
Analyzing Infeasible Mixed-Integer and Integer Linear
Programs

OLIVIER GUIEU AND JOHN W. CHINNECK y Systems and Computer Engineering, Carleton University, 1125 Colonel By Drive,
Ottawa, Ontario K1S 5B6, Canada, Email: chinneck@sce.carleton.ca

(Received: August 1996; revised: November 1997, August 1998; accepted September 1998)

Algorithms and computer-based tools for analyzing infeasible
linear and nonlinear programs have been developed in recent
years, but few such tools exist for infeasible mixed-integer or
integer linear programs. One approach that has proven espe-
cially useful for infeasible linear programs is the isolation of an
Irreducible Infeasible Set of constraints (IIS), a subset of the
constraints defining the overall linear program that is itself
infeasible, but for which any proper subset is feasible. Isolating
an IIS from the larger model speeds the diagnosis and repair of
the model by focussing the analytic effort. This paper describes
and tests algorithms for finding small infeasible sets in infea-
sible mixed-integer and integer linear programs; where possi-
ble these small sets are IISs.

M ixed-integer and integer linear programs (here collec-
tively referred to as MILPs) are much harder to solve than
ordinary linear programs (LPs) because of the inherent com-
binatorial nature of the solution approaches necessitated by
the integer variables. Infeasible MILPs are even more diffi-
cult to analyze because they usually require numerous so-
lutions of variations of the original model. In addition, when
a branch-and-bound solution procedure finds the original
model infeasible, little useful information (such as constraint
sensitivity in linear programs) is initially available to guide
the analysis of the infeasibility. Some form of automated
assistance in analyzing infeasible MILPs is needed, espe-
cially as models grow in size in step with increases in
computing power.

Few useful tools are currently available. Savelsbergh[17]

describes a bound-tightening presolve procedure for MILPs
(implemented in the MINTO solver[15]) that may detect in-
feasibility as a side effect of the reformulation. Backtracking
the complete set of reformulation operations may then iso-
late a set of constraints and integer restrictions that cause the
infeasibility. However, there is no guarantee that the pre-
solver will detect infeasibility, or that the backtrack of the
reformulation operations will provide any useful informa-
tion. Greenberg also uses related bound-tightening methods
for dealing with binary variables in the reduce command of
his ANALYZE software.[10]

On the other hand, effective methods for assisting in the
analysis of infeasible linear and nonlinear programs have
been developed in recent years (e.g., [2–7]). These new meth-
ods concentrate on isolating an Irreducible Infeasible Subset of
constraints (IIS) from among the larger set of constraints

(both rows and column bounds) defining the model. The
constraints in an IIS define an infeasible set, but have the
property that any proper subset of the IIS constraints is
feasible; the IIS is minimal in that sense. The isolation of an
IIS accelerates the analysis and repair of the model infeasi-
bility by focussing the analytic effort to a small portion of the
entire model. In this article (based on work by Guieu[11]), we
extend the general ideas used in isolating IISs in LPs and
NLPs to the case of MILPs.

The LP IIS isolation methods can be applied directly only
when the initial LP relaxation of the MILP is LP-infeasible.
In that case, the IIS isolated by the LP methods applied to the
initial LP relaxation is also a valid IIS for the MILP. We
concentrate here on the more difficult case of analyzing
infeasibility in MILPs for which the initial LP relaxation is
feasible.

Direct porting of the LP IIS isolation methods to MILPs is
difficult for several reasons. First, some of the LP IIS isola-
tion methods rely on properties specific to LPs such as
sensitivity analysis, various pivoting methods, and theo-
rems of the alternative. Second, most of the LP methods rely
on repeated solutions of slight variations of the model, with
the important output being the feasibility status of the
model variant. However, determining that a MILP is infea-
sible involves the full expansion of a branch-and-bound tree,
with infeasibility recognized only when all of the leaf nodes
prove infeasible. In contrast, feasibility is easily recognized
as soon as any leaf node proves feasible. Third, as discussed
in Section 1, MILP solution methods may fail to terminate,
which means that the feasibility status of a model variant
cannot be determined.

To avoid nontermination, an upper limit can be imposed
on the computational resources expended on a particular
model variant (e.g., an upper limit on the number of branch-
and-bound nodes developed), which limits the algorithms to
the identification of an Infeasible Subset (IS) rather than an IIS.
In the remainder of this article, we develop methods for
isolating small ISs in MILPs while hoping to identify IISs as
often as possible. The methods are primarily based on algo-
rithms originally developed for LPs (reviewed in Section 2),
but take into account the difficulties mentioned above. Em-
pirical results are presented in Section 6.

Subject classifications: Optimization
Other key words: Mixed-integer and integer linear programming, infeasibility

63
INFORMS Journal on Computing 0899-1499y 99 y1101-0063 $05.00
Vol. 11, No. 1, Winter 1999 © 1999 INFORMS

1. MILP Solution Methods and Properties
A general MILP can be thought of as an ordinary LP with a
set of added integer restrictions on some or all of the vari-
ables. The constraints can be divided into three distinct
subsets:

• LC: the set of linear constraints (or rows),
• BD: the set of variable bounds (upper and lower bounds,

if any), and
• IR: the set of integer restrictions; variables in IR are re-

stricted to taking on integer values while variables not in
IR are real-valued. Some integer variables may be further
restricted to be binary, having a solution restricted to the
set {0, 1}.

We denote the presence of an integer restriction on a vari-
able xi by [xi]. Binary variables are treated as integer vari-
ables with a lower bound of 0 and an upper bound of 1.

The entire MILP consists of a linear objective function
plus the complete set of constraints {LC, BD, IR}. In an
ordinary linear program, the set IR is empty. In an integer
linear program, all of the variables are in IR. In a mixed
integer program, at least one variable is in IR and at least one
variable is not in IR.

The LP-relaxation of a MILP is created by considering only
the objective function plus the subset of constraints {LC, BD}.
Because the LP-relaxation has fewer restrictions, its feasible
region is larger.

1.1 A Review of MILP Solution Methods
There are two main methods of solving MILPs in practice,
cutting-plane methods and branch-and-bound, plus a hy-
brid of the two, branch-and-cut. Cutting-plane methods
(e.g., [9, 12, 22]) work by iteratively adding constraints
(“cuts”) to the set LC (or BD), which reduce the size of the
feasible region of the LP-relaxation such that the optimum
solution of the LP-relaxation gradually approaches the op-
timum solution of the original MILP. In the cutting-plane
method, infeasibility of the original MILP is detected when
an added cut renders the current LP-relaxation infeasible.

The well-known branch-and-bound method (e.g., [21])
operates by creating a tree of nodes, each of which is an LP
based on the original LP-relaxation with altered variable
bounds. A node is expanded (child nodes are derived from it)
when it has an LP-relaxation that is feasible, but for which
the LP-relaxation optimum point has at least one integer
variable that does not have an integral value; one such
variable is chosen as the branching variable. Two child nodes
are created by copying all of the constraints in the parent
node and then altering the lower bound on the branching
variable to create one child node and altering the upper
bound on the branching variable to create the other child
node.

The bounding function value of intermediate nodes is
given by the objective function value of the LP-relaxation.
There are various rules for choosing which unexpanded
node to choose next for expansion. The best-bound rule
chooses the unexpanded node having the best value of the
bounding function anywhere on the branch-and-bound tree.

The depth-first rule chooses the unexpanded node having the
best value of the bounding function from among the group
of child nodes just created. Leaves of the branch-and-bound
tree are reached when either 1) the optimum solution of the
LP-relaxation of a node also satisfies all of the integer re-
strictions (in which case it is also a feasible solution for the
original MILP), 2) the LP-relaxation of the node is infeasible,
or 3) the optimum value attained by the LP-relaxation of a
node is worse than the best known MILP-feasible solution
(does not occur in infeasible MILPs).

For our purposes, it is important to note that feasibility of
a MILP is detected by the branch-and-bound method as
soon as the first MILP-feasible node is created. However,
infeasibility is only decided when the tree has been fully
expanded and the LP-relaxation of every leaf node proves
infeasible. Thus, it is generally much more computationally
expensive to recognize infeasibility than feasibility of a
MILP using branch-and-bound.

In certain cases, the size of the branch-and-bound tree can
become very large, possibly exceeding available memory,
and in special cases growing infinitely. For example, con-
sider the MILP in Figure 1 in which both x and y are
nonnegative integer variables. The nonnegativity constraint
on y and the two parallel diagonal constraints form a pipe-
shaped feasible region. Because the objective is to minimize
x 1 y, the first LP-relaxation optimum solution is at the point
marked 1. Because x is not integral at that point, the branch
and bound procedure creates two child nodes; one is infea-
sible, and the LP-relaxation of the other has an optimum
solution at point 2 in Figure 1. Now x has an integral value,
but y does not, leading to the creation of two more child
nodes on the branch-and-bound tree. The solution process
alternates between x and y as the branching variable, caus-
ing the sequence of solutions to climb the pipe, as shown in
Figure 1.

