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Abstract:  We present a Cost Decomposition approach for the linear Multicommodity Min-Cost
Flow problem, where the mutual capacity constraints are dualized and the resulting Lagrangean Dual
is solved with a dual-ascent algorithm belonging to the class of Bundle methods. Although
decomposition approaches to block-structured Linear Programs have been reported not to be
competitive with general-purpose software, our extensive computational comparison shows that,
when carefully implemented, a decomposition algorithm can outperform several other approaches,
especially on problems where the number of commodities is “large” with respect to the size of the
graph. Our specialized Bundle algorithm is characterized by a new heuristic for the trust region
parameter handling, and embeds a specialized Quadratic Program solver that allows the efficient
implementation of strategies for reducing the number of active Lagrangean variables. We also exploit
the structural properties of the single-commodity Min-Cost Flow subproblems to reduce the overall
computational cost. The proposed approach can be easily extended to handle variants of the problem.
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0. Introduction

The Multicommodity Min-Cost Flow problem (MMCF), i.e. the problem of shipping flows of
different nature (commodities) at minimal cost on a network, where different commodities compete
for the resources represented by the arc capacities, has been widely addressed in the literature since it
models a wide variety of transportation and scheduling problems[28, 58, 68, 3, 2, 6, 11]. MMCF is a
structured Linear Program (LP), but the instances arising from practical applications are often huge
and the usual solution techniques are not efficient enough: this is especially true if the solution is
required to be integral, since then the problem is NP-hard and most of the solution techniques
(Branch & Bound, Branch & Cut …) rely on the repeated solution of the continuous version.

From an algorithmic viewpoint, MMCF has motivated many important ideas that have later found
broader application: examples are the column generation approach[22] and the Dantzig-Wolfe
decomposition algorithm[21]. This “pushing” effect is still continuing, as demonstrated by a number of
interesting recent developments[59, 31, 32, 33].

MMCF problems also arise in finding approximate solutions to several hard graph problems[10, 43].
Recently, some ε-approximation approaches have been developed for the problem[36, 60, 64], making
MMCF one of the few LPs for which approximations algorithms of practical interest are known[52, 34].
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In this work, we present a wide computational experience with a Cost Decomposition algorithm for
MMCF. Decomposition methods have been around for 40 years, and several proposals for the
“coordination phase”[22, 23, 51, 54, 61, 20] can be found in the literature. Our aim is to assess the
effectiveness of a Cost Decomposition approach based on a NonDifferentiable Optimization (NDO)
algorithm belonging to the class of “Bundle methods”[63, 39]. To the best of our knowledge, only one
attempt[54] has previously been made to use Bundle methods in this context, and just making use of
pre-existent NDO software: here we use a specialized Bundle code for MMCF. Innovative features of
our code include a new heuristic for setting the trust region parameter, an efficient specialized
Quadratic Program (QP) solver[24] and a Lagrangean variables generation strategy. Perhaps, the main
contribution of the paper is the extensive set of computational experiences performed: we have tested
our implementation together with several other approaches on a large set of test problems of various
size and structure. Our experience shows that the Cost Decomposition approach can be competitive,
especially on problems where the number of commodities is “large” with respect to the size of the
graph.

1. Formulation and Approaches

Given a directed graph G(N, A), with n = | N  | nodes and m = | A  | arcs, and a set of k
commodities, the linear Multicommodity Min-Cost Flow problem can be formulated as follows:

(MMCF)
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where, for each arc  (i, j), xij
h is the flow of commodity h, uij

h and cij
h are respectively the individual

capacity and unit cost of xij
h, and uij is the mutual capacity which bounds the total quantity of flow on

(i, j). Constraints (a) and (b) are the flow conservation and individual capacity constraints for each
commodity, respectively, while (c) represents the mutual capacity constraints. In matrix notation,
using the node-arc incidence matrix E of G, MMCF becomes
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This formulation highlights the block-structured nature of the problem.

MMCF instances may have different characteristics, that make them more or less suited to be solved
by a given approach: for instance, the number of commodities can be small, as in many distribution
problems, or as large as is the number of all the possible Origin / Destination pairs, as the case of
traffic and telecommunication problems.
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MMCF is the prototype of many block-structured problems[33], such as Fractional Packing[59] and
Resource Sharing problems[31]. Common variants of MMCF are the Nonhomogeneous MMCF[4]

where (c) is replaced by A[ x1 ... xk ] ≤ u, the Nonsimultaneous MMCF[56] where the commodities
are partitioned in p “blocks” and only commodities within the same block compete for the capacity,
and the Equal Flow problem[3] where the flow on a certain set of pairs of arcs is constrained to be
identical.

