7 0 12 Cvx 0 0 0 Lin 0.02
lsqfit 2 1 0 1 Cvx 0 0 0 Lin 0.00
madsschj 81 158 158 0 Lin 158 0 0 Cvx 2.05
makela1 3 2 1 0 Lin 1 0 0 Cvx 0.00
makela2 3 3 3 0 Lin 3 0 0 Cvx 0.00
makela3 21 20 20 0 Lin 20 0 0 Cvx 0.00
markowitz 8 2 1 8 Con 1 0 0 Cvx 0.01
meyer3 3 0 0 0 Cvx 0 0 0 Unc 0.00

16 R. Fourer et al.

Table 7.1: Convexity assessment results on test set with known convexity
properties (continued.)

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

mifflin1 3 2 1 0 Lin 1 0 0 Cvx 0.00
mifflin2 3 2 2 0 Lin 2 0 0 Cvx 0.00
minmaxbd 5 20 20 0 Lin 20 0 0 Cvx 0.00
nasty 2 0 0 0 Cvx 0 0 0 Unc 0.00
nb L1 eps 1708 2381 793 0 Inc 793 0 0 Cvx 90.59
nondquar 10000 0 0 0 Cvx 0 0 0 Unc 0.37
optmass 66 55 11 0 Inc 11 0 0 Cvx 0.01
optprloc 30 29 25 30 Cvx 25 0 0 Cvx 0.01
oslbqp 8 0 0 8 Cvx 0 0 0 Box 0.00
palmer1c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer1d 7 0 0 0 Cvx 0 0 0 Unc 0.00
palmer2c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer3c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer4c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer5c 6 0 0 0 Cvx 0 0 0 Unc 0.00
palmer5d 4 0 0 0 Cvx 0 0 0 Unc 0.00
palmer6c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer7c 8 0 0 0 Cvx 0 0 0 Unc 0.00
palmer8c 8 0 0 0 Cvx 0 0 0 Unc 0.00
polak1 3 2 2 0 Lin 2 0 0 Cvx 0.00
polak2 11 2 2 0 Lin 2 0 0 Cvx 0.00
polak4 3 3 3 0 Lin 3 0 0 Cvx 0.00
portfl1 12 1 0 12 Cvx 0 0 0 Lin 0.01
portfl2 12 1 0 12 Cvx 0 0 0 Lin 0.01
portfl3 12 1 0 12 Cvx 0 0 0 Lin 0.01
portfl4 12 1 0 12 Cvx 0 0 0 Lin 0.01
portfl6 12 1 0 12 Cvx 0 0 0 Lin 0.01
powell20 1000 1000 0 0 Cvx 0 0 0 Lin 0.06
power 1000 0 0 0 Cvx 0 0 0 Unc 0.02
probpenl 500 0 0 500 Cvx 0 0 0 Box 0.03
qp4 79 31 0 50 Cvx 0 0 0 Lin 0.12
qpcboei1 372 285 0 372 Cvx 0 0 0 Lin 0.32
qpcboei2 143 122 0 143 Cvx 0 0 0 Lin 0.05
qpcstair 385 356 0 379 Cvx 0 0 0 Lin 7.17
quartc 10000 0 0 0 Cvx 0 0 0 Unc 0.27
rosenmmx 5 4 4 0 Lin 4 0 0 Cvx 0.00
s383 14 2 1 14 Con 1 0 0 Cvx 0.00
sambal 17 10 0 0 Cvx 0 0 0 Lin 0.00
sample 4 2 2 4 Lin 2 0 0 Cvx 0.00
sim2bqp 2 0 0 1 Cvx 0 0 0 Box 0.00
simbqp 2 0 0 1 Cvx 0 0 0 Box 0.00
steenbra 432 108 0 432 Cvx 0 0 0 Lin 0.03
svanberg 5000 5000 5000 5000 Cvx 5000 0 0 Cvx 1.22
synthes1 6 6 2 6 Cvx 2 0 0 Cvx 0.00
tame 2 1 0 2 Cvx 0 0 0 Lin 0.00
tame-2 2 2 1 2 Con 1 0 0 Cvx 0.00
tame1 2 2 1 2 Con 1 0 0 Cvx 0.00
tridia 10000 0 0 0 Cvx 0 0 0 Unc 0.29
tridia-2 30 1 1 0 Con 1 0 0 Cvx 0.01
turkey 512 276 0 411 Cvx 0 0 0 Lin 0.63
ubh1 17997 12000 0 6003 Cvx 0 0 0 Lin 1.75
vardim 100 0 0 0 Cvx 0 0 0 Unc 0.00
yao 2000 1999 0 2 Cvx 0 0 0 Lin 0.14
zecevic2 2 2 0 2 Cvx 0 0 0 Lin 0.00

Convexity and Concavity Detection in Computational Graphs 17

Table 7.1: Convexity assessment results on test set with known convexity
properties (continued.)