A branch-and-bound solution of the MILP in Figure 1 will
never terminate. It is also easy to construct examples that
will terminate, but that require an excessive number of

Figure 1. The branch-and-bound solution of this MILP
fails to terminate.

64
Guieu and Chinneck

iterations to do so. For example, imagine that the two diag-
onal constraints in Figure 1 are angled very slightly towards
one another so that they eventually cross at a great distance
from the origin. It may take a great number of iterations
before infeasibility can be determined. In the same manner,
if the diagonal constraints are very slightly angled away
from each other, it may require a great number of iterations
before the first MILP-feasible point is reached.

The important point is that a branch-and-bound-based
MILP solver may not be able to decide the feasibility status
of a MILP in an acceptable number of iterations or within an
acceptable upper limit on available computer memory.

The branch-and-cut method incorporates cutting-plane
methods into the branch-and-bound framework (e.g.,
[13, 16, 22]). The main idea is to incorporate a cut into a
branch-and-bound subproblem under certain conditions.
This can speed the recognition of the feasibility status of
difficult MILPs such as shown in Figure 1 when the cut
either moves the solution into the vicinity of a feasible
solution or renders the LP-relaxation infeasible.

2. Infeasibility Analysis for Linear Programs
Methods of isolating IISs in linear programs have been
developed in recent years and are now available in commer-
cial LP solvers such as LINDO[18] and CPLEX.[8] There are
two basic algorithms that guarantee the isolation of a single
IIS: the deletion filter and the additive method. Other algo-
rithms can be used with these basic methods to speed the
isolation or in an attempt to find an IIS having desirable
characteristics such as few rows. See [5] for a complete
review of IIS isolation methods for both linear and nonlinear
programs.

Chinneck and Dravnieks[7] introduced the deletion filter
for LPs, described in Algorithm 1. The deletion filter oper-
ates by testing the feasibility of the model when constraints
are dropped in turn. At the end of a single pass through the
constraints, the identification of a single IIS is guaranteed
(see [7] for a proof).

Algorithm 1. The deletion filter.
Input: an infeasible set of constraints.
FOR each constraint in the set:

Temporarily drop the constraint from the set.
Test the feasibility of the reduced set:

IF feasible THEN return dropped constraint to the
set.

ELSE (infeasible) drop the constraint permanently.
Output: constraints constituting a single IIS.

Tamiz et al[19, 20] introduced a method sometimes referred
to as the additive method.[5] The main feature of the method is
the adding in of constraints as the algorithm proceeds, until
infeasibility is achieved, exactly the opposite of the approach
taken in the deletion filter (see Algorithm 2). See [5] for a
proof that the method returns exactly one IIS.

Algorithm 2. The additive algorithm.
C: ordered set of constraints in the infeasible model.
T: the current test set of constraints.
I: the set of IIS members identified so far.

Input: an infeasible set of constraints C.
Step 0: Set T 5 I 5 f.
Step 1: Set T 5 I.

FOR each constraint ci in C:
Set T 5 T ø ci.
IF T infeasible THEN

Set I 5 I ø ci.
Go to Step 2.

END FOR.
Step 2: IF I feasible THEN go to Step 1.

Exit.
Output: I is an IIS.

The additive method has the interesting property that
once infeasibility is attained, constraints listed after the con-
straint that triggers infeasibility (say cj) are never tested. This
happens because cj is added to I, which is then always part
of T. Thus as other constraints are added to T, infeasibility
will at least be attained by the time constraint cj21 is added
because this duplicates the last infeasible set. Of course,
infeasibility may be attained before cj21 is added, which cuts
off even more constraints from consideration.

The sensitivity filter is a way of eliminating many unin-
volved constraints quickly.[7] The sensitivity filter applies
two theorems by Murty [14, pp. 237–238] to the phase 1
solution of an infeasible LP: if a row constraint or a column
bound has a nonzero shadow price or reduced cost, then it
must be part of some IIS. Constraints or bounds having
shadow prices or reduced costs of zero can then be dis-
carded, and the remaining constraints must contain at least
one IIS. The deletion filter or the additive method must be
applied to the output of the sensitivity filter to guarantee the
isolation of a single IIS.

3. Properties of Infeasible MILP Branch and Bound Solutions
The branch-and-bound tree developed during the initial
solution of an infeasible MILP contains valuable information
that can be used during the subsequent infeasibility isola-
tion. We develop three theorems in this regard.

Some initial definitions are in order. A leaf node of a
branch-and-bound tree is either a node in which all of the
IRs are satisfied or one in which the LP-relaxation is infea-
sible. An intermediate node is a node that is not a leaf node.
For an intermediate node K, IRK is the set of all IRs satisfied
by the LP-relaxation at that node. BBBDK is the set of BDs
added by the branch-and-bound procedure at some node K
(intermediate or final).

THEOREM 1. An infeasible MILP does not have any IISs
whose integer part is identical to the IRK at any intermediate
node.

PROOF. At an intermediate node K, the current set of
constraints is LC ø BD ø IR ø BBBDK. Because the node is
intermediate, the LP-relaxation is feasible, or, equivalently,
LC ø BD ø IRK ø BBBDK is MILP feasible. An IIS having IRK

as its complete integer part must have as its linear part either
LC ø BD ø BBBDK or some subset of it, but no such IIS can
exist because it is already known that LC ø BD ø IRK ø
BBBDK is MILP feasible. n

65
Infeasible Mixed-Integer and Integer Linear Programs

THEOREM 2. If a sensitivity filter is applied to every leaf
node, and all original LCs and BDs having nonzero reduced
costs are marked, then the set IR ø {marked LCs} ø {marked
BDs} is infeasible.

PROOF. The unmarked LCs and BDs are not marked be-
cause they are not tight in any of the leaf nodes. Hence those
unmarked LCs and BDs could have been relaxed in the
original MILP and the same branch-and-bound tree would
still have proven infeasibility of the modified MILP. n

Some further definitions are needed. A path in a branch-and-
bound tree is a set of branches leading from the root to a leaf
in which each branch is labeled with the name of the integer
variable that was branched on. The set of active IRs (AT) is
the union of all of the IRs for the variables in any of the paths
in a branch-and-bound tree.

THEOREM 3. For an infeasible MILP, the set LC ø BD ø AT is
infeasible.

PROOF. Given the MILP LC ø BD ø AT, a branch-and-
bound tree identical to the original branch-and-bound tree
can be generated, arriving at the conclusion that LC ø BD ø
AT is infeasible. n

Notice also that each path provides an interesting candidate
for an IS: the constraint set LC ø BD ø {IRs on variables in
the path}. This candidate for an IS is more likely to prove
infeasible because the set of branches in the path terminates
at an infeasible node. There is no guarantee that the candi-
date IS is actually infeasible, however, because the path may
consist partly or entirely of one-sided branches (i.e., a par-
ticular variable is branched upon only in the higher-valued
direction or only in the lower-valued direction).

Note that where the MILP has multiple IISs, it may be
possible to develop a different branch-and-bound tree for
the same model (perhaps by varying parameters such as the
bounding rule or branching variable selection rule) in which
different sets of LCs, BDs, and IRs can be eliminated using
Theorems 1–3. This happens when a different IIS drives the
development of the branch-and-bound tree.

4. Basic Algorithms for Isolating Infeasibility in MILPs
The analysis of infeasible MILPs is complicated by the pres-
ence of the integer restrictions. Consider Figure 2 for exam-

ple, in which both variables are integers. While the LP-
relaxation is feasible, it is impossible to find a point in which
both of the variables are integral simultaneously. The IIS in
Figure 2 is {A, B, C, [x], [y]}. Note that we are interested only
in MILPs in which the initial LP-relaxation is feasible. If the
initial LP-relaxation is infeasible, then it is trivial to return an
IIS isolated from the initial LP-relaxation by the well-devel-
oped methods for LPs.

To provide the most assistance in the analytic effort, any
IIS isolated should have as few members as possible. Fur-
ther, the IIS is easier to analyze if the number of IRs is small.
Previous work[6] also shows that IISs in LPs are easier to
understand if the number of LCs is small. Hence, we wish to
isolate IISs in MILPs that have an overall small cardinality,
and which tend to have few IRs and LCs.