Several algorithmic approaches have been proposed for MMCF: among them, we just name Column
Generation[13, 57, 8], Resource Decomposition[28, 50, 49], Primal Partitioning[23, 18], specialized Interior
Point[62, 48, 70, 19], Cost Decomposition[23, 51, 54, 61, 20, 69], Primal-Dual[67] and ε-approximation[52, 34]

methods. Unfortunately, the available surveys are either old[5, 45] or concentrated on just the “classical”
approaches[4. - Chap. 17]: hence, we refer the interested reader to[25], where the relevant literature on the
subject is surveyed. Information about parallel approaches to MMCF can also be found there or in[14]

(these papers can be downloaded from http://www.di.unipi.it/~frangio/).

Our approach belongs to the class of Cost Decomposition methods: to solve MMCF, we consider its
Lagrangean Relaxation with respect to the “complicating” constraints (c), i.e.

(RMGλ) ϕ( λ ) = Σh  min{  ( ch + λ )xh : Exh = bh , 0 ≤ xh ≤ uh }  − λu

and solve the corresponding Lagrangean Dual

(DMMCF) max{  ϕ( λ ) : λ ≥ 0 } .

The advantage of this approach is that the calculation of ϕ( λ ) requires the solution of k independent
single-commodity Min-Cost Flow problems (MCF), for which several efficient algorithms exist. The
drawback is that maximization of the nondifferentiable function ϕ is required.

Many NDO algorithms can be used to maximize ϕ; among them: the (many variants of the)
Subgradient method[40, 53], the Cutting Plane approach[44] (that is the dual form of the Dantzig-Wolfe
decomposition[21, 23, 42]), the Analytic Center Cutting Plane approach[30, 55] and various Bundle
methods[39, 51, 54]. The latter can also be shown[26] to be intimately related to seemingly different
approaches such as smooth Penalty Function[61] and Augmented Lagrangean[20] algorithms, where ϕ is
approximated with a smooth function. Most of these methods only require at each step a subgradient
g( λ ) = u − Σh x

h( λ ) of ϕ, where ( x1( λ ) ... xk( λ ) ) is any optimal solution of (RMGλ).

2. The Cost Decomposition code

It is outside the scope of the present work to provide a full description of the theory of Bundle
methods: the interested reader is referred to [39]. In [25, 26], the use of Bundle methods for Lagrangean
optimization and their relations with other approaches (Dantzig-Wolfe decomposition, Augmented
Lagrangean ...) are discusses in detail.

Bundle methods are iterative NDO algorithms that visit a sequence of points { λi } and, at each step,
use (a subset of) the first-order information β = {  〈 ϕ( λi ) , g( λi ) 〉 }  (the Bundle) gathered so far to
compute a tentative ascent direction d. In the “classical” Bundle method, d is the solution of

(∆βt) minθ{  1/2|| Σi ∈ β giθi ||
2
 + (1/t) αβθ : Σi ∈ β θi = 1 , θ ≥ 0 }
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where gi = g( λi ), αi = ϕ( λi ) + gi( λ̄ − λi ) − ϕ( λ̄ ) is the linearization error of gi with respect to the
current point λ̄ and t > 0 is the trust region parameter. From the “dual viewpoint”, (∆βt) can be
considered as an approximation of the steepest ε-ascent direction finding problem; from the “primal
viewpoint”, (∆βt) can be regarded to as a “least-
square version” of the Master Problem of Dantzig-
Wolfe decomposition. The Quadratic Dual of (∆βt)
is

(Πβt) maxd{  ϕβ( d ) − 1/2t || d ||2 }

where ϕβ( d ) = mini ∈ β { αi + gid } is the Cutting
Plane model, i.e. the polyhedral upper
approximation of ϕ built up with the first order
information collected so far. A penalty term
(sometimes called stabilizing term), weighted with
t, penalizes “far away” points in which ϕβ is
presumably a “bad” approximation of ϕ (Figure
1): hence, t measures our “trust” in the Cutting Plane model as we move farther from the current
point, playing a role similar to that of the trust radius in Trust Region methods. Once d has been
found, the value of ϕ( λ̄ + d ) and the relative subgradient are used to adjust t[47, 63]. The current point
λ̄ is moved (a Serious Step) only if a “sufficient” increase in the value of ϕ has been attained:
otherwise (a Null Step), λ̄ is not changed and the newly obtained first-order information is used to
enrich the Cutting Plane model. Actually, when solving MMCF the “λ ≥ 0” constraints must be taken
into account: this leads to the extended problem

