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Abstract: We presenta CostDecompositiorapproachfor the linear Multicommodity Min-Cost
Flow problem, where the mutueapacityconstraintsare dualizedandthe resultingLagrangearbDual
is solved with a dual-ascentalgorithm belonging to the class of Bundle methods. Although
decompositionapproachesto block-structuredLinear Programshave beenreported not to be
competitivewith general-purposesoftware, our extensivecomputationalcomparisonshows that,
when carefully implemented,a decompositionalgorithm can outperformseveralother approaches,
especiallyon problemswherethe numberof commoditiesis “large” with respectto the size of the
graph. Our specializedBundle algorithm is characterizedby a new heuristic for the trust region
parametehandling,and embeds specializedQuadratic Program solver that allows the efficient
implementation of strategies for reducing the nundfeactive Lagrangearvariables.We also exploit
the structuralpropertiesof the single-commodityMin-Cost Flow subproblemdo reducethe overall
computational cost. The proposed approach can be easily extended to handle variants of the problem
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0. Introduction

The Multicommaodity Min-Cost Flow problem (MMCF), i.e. the problem of shipping flows of
different nature(commoditie at minimal coston a network, where different commoditiescompete
for the resources represented by the arc capacities, hawitednaddresseadh the literaturesinceit
modelsa wide variety of transportationand schedulingproblem&®: %8 ¢ 3. 2 611 “MMCF is a
structuredLinear Program(LP), but the instancesarisingfrom practicalapplicationsare often huge
andthe usualsolution techniquesare not efficient enough:this is especiallytrue if the solution is
requiredto be integral, since then the problemis AP-hard and most of the solution techniques
(Branch & Bound, Branch & Cut ...) rely on the repeated solution of the continuous version.

From an algorithmicviewpoint, MMCF has motivatedmany importantideasthat have later found
broader application: examples are the column generation approack? and the Dantzig-Wolfe
decomposition algorithi&. This “pushing” effect is still continuing, as demonstratec ioyymberof
interesting recent developméritg® 32 %

MMCF problems alsarisein finding approximatesolutionsto severalhard graph problem&® 31,
Recently,somes-approximationapproachesiave beemevelopedfor the problent® ¢ ¢4 making
MMCF one of the few.Ps for which approximations algorithms of practical interest are kio¥h
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In this work, we presenta wide computationakxperiencewith a Cost Decompositioralgorithmfor

MMCF. Decompositionmethodshave beeraround for 40 years, and severalproposals forthe
“coordination phase®* 2 5% %% 61201 can pe found in the literature. Our aim is to assessthe
effectivenes®of a Cost Decompositiorapproachbasedon a NonDifferentiable Optimization (NDO)

algorithm belonging to the class ‘@undle methods!®® *!. To the bestof our knowledge,only one
attempf* haspreviouslybeenmadeto useBundle methodsin this context,andjust makinguse of
pre-existenNDO software: here we use a specialized Bundle codelMCF. Innovativefeaturesof

our code include a new heuristic for setting the trust region parameter,an efficient specialized
Quadratic ProgranQP) solvef” anda Lagrangearvariablesgeneratiorstrategy.Perhapsthe main

contribution of the paper is the extensset of computationakxperienceperformed:we havetested
our implementation together wieveralotherapproachesn a large setof testproblemsof various
size andstructure.Our experienceshowsthat the Cost Decompositiorapproachcan be competitive,
especiallyon problemswherethe numberof commoditiess “large” with respectto the size of the

graph.

1. Formulation and Approaches

Given a directedgraph G(N, A), with n = | N | nodesand m = | A | arcs, and a set of k
commaoditiesthe linear Multicommodity Min-Cost Flow problem can be formulated as follows:

a‘nin 2.2, cixt
2. xi-Z,xi=b} Oi,h ()

Q) X{ < uy Oi.j.h (b)
< xf < uf Oi, j ()
where, for eacharc (i, j), x{ is the flow of commodityh, uf andc] are respectivelythe individual
capacityand unit cost 0)‘<§, anduy; is themutual capacitywhich boundsthe total quantity of flow on
(i, J). Constraintga) and (b) arethe flow conservation andhdividual capacity constraintsfor each

commodity, respectively,while (c) representshe mutual capacityconstraints. Inmatrix notation,
using the node-arc incidence matéf G, MMCF becomes
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This formulation highlights the block-structured nature of the problem.

MMCF instances may have differecttaracteristicsthat makethemmore or lesssuitedto be solved
by a givenapproachfor instance the numberof commoditiescanbe small, asin manydistribution
problems,or aslargeas isthe numberof all the possibleOrigin / Destinationpairs, as the caseof
traffic and telecommunication problems.
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MMCEF is the prototypeof many block-structuredproblem§?, such asFractionalPacking® and
ResourceSharingproblems&™. Common variants of MMCF are the NonhomogeneouMMCF*

where €) is replacedoy A[ x* ... x* ] < u, the Nonsimultaneou#IMCF**! wherethe commodities
are partitionedin p “blocks” andonly commoditieswithin the sameblock competefor the capacity,
andthe Equal Flow problent® wherethe flow on a certainsetof pairs of arcsis constrainedo be
identical.

Several algorithmic approaches have beerposed foMMCF. amongthem, wejust nameColumn
Generatioft* *” 8 ResourceDecompositio® ** *° Primal Partitioning® ®, specializedinterior
Point® 48 7019 - Cost Decompositio® 3 54 ¢ 20.691 " pPrimal-Dual®” and e-approximatiof? 34
methods. Unfortunately, the available surveys are eith€r'*dldr concentrated on just thelassical”
approachés™ " 17 hence, weaeferthe interestedeaderto’®®, wherethe relevantliteratureon the
subject is surveyed. Information abgairallel approaches tMMCF canalso be found thereor in*!
(these papers can be downloaded from http://www.di.unipi.it/~frangio/).

Our approach belongs to the clasCalst Decompositiormethodsto solve MMCF, we considerits
Lagrangean Relaxation with respect to the “complicating” constrajntse(

(RMG) ¢(A) =2, min{ (c"+A)X":Ex"=b",0<x"<u"} -Au
and solve the corresponding Lagrangean Dual
(DMMCF) max{ ¢(A):A=20}.

The advantage of this approach is that the calculatigii &f) requiresthe solutionof k independent
single-commodity Min-Cost Flow problem8ICF), for which severalefficient algorithmsexist. The
drawback is that maximization of thendifferentiabldunction¢ is required.

Many NDO algorithms can be used to maximize ¢; among them: the (many variants of the)
Subgradientmethod® %%, the Cutting Planeapproach® (thatis the dual form of the Dantzig-Wolfe
decompositio™ % *?) the Analytic Center Cutting Plane approach® **! and various Bundle
methodS$® % *4, The latter can also be showr¥® to be intimately relatedto seemingly different
approaches such asiooth Penalty Functiéd andAugmented Lagrange8# algorithms, wheré is
approximated with a smooth function. Mosttbésemethodsonly requireat eachstepa subgradient
g(A)=u-2Z x"(A)ofd, where (x'(A) ...x(A)) is any optimal solution oRMG,).

2. The Cost Decomposition code

It is outsidethe scopeof the presentwork to provide a full descriptionof the theory of Bundle
methods: the interested reader is refetoed. In 12> 2% the use ofBundle methodsfor Lagrangean
optimization and their relationswith other approachegDantzig-Wolfe decomposition, Augmented
Lagrangean ...) are discusses in detalil.

Bundle methods are iterati¥DO algorithms that visit @equencef points{ A, } and, at eachstep,
use (a subset of) the first-order informatr { TH(A, ) ,g( A ) O} (theBundlg gatheredso far to
compute a tentative ascent directibrin the “classical” Bundle method,is the solution of

(D) ming 12| %, 98 |f+ W) oa8:%,,,6=1,620}
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whereg, = g( A, ), o, =p(A;) +g( A - A= o( X) is thelinearization errorof g with respecto the
current point A andt > O is the trust region parameter From the “dual viewpoint®, (As) can be
consideredas an approximationof the steepest-ascentdirectionfinding problem;from the “primal
viewpoint”, (A,) can be regardedto as a “least-
square version” of the Master Probl@ihDantzig-
Wolfe decomposition. The Quadrafiuial of (Ag)
IS

(M) max{ ¢,(d) -zt ||d|f }

wheredy(d ) = min,, { a; +gd} is the Cutting
Plane mode| i.e. the polyhedral upper
approximationof ¢ built up with the first order
information collected so far. A penalty term
(sometimes callestabilizingterm), weightedwith
t, penalizes“far away” points in which ¢, is
presumablya “bad” approximationof ¢ (Figure
1): hence,t measuresur “trust” in the Cutting Plane model as wemove farther from the current
point, playing a role similar to thatof the trust radius in Trust Regionmethods.Onced hasbeen
found, the value op( A +d) and the relative subgradient are useddjustt“” 3. The currentpoint
X is moved (a SeriousStep only if a “sufficient” increasein the value of ¢ has been attained:
otherwise(a Null Step, X is not changedandthe newly obtainedfirst-orderinformationis usedto
enrich theCutting Planemodel. Actually, when solvingIMCF the “A = 0" constraintsmustbe taken
into account: this leads to the extended problem