The deletion filter and the additive method are very ef-
fective for finding IISs in LPs because LP solvers (issues of
tolerance aside) are able to decide the feasibility status of a
model with perfect accuracy. However, because of the fail-
ure of MILP solvers to meet acceptable limits on time and
memory use under certain conditions (see Section 1), MILP
solvers cannot provide a guarantee of accuracy in deciding
model feasibility status. This necessitates certain modifica-
tions to the basic deletion filter and additive method, as
described in the following subsections.

Both the deletion filter and the additive algorithm operate
by examining the feasibility of various subsets of the con-
straints in the original model. It is possible that some test
subproblems will fail to decide feasibility status within prac-
tical computation limits (time or memory). This is handled
by imposing an upper limit on the number of branch-and-
bound tree nodes generated by any subproblem (usually
10,000). If the test subproblem has not terminated within this
limit, then the subproblem solution is abandoned. In the
case of both algorithms, the conservative assumption is that
the subproblem is feasible, causing the addition of the tested
constraint to the output set.

The retention of the tested constraint in case of practical
nontermination of a subproblem destroys the guarantee of
identifying an IIS. The output set is instead only an Infeasible
Subset (IS), as opposed to an IIS. However, the IS is still very
useful in that it usually limits analytic effort to a much
smaller portion of the entire model, thereby speeding the
analytic effort.

The following elements are standard in all of the follow-
ing algorithms and hence are omitted from the algorithm
statements: 1) if the initial LP-relaxation is infeasible, then
apply the existing LP infeasibility analysis methods to iso-
late an IIS, and 2) prescreen the bounds on integer-restricted
variables for simple errors such as 0.5 ¶ x ¶ 0.8, or y Ä 2
where y is binary.

4.1 Basic Deletion Filtering for MILPs
The basic deletion filter (Algorithm 1) can be applied di-
rectly to MILPs. This necessitates the solution of uLCu 1
uBDu 1 uIRu MILPs, which can be quite time consuming, but
is effective in identifying an IIS provided that no subprob-
lem exceeds the computation limits. When the removal of a

Figure 2. An infeasible MILP.

66
Guieu and Chinneck

particular constraint during deletion filtering generates a
subproblem that exceeds the computation limit, that con-
straint is labeled dubious and is retained in the output set to
guarantee that the output set is infeasible. If there is at least
one dubious constraint in the output set, then the output set
is an IS; whether it is also an IIS is not known. Any dubious
constraints in the output set are candidates for elimination
from the IS to possibly convert it to an IIS. Post-processing
schemes to determine whether dubious constraints may be
eliminated have been left to future research.

The probability of exceeding the computation limits for a
subproblem is reduced if all variables are both upper and
lower bounded. Failing this, it is preferable to deletion test
the BDs as late in the process as possible, so that they remain
in place to limit the number of branch-and-bound nodes
needed before feasibility can be decided.

The speed of the deletion filter for MILPs is affected by
whether the IRs are tested before the LCs or vice versa. Since
branch-and-bound search trees tend to grow with larger
numbers of IRs, it may be preferable to test IRs before LCs in
the hope that some of the IRs will be eliminated early, so that
subsequent MILP test problems have relatively smaller
branch-and-bound trees. Accordingly, two versions of the
deletion filter are proposed, the (IR-LC-BD) and the (LC-IR-
BD) versions, in which the constraints are tested in the order
indicated, as illustrated in Algorithms 3 and 4.

Algorithm 3. The (IR-LC-BD) deletion filter for MILPs.
LC0, BD0, IR0 are the original sets of constraints.
Input: an infeasible MILP.
Step 0: Set status 5 “IIS”.

Set T 5 LC0 ø BD0.
IF T infeasible, go to Step 2.
Set T 5 T ø IR0.

Step 1: FOR each irk [IR0:
IF T\{irk} infeasible, set T 5 T\{irk}.
ELSE IF T\{irk} exceeds computation limit, set sta-

tus 5 “IS”, label irk dubious.
Step 2: FOR each lck [LC0:

IF T\{lck} infeasible, set T 5 T\{lck}.
ELSE IF T\{lck} exceeds computation limit, set sta-

tus 5 “IS”, label lck dubious.
Step 3: Set BD1 5 BD0\{BDs on variables not in lc [T}.

Set T 5 (T\BD0) ø BD1.
FOR each bdk [BD1:

IF T\{bdk} infeasible, set T 5 T\{bdk}.
ELSE IF T\{bdk} exceeds computation limit, set sta-

tus 5 “IS”, label bdk dubious.
Output: If status 5 “IIS”, T is an IIS, else T is an IS.

Note that Step 3 of Algorithm 3 avoids testing of BDs on
variables that are not represented in the remaining set of
LCs. This time-saving step assumes that the variable BDs
have been prescreened to eliminate the possibility of a sim-
ple reversal of the bounds on a variable. Algorithm 4 uses a
similar idea to avoid testing IRs and BDs on variables that
are no longer represented in the remaining set of LCs. Em-
pirical tests of the relative efficiency of Algorithms 3 and 4
are reported in Section 6.

Algorithm 4. The (LC-IR-BD) deletion filter for MILPs.
LC0, BD0, IR0 are the original sets of constraints.
Input: an infeasible MILP.
Step 0: Set status 5 “IIS”.

Set T 5 LC0 ø BD0 ø IR0.
Step 1: FOR each lck [LC0:

IF T\{lck} infeasible, set T 5 T\{lck}.
ELSE IF T\{lck} exceeds computation limit, set sta-

tus 5 “IS”, label lck dubious.
Step 2: Set IR1 5 IR0\{IRs on variables not in lc [T}.

Set T 5 (T\IR0) ø IR1.
FOR each irk [IR1:

IF T\{irk} infeasible, set T 5 T\{irk}.
ELSE IF T\{irk} exceeds computation limit, set sta-

tus 5 “IS”, label irk dubious.
Step 3: Set BD1 5 BD0\{BDs on variables not in lc [T}.

Set T 5 (T\BD0) ø BD1.
FOR each bdk [BD1:

IF T\{bdk} infeasible, set T 5 T\{bdk}.
ELSE IF T\{bdk} exceeds computation limit, set sta-

tus 5 “IS”, label bdk dubious.
Output: If status 5 “IIS”, T is an IIS, else T is an IS.

4.2 The Basic Additive Method for MILPs
In adapting the additive method for use with MILPs, there is
again a choice of the order in which the classes of constraints
are added. However, given our assumption that the initial
LP relaxation is feasible, it makes sense to proceed as though
the sets LC and BD have already been added without caus-
ing infeasibility. This leaves only the members of IR to be
tested. Hence, the additive method for MILPs (Algorithm 5)
begins by testing the addition of members of IR to LC ø BD.

Unlike the deletion filter, the additive method is not able
to directly identify dubious constraints. This is because the
test set is maintained in a feasible or indeterminate state
until sufficient constraints are added to render the test set
infeasible. However, if no indeterminate subproblems are
encountered in the course of the isolation, then it is known
that the output set is an IIS. If at least one subproblem
exceeds the computation limit, then the output set is an IS (it
may also be an IIS, but this is not known).

The worst-case time complexity of the additive method
occurs when the entire original problem is an IIS. In this
case, during the first iteration, the method solves n 1 1
MILPs, one for every constraint in the model, plus one MILP
for the test of I. During the next iteration, n MILPs are
solved, etc. The overall worst-case time complexity is then
1⁄2(uIRu 1 uLCu 1 uBDu)2 MILP solutions. However, by consid-
ering the model in stages as in Algorithm 5, the worst-case
time complexity is reduced to 1⁄2(uIRu2 1 uLCu2 1 uBDu2) MILP
solutions.

4.2.1 Dynamic Reordering Additive Method
The additive method gradually builds up an infeasible
model by adding constraints one at a time until infeasibility
is attained. All of the intermediate test subproblems are
feasible until the final constraint triggering infeasibility is
added. However, a dynamic reordering of the constraints

67
Infeasible Mixed-Integer and Integer Linear Programs

can eliminate the need to solve some of the initial feasible
subproblems. The main idea is as follows. If an intermediate
test subproblem is feasible, then scan all of the constraints
past the current constraint just added, and add to T all
constraints that are satisfied by the current solution point.
See Algorithm 6.

Algorithm 5. The basic additive method for MILPs.
C: ordered set of constraints in the original infeasible

MILP (IR0 ø LC0 ø BD0).
T: the current test set of constraints.
I: the set of IS members identified so far.
Input: an infeasible MILP.
Step 0: Set status 5 “IIS”. Set I 5 f.

IF LC0 ø BD0 infeasible, go to Step 2b.
Step 1: Set T 5 I ø LC0 ø BD0.