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

zecevic2-2 2 3 1 2 Con 1 0 0 Cvx 0.00

7.2. Dr.ampl Results on the COPS Collection

This section presents numerical results on the COPS (Dolan et al., 2004; Bondarenko et al., 2004) test
set, version 2.0. Table 7.2 presents summary results reporting problem names, dimension, convexity of
objective function and timing statistics. For each problem, ampl was asked to return tight bounds using
the option option var bounds 2 and two presolve options were used. The first, option presolve 0,
disables ampl’s presolve altogether while the second, option presolve 10, asks for up to 10 presolve
passes. For convexity disproving, a single point x satisfying the bounds was chosen to solve problem
(5.1). The point x is either the starting point x0 specified in the ampl model if it satisfies the bound
constraints, or the projection of x0 into the bounds.

In Table 7.2, the number of constraints m does not include simple bounds. It may, and does, happen
that only bounds remain after ampl’s presolve phase, causing m = 0 to be reported. The number
of bound constraints is reported in the column titled nb. The nature of the objective is reported as
linear if the objective is a linear function, as constant if the problem is a pure feasibility problem, as
convex if convexity was deemed to hold in the symbolic phase and could not be numerically disproved, as
concave if concavity was proved symbolically and could not be disproved numerically, and as nonconvex
if neither convexity or concavity could be proved in the symbolic phase but were disproved numerically.
Finally, it is reported as inconclusive if convexity and concavity could neither be proved nor disproved.
The timings reported for a problem do not include ampl’s presolve phase but only take into account the
convexity/concavity proving/disproving tests. We emphasize that for the purpose of double-checking
results, the convexity disprover is run not only on problem functions whose convexity was deemed
inconclusive in the symbolic phase, but also on all those that were deemed convex. This does not
include linear problem functions.

7.3. Coconut Results on the COPS Collection

In this section we present the test results for the coconut system (version 3.0 build 202), on the
COPS test set version 3.0. Table 7.3 presents summary statistics on the COPS 3.0 collection. Note
that problems were preprocessed and that some problem sizes may differ from those in the COPS 2.0
collection. For convexity analysis the coconut tool analyze convexity was used.

The analyze convexity tool calls the constraint propagator and uses the simple convexity inference
engine to test all functions involved for convexity. It returns convexity information for the objective
function and all constraints, as well as a summary information for the feasible set and the problem
classification. The information returned for the objective function is constant if it can be proved to
be a constant function or a pure feasibility problem is given, as linear if it is an affine function. The
objective is reported as convex if convexity could be proved and the problem is a minimization problem
or if concavity could be proved and the problem is a maximization problem, it is reported as concave
in the reverse cases. Finally, the return value is Inconclusive if neither convexity nor concavity could
be proved.

Although convexity of individual constraint functions in important elsewhere in the coconut frame-
work, the analyze convexity tool reports on convexity of the sets defined by the individual con-
straints. With this in mind, a single constraint is reported to be linear if it is an affine function

18 R. Fourer et al.

Problem Pre n m mn nb Obj #cvx #gen #inc Ω t (s)

Bearing 0 2704 208 0 2704 Cvx 0 0 0 Cvx 0.43
10 2500 0 0 2500 Cvx 0 0 0 Cvx 0.41

Camshape 0 800 1603 801 800 Lin 1 800 0 Inc 0.83
10 800 1600 801 800 Lin 1 800 0 Inc 0.90

Catmix 0 2403 1602 1600 801 Lin 0 800 800 Inc 3.69
10 2401 1600 1600 801 Lin 0 801 799 Inc 3.61

Chain 0 402 203 1 0 Ncvx 0 1 0 Inc 0.02
10 400 201 1 0 Ncvx 0 1 0 Inc 0.02

Channel 0 1600 1600 800 0 Cons 0 800 0 Inc 2.29
10 1598 1598 800 0 Cons 0 800 0 Inc 2.25