(Mg max{ ¢,(d)-Yat|ld|P:d=~-A}

that guarantees feasibility of the tentative point, and can still be efficiently $8ived

Figure 1: effect of the stabilizing term,; for
t; <t, <t d, are the optimal solutions

Our Bundle algorithmis describedn Figure2. At eachstep, the predictedincreasev = ¢,( d ) is

compared with thebtained increas&d = ¢(A ) — d( A ), and &Serious Steps performed only A

is large enough relative: in this casean alsdoe increasedOtherwise the “reliability” of the newly
obtained subgradient is tested meansof the “averagelinearizationerror” o: if g is not believedto

improve the “accuracy” of ¢,, t is decreased.The IncreaseT()and DecreaseT()functions are
implemented as shown in Figure 3: both the formulas are based on the idea of constqueargta
function that interpolates the restrictiondgoflongd passing throughX , (A ) ) and( A, d( )T) ),

and choosing as its maximizer. The latter formula is obtained by assigning the vathe @érivative
in A, while the former oneis ratherobtainedby assigningthe value of the derivativein A, The
IncreaseT (heuristicguaranteeshatt will actuallyincrease= dg > 0, which is exactly the (SS.ii)
condition in®®. Using two different heuristics has proven touseally betterthanusing only one of

them.
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MMCFB

Ochoosem; 0 [0, 1],0<m,,t,>0,t*>0ande >0 [j
Y =0; t =t;; Ocalculated(y ) andg(y) OB ={ (a(Y) . 0)};
repeat
[B-strategy: eliminate outdated subgradiénts
Osolve Q";5) and (17;5,) for 6 andd Clo = agh;
if(tM| d|f +o<ed(y))
then STOP;
else y = )_/ +d;
Ocalculatep( Yy ), g(Y ) and the correspondirgg [
Oadd (g,a)toB 0
(A =0 (Y)-o(y)=mody(d))
then y =V;a =a +dG;t = IncreaseT();
else if(a>m,o)
thent = DecreaseT();
until ( STOP );

Figure 2: the “main” of the MMCFB code

OetM > 1, m<1andt, =t,=t,befixed ]

IncreaseT() = maxt, min{t,, Mt, 2tv(v-A¢p)}}

DecreaseT() = mifit, max{t,, mt, (a +Ad)/2a}}

Figure 3: the heuristitstrategies

Them, parameter, controlling the decrease,afhouldbe chosen‘large” (= 3): theresultis thatt is

changed almost only in the early stages of the algorithm’s operafioralervaluesof m, causet to

decreasdoo quickly, so yelding a very long sequenceof “short” steps.This settingis remarkably
different from the one usually suggestedn the literature,i.e. = 0.9*" % the reasonmight be that

Lagrangeanfunctions of Linear Programs are qualitatively different from other classes of

nondifferentiablefunctions, having an enormousnumber of facets which makesthem extremely
“kinky”. The choice of the other parametésdar lesscritical: m, seemso be properlyfixed to 0.1,

the (absolute andelative) safeguardson t almost never enter into play and the heuristics for

increasing and decreasihgre capable of correcting blatantly wrong initial estimgtdg t* hasbeen
chosensufficiently large, uponterminationthe current point A is guaranteedo be ane¢-optimal

solution ofDMMCEF: although selectintf is in principle difficult, in practiceit canbe easilyguessed
by looking at a few test executions of the code.

An innovative feature of our code is thegrangean Variable§seneration(LVG) strategy:ratherthan
always working with the full vector of Lagrangean multipliers, we mairdgmopefully small) setof
“active” variables and only solve thiestricted(;,). Every p, (= 10) iterations,we addto the active
set all “inactive”variableshavingthe correspondingentry of d strictly positive;this is also donefor
the firstp, (= 30) iterations, anavhenthe algorithmwould terminatebecausehe STOP conditionis
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verified. Usually, almosall the active variablesrevealthemselvesn the first few iterations,andthe
active set is very stabl&lote that, from the primalviewpoint,the LVG strategyis a row generation
scheme where a complicatingconstraintis addedonly if it is violated by the primal unfeasible
solution corresponding .

The LVG strategy has a dramatic impact on the time spent in solVipgwhich is reducedby upto
afactor of 5 evenon small instancesClearly, the LVG strategycan be beneficialonly if the QP
solver efficiently supports the online creation and destruction of variebsbproblem(g): this is
the case of the specialized solver used in the€paéich employs &vo-level active sedtrategyfor
handlingthed > - A constraintsThe availability of the specializedsolver has been crucial for
developingan efficient Bundle code:otherthansupportingthe LVG strategyi,it is much fasterthan
non-specializedP codesin solving sequencesf (M) problems.This has beenshownin (24 py
comparingit with two standardQP codes(interestinglyenough,one of them being exactly the QP
solver used for the previous Bundle approaddkCF>*), which have beerutperformedoy upto
two orders ofmagnitude;sincethe coordination cost rangesfrom 1% to 20% of the total running
time, a Bundle algorithm usingnon-specialize@P solverwould rapidly becomempracticalasthe
Instances size increases.

To keepthe size of the Bundlelow, we deleteall the subgradientshathave®, = 0 for morethan a
fixed number £ 20) of consecutivaterations.We do not perform subgradientg&ggregationsinceit
usually has a negative impact on the total number of iterations.

In most cases, and especiallk it large, most of the time is spentsolving the MCF subproblems;
hence,it is importantto usea fast MCF solverwith efficient reoptimizingcapabilities.However,in
many classe®f instanceshe MCF subproblemdavea specialstructurethat can be exploited: the
typical case is when aithdividual capacitiesuﬁ areeitherQ or +co andthereis only one sourcenode
for eachcommodity,thatis whenthe subproblemsre ShortestPath Tree problems(SPT). In our
C++ code, Object-OrientedProgrammingtechniqueshave beenused to accomplishthis: MCF
subproblemsare solved with an implementation of the Relaxation algorithm”?, while SPT
subproblems are solved with classical Shortest Blatrithm$®. Evenon small problemswith few
commodities, this gives a speedup of ufota.

Object-OrientedProgrammingechniqueshave also beenusedin orderto makeit easyto develop
specialized or extended versions. In fact, we already developed a parallel vétsienodé* *°, as
well as extended versions for computing lower bounds foFittesl ChargeMMCF?> **! andfor the
Reserve Probleff. Only minor changeswould be requiredfor solving the Nonhomogeneous
MMCF, while the Nonlinear commaodity-separabl®MCF would only require the availability of a
suitable nonlineaMCF solver.

Finally, we remark that, unlike other dual algorithms, our codéésraplete” MMCF solver, in that
upon termination it not only gives a dual optimal solulipbut also a primal optimal solution

X =[x X ]=Z [ .. x{ 16,

wherex! is thesolution of the h-th MCF with costsc" + A, and® is the solutionof the latesi(A;).
Obtainingx requires keeping the flow solutions of #BICFs relative to any subgradient ) hence
it may considerablyincreasehe memoryrequirement®f the code; therefore,this featurehas been



A. Frangioni and G. Gallo

madeoptionalin the code,andin our experimentave havenot usedit. The impact on the running
times, however, is negligible (always well under 5%).

3. The other codes

Oneof the objectivesof this researchwas to understandvherea modernCost Decompositioncode

stands, in terms of efficiency, among the solution methods proposeglliterature: hence ,an effort

hasbeenmadeto compareMMCFB with recentalternativeMMCF solvers. The efficiency of Cost

Decompositionmethodsis controversial: although they have beenused with successin some
applications, many research&ré® would agreethat“... the folklore is that generallysuchschemes
take a long time t@onvergeso that they're slowerthanjust solving the modelas a whole, although

research continues. For now my advice, unless [...] your model is so huge that a goochatlirer
it in memory, isto not botherdecomposingt. It's probably more cost effective to upgradeyour

solver, if the algorithm is limiting you .. However, if Cost Decomposition approaches aranyf
value,MMCEF is probablythe applicationwhere such a value shows up, as demonstratedy our

experiments.

3.1 A general-purpose LP solver

In principle, any LP solver can be usedto solve MMCF: actually, our experienceshows that
(accordingto above statementicommercialgeneral-purpos&P solverscan be the best choice for
solving even quitéargeinstancesThis shouldnot be surprising,since theseodesare the resultof
an impressiveamountof work and experienceobtainedduring many years of development,and
exploit the state of the art in matrix factorization algorithms, pricing rules, sophisticateddata
structures, preprocessing asaftwaretechnology.CPLEX 3.0 is one of the bestcommercialLP
solvers on the market: it offers Primal and Dual simplex algorithiigtaork simplexalgorithmfor
exploiting the embedded network structure of the problems and a Barrier (Interior Point) algorithm.