FOR each irk [IR0:
Set T 5 T ø {irk}.
IF T exceeds computation limit THEN set status 5

“IS”.
ELSE IF T infeasible THEN:

Set I 5 I ø {irk}.
IF I ø LC0 ø BD0 exceeds computation limit THEN

set status 5 “IS”.
ELSE IF I ø LC0 ø BD0 infeasible, go to Step 2.
Go to Step 1.

Step 2: a. IF I ø BD0 exceeds computation limit THEN set
status 5 “IS”.
ELSE IF I ø BD0 infeasible, go to Step 3.

b. Set T 5 I ø BD0.
c. FOR each lck [LC0:

Set T 5 T ø {lck}.
IF T exceeds computation limit THEN set sta-

tus 5 “IS”.
ELSE IF T infeasible THEN:

Set I 5 I ø {lck}.
IF I ø BD0 exceeds computation limit THEN

set status 5 “IS”.
ELSE IF I ø BD0 infeasible, go to Step 3.
Go to Step 2b.

Step 3: a. IF I exceeds computation limit, set status 5
“IS”.

ELSE IF I inconsistent, exit.
b. Set BD1 5 BD0\{BDs on variables not in lc [I}.
c. Set T 5 I.
d. FOR each bdk [BD1:

Set T 5 T ø {bdk}.
IF T exceeds computation limit THEN set sta-

tus 5 “IS”.
ELSE IF T infeasible THEN:

Set I 5 I ø {bdk}.
IF I exceeds computation limit THEN set

status 5 “IS”.
ELSE IF I infeasible, exit.
Go to Step 3c.

Output: If status 5 “IIS”, I is an IIS, else I is an IS.

Algorithm 6. Dynamic reordering additive method for
MILPs.

C: ordered set of constraints in the original infeasible
MILP (IR0 ø LC0 ø BD0).

T: the current test set of constraints. I: the set of IS mem-
bers identified so far.
Input: an infeasible MILP.
Step 0: Set status 5 “IIS”. Set I 5 f.

IF LC0 ø BD0 infeasible, go to Step 2b.
Step 1: Set T 5 I ø LC0 ø BD0.

FOR each irk [C:
IF irk unmarked, set T 5 T ø {irk}, ELSE skip to next

iteration.
IF T exceeds computation limit THEN set status 5

“IS”.
ELSE IF T infeasible THEN:

Set I 5 I ø {irk}; set C 5 C\{irjuj . k}.
IF I ø LC0 ø BD0 exceeds computation limit THEN

set status 5 “IS”.
ELSE IF I ø LC0 ø BD0 infeasible, go to Step 2.
Go to Step 1.

ELSE set temp 5 {irjuj . k, irj [C, irj satisfied}.
set T 5 T ø temp; mark all members of temp.

Step 2: a. IF I ø BD0 exceeds computation limit THEN set
status 5 “IS”.
ELSE IF I ø BD0 infeasible, go to Step 3.

b. Set T 5 I ø BD0.
c. FOR each lck [C:

IF lck unmarked, set T 5 T ø {lck}, ELSE skip to
next iteration.

IF T exceeds computation limit THEN set sta-
tus 5 “IS”.

ELSE IF T infeasible THEN:
Set I 5 I ø {lck}; set C 5 C\{lcjuj . k}.
IF I ø BD0 exceeds computation limit THEN

set status 5 “IS”.
ELSE IF I ø BD0 infeasible, go to Step 3.
Go to Step 2b.

ELSE set temp 5 {lcjuj . k, lcj [C, lcj satisfied}.
set T 5 T ø temp; mark all members of temp.

Step 3: a. IF I exceeds computation limit, set status 5
“IS”.

ELSE IF I inconsistent, exit.
b. Set BD1 5 BD0\{BDs on variables not in lc [I}.
c. Set T 5 I.
d. FOR each bdk [BD1:

IF bdk unmarked, set T 5 T ø {bdk}.
IF T exceeds computation limit THEN set sta-

tus 5 “IS”.
ELSE IF T infeasible THEN:

Set I 5 I ø {bdk}; set BD1 5 BD1\{bdjuj . k}.
IF I exceeds computation limit THEN set

status 5 “IS”.
ELSE IF I infeasible, exit.
Go to Step 3c.

ELSE set temp 5 {bdjuj . k, bdj [BD1, bdj

satisfied}.
set T 5 T ø temp; mark all members of temp.

Output: If status 5 “IIS”, I is an IIS, else I is an IS.

68
Guieu and Chinneck

Note that Algorithm 6 truncates the list of constraints
scanned for feasibility past the constraint that most recently
triggered test subproblem infeasibility. As explained in Sec-
tion 2, these constraints are no longer relevant to the infea-
sibility isolation and their omission yields smaller interme-
diate test MILPs. While there is some cost associated with
checking whether some constraints are satisfied by the cur-
rent solution point, this is negligible compared to the cost of
solving another MILP.

Algorithm 7. Basic additive/deletion method for MILPs.
T: the current test set of constraints.
I: the set of IS members identified so far.
Input: an infeasible MILP.
Step 0: Set status 5 “IIS”. Set I 5 f.

IF LC0 ø BD0 infeasible, go to Step 2a.
Step 1: Set T 5 I ø LC0 ø BD0.

FOR each irk [IR0:
Set T 5 T ø {irk}.
IF T infeasible THEN:

Set I 5 I ø {irk}.
IF I ø LC0 ø BD0 infeasible, go to Step 2.
Go to Step 1.

Step 2: a. Set T 5 I ø LC0 ø BD0.
b. FOR each lck [LC0:

IF T\{lck} infeasible, set T 5 T\{lck}.
ELSE IF T\{lck} exceeds computation limit, set

status 5 “IS”, label lck dubious.
Step 3: Set BD1 5 BD0\{BDs on variables not in lc [T}.

Set T 5 (T\BD0) ø BD1.
FOR each bdk [BD1:

IF T\{bdk} infeasible, set T 5 T\{bdk}.
ELSE IF T\{bdk} exceeds computation limit, set sta-

tus 5 “IS”, label bdk dubious.
Output: If status 5 “IIS”, T is an IIS, else T is an IS.

4.3 Basic Additive/Deletion Method for MILPs
The additive method and the deletion filter can be combined
in a straightforward way. As shown in Algorithm 7, the
basic additive/deletion method proceeds by adding IRs to
LC0 ø BD0 until infeasibility is triggered, and then switches
to the deletion filter to complete the isolation of the infeasi-
bility. Note that the status of the output set as an IS or IIS is
determined only during the deletion filtering portion of the
algorithm, which also identifies individual dubious con-
straints. During the additive portion of the algorithm, inde-
terminate subproblems are treated in the same manner as
feasible subproblems. Algorithm 7 is easily modified to in-
corporate the dynamic reordering version of the additive
method in Step 1.

The time complexity of the additive/deletion method de-
rives partly from the time complexity of the additive method
as applied to the IRs and to the time complexity of the
deletion filter as applied to the LCs and BDs. The worst-case
time complexity is O(uIRu2 1 uLCu 1 uBDu) MILP solutions.

5. Speed Improvements
Because all of the algorithms for isolating infeasibility in
MILPs depend on the repeated solution of test subproblem

MILPs derived from the original, the isolation can be slow.
However, various tactics can improve the speed of the al-
gorithms, as described below.

5.1 Grouping Constraints
To reduce the overall number of MILPs that must be solved
during the isolation, constraints can be handled in groups.
During deletion filtering, constraints can be temporarily
dropped in groups (e.g., 10 at a time). If the reduced MILP
is infeasible, the group of 10 constraints would be dropped
permanently, saving the cost of solving 9 MILPs. If the
reduced MILP proves feasible, then the group is reinstated
and the algorithm backs up and tests each constraint indi-
vidually, costing an additional 1 MILP solution. The overall
net savings depends on how often the reduced model
proves infeasible vs. feasible.

For the additive method, constraints can be added in
groups (e.g., 10 at a time) until infeasibility is triggered. If
the partial model proves feasible after the group has been
added, there is a savings of 9 MILP solutions. If the partial
model proves infeasible after the group is added, the group
is removed and the algorithm backs up and adds the con-
straints one at a time, costing an additional 1 MILP solution.
As for the deletion filter, the overall net savings depends on
how often the partial model proves infeasible vs. feasible.

Numerous schemes for grouping constraints are possible.
Five methods are summarized in Algorithm 8 for use with
the deletion filter; note that these are easily modified for use
with the additive method by substituting “feasible” for “in-
feasible” where the test MILPs are evaluated. Four of the
five are adaptive methods in which the group size changes
depending on the feasibility status of recent test MILPs.

Algorithm 8. Constraint grouping methods for deletion fil-
tering.