Elec 0 300 100 100 0 Ncvx 100 0 0 Inc 0.67
10 300 100 100 0 Ncvx 100 0 0 Inc 0.66

Gasoil 0 2003 2003 1600 0 Cvx 0 1596 4 Inc 4.12
10 2001 1998 1600 3 Cvx 0 1596 4 Inc 4.12

Glider 0 1006 1411 800 0 Lin 0 800 0 Inc 6.32
10 999 800 800 601 Lin 0 800 0 Inc 6.03

Marine 0 4815 4807 3200 0 Cvx 0 3200 0 Inc 21.01
10 4815 4792 3200 15 Cvx 0 3200 0 Inc 21.65

Methanol 0 1205 1205 900 0 Cvx 0 900 0 Inc 2.68
10 1202 1197 900 5 Cvx 0 900 0 Inc 2.45

Minsurf 0 2704 3696 0 0 Inc 0 0 0 Cvx 0.38
10 2500 0 0 2500 Inc 0 0 0 Cvx 0.36

Pinene 0 1005 1005 750 0 Cvx 0 438 312 Inc 0.76
10 1000 995 750 5 Cvx 0 438 312 Inc 0.75

Polygon 0 100 1376 10 0 Ncvx 0 10 0 Inc 0.00
10 98 1273 10 98 Ncvx 4 6 0 Inc 0.00

Robot 0 1811 1213 1200 1207 Lin 0 200 1000 Inc 2.62
10 1799 1201 1200 1202 Lin 0 200 1000 Inc 2.77

Rocket 0 1605 2408 1200 401 Lin 0 1200 0 Inc 3.82
10 1601 1200 1200 1601 Lin 0 1200 0 Inc 3.81

Steering 0 507 510 400 0 Lin 0 100 300 Inc 0.09
10 500 401 400 103 Lin 0 100 300 Inc 0.09

Torsion 0 2704 2704 0 0 Cvx 0 0 0 Cvx 0.31
10 2500 0 0 2500 Cvx 0 0 0 Cvx 0.19

Table 7.2. Dr.ampl results on the COPS 2.0 test set. In this table, “Pre” is the value of presolve. The
other column headers are as in Table 7.1. The number of concave constraints is not reported since it is zero
for all problems. Here, t is the running time in seconds for the convexity proving and disproving phases.

combined with either one-sided or two-sided constraints, as convex if it defines a convex subset of Rn,
and as concave if flipping the sign of the constraint function defines a convex subset. More precisely,
we will say that the set {x ∈ Rn | c(x) ≥ 0} is concave if the function c is convex. If a problem has
only linear or concave constraints, we will say that it is concavely constrained. The fact that a prob-
lem is concavely constrained can be important for global optimization insofar as in this case, without
additional constraint qualification, the Kuhn-Tucker conditions are valid on all local optima.

The system reports a constraint to be nonconvex if it can be proved to define a nonconvex or empty
subset of Rn, most notably this is the result for nonlinear equality constraints, but also for provably
convex or concave functions with two-sided inequality constraints. Finally, the return value for a
constraint is Inconclusive if none of the above cases is present.

For the feasible set the system reports linear if all constraints are affine, and convex if all constraints
were proven to be convex. The very rare result nonconvex is reported if the feasible set could be proved
to be nonconvex. In all other cases the system reports Inconclusive.

Convexity and Concavity Detection in Computational Graphs 19

For the problem classification, the possible return values are

linear if the objective function is linear and all constraints are linear,
convex, linearly constrained if the objective function is convex and all constraints are linear (i.e.

the problem is linearly constrained),
concave, linearly constrained if the objective function is concave and all constraints are linear,
convex if the objective function is convex and the feasible set is convex,
concave, convexly constrained if the objective function is concave and the feasible set is convex,
linear CSP if the objective function is constant and all constraints are linear (i.e. a linear constraint

satisfaction problem),
convex CSP if the objective function is constant and the feasible set is convex,
concave CSP if the objective function is constant and the feasible set is concavely constrained,
linearly constrained if the objective function is inconclusive and all constraints are linear,
convexly constrained if the objective function is inconclusive and the feasible set is convex,
concavely constrained if the objective function is inconclusive and the feasible set is concavely

constrained.
nonconvex if the objective function is inconclusive or any constraint is nonconvex or inconclusive.
linear, unconstrained if the objective function is linear and there are no constraints.
convex, unconstrained if the objective function is convex and there are no constraints.
concave, unconstrained if the objective function is concave and there are no constraints.
linear, box constrained if the objective function is linear and there are only simple bound con-

straints.
convex, box constrained if the objective function is linear and there are only simple bound con-

straints.
concave, box constrained if the objective function is linear and there are only simple bound con-

straints.
trivial if the objective function is constant and there are only simple bound constraints or no con-

straints at all.