Size PP PD HP HD Size HD1 HD2 HD3 HD4
5125 9.02 2.72 4.73 1.36 5125 4.08 1.36 2.11 1.34
16000 50.90 23.47 21.37 6.07 16000 19.65 5.99 11.00 6.08
25000 81.05 14.15 22.65 5.41 25000 18.24 6.16 19.71 5.39
47850 504.04 124.33 25.48 10.06 47850 13.35 11.95 51.03 10.00
68225| 1393.63 42.24 18.96 8.10 68225 8.05 10.76 71.59 8.06
61275| 1646.35 254.13 185.04 78.94 61275[1000* 54.07 152.36 79.16
207733|116707.66 492.33 244.89 44.67 207733|/1000* 88.38 681.27 44.88
257700]13301.88 556.39 165.56 48.55 257700] 57.53 92.58 846.65 48.48

Table 1: different simplex options for CPLEX Table 2: different pricing rules for CPLEX

In our experimentation, to make the comparisons meanireffatts have beemimadeto use CPLEX
in its full power by repeatedly solving subsets of the pesblemswith different combinationsof the
optimizationparametersin orderto find a good setting. CPLEXanidentify the network structure
embedded in &P, andefficiently solvethe restrictedproblemto obtaina good startingbasefor the
“Pure” Primal and DualRP andPD) simplexalgorithms:the performance®f the resulting“Hybrid”
Primal and Dual algorithm#if andHD) are reported iffable 1, whereSize= mk is the numberof
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variables of th&.P and figures are thaveragerunningtimesover groupsof severalproblemsof the

same size. From these results, we see tbashapproachcanbe 30 timesfasterthana Primal one,
andthat the “warm start” speeds uphe solution by up to a factor of 70, so that the Hybrid Dual

version can bd00 timedaster than the Pure Primal one. Herites not unfair to regardCPLEX as
a semi-specialize@lgorithm for network-structuredoroblems. Other details, such asthe pricing

strategy, can have a dramatic impact on the number of iteratnati®enceon the performanceTable
2 reportsa comparisorbetweenthe four available pricing rules for the Dual simplex, the standard
dual pricingHD1 and three variants difie steepest-edgrile HD2-4. Performancemprovementsof

up to a factor of 15 (and more, since the instances marked witratitakenmuchlongerthan 1000
seconds to terminate) can be obtained by selecting the appropriate rule.

3.2 A Primal Partitioning code

PPRN 1.0"? is an available(in .a format at ftp://ftp-eio.upc.es/pub/onl/codes/pprn/libppmacent
implementation of the Reduced Gradient algorithm for the

Size Opt Feas

Nonlinear MMCF, i.e. a Primal Partitioning approachwhen 7125 2.21__ 6.89
applied to the linear case. their computationakexperiencg?, the 18250 7.87 29.62
authorsshow that it generally outperformsthe known Primal 287501 7.76 53.68
Partitioning code MCNF85*°!, In our experience,PPRN has 50783 9.43 43.24

] . 63850(32.33 145.39
never shown to be dramatically fasteen CPLEX: however,this 91250(11.24 271.73

should not lead to the conclusionthat it is inefficient. In fact, 207867(55.62 425.68
PPRNis a primal code,andit is definitely much fasterthanthe [268200]29.28 626.73
primal simplexof CPLEX: hence,it can be regardedasa good  t,pje 3: phase 0 options for PPRY
representative of its class of methods.

Size P1 P3

Again, an appropriatetuning of its (several) parameterscan 7125121.99 64.02
significantly enhancethe performances.The most important 18250| 8.40 41.41
choice concernsthe PhaseO strategy,i.e. whetherthe starting 28750(30.13 32.84
baseis obtained from any feasible solution of the k MCF 50783 8.98 25.99

: : : . 63850 4.67 5.88
subproblemgatherthan from their optimal solutions (as in the 91250|42.06 53 50

“‘warm start” of CPLEX). As shownin Table 3, exploiting the |207867/31.85 36.33
optimal solutions decreases thaningtimesby upto a factor of 268200| 8.90 16.38
20 Optvs.Feascolumns): moreovemppropriateselectionof the

pricing rulé'? can result in a speedup of 3, as shown in Table 4.

Table 4: pricing rules for PPRN

3.3 Interior Point codes

A beta version of IPM, a specialized Interior Point cod@istCF', has been made available thg
authorfor comparisorpurposesLike mostInterior Point methods|PM must solve at eachstepa
linear systemwith matrix AO?AT, whereA is thefull nk x m(k + 1) coefficientmatrix of the LP.
Rather than calculating a Cholesky factorization of such a matrix, however, IPM uses a
Preconditioned Conjugate Gradient method where, at eactk stelependentn x m subsystemsire
solved. The code does not currently handle zero individual capadl]t're:f.)][, that were presentin all
but one of the classesf instanceghat we tested;the obvious workaround,i.e. setting u!} to some
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very small number and/cij’ to somevery large number,might resultin numericalproblems,yet the
code was able to solve (almost) all the instances.

Sinceonly indirect comparisonsvere possiblefor the other specializednterior Point methods(Cf.
83.5), we also tested two general-purpose Interior R&isolvers: CPLEX3.0 Barrier (that will be
referredto as IPCPLEX) and LOQO 2.21°¢ %l a recentimplementationof the primal-dual, path
following, predictor-correctoapproachAlso in this case,the parametersveretunedin orderto get
the best performancesthe mostimportantchoiceis the one between“myopic” (Minimum Local
Fillln) and “global” (Priority Minimum Degreemodified Choleskyand Multiple Minimum Degree
respectively) heuristicior columnsorderingwhen computingthe LLT factorizationof A@ “A. For
IPCPLEX, the myopic heuristic is moedficient; this is shownin Table5, wherefor both of MMD
andMLF, the two columns with 1" and “-R” report the time obtained witheftward and Rightward
Choleskyfactorization (anotherpossibledegreeof freedom). The table also shows that the total
numberof iterationsis very small, andthatit is not alwayspossibleto find the “best” settingfor a
given paramete(MMD-L is betterthan MMD-D on small problemsandworseon largerones).For
LOQO, the global heuristicis uniformly better,but doesnot dramaticallyimprove the performances;
this differenceis not surprising,sincethe two codesuse different (normal equationsand reduced-
KKT respectively) approaches to matrix factorization.

k n_m Size |lter | MMD-L  MMD-R  MLF-L MLE-R
10 50 625 6250| 12 37.70 30.97 33.24 27.84
10 50 625 6250| 12 37.35 30.98 33.13 27.60
100 30 518 51800 12 |3709.12 3344.74 1789.23 1829.65
100 30 519 51900 13 [4036.83 3382.39 1927.01 1935.82

Table 5: some examples from CPLEX-Barrier optimization parameters tuning

3.4 A Column Generation code

A limited comparison was also possibth BCG, a modernColumn Generationcodé”, developed
for repeatedly solvinylMCF subproblems in a Branda Price approachto the Integer MMCF, and
using CPLEX forsolving the “Master” problem at eachiteration. The BCG code was not directly
available;however,the authorskindly sharedthe test instances andhe results (even some not
reportedin the article), allowing an indirect comparison.It should be noted that, in its present
version, BCG only solvesthe undirected MMCF, althoughonly minor modifications would be
neededto extendit to the directed case.Hence, the comparisonis not completely satisfactory.
However,the efficiency of a Column Generatiorcode dependson many importantimplementation
details, and it would not have beenfair to compare MMCFB with some (most likely naive)
implementatiorof ours. Hence,we preferredto keepthis limited comparisonwith a sophisticated
codesuch asBCG. The relative performancef LP-basedCost Decompositionmethodslike the
Column Generation approach (but see'&l$t) andQP-based ones like MMCFB are currentipder
research, and will be the subject of a future article.
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3.5 Other codes

The abovecodesdo not exhaustall the proposedcomputationalapproachedo MMCF: indirect
comparisonhave beenmade also with other Interior Point method8% °%, different Cost
Decompositionapproachd® ® and s-approximationalgorithm&?. The comparisonconcernsthe
PDS problems (Cf. 84.3), that are difficMMCFs with large graphs but few commoditesd MCF
subproblemshence,the resultsdo not necessarilyprovide useful information on other classesof
instances, such as those arising in telecommunicatidnesh are characterizedby a large numberof
commodities Furthermorethe codeswereran on a heterogeneouset of computersranging from
(vector or massivelyparallel) supercomputerso (clustersof) workstations,making it difficult to
extract meaningful information from the running times reported.

No comparisonat all was possiblewith ResourceDecompositionapproaché$’ or Primal-Dual
method8”: however, the available codes are at least sufficient to andmitial picture of the current
scenery of computationalpproacheso MMCF. Hopefully, othertestswill cometo further enhance
our understanding.