GroupSize is the number of constraints in a group.
Grouping method 1: Fixed Group Size.
GroupSize fixed by user.
Grouping method 2: Additive Adaptive Grouping A.
Set GroupSize 5 2.
IF test MILP infeasible THEN GroupSize 5 GroupSize 1 2.
ELSE GroupSize 5 maximum[GroupSize 2 2, 1]
Grouping method 3: Additive Adaptive Grouping B.
Set GroupSize 5 2.
IF test MILP infeasible THEN GroupSize 5 GroupSize 1 2.
ELSE GroupSize 5 2.
Grouping method 4: Multiplicative Adaptive Grouping
A.
Set GroupSize 5 1.
IF test MILP infeasible THEN GroupSize 5 GroupSize*2.
ELSE GroupSize 5 maximum[integer(GroupSize/2), 1].
Grouping method 5: Multiplicative Adaptive Grouping
B.
Set GroupSize 5 1.
IF test MILP infeasible THEN GroupSize 5 GroupSize*2.
ELSE GroupSize 5 1.

69
Infeasible Mixed-Integer and Integer Linear Programs

5.2 Safety Bounds
The infeasibility isolation process is slowed considerably
when some of the test subproblems exceed preset computa-
tion limits, i.e., an individual MILP exceeds the limit on the
maximum number of nodes in a branch-and-bound tree. The
isolation process can be speeded up if the number of sub-
problems exceeding the limit is reduced (possibly to zero).
Because the problem of practical nontermination is often
associated with a lack of variable bounds in a subproblem,
one approach is to add safety bounds to the model: extra BDs
that limit the maximum and minimum value of every vari-
able.

One method of selecting safety bounds is to ask the user
to add them manually. These are then present in the model
at all times and are never removed; they are not tested by
any of the algorithms. The effect is to limit the solution space
to a multidimensional box. There are then five possible out-
comes:

• No safety bounds are active at subproblem termination. Inter-
pretation: all algorithms are proceeding as intended.

• One or more safety bounds are active at a feasible subproblem
termination. Interpretation: all algorithms are proceeding
as intended.

• One or more safety bounds are active at an infeasible subprob-
lem termination and the unaltered subproblem is actually in-
feasible. Interpretation: the safety-bounded version of the
subproblem will also be found to be infeasible, so all
algorithms will proceed as intended.

• One or more safety bounds are active at an infeasible subprob-
lem termination and the unaltered subproblem is actually fea-
sible. Interpretation: the feasible point for the unaltered
subproblem is outside of the multidimensional box de-
fined by the safety bounds. Both the deletion filter and the
additive method will eliminate constraints from the out-
put set that should have been retained; the output set will
then not be infeasible (though it will define a MILP in
which feasibility is difficult to achieve within practical
computation limits). However, this potential difficulty is
well flagged when at least one safety bound is active at an
infeasible subproblem termination. The infeasibility anal-
ysis may need to be restarted after the active safety
bounds are reset to provide a larger multidimensional box.

• Subproblem exceeds computation limit. Interpretation: safety
bounds were insufficient insurance against subproblem
practical nontermination. Algorithms will proceed to iso-
late an IS.

Of course, the essential difficulty is in identifying whether
the third or the fourth outcome has occurred when a safety
bound is active at an infeasible subproblem termination.
There is no way to decide among the two outcomes without
carrying out additional MILP solutions in which the safety
bounds have been removed. These additional MILP solu-
tions then run the risk of nontermination or excess compu-
tation time; exactly the reason that the safety bounds were
introduced in the first place. For this reason, whenever a
safety bound is active at an infeasible subproblem termina-
tion, the output set is labeled an IS rather than an IIS.

Several variations on the basic idea of safety bounds are
possible. One is to introduce safety bounds for variables
only when the original bounds are removed in the course of
operation of one of the isolation algorithms. Another is to
generate the appropriate safety bound automatically when
an original variable bound is removed; e.g., by adjusting the
original upper bound upward by a fixed or proportional
amount or by adjusting the original lower bound downward
in an analogous manner.

5.3 Using the Initial Branch-and-Bound Tree
As shown in Section 3, a great deal of information is con-
tained in the original branch-and-bound tree that first sig-
naled infeasibility, and this information can be used in the
subsequent infeasibility isolation. Theorems 1–3 allow a cer-
tain amount of preprocessing of the MILP after it has been
found infeasible and before the infeasibility isolation algo-
rithms are applied. Theorem 2 allows the initial elimination
of any unmarked LCs or BDs. Theorem 3 allows the initial
elimination of any IRs that do not appear in AT.

Also, as pointed out in Section 3, each path in the original
branch-and-bound tree provides a candidate for the set of
IRs in an IS. This set can be pruned by comparing the sets of
IRs associated with the paths with the sets of IRs associated
with the nodes. Any IR set associated with a node (and any
subset of such a set) cannot be the entire IR set in an IS in
conjunction with LC ø BD by Theorem 1.

These ideas can be combined as shown in Algorithm 9.
For efficiency, as new IRPi are discovered during the initial
branch-and-bound solution, they can be checked against the
current IRN*. Similarly, as new IRNi are discovered, the
current members of IRP can be checked against it and its
subsets. This would, however, slow the solution in the case
of a feasible MILP.

Algorithm 9. Using information from the original solution to
speed the infeasibility isolation.

IRP: IRPi is the set of IRs defined by the variables in path
i. IRP 5 {IRPiui 5 1 to (number of paths)}.

IRN: IRNi is the set of IRs defined by the satisfied IRs at an
intermediate node i. IRN 5 {IRNiui 5 1 to (number of
intermediate nodes)}. IRN* 5 IRN ø {all proper subsets
of members of IRN}.

LCM: the set of marked LCs.
BDM: the set of marked BDs.
Input: a MILP, feasibility status unknown.
Step 1: Solve the MILP. Compile the sets AT, IRP, IRN,

LCM, BDM while solving.
If feasible, exit.

Step 2: Set IRP 5 IRP\(IRP ù IRN*).
Order IRP from smallest to largest cardinality.

Step 3: For each IRPi [IRP:
IF LCM ø BDM ø IRPi infeasible THEN

Set IRP9 5 IRPi.
Go to Step 4.

Set IRP9 5 AT.
Step 4: Isolate an IIS or IS in LCM ø BDM ø IRP9 using

any algorithm.
Output: An IIS or IS.

70
Guieu and Chinneck

5.4 Other Possibilities
The speed improvements suggested in Sections 5.1–5.3 are
empirically tested in Section 6. However, there are a number
of other possibilities that may be worth investigation. Two
interesting ideas are outlined below.

5.4.1 Replacing the Original Objective Function
The original objective function does not play any useful role
during infeasibility analysis. It can, in fact, slow the infeasi-
bility isolation by the way in which it guides the develop-
ment of the branch-and-bound tree. Speed improvement
may be possible by replacing the original MILP objective by
one that tends to decide feasibility status more rapidly.

When a subproblem proves MILP-infeasible (but LP-re-
laxation feasible), two child nodes are generated, each hav-
ing a new constraint added based on the branching variable
xk, whose noninteger value in the parent node is a. The
typical form of the added constraint (with nonnegative slack
variable sk included) is: xk 1 sk 5 a or xk 2 sk 5 a. A new
objective function can then be introduced: minimize (sk over
all of the slack variables introduced during branching. The
effect is to drive the MILP towards feasibility in a manner
analogous to an ordinary LP phase 1, which should speed
the decision of feasibility status in the test subproblems.