The coconut environment only uses symbolic convexity proving techniques. All timing results include
constraint propagation, and the time required for problem I/O, excluding the automatic ampl to DAG
transformation, which can take minutes for the largest test problems.

Problem n m mn nb Obj #cvx #gen #inc Ω t (s)

Bearing 2500 0 0 2500 Cvx 0 0 0 Box 0.30
Camshape 800 1600 801 800 Lin 1 0 800 Inc 1.23
Catmix 2548 2008 900 450 Lin 0 900 0 Inc 0.24
Chain 299 225 77 0 Lin 0 0 77 Inc 0.06
Channel 4798 4798 800 0 Cons 0 800 0 Inc 0.78
Elec 300 100 100 0 Inc 0 100 0 Inc 1.09
Gasoil 3601 3598 1600 3 Cvx 0 1 1599 Inc 0.45
Glider 1303 1204 903 301 Lin 0 601 302 Inc 0.09
Marine 9615 9592 3200 15 Cvx 0 3200 0 Inc 0.59
Methanol 2702 2697 900 5 Cvx 0 0 900 Inc 0.51
Minsurf 2500 0 0 2500 Inc 0 0 0 Box 0.64
Pinene 1450 1445 750 5 Cvx 0 302 448 Inc 0.24
Polygon 98 1273 1223 98 Inc 47 0 1176 Inc 0.13
Robot 2197 1599 1198 1200 Lin 0 800 398 Inc 0.26
Rocket 2401 2000 1600 1601 Lin 0 800 800 Inc 0.28
Steering 1000 801 400 202 Lin 0 400 0 Inc 0.12
Torsion 2500 0 0 2500 Cvx 0 0 0 Cvx 0.15

Table 7.3. coconut results on the COPS 3.0 test set. The column headers are as in Table 7.1.

20 R. Fourer et al.

Note that while there seems to be a discrepancy between the form of the objective of problem chain
in Tables 7.2 and 7.3, both results are correct. In version 2.0 of the COPS test set, the objective of
chain is nonlinear, indeed nonconvex, while in version 3.0 the same problems is reformulated so as to
have a linear objective and to move the initial nonlinear objective into the constraints.

7.4. Discussion of the Numerical Results

Given that many problems from the COPS test set are discretized control problems, they often feature
nonlinear equality constraints. Thus, the feasible set of all such problems was cast as nonconvex. The
three problems with a convex feasible set—Bearing, Minsurf and Torsion—have linear constraints
only. For each problem, each constraint was examined symbolically and numerically. The ampl pre-
solve phase affects convexity assessment in some cases, such as Polygon, where from the 10 nonlinear
constraints, all are deemed inconclusive when presolve=0 but four of them are determined to be con-
vex when presolve=10. Dr.ampl classifies all equality and inequality constraints as either convex,
concave, nonconvex or inconclusive, where nonconvex is understood as nonconvex and nonconcave.
This provides a finer analysis of the feasible set. Full details on the numerical results will be available
and updated on the main Dr.ampl web site at www.gerad.ca/˜orban/drampl.

The main source of nonconvexity in the problems of Table 7.2 is the product between two or more
variables, that is, terms of the form xiyj where both x and y are problem variables or defined variables.
Such terms are also a source of frequent inconclusive cases. For example, consider the function of two
variables f(x, y) = (x−y)2. Dr.ampl easily proves that f is convex because it consists in the squaring
of a linear term. However, were this function equivalently rewritten f(x, y) = x2+y2−2xy, its convexity
could neither be proved nor disproved by our graph-based techniques. It could not be proved because
of the product of two variables and it could not be disproved because f is indeed convex.