4. The test problems

The other fundamental ingredient for obtaining a meaningful computational compaascadsquate
set of test problems.Somedatasetsand randomgeneratorsof MMCFs have beenusedin the
literature totestsomeof the proposedapproacheshowever,many of thesetestproblemsare small,
and even the largemeshavea small numberof commaodities.This is probablydueto the fact that,
with most of the methods, the cost for solving aM®F grows rapidly withk, so that problemsiith
hundreds otommoditieshavefor long time beenout of reach.For our experimentssomeknown
data sets have been gathered that miglebbeideredepresentativef classef instancesrisingin
practice:when nosatisfactorytest problemswere available,different randomgeneratorshave been
used to produce data sets with controlled characteristics. All ith&s@cesand someothers,canbe
retrieved at http://www.di.unipi.it/di/groups/optimize/Data/MMCF.htodetherwith an instance-by-
instance output for all the codes lisiadg3. We hopethat this databasevill grow andwill form the
basis for more accurate computational comparisons in the future.

4.1 The Canad problems

The first datasetis madeof 96 problems,generatedvith two randomgeneratorqone for bipartite
and the other for general graphs) developedto test algorithms for the Fixed Charge MMCF
problent®. A parametercalled capacityratio, is availableasa “knob” to producelightly or heavily
capacitated instances. MMCFs, these instances have provepoateriorito be quite “easy”; on the
contrary, the correspondirfgxed Chargeproblemsare known to be “hard”, and hencethe efficient
solution of “easy’'MMCEFs can still have an interest. Furthermore, this data #& @nly one having
instanceswherethe numberof commaoditiesis considerablylargerthat the numberof nodes (upto
400 vs. 30), as in some real applications. The instances are divided into the three groups:

— 32 bipartite problems (group A) with multiple sources and sinks for each commodity;

10
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— 32 nonbipartite problems (group B) with single source/sink for each commodity;
— 32 nonbipartite problems (group C) with multiple sources and sinks for each commaodity.

The characteristicef the instancesareshownin Table6 (85.1): for eachchoice of (k, n, m), two
“easy” and two “hard” instances have been generated.

4.2 The Mnetgen generator

Mnetger is a well-known random generator. An improved version has been develojen fests,
where the internal random numbeigeneratorhas been replacedwith the standarddr and48()
routine, the output file format has been “standardized*! and a minor bug hasbeenfixed. 216
problems have been generated withftiilwing rules:the problemsaredivided in 18 groupsof 12
problems each, each group being characterizeddayr én, k) for n in {64, 128, 256} andk in {4,
8, ... , n} (asMnetgencannotgeneratgroblemswith k > n). Within eachgroup, 6 problemsare
“sparse” and 6 are “dense”, with/ n respectively equal to about 3 and 8. In both these subgrdups,
problems are “easy” and 3 are “hard”, where an easy problem has mutual capacity coostrédits
of the arcs and 10% of the arcs with an “high” cost, while thesefigures are 80% and 30%
respectively for a hard problem. Finally, tBesubproblemsharacterizedby the 4-tuple (n, k, S, D)
(S O {sparse,dense},D [0 {easy, hard}) have respectively30%, 60% and 90% of arcs with
individual capacityconstraints Randomly generatednstancesare believedto be generally“easier”
than real-world problems; however, the “hard” Mnetgen instances, especidinge”, have proven
to be significantly harderto solve (by all the codes)than both the “easy” onesand instance®f
equivalent size taken from the other sets of test problems.

4.3 The PDS problems

The PDS (Patient Distribution System) instances derive fromrtitdemof evacuatingpatientsfrom
a placeof military conflict. The availabledatarepresent®nly one basic problem, but the model is
parametrian the planninghorizont (the numberof days):the problemshave a time-spacenetwork
whose size grows about linearly withThis characteristigs often encounterean MMCF modelsof
transportatiorand logistic problems.However,in othertypesof applicationsk alsogrows with the
planning horizon, while in the PD@oblemsk is a constant(11); hence the largerinstancehavea
very largem/ k ratio.

4.4 The JLF data set

This setof problemshasbeenusedin 2 to testthe DW approachto MMCF: it containsvarious
(small) groupsof small real-world problemswith different structurespftenwith SPT subproblems
and with never more than 15 commodities.

4.5 The dimacs2pprn “meta” generator

Several MMCFs, especially those arising in telecommunications,have large graphs, many
commoditiesand SPT subproblemsall thesecharacteristicare separatelypresentin someof the
previousdatasets, but neverin the sameinstance.To generatesuch instances, wedevelopeda
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slightly enhanced version of thémacs2pprrfmeta” generator, originally proposedifi, that allows
a greatdegreeof freedomin the choiceof the problem structure.Dimacs2pprn inputs an MCF in

DIMACS standardformat (ftp://dimacs.rutgers.edu/pub/netflow)e. a graph G with arc costsc,

nodedeficits b, arc capacitiesu andthreeparameters, r and f, and constructsan MMCF with k

commoditieson the samegraphG. Deficits and capacitiesof the i-th subproblemarea “scaling” of

those of the origindVICF, i.e.k numbers{ r, .. r, } areuniformly drawnatrandomfrom [ 1 .. r ]

and the deficits and individual capacitiesare chosenas b" = r,b and u" = r,u; costs c are
independenthyand uniformly drawnrandomlyfrom [ O .. ¢; ]. The mutual capacitiesu are initially

fixed tofu, and eventually increaséd accommodatéhe multiflow obtainedby solving the k MCFs
separately(with randomcostsuncorrelatedwith the dl]), in order to ensurethe feasibility of the
instance.At the user’s choice, the individual capacitiescan then be setto +oo. This is a “meta”

generatorisincemostof the structureof the resultingMMCEF is not “hard-wired” into the generator,
like in Mnetgen,but depend=n the initial MCF; in turn, this initial MCF can be obtainedwith a
randomgenerator.For our tests,we usedthe well-known Rmfger?®, which, given two integer
valuesa andb, produces a graph madelo$quaredyrids of sidea, with one sourceand onesink at
the “far ends” of the graph. For all 6 combinationsiof {4, 8} andb in {4, 8, 16}, an“easy” anda
“hard” MCF have beemeneratedvith maximumarc capacitiesespectivelyequalto 1/2 and 1/10 of

the total flow to be shipped. Then, for each of tHEB&CFs, 4 MMCFs have beemgeneratedyith

kin {4, 16, 64,256}, r = 16 andf = 2k (so that the mutual capacity constraintswere four times
“stricter” thanthe original capacitieu), yielding a total of 48 instanceswith up to one million of

variables.

4.6 The BHV problems

Two sets ofrandomlygeneratedindirectedMIMCFs have beermusedto testthe Column Generation
approachof !, In both sets,the commoditiesare intendedto be Origin / Destinationpairs, but the

commoditieswith the sameorigin can be aggregateth a much smaller numberof single origin-

many destinationslows. The 12 “gx” problemsall have 50 nodes, 130 arcs (of which 96 are
capacitated) and 585 O/D pairs that can be aggregated into 48 commaodities, giedtlhgP size of

6.2:10% a posteriori,they haveprovento be quite easy. The 10 “r10-x-y” problemsall have 301

nodes,497 arcs(of which 297 are capacitatedand 1320 O/D pairsthatcanbe aggregatethto 270

commodities, yelding a totaP size of 1.310°. The group is divided into 5 “r10+-and 5 “r10-55-

y" instances that are similar, but for the fact thatdhecapacitiesn the first group areintegralwhile

those in the second om@ee highly fractional: the two subgroupshaveprovento be of a surprisingly
different “difficulty”.

5. Computational results and conclusions

In this paragraph, we report on the comparison of MMCFB with the codes descrifdirhe test
problems described in 8Fhe approacheseingvery different, it appearghat the only performance
measure which allows a meaningful comparison is the running time. In the followimgpoeCPU
time in seconds needed to solve the diffemoblems;the loadingand preprocessingmes havenot
beenincluded.Informationlike the numberof iterations(with different meaningsor eachcode)or
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the time spenin different partsof the optimizationprocesge.qg. for computingp andsolving (4;,))
has not been reported in the tables for reasons of space and clarity: all these data arealabler
at the above mentioned Web page.

Unless explicitly stated, the times have been obtained on a HP9000/712-80 workstati@cddes
run on different machines, the original figures will be reported and a qualitative estimateetdtite
speedhasbeenobtained—ifpossible—bycomparingthe SPECint92and SPECfp92figures (97.1
and 123.3respectivelyfor the HP9000/712-80)For MMCFB, CPLEX (both simplex and Interior
Point) and LOQO, the requiredrelative precisionwas setto 10°: in fact, the reportedvaluesof the
optimal solutionalwaysagreein thefirst 6 digits. PPRN do not allow sucha choice,but it always
obtainedsolutionsat leastas accurateas the previouscodes.Upon suggestionof the authors,the
relative precisionrequiredfor IPM was insteadsetto 10°, assmallervaluescould causenumerical
difficulties to the PCG: in fact, the values obtainedwere often different in the sixth digit. The
precisionof the BCG codeis not known to us, but should be comparablethe other codeswill be
explicitly discussed later.