5.4.2 Choosing MILP Solver Settings
The settings of the MILP solver can have a great influence on
the speed of a MILP solution. Because the algorithms for
infeasibility isolation involve the solution of numerous test
MILPs, it is worthwhile exploring whether the MILP solver

Table I. Characteristics of the Test Data Sets

Model LCs Variables Nonzeros BDs General IRs Binary IRs

bell3a 124 133 441 204 32 39
bell3b 124 133 441 204 32 39
bell4 106 117 385 181 30 34
bell5 92 104 340 162 28 35
dell 500 626 4580 825 6 99
flugpl 19 18 64 29 11 0
g503 41 48 144 72 0 24
misc01 55 83 746 164 0 82
misc02 40 59 414 116 0 58
misc03 97 160 2054 318 0 159
misc04 1726 4897 17253 4691 0 30
misc05 301 136 2946 204 0 74
misc06 821 1808 5860 1894 0 112
mod008 7 319 1562 638 0 319
mod013 63 96 288 144 0 48
p0201i 134 201 1925 402 0 201
stein9 14 9 54 18 0 9
stein15 37 15 135 30 0 15
stein27 119 27 405 54 0 27
stein45 332 45 1079 9 0 45

average 237.6 451.7 2055.8 518.0 7.0 72.5

Table II. Original Determination of Infeasibility

Model B&B Tree Nodes LP Iterations Time (sec.)

bell3a 12 144 0.23
bell3b 2 103 0.17
bell4 0 105 0.15
bell5 2 108 0.13
dell 6 767 3.48
flugpl 5012 3624 11.17
g503 0 45 0.05
misc01 28 410 0.95
misc02 54 501 0.55
misc03 8 299 0.80
misc04 2 2094 12.17
misc05 52 1118 3.42
misc06 38 3429 20.47
mod008 956 3949 15.42
mod013 124 490 0.79
p0201i presolve presolve 0.03
stein9 12 32 0.07
stein15 92 340 0.40
stein27 1218 5517 10.98
stein45 1112 11298 39.05

average 436.5 1718.7 6.02

71
Infeasible Mixed-Integer and Integer Linear Programs

Table III. Results for Simple IR-LC-BD Deletion Filtering (Algorithm 3)

Model Dubious IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 26 7 68 51 7284 44847 1;55
bell3b 48 8 75 77 1325018 2307950 2;18;33
bell4 14 15 65 43 1349744 1455399 2;01;55
bell5 25 6 53 78 1010942 2105135 1;39;32
dell none 5 381 764 7512 1133866 1;35;03
flugpl 6 6 6 6 414413 241286 11;45
g503 4 1 33 15 213 6180 6
misc01 1u25 12 28 65 4929 41813 59
misc02 1u7 14 30 43 6610 45758 55
misc03 1u40 3 31 110 2982 53854 2;01
misc04 294u2477 3 1186 3731 20385 8199496 19;41;38
misc05 4u32 7 62 55 9486 188309 7;57
misc06 26u684 11 613 1017 44277 3201026 6;28;52
mod008 292 73 7 313 583635 2056161 1;56;59
mod013 21 15 50 50 16889 74834 1;44
p0201i 5 1 2 6 911440 6338045 5;04;14
stein9 none 6 13 0 1109 2217 3
stein15 none 6 36 0 3937 16185 19
stein27 none 14 109 0 139602 625873 19;43
stein45 none 16 227 4 1035530 10126733 7;40;27

average 16.4u185.3 11.5 153.8 321.4 344796.8 1913248.4 2;27;44

Table IV. Results for Simple LC-IR-BD Deletion Filter (Algorithm 4)

Model Dubious IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 65 13 46 65 746510 1089361 57;31
bell3b 61 51 55 62 733668 1212488 1;17;42
bell4 38 13 51 55 982327 1431763 1;19;53
bell5 59 45 24 63 692561 959428 51;21
dell none 4 33 114 14747 122082 6;04
flugpl 8 6 11 8 355378 237514 10;48
g503 18 11 21 25 3672 12195 17
misc01 1u48 14 25 64 7826 38424 51
misc02 1u9 13 29 43 7784 48736 58
misc03 1u32 1 36 117 25929 166925 4;40
misc04 305u2284 3 1186 3731 1786804 23012352 101;47;54
misc05 4u23 7 62 55 776164 3996470 2;31;49
misc06 26u652 11 613 1017 622445 19420458 61;05;35
mod008 313 73 7 313 1125475 2588166 2;57;52
mod013 22 15 50 50 37383 144965 3;18
p0201i 5 1 2 6 616176 3689674 3;20;05
stein9 none 6 13 0 1074 2139 3
stein15 none 6 36 0 3943 16192 19
stein27 none 14 109 0 162993 704387 21;59
stein45 none 16 227 4 1280217 9144909 7;16;18

average 17u181.9 16.1 131.8 289.6 499153.8 3401931.4 9;12;46

72
Guieu and Chinneck

settings can be chosen so as to provide quick solutions for
the intermediate test MILPs. Two solver settings in particu-
lar have a great influence on the speed of the MILP solution:
the method of node selection and the method of branching
variable selection.

The two common methods of node selection are best-
bound and depth-first. Because determining that a MILP is
infeasible requires a complete expansion of the branch-and-
bound tree, neither method is likely to be faster for infeasible
MILPs. However, when the MILP is feasible, it is likely that
a depth-first node selection will reach feasibility faster. In
addition, depth-first node selection allows reuse of the final
LP basis from the parent node, which will be near-feasible
for the child nodes. Because we need only to determine
feasibility status when examining the test MILPs, depth-first
node selection may be preferred.

A number of branching variable selection schemes are
possible, including use of estimates of the value of the
objective function, a simple list ordering, or a user-defined
priority weighted ordering. A scheme that chooses the vari-
able that is most infeasible[1] is also available.

6. Empirical Tests
6.1 The Set of Test Models
Finding suitable test models proved difficult. While infeasi-
ble MILP problems were collected from a number of well-
known researchers, most of these proved to have infeasible
initial LP-relaxations and so were easily analyzed by the
existing LP-infeasibility analysis methods. Only two of the
test models provided to us met our requirements: dell, pro-
vided by Robert Dell of the Naval Postgraduate School, and

p0201i, provided by Ed Klotz of CPLEX Optimization Inc.
The source of the infeasibility is not known for these two
problems.

To provide a larger test set, feasible models covering a
range of sizes and difficulties were taken from a set of MILP
problems maintained by Robert Bixby and Andrew Boyd
(available via anonymous ftp at “softlib.cs.rice.edu”). A sin-
gle LC was added to each problem that caused MILP infea-
sibility while preserving the feasibility of the initial LP-
relaxation. The added LC is a conversion of the objective
function to a constraint, with a right hand side value be-
tween the original MILP solution value and the initial LP-
relaxation value, and with an appropriate constraint sense
(¶ for a minimization, Ä for a maximization).

Table I summarizes the characteristics of the MILPs in the
test set. Table II gives the time, the number of branch-and-
bound tree nodes, and the total number of LP pivots re-
quired by the CPLEX 3.0 MILP solver to determine that the
models were infeasible. p0201i was found to be infeasible by
the CPLEX presolver. Default settings were used for CPLEX,
except in the case of dell, which CPLEX found feasible unless
the variables were rescaled to cause infeasibility. Times are
measured on a Sun 10/30c computer equipped with a 36
MHz SPARC Sun 4 CPU and 33 Mb of memory.

6.2 Software Prototype
The various infeasibility isolation algorithms were imple-
mented in the C language and make use of the CPLEX 3.0
callable library[8] to solve the intermediate test MILPs.
CPLEX uses a branch-and-bound method to solve the
MILPs. Algorithm 9, which makes use of information col-

Table V. Results for the Basic Additive Method (Algorithm 5)

Model IIS? IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 7 68 53 61689 601275 19;27
bell3b 1 65 55 5084 471787 14;46
bell4 13 65 43 228604 703262 39;26
bell5 1 49 48 3115 249427 7;32
dell y 5 184 825 93906 9004289 14;50;57
flugpl 8 13 10 1988436 1239675 1;00;47
g503 1 33 15 327 20247 45
misc01 12 28 165 5587 74450 2;41
misc02 14 30 115 38268 312357 12;18
misc03 3 31 319 1806 59880 5;30
misc04 kil
misc05 7 62 71 24683 1275287 1;13;37
misc06 kil
mod008 37 7 638 191653 917646 45;14
mod013 15 50 51 41148 388142 10;33
p0201i 1 2 6 407 29604 1;50
stein9 y 6 13 0 1042 2688 7
stein15 y 6 36 0 5114 25212 51
stein27 y 14 109 0 244824 1323113 41;03
stein45 kil

average 8.9 49.7 142.0 172687.8 982255.4 1;12;12

73
Infeasible Mixed-Integer and Integer Linear Programs

lected during the initial solution of the MILP, uses a modi-
fied version of MINTO 2.0[15] to extract the needed informa-
tion from CPLEX. In all cases, the number of branch-and-
bound tree nodes generated for any intermediate test MILP
is limited to a maximum of 10,000.

The various algorithms are usually interested only in the
feasibility status of a particular subproblem. For this reason,
the software prototype returns when either 1) the first fea-
sible solution is found (i.e., it does not continue to optimality
in this case) or 2) the model is proven infeasible by a full
expansion of the branch-and-bound search tree.

6.3 Deletion Filtering
Tables III and IV present the results for deletion filtering.
The MILP solver uses a depth-first search with the default
branching scheme in both cases. A column labeled dubious
appears in all tables of results in which individual dubious
constraints can be identified. The column entry has the form
aubuc in which a denotes the number of dubious IRs, b denotes
the number of dubious LCs, and c denotes the number of
dubious BDs (buc is used when a 5 0 and c is used when a 5
b 5 0).