This is the reason why the objective function of problem hs012 failed to be detected as convex in §7.1.
Had the objective x2+y2−xy been written instead (x− 1

2y)2+ 3
4y

2 or 1
4 (x+y)2+ 3

4 (x−y)2, it would have J
been detected as a sum of squares of linear terms and identified as convex. Many convex polynomials
can be stated as such a a sum of squares (Choi et al., 1995; Reznick, 2000). However, there may be
infinitely many such formulations of a given convex polynomial and finding one is not straightforward
in general, especially as the number of variables increases. Expressing a convex quadratic as a sum
of squares can be done, for example, by computing the eigenvalue and eigenvector decomposition of
its Hessian matrix. If we wish to introduce a numerical proof of convexity for the quadratic case,
however, then a Cholesky factorization of the Hessian may enable us to obtain the same results more
efficiently. In either case there is the risk of an incorrect conclusion due to numerical inaccuracies in the
computations; a more reliable assessment could be obtained by use of interval arithmetic, but possibly
at substantially greater cost. Nevertheless, we intend to consider the introduction of these approaches
in future versions of our software.

As another example, the constraint function xy − 1 used in the set of constraints xy − 1 ≤ 0 where x
and y are guaranteed to be positive is not a convex function. However, upon introducing the change
of variable x = exp(w) and y = exp(z), the constraint may be equivalently rewritten exp(w + z) ≤ 1,
which is convex and will correctly be identified as such.1 Inconclusive cases need not only be caused by
products of variables. Consider the simpler function g(x) = (x− 1)4. Again, if the function is written
in this form then Dr.ampl easily proves convexity since g consists in a linear term to an even positive
power. However, if expanded as g(x) = x4 − 4x3 + 6x2 − 4x + 1, this expression becomes a sum of
nonlinear terms and, according to the rules of §4, the sum will only be deemed convex if all terms are
convex. Here, the term −4x3 prevents detection of the convexity of the sum and hence, convexity of
g(x).

1 This example was kindly suggested to us by an anonymous referee.

http://www.gerad.ca/~orban/drampl

Convexity and Concavity Detection in Computational Graphs 21

These simple examples illustrate that the user of our software must still be concerned to some de-
gree with expressing objectives and constraints in factored form or, more generally, in “convex form.” J
Although excellent software has long been available for symbolic manipulation of nonlinear expres-
sions, and the use of such software for convexity detection in some cases has been investigated (as by
Stoutmeyer (1978)), tools such as those described in the present paper have not yet reached a level of
maturity that would permit the introduction of symbolic factorizations and other transformations that
reveal convexity. For now, the knowledgeable modeler must be prepared to bring symbolic software
to bear on the formulation before it is submitted to such tools as coconut or Dr.ampl, in order to
develop models that can be solved most efficiently and reliably.

Finally, a comment is in order regarding the timings reported in Table 7.2. The convexity disproving
phase typically accounts for around 99% of the total time required by the convexity analysis. In later
versions of the code, constraints which will have been proven convex will no longer need to undergo
convexity disproving, which will bring the convexity analysis time to a few hundredth of a second in
most cases. For example, on problem elec, the convexity proving phase takes less than an hundredth
of a second, causing a time of 0 seconds to be reported. The remaining 0.67 seconds are all used by
the disproving phase.

8. Conclusion

Automatic rules for detection of convexity and concavity have been presented in the framework of
modeling languages for smooth global and local optimization. Nonlinear functions are represented by
directed acyclic graphs, the recursive nature of which allows us to infer convexity and monotonicity
properties and to propagate bounds. Numerical results illustrating the rules as implemented in the
coconut system and in the Dr.ampl meta-solver have been presented. In the Dr.ampl package,
work is under way to allow user-selected convexity disprovers, which will ease comparison with other
software, e.g., (Chinneck, 2001).

A symbolic analysis by itself is insufficient for convexity assessment, as is a numerical analysis. The
two pieces of software illustrated in this paper show how the two may be combined so that as few cases
as possible are misclassified. Assessing the convexity properties of large-scale problems requires that
we work in finite precision. Yet the numerical procedure used to disprove convexity properties may fail
for one of several reasons: the limitations of finite precision do not lead to a conclusive diagnosis, the
numerical data was analyzed with unfortunate input—such as the values of the variables at which the
Hessian matrix is analyzed—, or perhaps other, problem-dependent, reasons. On the other hand, the
symbolic phase is best suited to produce a certificate of convexity and not to attempt to disprove it.
It may however also fail because it is composed of a finite set of rules.