In all the following tables,b (< m), if present,s the numberof arcsthat have a mutual capacity
constraint,and, for large datasets, eachentry is averagedfrom a set of instanceswith similar
size= mk The columnswith the nameof a codecontainthe relative running time; “*” meansthat
some of the the instances of that group could not be solved due to memory problemedrsthat
the code aborteddue to numericalproblemsand “**” indicatesthat the computationhad to be
interruptedbecausehe workstationwas “thrashing”, i.e. spendingalmost all the time in paging
virtual memory faults.

5.1 The Canad problems

The resultsof the threegroupsof instancesA, B and C are summarizedn Table 6: they are also
visualized in Figure 4, Figure 5 and Figure 6tfoe threegroupsseparatelywherethe runningtime
of each algorithm is plotted as a function of e

If comparedto the faster code, the general-purposénterior Point solversare 2 to 3 orders of
magnitude slower on groups B and C and 1 to 2 on group A, furthermore, they wabéethoisolve
the largest instances due to memory or numerical problems. The spedRl &l (approximately)3
to 20 times faster on group A, 20 to 70 times faster on group B and 1Qitoe$@asteron groupC:
however,it is almost never competitivewith any of MMCFB, CPLEX and PPRN. Among those
latter solvers, MMCFB is 10 to 4imesfasterthan CPLEX and5 to 20 timesfasterthan PPRNon
all instancesan exceptionis the first half of groupA, whereMMCFB is lessthan 2 times slower.
Theseare“difficult” small instanceswith few commaodities,where MMCFB requiresconsiderably
more ¢ evaluationghanfor all the other problems.This may leadto the conjecturethat MMCFB is
not competitive on “difficult” instances, but the following experienaék show that this is true only
if the number of commodities is also small.
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k n m size MMCFB | Cplex | PPRN | IPM LOQO IPCplex
10 50 400 4000( 2.37 1.27] 2.13 3.38 13.59 11.76
10 50 625 6250 3.40 1.99| 2.18 9.13 49.83 34.82
10 100 1600] 16000| 3.01 3.66| 4.66| 17.87 100.09 *o*

Al 10 100 2500 25000 3.04 4.24] 6.13| 31.42 387.88 *ox
100 50 400| 40000|] 0.76 |[10.31|10.23| 18.53 472.95| 358.47
100 50 625| 62500 2.43 |89.96/29.79| 42.49| 2609.69|1729.01
100 100 1600|160000| 1.39 |28.95|28.00|/103.04 * *
100 100 2500/250000] 1.46 [36.51]27.03/174.03 * *

40 20 230 9200| 0.06 0.90| 0.26 6.11 193.53| 100.64
40 20 289| 11560 0.06 1.14( 0.28 3.71 154.13| 176.97
200 20 229| 45800| 0.24 5.56| 2.02| 26.61 645.80| 988.65

B|100 30 517 51700 0.45 6.16| 3.93| 29.25| 9895.41|1988.24
200 20 287| 57400 0.36 7.54| 3.52| 32.45 888.71|1343.36
100 30 669| 66900 0.25 7.07| 1.64| 32.11/14016.83|2915.02
400 30 519(207600( 1.03 |30.18(24.96(145.15 * * ok ok
400 30 688[275200f 1.19 |38.32(23.32[170.14 * * ok

40 20 230 9200 0.23 1.02] 0.37 5.64 223.79| 108.88
40 20 289| 11560 0.15 1.22] 0.31 5.79 182.43| 189.19
200 20 229| 45800 0.90 7.86| 6.23] 22.92 727.55|1044.92

C|100 30 517| 51700 1.10 8.05| 6.51| 25.99|12126.88|2156.04
200 20 287 57400 0.51 6.93| 4.28( 25.85 947.17|1429.17
100 30 669| 66900| 0.79 8.76| 4.24| 32.18/16093.50/3392.77
400 30 519(207600( 3.26 |48.21(38.53(129.10 * * ok
400 30 688|275200| 3.62 |60.87[42.69/167.04 * * ok

Table 6: results for groups A, B and C of the Canad problems
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Figure 6: Canad problems, generic graphs (group C)

5.2 The Mnetgen problems

The Mnetgemroblemshavea wide rangeof different characteristicsfrom smallto very largesizes
(more than 5-10° variables),and from small to very large m / k ratios. Table 7 and Figure 7
summarize the resultge haveobtained;the timesarethe averagesakenover 12 problemswith the
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same q, k).
k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
4 64 362|148 1.4e+3 0.07 0.22 0.13 1.44 1.73 1.45
8 64 371{183 3.0e+3 0.26 0.50 0.52 4.26 9.22 7.56
16 64 356(191 5.7e+3 1.08 2.01 3.41 16.03 58.96 40.14
32 64 362|208 1.2e+4 3.42 12.99 22.04 43.27 190.76 98.73
64 64 361|213 2.3e+4 8.53 115.99 147.10 114.19 244.66 216.44
4 128 694|293 2.8e+3 0.58 0.54 0.85 6.45 7.18 6.49
8 128 735|363 5.9e+3 2.57 1.81 4.79 26.32 66.65 50.56
16 128 766(424 1.2e+4| 11.30 17.31 40.57 116.26 683.47 394.19
32 128 779|445 2.5e+4| 27.72 212.09 503.48 346.91 * *
64 128 784|469 5.0e+4| 44.04 1137.05 2215.48 719.69 * *
128 128 808[{485 1.0e+5| 52.15 5816.54 6521.94 1546.91 * *
4 256 1401|570 5.6e+3 7.54 2.38 9.88 51.00 50.70 40.37
8 256 1486|743 1.2e+4| 25.09 15.48 105.89 208.10 568.02 377.87
16 256 1553|854 2.5e+4| 60.85 180.06 955.20 844.09 * *
32 256 1572|907 5.0e+4|107.54 1339.46 6605.45 1782.47 * *
64 256 1573|931 1.0e+5(144.75 7463.14 18467.73 3441.62 * *
128 256 1581|932 2.0e+5/223.13 35891.37 61522.94 9074.31 * *
256 256 1503|902 3.8e+5/445.81 110897+ 187156+ 17279.00 * *
Table 7: aggregated results on the Mnetgen problems
4 8 16 32 64 128 256
64(2.93 1.90 1.87 3.80 13.60
128/ 0.93 0.70 1.53 7.65 25.82 111.53
256(0.32 0.62 2.96 12.46 51.56 160.85 251*

Table 8: ratio betwee

4 8 16 32 64 128 256

64
128
256

1.73 1.98 3.16 6.45 17.25
1.47 1.86 3.59 18.17 50.30 125.06
1.31 4.22 15.70 61.42 127.58 275.72 424*

n CPLEX and MMCFB times - problems in the same row have fixeldvarying

Table 9: ratio between PPRN and MMCFB times - problems in the same row hawve dindd/aryingk

4 8 16 32 64 128 256

64
128
256

19.69 16.24 14.85 12.66 13.39
11.14 10.23 10.29 12.52 16.34 29.66

6.77 8.29 13.87 16.57 23.78 40.67 38.76

Table 10: ratio between IPM and MMCFB times - problems in the same row have fixedvaryingk

Again, the general-purpose Interior Point codes are not compélititvthis time the specializedPM
is better than both CPLEX and PPRN on the instances withkdggeater than 32): the speedaipo
increaseswith both m and k, reachingover an order of magnitudein the (256, 256) instances.
However, MMCFB is evenfaster,outperformingthe simplex-baseaodesby aboutthreeorders of
magnitudeon the largestinstances. Furthermor#he hard and dense(256, 256) problemscould be
solved by neither CPLEX nor PPRN in reasonabldime: they were stoppedafter having run for
several days without produceing amgult. Therefore the correspondingentriesin Table7, marked
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with a “+”, are actually (mild) estimates.
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Figure 7: aggregated results on the Mnetgen problems

However, a closer examination of the reselfightensthe weakness oMMCFB on largeinstances
with few commoditiesThis is betterseenin Table8, Table9 and Table 10, andthe corresponding
Figure 8, Figure 9 and Figure 10, where the ratio between the rummegpf CPLEX (respectively
PPRNandIPM) and MMCEFB is reportedfor different valuesof (n, k—the entriesmarkedwith a
“*” are those basedn estimatesand shouldactuallybe larger. MMCFB is slowerthan CPLEX by
up to a factor of 4 for instances with a langék ratio: moredisaggregatedataaboutsome*critical”
256-nodesproblemsare reportedin Table 11 for a better understandingof the phenomenon.
Noticeably, “hard” problemshj arereally harderto solve, for all the codes,than“easy” ones(e) of
the same size; moreover, they are much halger, e.g., Canadproblemsof comparablesize, since
a1.610° variables(100, 100, 1600) Canadinstancecan be solvedin 1.5 secondswhile a hard
1.510 variables (64, 256, 2300) Mnetgen instance requires over 350 seconds.