Tables III and IV show that the deletion filter operates
very slowly on an infeasible MILP, principally because of
the need to run repeated test MILP solutions. The average
isolation times for both versions of the deletion filter are
multiple hours as opposed to a few seconds for the initial
detection of infeasibility. However, the tables also support
our conjecture that eliminating IRs before the other con-
straints (Table III) will speed the isolation, reducing the
average isolation time by 73% as compared to eliminating

the LCs before the other constraints (Table IV). Eliminating
IRs before LCs also reduces the average number of branch-
and-bound tree nodes and the average number of LP itera-
tions.

Tables III and IV also show that the identification of an IIS
is not often guaranteed by the basic deletion filter when an
upper limit is placed on the number of branch-and-bound
nodes in any particular MILP test problem. In both cases,
IISs can be proven for only 5 of the 20 models, and in some
models the fraction of dubious constraints (especially BDs)
is quite high. Note, however, that there is some worthwhile
isolation of the infeasibility: Table III shows that Algorithm
3 eliminates 85% of the IRs, 35% of the LCs, and 38% of the
BDs.

Experiments with safety bounding showed reductions in
the isolation size for most models. However, the feasibility
status of the output sets was not checked, so it is not known
whether the output isolations were in fact infeasible.

6.4 The Additive Method
For the tests in this section, the original objective function
was replaced by the objective of minimizing the sum of all
variables that are integer-restricted.

Table V presents results for the basic additive method.
Note that the operation of the algorithm was killed in three
cases (misc04, misc06, stein45) due to excessive time (200, 65,
and 30 hours, respectively). When it does find an isolation,
the additive method is comparable to the (IR-LC-BD) dele-
tion filter, requiring on average about as much time for the
isolation (1;12;12 vs. 1;18;38 for the deletion filter over the
same 17 models). The inability to terminate in a reasonable

Table VI. Results for the Dynamic Reordering Additive Method (Algorithm 6)

Model IIS? IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 7 76 51 18350 275009 9;54
bell3b 1 65 58 2062 129240 5;35
bell4 18 65 43 313958 691259 38;35
bell5 1 49 48 1062 65040 2;34
dell y 1 33 825 952 137833 55;43
flugpl 8 13 9 1491902 931704 46;18
g503 1 18 17 320 7139 23
misc01 20 27 165 8512 98611 2;36
misc02 1 31 117 6809 65374 1;38
misc03 10 30 319 5561 124957 7;00
misc04 kil
misc05 16 68 118 46986 2365221 1;47;25
misc06 kil
mod008 2 7 638 4034 19558 1;05
mod013 16 50 54 25245 341871 8;31
p0201i 1 2 6 334 10658 57
stein9 y 6 13 0 1069 2435 7
stein15 y 6 36 0 5015 22464 52
stein27 y 14 106 0 278979 1446623 45;27
stein45 kil

average 7.6 40.5 145.2 130067.6 396176.2 19;41

74
Guieu and Chinneck

amount of time is not unexpected for the additive method.
As shown in Algorithm 5, Step 3 of the additive method
begins without any BDs on the test MILP. This tends to
lengthen the process of deciding feasibility status.

The major advantage of the additive method is the aver-
age reduction in the number of IRs in the isolation (8.9 vs.
11.8 for the deletion filter over the same 17 models). Table VI
shows that the dynamic reordering version of the additive
method gives even better results in terms of the number of
IRs in the isolation, and is significantly faster than the basic
additive method when it manages to terminate in a reason-
able amount of time.

6.5 The Additive/Deletion Method
The results for the dynamic reordering version of the addi-
tive/deletion method (summarized in Table VII) are slightly
better than those for the basic additive/deletion method
(Algorithm 7; results not given here). The advantage of the
additive/deletion method over the additive method is that it
is able to provide an isolation for all of the test models
within a reasonable time. There are two advantages of the
additive/deletion method over the deletion filter: 1) it pro-
vides isolations having fewer IRs, which should be easier to
interpret, and 2) it provides isolations having fewer dubious
constraints on average.

6.6 Grouping Constraints
A number of constraint grouping methods were imple-
mented and assessed (see Algorithm 8) for the deletion filter,
the additive method, and the additive/deletion method. The

additive method with grouping was not able to complete in
a reasonable time for several of the models. The best method
was the IR-LC-BD deletion filter with a fixed group size of
four constraints; results are given in Table VIII.

6.7 Using the Initial Branch-and-Bound Tree
As described in Algorithm 9, information collected during
the initial branch-and-bound solution of the MILP can be
used to speed the subsequent infeasibility isolation. Results
are summarized in Table IX. MINTO[15] is used as an inter-
face to CPLEX for these trials because it allows the collection
of the data needed by Algorithm 9. The dell model is omitted
because CPLEX finds it to be MILP feasible without rescal-
ing, but MINTO does not permit the necessary rescaling.
The default MINTO settings are used. Times reported in-
clude the development of the initial branch-and-bound tree
plus the time for the isolation of an IS.

Note also that 9 of the test models require numerous
branch-and-bound nodes for the initial recognition of infea-
sibility under the assumed solver settings. Because a fair
amount of information is collected about each node and path
in the branch-and-bound tree, an arbitrary upper limit of
3000 initial branch-and-bound nodes is imposed to avoid
exhausting the available memory. Models needing more
nodes are omitted, leaving 10 test models. In practice, it is
simple to abandon the collection of branch-and-bound tree
data when a preset upper limit on nodes is reached, and to
then revert to one of the methods that does not use data
collected during the initial detection of infeasibility.

Table IX shows that using the information in the initial

Table VII. Results for the Dynamic Reordering Additive/Deletion Method

Model Dubious IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 3 8 76 51 27094 113103 3;59
bell3b 7 1 65 56 562 27994 26
bell4 1 15 65 43 785144 1795039 1;24;10
bell5 2 1 49 49 444 15882 14
dell 1 1 33 114 5718 4248 3;26
flugpl 5u4 8 13 6 429312 298729 13;28
g503 1 1 18 18 180 2806 3
misc01 7 23 25 77 12708 115698 2;20
misc02 4 11 30 55 4472 46460 46
misc03 20 8 29 112 16021 92117 3;13
misc04 3 3 1186 3732 22187 11112753 30;37;05
misc05 88 12 73 100 49412 1216934 48;35
misc06 6 4 605 1046 16178 3331787 6;42;38
mod008 none 2 7 638 5062 38946 1;39
mod013 6 15 50 56 18169 144123 2;47
p0201i 1 1 2 7 961 8953 29
stein9 none 6 13 0 1238 2721 4
stein15 none 7 36 0 4464 17154 21
stein27 2 14 109 2 132148 742034 21;04
stein45 5 16 225 9 958773 10632330 8;00;03

average 0.3u8.1 7.9 135.4 308.6 124512.4 1487990.6 2;25;21

75
Infeasible Mixed-Integer and Integer Linear Programs

branch-and-bound tree can greatly speed the isolation of an
infeasibility. This is especially evident for the difficult misc04
model in which the isolation time is cut from a previous low
of 19;16;31 (Table VIII) to 7;25;54, i.e., a cut of 61%. How-
ever, the added processing may increase the time required
for other models (e.g., bell3a requires only 48 seconds in
Table VIII, but needs 4 minutes and 7 seconds in Table IX.

Assuming that the collection of branch-and-bound infor-
mation is abandoned when an upper limit on the number of
nodes in the initial branch-and-bound tree is exceeded, we
can derive results for the entire test set (including dell) by
using the times from Table VIII where they are not provided

in Table IX. The average results over the 20 models are then:
10.5 IRs, 152.2 LCs, 298.4 BDs, 216492.2 branch-and-bound
nodes, time 1;08;39. This seems an acceptable amount of
time in practice.