The two pieces of software illustrated in this paper analyze each problem function in turn. Determining
convexity of the constraint functions and convexity of the feasible set are different procedures and their
conclusions have different impacts on the use or design of optimization software and on the properties
of the problem.

Computational graph walks may be used to determine whether a function can be expressed as the
difference between two convex functions—the so-called diff-convexity. This may be a desirable feature
of the packages described in this paper as there exist algorithms which can take advantage of such
structure, e.g., (Voorhis and Al-Khayyal, 2003). This is a rather straightforward extension since a
sufficient condition for a function to be diff-convex is that it be a sum of terms, each of which is either
convex or concave.

The authors are aware that there are more known rules for inferring convexity properties, e.g., (Avriel
et al., 1988), but these do not follow simple patterns and are not yet implemented. Broader nuances of
convexity such as pseudoconvexity (Boyd and Vandenberghe, 2004) are not examined in this research
as it remains unclear how software can take advantage of it.

22 R. Fourer et al.

Several classes of problems are naturally convex, such as semidefinite programs or second-order cone
programs (Boyd and Vandenberghe, 2004). Some second-order cone constraints can currently be de-
tected as convex by Dr.ampl. An extension of Dr.ampl to properly categorize and detect second-order
cone programs is the subject of current research. Categorizing semidefinite programs and assessing their
convexity properties promises to be challenging. On the one hand, modeling languages must be ex-
tended to allow the description of semidefinite programs. On the other hand, verifying convexity of,
say, linear matrix equalities or inequalities is both delicate and computationally intensive.

In practical situations, the large amount of numerical software available for smooth optimization makes
the choice difficult to the novice or unfamiliar user. Tools such as Dr.ampl have additional features
that detect problem structure and are able to recommend certain solvers in place of others (Fourer
and Orban, 2007). In future research, it would be worthwhile examining the efficiency of an approach
where a given problem is first analyzed structurally—this includes convexity assessment—and then
passed to an appropriate, recommended, solver.

Acknowledgements. The authors acknowledge the constructive comments of two anonymous referees and the
associate editor which improved the presentation of this paper.

References

Avriel, M., W.E. Diewert, S. Schaible, I. Zang. 1988. Generalized Concavity . Plenum, New York.
Bauer, F. L. 1974. Computational graphs and rounding error. SIAM Journal on Numerical Analysis 11 87–96.
Bondarenko, A., D. Bortz, E. D Dolan, M. Merritt, J. J. Moré, T. S. Munson. 2004. www.mcs.anl.edu/~more/

cops.
Boyd, S., L. Vandenberghe. 2004. Convex Optimization. Cambridge University Press.
Chinneck, J. 2001. Analyzing Mathematical Programs using MProbe. Annals of Operations Research 104

33–48.
Choi, M. D., T. Y. Lam, B. Reznick. 1995. Sums of squares of real polynomials. Proceedings of Symposia in

Pure Mathematics, vol. 58. 103–126.
Dolan, E. D., J. J. Moré, T. S. Munson. 2004. Benchmarking optimization software with COPS 3.0. Technical

Report ANL/MCS-TM-273, Argonne National Laboratory.
Fourer, R., D. M. Gay, B. W. Kernighan. 2002. AMPL: A Modeling Language for Mathematical Programming .

2nd ed. Duxbury Press, Brooks/Cole Publishing Company.
Fourer, R., D. Orban. 2007. The DrAmpl meta solver for optimization. Technical Report G-2007-10, GERAD,

Montreal, Canada. www.gerad.ca/~orban/drampl.
Gay, D. M. 2002. Hooking your solver to AMPL. www.ampl.com/REFS/HOOKING.
Gould, N. I. M., S. Lucidi, M. Roma, Ph. L. Toint. 1999. Solving the trust-region subproblem using the Lanczos

method. SIAM Journal on Optimization 9 504–525.
Gould, N. I. M., D. Orban, Ph. L. Toint. 2003a. GALAHAD—a library of thread-safe Fortran 90 packages for

large-scale nonlinear optimization. Transactions of the ACM on Mathematical Software 29 353–372.
Gould, N. I. M., D. Orban, Ph. L. Toint. 2003b. CUTEr and SifDec, a Constrained and Unconstrained Testing