On problemswith few commodities, MMCFB is about 2 times slower than CPLEX whenthe
instances are easy, and about 4 tisileserin the caseof hardones.Conversely asthe numberof
commoditiesincreasesthe relative efficiency (the Cplex% and PPRN% columns)of MMCFB is
larger onhardinstanceghanon easyones,andit increasewith the problemsize. This is probably
due to the fact that the numberjo&valuationsdependon the “hardness’of the instance but much
less ork, while the number of simplex iterations tends to increase under the combined efiertdf
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k. This is true for both (the dual) CPLEX and (the primal) PPRN, possibly indicating that
decomposition methods mayherentlyperform better on many-commaodities problems.
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Figure 8: ratio between CPLEX and MMCFB times - for élgdhe columns correspond to different
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Figure 9: ratio between PPRN and MMCFB times - for dathe columns correspond to different

As we expected, IPM was less affectgdthe “difficulty” of the instancethanall the othercodes:in
fact, the relative efficiency of MMCFB (the IPM% column)is lower on hard instancesconfirming
that the Interior Point approachis especially promising on difficult problems. However, since
MMCFB is more and more competitive with IPMlamcreases, IPMs likely to be competitiveonly
on hard instances with smaéllthis is confirmedby the next dataset, and by noting that (seeFigure
10) therelative efficiency of MMCFB decreasesasn increasegor smallk, butincreasesvith n for
largek. Yet, theseresultsmustbe takenwith somecare:in all the Mnetgeninstancedhereare arcs
with u'i} = 0, that have been givextiny capacityand a hugecost, andthis workaroundmay havean
adverse effect on the performance of IPM that is currently impossible to estimate.
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Figure 10: ratio between IPM and MMCFB times - for elgdine columns correspond to different

Kk m |type| MMCFB Cplex PPRN IPM Cplex% PPRN% IPM%
4 T779|sle 0.99 0.68 1.47 8.97 0.69 1.49 9.06
4 781 s/h 7.30 1.73 5.93 26.59 0.24 0.81 3.64
4 2021 d/e 3.21 1.76 5.88 42.06 0.55 1.83 13.09
4 2021|d/h| 18.65 5.36 26.22 126.38 0.29 1.41 6.78
8 795|s/e 1.98 1.85 5.74 26.55 0.93 2.90 13.41
8 798|s/h| 12.62 4.52 15.67 83.88 0.36 1.24 6.65
8 2171|d/e| 21.32 10.09 55.33 181.09 0.47 2.60 8.49
8 2177|d/h| 64.44 45.46 346.82 540.88 0.71 5.38 8.39

16 799|s/e 5.56 6.15 28.16 65.87 1.11 5.07 11.85

16 831(s/h| 21.76 19.97 77.01 208.20 0.92 3.54 9.57

16 2280(d/e| 45.74 54.53 272.50 735.33 1.19 5.96 16.08

16 2303[{d/h]170.33 639.59 3443.10 2366.96 3.76 20.21 13.90

32 81l6|s/e| 11.01 20.52 100.64 197.00 1.86 9.14 17.90

32 820|s/h| 47.16 164.15 488.98 451.94 3.48 10.37 9.58

32 2331|d/e| 79.03 464.85 1205.80 1391.59 5.88 15.26 17.61

32 2321|1d/h|292.98 4708.31 24626.37 5089.33| 16.07 84.06 17.37

64 825|s/e| 20.20 116.21 522.45 437.24 5.75 25.86 21.64

64 801|s/h| 54.73 362.61 1197.35 699.22 6.63 21.88 12.78

64 2337/ d/e|146.11 5239.85 7298.90 3818.54| 35.86 49.95 26.13

64 2330/ d/h|357.97 24133.90 64852.23 8811.50] 67.42 181.17 24.62

Table 11: disaggregated data about some 256-nodes problems

5.3 The PDS problems

As shown in Tabld2 andFigure 11, severalPDSinstancesvere solvedup to t = 40: the LP sizes
range from 4.1.0° to 2.410°, butk is always 11, so that thna/ k ratio for PDS40 is about I0°.
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Figure 11: results for the PDS problems
t n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
126 372 87|4.1e+3 0.70 0.81 1.12 3.80 7.38 3.76
252 746 181|8.2e+3 5.66 2.12 5.60 13.38 23.57 14.52
390 1218 303|1.3e+4 13.10 5.32 15.88 32.22 93.91 42.93

541 1790 421
686 2325 553
835 2827 696
971 3241 804
1104 3629 908
9| 1253 4205 1048
10/ 1399 4792 1169

.0e+4| 50.18 12.87 33.74 73.98 316.32 102.07
.6e+4| 127.03 19.54 60.16 120.34 799.49 215.09
le+4| 129.92 41.97 112.3 296.30 1118.41 387.11
.6e+4| 241.13 79.31 171.64 536.86 1860.80 635.53
.0e+4| 287.03 96.61 221.46 429.26 2171.42 1039.43
.6e+4| 424.59 147.93 272.28 667.90 3523.90 2281.92
.3e+4| 928.14 207.64 467.49 823.81 5437.82 3485.19

O~NO O~ WNPE
OB WWNNE A

11/ 1541 5342 1295|5.9e+4| 813.08 324.78 499.58 1167.99 7820.92 5961.47
1211692 5965 1430|6.6e+4| 828.58 373.35 560.25 1625.69 11785.1 6522.1
13/ 1837 6571 1556|7.2e+4| 1033.7 315.61 945.13 2060.11 15922.9 8281.6
141981 7151 1684|7.9e+4| 2198.5 524.05 1325.3 2172.29 19033.1 10276.9
15/ 2125 7756 1812|8.5e+4| 1666.6 885.88 1431.1 3054.57 * *
18| 2558 9589 2184|1.1e+5/2237.47 2132.57 3093.51 5182.26 * *
20| 2857 10858 2447|1.2e+5/3571.58 3766.72 5213.73 8910.87 * *
21| 2996 11401 2553|1.3e+5|3541.34 5823.80 7475.30 8237.08 * *
24| 3419 13065 2893|1.4e+5|5796.18 11936.5 10817.8 9151.14 * *
27| 3823 14611 3201|1.6e+5/8761.89 28790.4 14670.2 11687.2 * *
30| 4223 16148 3491/1.8e+5/10343.2 51011.5 18995.0 13935.1 * *
334643 17840 3829|2.0e+5/15459.3 54351.3 28869.6 12537.9 * *
36| 5081 19673 4193/2.2e+5|17689.2 * 34453.8 17519.3 * *
40| 5652 22059 4672|/2.4e+5/22888.5 * * 20384.2 * *

Table 12: results for the PDS problems

The two general-purpose Interior Point codes were not alslehte instancedargerthanPDS15due
to memoryproblems,but evenfor the smallerinstanceshey were always one order of magnitude
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slower than the simplex-based codes.tol8 CPLEXoutperformsboth PPRN and MMCFB, but
as the size increases the gap lessens, and for the largest inst&H€EB outperformsCPLEX by a
factor of four; also, for t = 24 PPRN is competitive with CPLEX, and for larger instancesthe
specializedsimplexis betterthanthe genericone of a factor of two. However, neither CPLEX nor
PPRN were able to solve PDS40due to memory problems,while MMCFB solvedthe problem,
althoughit requiredmore than 6 hours. The only other code that was capableof solving all the
instances is IPM; far> 33, it has analogous—»but slightly better—performance than MMCFB.

Since PDS problems hawe/ n= 3, it is possible (and instructive) to compare the resultsthéton
hard (.h) and easy(.e) “sparse”MnetgeninstancesTable 13 showsthat MMCFB solvesa hard
Mnetgeninstancemuchfasterthana PDS instanceof similar size. The running times of the other
methods for these pairs of Mnetgen &S instancesare far lessdifferent: however,the difference
tends to increase whére> 11 in theMnetgeninstance The PDS problemsare consideredifficult,

but the “measureof difficulty” has neverbeenexplicitly stated:by taking it as the solution time
required by a simplex methodyitould be possibleto assertthat the Mnetgeninstancesare aboutas
hard, but they can be efficiently solvedby MMCFB. This statementanbe criticized, howeverit is
reasonableghat a Cost Decompositionmethod performs better on problems where the overall
“difficulty” is given by a largek rather than by a large.

k n Size MMCFB Cplex PPRN IPM
16.256.e 16 256 12789 5.56 6.15 28.16 65.87
16.256.h 16 256 13301 21.76 19.97 77.01 208.20
PDS3 11 390 13398 13.10 5.32 15.88 32.22
32.256.e 32 256 26123 11.01 20.52 100.64 197.00
32.256.h 32 256 26229 47.16 164.15 488.98 451.94
PDS5 11 686 25575 127.03 19.54 60.16 120.34
64.256.e 64 256 52779 20.20 116.21 522.45 437.24
64.256.h 64 256 51264 54.73 362.61 1197.35 699.22
PDS10 11 1399 52712 928.14 207.64 467.49 823.81
256.256.e | 256 256 210859 183.37 4173.05 16150.89 3346.51
256.256.h| 256 256 212480 316.59 16222.97 27625.40 6735.61
PDS33 11 4643 196240]|15459.30 54351.30 28869.60 12537.90