7. Conclusions
The experiments show that it is possible to find a useful
infeasibility isolation in an infeasible MILP. There are two
main drawbacks: the process may be fairly slow, especially
for larger MILPs having many IRs, and the isolation re-
turned is often an IS instead of an IIS if an upper limit is

Table VIII. Results for the IR-LC-BD Deletion Filter with Fixed Group Size of 4 Constraints

Model Dubious IRs LCs BDs B&B Nodes LP Iterns Time (h;m;s)

bell3a 26 7 68 51 4223 29575 48
bell3b 49 8 73 65 818253 1401317 1;22;00
bell4 14 15 65 43 665881 724382 58;24
bell5 32 6 53 48 460922 956234 45;35
dell none 5 377 596 8154 1205454 1;40;05
flugpl 6 6 6 6 334498 192472 9;33
g503 4 1 33 15 159 4726 5
misc01 1u25 12 28 65 3763 31519 44
misc02 1u12 14 30 54 5416 36774 44
misc03 1u40 3 31 110 1836 27447 56
misc04 294u2477 3 1186 3731 15274 7263993 19;16;31
misc05 4u32 7 62 55 3867 88612 3;18
misc06 26u686 11 613 1019 25901 2534418 4;37;11
mod008 293 73 7 313 377935 1305983 1;15;39
mod013 21 15 50 50 13639 63361 1;28
p0201i 5 1 2 6 288547 1986777 1;38;22
stein9 none 6 13 0 605 1315 2
stein15 none 6 36 0 2436 10401 13
stein27 none 14 109 0 76689 347969 10;59
stein45 none 16 227 4 683225 6708833 5;07;51

average 16.4u186.1 11.5 153.4 311.6 189561.1 1246078.1 1;51;31

Table IX. Results for Using Information from the Initial Branch-and-Bound Tree (Algorithm 9)

Model Dubious

After Initial B&B Solution After Deletion Filter

Time (h;m;s)IRs (paths) LCs BDs IR (s) LCs BDs B&B nodes

bell3a 38u46 19 (6) 103 113 7 70 41 3838 4;07
g503 9u11 1 (1) 41 43 1 30 18 100 5
misc01 1u48 9 (1) 55 112 5 28 56 530 23
misc02 1u22 15 (1) 40 97 9 32 33 1428 29
misc03 1u88 3 (1) 96 171 3 22 105 570597 42;44
misc04 1104u3599 2 (1) 1486 4009 1 1169 3699 1569 7;25;54
misc05 5u40 14 (3) 287 153 10 74 58 20920 9;22
misc06 516u872 13 (2) 774 1561 3 602 1141 3017 1;22;35
mod013 2u26 20 (0) 63 120 14 49 49 10232 1;25
stein9 none 13 (4) 14 18 6 13 0 1073 6

average 167.7u475.2 10.9 (2.0) 295.9 639.7 5.9 208.9 520.0 61330.4 58;43

76
Guieu and Chinneck

imposed on the maximum number of nodes generated in the
solution of any test MILP.

While the provision of an isolation having specific prop-
erties (i.e., one having few IRs and few LCs if possible) is
certainly desirable, at the current state of the art it is better to
simply concentrate on finding true IISs and on doing so
reasonably quickly. On the test set used here, the dynamic
reordering additive/deletion method isolates ISs having the
fewest dubious constraints (Table VII) and the smallest ISs
on average. This method is recommended when it is impor-
tant to find isolations that are as close to a true IIS as
possible.

Because all of the methods are fairly slow due to the
inherent problems of deciding feasibility in a MILP, the
speed of the isolation may be more important in some cases.
The fastest method tested gives an average isolation time of
1;08;39 compared to an average time for the initial detection
of infeasibility of about 6 seconds for the relatively small
models in the test set. Much larger times can be expected for
large industrial-scale MILPs. For the models tested here, the
fastest algorithm is a combination of 1) using information
from the original branch-and-bound tree (Algorithm 9), fol-
lowed by 2) the IR-LC-BD deletion filter, with 3) constraint
grouping with fixed group size of four constraints. This
method is recommended when it is important to find an
isolation quickly.

There are many opportunities for the extension of the
algorithmic building blocks presented here. Example ques-
tions include: Can Theorem 2 can be extended to IRs by
looking at the BDs added by the branch-and-bound method
that are sensitive in the leafs? Is it useful to extract informa-
tion from the branch-and-bound tree developed for each
intermediate test MILP? A more thorough examination of
various ideas is also in order: the effect of using safety
bounds, the value of replacing the original objective func-
tion, and the choice of MILP solver settings.

Numerous other interesting algorithmic ideas deserve
further investigation, including:

• Will a branching variable selection scheme that chooses
the variable that is most infeasible[1] speed the analysis?

• The extension of ideas from elastic filtering[7] may prove
useful. For example it may be possible to add weighted
binary variables to each constraint such that activating the
binary variable releases the constraint. Minimizing the
sum of these added binary variables determines a maxi-
mum feasible subset of constraints, from which infeasible
subsets can be created for further analysis by adding back
one of the eliminated constraints.

• Is it possible to create improved grouping schemes using
ideas from binary search?

Acknowledgments

Thanks are due to Ed Klotz (CPLEX Optimization Inc.) for the
provision of a test problem and for helpful discussions in the course
of the research. Thanks also to Robert Dell (Naval Postgraduate
School) for the provision of a test problem. Suggestions made by the
anonymous referees also strengthened the paper. This research is

partially supported by a Research Grant to J. W. Chinneck provided
by the Natural Sciences and Engineering Research Council of Canada.

References

1. R. BREU and C.A. BURDET, 1974. Branch and Bound Experiments
in Zero-One Programming, Mathematical Programming Study 2,
1–50.

2. J.W. CHINNECK, 1994. MINOS(IIS): Infeasibility Analysis Using
MINOS, Computers and Operations Research 21, 1–9.

3. J.W. CHINNECK, 1995. Analyzing Infeasible Nonlinear Pro-
grams, Computational Optimization and Applications 4, 167–179.

4. J.W. CHINNECK, 1996. Computer Codes for the Analysis of In-
feasible Linear Programs, Journal of the Operational Research So-
ciety 47, 61–72.

5. J.W. CHINNECK, 1997. Feasibility and Viability, in Advances in
Sensitivity Analysis and Parametric Programming, T. Gal and H.J.
Greenberg (eds.), International Series in Operations Research
and Management Science 6, 14-1 to 14-41, Kluwer Academic
Publishers, Boston.

6. J.W. CHINNECK, 1997. Finding a Useful Subset of Constraints for
Analysis in an Infeasible Linear Program, INFORMS Journal on
Computing 9, 164–174.

7. J.W. CHINNECK and E.W. DRAVNIEKS, 1991. Locating Minimal
Infeasible Constraint Sets in Linear Programs, ORSA Journal on
Computing 3, 157–168.

8. CPLEX OPTIMIZATION INC., 1994. Using the CPLEX Callable Library.
9. R.E. GOMORY, 1963. An Algorithm for Integer Solutions to Lin-

ear Programs, in Recent Advances in Mathematical Programming,
McGraw-Hill Book Company, New York.

10. H.J. GREENBERG, 1993. A Computer-Assisted Analysis System for
Mathematical Programming Models and Solutions: A User’s Guide
for ANALYZE, Kluwer Academic Publishers, Boston.

11. O. GUIEU, 1995. Analyzing Infeasible Mixed-Integer and Integer
Linear Programs, M.Sc. thesis, Systems and Computer Engineer-
ing, Carleton University, Ottawa, Canada.

12. A.J. HOFFMAN and M. PADBERG, 1985. LP-Based Combinatorial
Problem Solving, Annals of Operations Research 4, 145–194.

13. E.L. LAWLER, J.K. LENSTRA, A.H.G. RINOOY KAN, and D.B.
SHMOYS, 1985. The Travelling Salesman Problem: A Guided Tour of
Combinatorial Optimization, John Wiley and Sons, New York.

14. K.G. MURTY, 1983. Linear Programming, John Wiley & Sons, New
York.

15. G.L. NEMHAUSER, M.W.P. SAVELSBERGH, and G.C. SIGISMONDI,
1994. MINTO: A Mixed INTeger Optimizer, Operations Research
Letters 15, 47–58.

16. R.G. PARKER and R.L. RARDIN, 1988. Heuristic Aspects of Branch
and Bound, in Discrete Optimization, Academic Press, Boston.

17. M.W.P. SAVELSBERGH, 1994. Preprocessing and Probing Tech-
niques for Mixed Integer Programming Problems, ORSA Journal
on Computing 6, 445–454.

18. L. SCHRAGE, 1991. LINDO: An Optimization and Modeling System,
4th edition, The Scientific Press, San Francisco.

19. M. TAMIZ, S.J. MARDLE, and D.F. JONES, 1996. Detecting IIS in
Infeasible Linear Programmes using Techniques from Goal Pro-
gramming, Computers and Operations Research 23, 113–119.

20. M. TAMIZ, S.J. MARDLE, and D.F. JONES, 1995. Resolving Incon-
sistency in Infeasible Linear Programmes, Technical Report,
School of Mathematical Studies, University of Portsmouth, U.K.

21. W.L. WINSTON, 1995. Introduction to Mathematical Programming:
Applications and Algorithms, Duxbury Press, Belmont, CA.

22. L.A. WOLSEY, 1989. Strong Formulations for Mixed Integer Pro-
gramming: A Survey, Mathematical Programming 45, 173–191.

77
Infeasible Mixed-Integer and Integer Linear Programs