Environment, revisited. Transactions of the ACM on Mathematical Software 29 373–394.
Grant, M. C., S. Boyd. 2008. Graph implementations for nonsmooth convex programs. V. Blondel, S. Boyd,

H. Kimura, eds., Recent Advances in Learning and Control (a tribute to M. Vidyasagar). Springer. To
appear.

Grant, M. C., S. Boyd, Y. Ye. 2006. Disciplined convex programming. L. Liberti, N. Maculan, eds., Global Op-
timization: From Theory to Implementation. Nonconvex Optimization and its Applications series, Springer,
Netherlands.

Grant, M. C., S. Boyd, Y. Ye. 2008. CVX: Matlab software for disciplined convex programming. www.stanford.
edu/~boyd/cvx. Web page and software.

Griewank, A. 2000. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. No.
FR19 in Frontiers in Applied Mathematics, SIAM.

Hock, W., K. Schittkowski. 1981. Test Examples for Nonlinear Programming Codes, vol. 187, chap. Lectures
Notes in Economics and Mathematical Systems. Springer Verlag, Berlin.

www.mcs.anl.edu/~more/cops
www.mcs.anl.edu/~more/cops
www.gerad.ca/~orban/drampl
www.ampl.com/REFS/HOOKING
www.stanford.edu/~boyd/cvx
www.stanford.edu/~boyd/cvx

Convexity and Concavity Detection in Computational Graphs 23

Kantorovich, L. V. 1957. On a mathematical symbolism convenient for performing machine calculations. Dokl.
Akad. Nauk SSSR 113 738–741. (in Russian).

Lobo, M. S., L. Vandenberghe, S. Boyd, H. Lebret. 1998. Applications of second-order cone programming.
Linear Algebra and its Applications 193–228.

Mattingley, J., S. Boyd. 2008. CVXMOD: Convex optmization software in Python. www.cvxmod.net. Web
page and software.

Moré, J. J., B. S. Garbow, K. W. Hillstrom. 1981. Testing unconstrained optimization software. Transactions
of the ACM on Mathematical Software 7 17–41.

Nenov, I. P., D. H. Fylstra, L. V. Kolev. 2004. Convexity Determination in the Microsoft Excel Solver Using
Automatic Differentiation Techniques. Technical Report, Frontline Systems Inc., Incline Village NV, USA.

Neumaier, A., H. Schichl. 2003. Sharpening the karush-john optimality conditions. Preprint, University of
Vienna, Vienna, Austria.

Reznick, B. 2000. Some concrete aspects of hilbert’s 17th problem. Contemporary Mathematics 253 251–272.
Schichl, H. 2004a. The COCONUT environment. www.mat.univie.ac.at/coconut-environment.
Schichl, H. 2004b. The COCONUT project home page. www.mat.univie.ac.at/coconut.
Schichl, H., A. Neumaier. 2003. Interval analysis on directed acyclic graphs for global optimization. Preprint,

University of Vienna, Vienna, Austria.
Steihaug, T. 1983. The conjugate gradient method and trust regions in large scale optimization. SIAM Journal

on Numerical Analysis 20 626–637.
Stoutmeyer, D. R. 1978. Automatic categorization of optimization problems: An application of computer

symbolic mathematics. Operations Research 26 773–788.
Toint, Ph. L. 1981. Towards an efficient sparsity exploiting newton method for minimization. I. S. Duff, ed.,

Sparse Matrices and Their Uses. Academic Press, London, UK, 57–88.
Vanderbei, R. J. 2008. Nonlinear optimization models. www.orfe.princeton.edu/~rvdb/ampl/nlmodels. Web

page and software, accessed on 15 December 2008.
Voorhis, T. Van, F. A. Al-Khayyal. 2003. Difference of convex solutions of quadratically constrained optimiza-

tion problems. European Journal of Operations Research 148 349–362.

http://www.cvxmod.net
www.mat.univie.ac.at/coconut-environment
www.mat.univie.ac.at/coconut
www.orfe.princeton.edu/~rvdb/ampl/nlmodels

	Introduction
	The Directed Acyclic Graph
	Convexity Detection
	Convexity Information for Elementary Functions
	Convexity Disproving
	Convexity of the Feasible Set
	Numerical Results
	Conclusion