Table 13: Mnetgen and PDS problems of the same size

Cplex |MMCFB ZsA  PZ X SM 286G
1 1 1 7 840
10 208 928 65 232 123| 1920 45
20| 3767 3572 497 1225| 372 8220 253
30[(51012| 10343 557 5536 76519380 654
40 22889 858 1448[{38160 1434

Table 14: comparison with approaches from the literature for the PDS problems

On the PDS problems,it is also possibleto try a comparisonwith someof the other approaches
proposed in the literature. This is done in Table 14 with PDS1, 10, 20, 30 and 40.
The other approaches considered are:

— the parallelNonlinearJacobiAlgorithm (ZaA) appliedto the Augmented_agrangearof %, that
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was run on a Thinking Machine CM-5 with 64 processeashone (apparently)capableof about
25 SPECfp92;

— the linear-quadratic exact penalty function method (P#J ofhat was run on &ray Y-MP vector
supercomputer, whose performances with respect to scalar architectures are very hard to assess;

- theg-approximation algorithm (GK) ¢, that was run on BBM RS6000-550vorkstation(83.3
SPECIp92, 40.7 SPECIint92); the largestancesvere solvedto the precisionof 4-5 significant
digits;

— the specializedinterior Point method(SM) of ®4, that was run ona DECstation3100 (whose
SPEC figures are unknown to us) and that obtained solutions with 8 digits accuracy;

— a modification and parallelization of the above (ZaG) that was run on a cluSiBA&Cstatior20
workstations": unfortunately, the exact model is not specified, so that the (SPECfp92,
SPECIint92) can be anything between (80.1, 76.9) and (208.2, 169.4).

Unfortunately, extracting significant information from the figuiesery difficult dueto the different
machine used. Howeveit,is clearthat, fortheseinstancesthe e-approximationalgorithm provides
good solutionsin a very low time: in Table 15, optimal objective function values (obtained with
CPLEX), lower bounds obtained by MMCFB and upper bowidainedby GK arecompared.The
reportedGaps for GK aredirectly drawnfrom 3, exceptfor the last two problemsfor which an
estimate of the exact optimal objective function value had been ug&d in

Cplex MMCFB X

n O.F. value O.F. value Gap O.F. Value Gap

1]29083930523|29083906658 -8e-07|2.90839E+10 3e-09
2128857862010/28857838002 -8e-07|2.88579E+10 6e-08
3128597374145|28597348614 -9e-07|2.85974E+10 1e-08
4128341928581(28341903396 -9e-07(2.83419E+10 2e-07
5128054052607/ 28054035803 -6e-07|2.80541E+10 3e-07
6|27761037600/27761015915 -8e-07|2.77611E+10 5e-07
7127510377013|27510253762 -4e-06/2.75107E+10 1e-05
8127239627210|27239603634 -9e-07|2.72399E+10 9e-06
9126974586241|126974456167 -5e-06/2.69749E+10 1e-05
10|26727094976|26727038830 -2e-06|2.67280E+10 3e-05
20/23821658640/23821637841 -9e-07|2.38232E+10 7e-05
30(21385445736(21385443262 -1e-07|2.13888E+10 2e-04
40/18855198824|18855181456 -9e-07|1.88595E+10 2e-04

Table 15: comparison of the relative gap of MMCFB and GK

Among the other methods, tih@o parallelonesseemto provide goodresults,since MMCFB could

not surely achieve a speedup larger than 11 (on the same machines): htheeoenparisons very
difficult, and it is perhaps better not to attempt any commenenfarkcan insteadbe doneaboutthe
conceptof “solution” that is underneatrsomeof the figuresin the table: many of the codes—for
instance(GK), (SM) and (ZaG)—useheuristic stopping criteria, essentiallyperforming a fixed
numberof iterationsbeforestopping.A posteriori, the solutionsare found to be accurate but the
algorithm is not capable of “certifying” it by means of appropriate primal-dual estimates of the gap.
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5.4 The JLF problems

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
10term 10 190 510 146 5100 0.27 0.84 1.07 9.16 26.17 10.97
10term.0 10 190 507 143 5070 0.23 0.78 0.70 7.04 28.29 13.10
10term.50 |10 190 498 134 4980 2.00 0.82 1.22 7.97 18.05 11.60
10term.100|10 190 491 127 4910 2.40 0.86 1.10 8.69 19.21 10.58
15term 15 285 796 253 11940 4.81 3.39 11.57 41.35 210.94 106.98
15term.0 15 285 745 202 11175 1.94 2.72 10.23 30.35 123.21 47.15
Chen0 4 26 117 43 468 0.30 0.25 0.32 0.25 0.44 0.38
Chenl 5 36 174 65 870 0.98 0.64 0.73 0.41 0.99 0.77
Chen2 7 41 358 155 2506 5.98 4.89 3.77 1.59 4.17 3.91
Chen3 15 31 149 56 2235 1.22 5.18 1.96 1.10 3.12 2.62
Chen4 15 55 420 176 6300| 25.49 83.39 20.05 5.92 46.92 32.75
Chenb 10 65 569 242 5690| 52.58 48.74 48.12 5.24 21.18 15.53
assadl.5k 3 47 98 98 294 0.03 0.11 0.09 0.36 0.39 0.22
assadl.6k 3 47 98 98 294 0.01 0.08 0.06 0.39 0.37 0.22
assad3.4k 6 85 204 95 1224 0.08 0.33 0.55 1.41 4.26 1.44
assad3.7k 6 85 204 95 1224 0.10 0.29 0.56 1.57 4.22 1.41

Table 16: results for some of the JLF problems

Table 16 shows the results obtained on some JLF problems, tho&P#@ihbproblems: despithe
small numberof commoditiesMMCFB is still competitiveon the “xtermy” and “Assad.y’ sets.
The “Chex” problems are more “difficultthanthe others,sincethey requirean order of magnitude
more time to be solved than the¢€rmy” instances of comparabkze. For this dataset, the Interior
Point codesare competitive with, and IPM largely outperforms,all the others, confirming the
potential advantageof the Interior Point technologyon “hard” instances.However, such small
MMCFs arewell in the rangeof general-purposéP solvers,so thatit makeslittle senseto usead-
hoc technology. In this casetherissuessuch asavailability, ease-of-usend reoptimizationshould
be taken into account.

5.5 The dimacs2pprn problems

Due to the previousresults,the general-purposinterior Point codeswerenot run on this dataset,

that contains the largest instances of all. As described in §4.5, fgianydimensiona hard andan
easyinstancehave beerconstructedthe resultsare separatelyreportedin Table 17 and Table 18
respectively (note the differencetime numberof mutual capacityconstraintsp). As in the Mnetgen
case,CPLEX ran out of memoryon the largestinstancesand PPRN was sometimesstoppedafter
havingrun for a very long time without producinga result(the “+” entries):IPM also experienced
memory problemson the largestinstances,with 1.2 millions of variables.Note that a 2.510°
variablesMMCF requiresabout11, 20 and 129 megabytesof memoryto be solved by MMCFB,

PPRN and CPLEX respectively: MMCFB requires an order of magnitude less memory than CPLEX.

The results obtainedfrom theseinstancesconfirm those obtained from the previous data sets:
MMCEFB is faster than the two simplex-basedcodeson all but the smallestinstances,IPM is
competitivewith both CPLEX and PPRN on instanceswith large k but MMCFB is even more
efficient—for k = 256 it is always more than an order of magnitudefasterthan the other codes,
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approachingthe three orders of magnitudeas m increases.Yet, especially on large problems,
MMCFB spendsmostof the time in the SPT solver, which suggestghat substantiaimprovements
should be obtained by making use of reoptimization techniques 8Pthalgorithms.

The results are also illustrated Bigure 12, Figure 13, Figure 14, Figure 15, Figure 16 and Figure
17, wherethe ratio of the runningtimesof CPLEX, PPRN and IPM vs. MMCFB is reportedfor
“hard” and “easy” instances separately. It is interestingpte that the relative efficiency of MMCFB
with respect to the simplex-based codeskfor4 is lower on easy problems thanlward ones,while
the converse is true for the relative efficiency of MMCFB with respect to IPM.

k n m size b MMCFB| Cplex PPRN IPM
4 64 240[9.6e+2| 240 0.46 0.32 0.37 1.23
4 128 496(2.0e+3| 112 1.30 1.05 2.36 2.65
4 256 1008|4.0e+3|1007| 21.50 8.85 14.82 23.13
4 256 1088|4.4e+3| 192 0.36 1.38 2.22 8.86
4 512 2240|9.0e+3| 447 5.97 14.39 32.26 63.44
4 1024 4544]|1.8e+4| 960| 39.76 70.41 178.06[ 266.79
16 64 240(3.8e+3| 240 0.44 1.23 1.68 7.58
16 128 496(7.9e+3| 112 4.31 19.72 29.75 24.74
16 256 1008(1.6e+4| 240| 64.79| 230.82 550.11| 437.41
16 256 1088|1.7e+4| 192 1.08 5.38 22.14 39.70
16 512 2240(3.6e+4| 448| 14.15| 218.55 479.96 540.90
16 1024 4544|7.3e+4| 960| 69.59/1079.63| 2796.85/2363.02
64 64 240|1.5e+4| 240 2.89 50.70 92.77 51.55
64 128 496|3.2e+4| 112 9.23| 222.65 562.71] 410.42
64 256 1008|(6.5e+4|1008( 94.07(3256.52(10011.30({4556.57
64 256 1088|7.0e+4| 192 4.37 93.14 535.47] 283.19
64 512 2240|1.4e+5| 448 37.69(2362.37| 7146.33(2703.51
64 1024 4544[2.9e+5| 960[(215.70/18763.9| 52787.6[22899.4
256 64 240|6.1le+4| 240| 17.52| 668.27| 1415.55| 258.87
256 128 496|1.3e+5| 112 48.72|13525.27(11443.50| 501.80
256 256 1008|2.6e+5/1008|458.36(56756.9| 200000+|6069.46
256 256 1088|2.8e+5| 192| 15.30( 821.86| 7832.38|1475.91
256 512 2240|5.7e+5| 448(218.84 * 1138225.0(22266.8
256 1024 4544])1.2e+6| 960(898.51 * 1400000+ *

Table 17: results of the “hard” dimacs2pprn instances
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K n m size b MMCFB| Cplex PPRN IPM
4 64 240/ 9.6e+2| 48 0.07 0.17 0.16 0.54
4 128 496|2.0e+3|/112 0.18 0.24 0.26 1.61
4 256 1008|4.0e+3|239 1.12 1.81 3.40 5.37
4 256 1088|4.4e+3|191 0.08 0.54 1.80 4.17
4 512 2240|/9.0e+3| 447 0.75 6.41 12.08 35.58
4 1024 4544|1.8e+4]/960 1.84 14.02 34.84| 101.49
16 64 240 3.8e+3| 48 0.14 0.88 1.51 3.19
16 128 496|7.9e+3/112 0.66 3.50 7.67 10.88
16 256 1008 1.6e+4|240 3.53 20.27 65.31 63.66
16 256 1088|1.7e+4| 192 0.37 3.42 8.05 31.60
16 512 2240| 3.6e+4|448 2.24 43.30 275.89| 166.14
16 1024 4544 7.3e+4/ 960 6.64 74.82| 1286.26] 514.74
64 64 240 1.5e+4| 48 1.37 11.03 34.00 19.72
64 128 496|3.2e+4/ 112 2.12 25.80 109.97 51.61
64 256 1008|6.5e+4|240| 15.75| 445.28| 1395.74| 333.13
64 256 1088 7.0e+4| 192 2.75 47.05 339.72| 195.77
64 512 2240| 1.4e+5 448 8.83| 261.62| 4492.95 754.25
64 1024 4544|2.9e+5/960| 32.18] 978.31| 22511.3| 3411.4
256 64 240/ 6.1e+4| 48 9.21| 208.90 694.94 94.94
256 128 496|/1.3e+5/112| 11.36/ 401.02| 2662.57| 228.16
256 256 1008|2.6e+5 240 96.34|7324.71| 28435.0/ 1340.8
256 256 1088|2.8e+5/ 192 13.33| 474.34| 5270.80/1178.85
256 512 2240|/5.7e+5/448| 85.17 * 81419.1| 4236.8
256 1024 4544|1.2e+6/960] 159.33 * 1400000+ *

Table 18: results of the “easy” dimacs2pprn instances
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5.6 The BHV problems

MMCFB Cplex BCG MMCFB Cplex BCG

Ilter Time | Time |lter Time Iter Time Time Iter Time
gl 42 0.63 7.93| 4 5.06( |[r10-5-1 25 8.73| 6570.19|4391 662
g2 34 0.51 9.03] 5 4.15| |r10-5-2 26 9.01| 9249.35|4208 607
g3 42 0.63| 12.45( 5 5.15( |[r10-5-3 38 13.02( 6598.73(3237 398
g4 55 0.83| 16.08| 6 6.78| |[r10-5-4 20 7.14| 8481.97|4149 501
g5 85 1.33 20.3| 6 6.78( |[r10-5-5 23 8.16] 9262.55/ 3633 420
g6 100 1.55| 26.75| 7 7.78| |[r10-55-1| 877 311.01|10843.10| 2455 162
q7 100 1.58| 31.07| 7 8.69( |[r10-55-2| 934 330.21|12978.80| 2690 199
g8 156 2.66| 37.41| 8 10.66| [r10-55-3]1243 445.27(13849.00(2694 224
q9 221 3.76 | 44.96f 8 10.60( |[r10-55-4]| 999 349.20|11581.60| 2511 218
glof 172 2.92| 51.95| 9 12.88| |r10-55-5| 877 318.00 * 2706 234
gll| 196 3.37| 61.58] 8 12.55
gl2| 270 4.75) 64.96] 9 15.95

Table 19: results for the % problems Table 20: results for the “r1dy” problems

Among the available specialized solvers, only MMCFB is capable of salwidgectednstancesthe
three general-purposé&P solverscan be adaptedfor the task, but, due to the very poor results
obtained by the IP codes, only CPLEX was actually run on these data seimédfer the Column
Generation algorithmBCG) were obtainedn an IBM RS6000-590wnorkstation,creditedfor 121.6
SPECint92and 259.7 SPECfp92,i.e. essentiallytwice as fast as the HP9000/712-80:Table 19
shows that on the easyXproblems MMCFB is 10 times faster than BChe resultson the other
dataset, shownin Table 20, are quite surprising:the two methodsare essentiallyequivalenton the
(highly fractional) “r10-55y” instances, but MMCFBs ableto solve the similar (integral) “r10-5-y”

instances30 times faster, while BCG needsabouttwice the time. A rationalefor the behaviorof

MMCFB exists:a smallernumberof treesis likely to be necessaryo form the optimal flow as a
convex combination in the integral data case. However, it is ungleathe sameshouldnot be true
for the CG code: should it be proved that thidug to the Bundle-typeapproachthe resultcould be
rather interesting.

5.7 Conclusions

The above computational experience showsMMCFB canbe a valuabletool for solving MMCFs
with many commaoditiesto stressonefigure, MMCFB solvedthe hard, dense(256, 256) Mnetgen
instances in less th&t0 minutes but morethan6 and 10 dayswere needecoy CPLEXandPPRN
respectivelywhile IPM requireda little lessthan5 hours As the experiencewith the dimacs2pprn
data set show§/MCFs with overone million of variablescanbe solvedin lessthan 15 minutesof
CPU time by a low-end computer, provided that the subproblemshave a SPT structure. In a
companion papéf!, we alsoshow that a somewhatnaive” parallelizationof MMCFB obtainsvery
good parallel efficiencieson a massively-parallel computdor the sameinstancesfor which the
sequential code is more competitive, i.e. wkénlarge. Conversely, MMCFB does ragipearto be
a good choice for problems with a small numbecommodities,unlessthe instancesare very large:
the PDS problemsshow that MMCFB canbe competitiveevenon problemswith m / k ratio larger
than 1000, but the speedupwith respectto simplex-basedcodesis far smaller than on many-
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commodities problem.

The general-purpose Interior Point solvers are not competitive with the other approackiesy arel
not able tosolve evenmoderately-sizedhstances du#o excessivememoryrequirementsHowever,
the specialized one dramatically improves on them and it is competitive on difficult profidniew

commodities: it is also competitive withe simplex-baseanethods althoughnot with MMCFB, for

large valuesof k. Among the latters,CPLEX is (sometimesconsistently)fasterthan PPRN on the

Mnetgen and dimacs2pprn problems, while the conversedasor the Canadones:however,on the

largest (difficult) PDS problems PPRN neatly outperforms CPLEX.

The Column Generationcode was found (ona limited set of problems)to be less effective than
MMCFB, eventhoughin somecasesnot dramatically.For the subset ofthe problemswherethe
speedup is really impressive, it is still not clear which features of the codes detencthigference,
and further investigation is needddnally, the indirect comparisorwith methodsfrom the literature
seems to indicate that alternative approadaede at leastcomparablyefficient, or evenmuchmore
efficient for rapidly findingapproximatesolutions,at leaston someclassef problems.Evenmore
clearly, however,they show the needfor further computationalstudiesthat help in assessinghe
effectivenessf the various approache®n different classesof problems:we hope that this work
proves to be useful as a step in this direction.
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