(Πβ́t) maxd{  ϕβ( d ) − 1/2t || d ||
2 : d ≥ − λ̄ }

that guarantees feasibility of the tentative point, and can still be efficiently solved[24].

Our Bundle algorithm is described in Figure 2. At each step, the predicted increase v = ϕβ( d ) is
compared with the obtained increase ∆ϕ = ϕ( λ ) − ϕ( λ̄ ), and a Serious Step is performed only if ∆ϕ
is large enough relative: in this case, t can also be increased. Otherwise, the “reliability” of the newly
obtained subgradient is tested by means of the “average linearization error” σ: if g is not believed to
improve the “accuracy” of ϕβ, t is decreased. The IncreaseT() and DecreaseT() functions are
implemented as shown in Figure 3: both the formulas are based on the idea of constructing a quadratic
function that interpolates the restriction of ϕ along d passing through ( λ , ϕ( λ ) ) and ( λ̄ , ϕ( λ̄ ) ),
and choosing t as its maximizer. The latter formula is obtained by assigning the value of the derivative
in λ̄[47], while the former one is rather obtained by assigning the value of the derivative in λ[25]. The
IncreaseT() heuristic guarantees that t will actually increase ⇔ dg > 0, which is exactly the (SS.ii)
condition in [63]. Using two different heuristics has proven to be usually better than using only one of
them.

d

ϕβ()

d1 d2 d3

t1

t2
t3

ϕ()

Figure 1: effect of the stabilizing term; for
t1 < t2 < t3, di are the optimal solutions
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MMCFB

〈 choose m1 ∈ [0, 1] , 0 < m2 , t0 > 0 , t* > 0 and ε > 0  〉;
ȳ  = 0; t = t0; 〈 calculate ϕ( ȳ ) and g( ȳ ) 〉; β = { ( g( ȳ ) , 0 ) };
repeat

〈 β-strategy: eliminate outdated subgradients 〉;
〈 solve (∆´;βt) and (Π´;βt) for θ and d 〉; σ = αβθ;

if ( t*|| d ||2 + σ ≤ εϕ( ȳ ) )
then STOP;

else y  = ȳ  + d;

〈 calculate ϕ( y ), g( y ) and the corresponding α 〉;
〈 add ( g , α ) to β 〉;
if ( ∆ϕ = ϕ( y ) − ϕ( ȳ ) ≥ m1ϕβ( d ) )

then ȳ  = y; α = α + dG; t = IncreaseT();

else if ( α > m2σ )

then t = DecreaseT();

until ( STOP );

Figure 2: the “main” of the MMCFB code

〈 let M > 1 , m < 1 and tM ≥ t0 ≥ tm be fixed 〉;

IncreaseT() = max{  t , min{ tM , Mt , 2tv( v − ∆ϕ ) } }

DecreaseT() = min{  t , max{ tm , mt , ( α + ∆ϕ ) / 2α } }

Figure 3: the heuristic t-strategies

The m2 parameter, controlling the decrease of t, should be chosen “large” (≈ 3): the result is that t is
changed almost only in the early stages of the algorithm’s operations. Smaller values of m2 cause t to
decrease too quickly, so yelding a very long sequence of “short” steps. This setting is remarkably
different from the one usually suggested in the literature, i.e. ≈ 0.9[47, 63]: the reason might be that
Lagrangean functions of Linear Programs are qualitatively different from other classes of
nondifferentiable functions, having an enormous number of facets which makes them extremely
“kinky”. The choice of the other parameters is far less critical: m1 seems to be properly fixed to 0.1,
the (absolute and relative) safeguards on t almost never enter into play and the heuristics for
increasing and decreasing t are capable of correcting blatantly wrong initial estimates t0. If t* has been
chosen sufficiently large, upon termination the current point λ̄ is guaranteed to be an ε-optimal
solution of DMMCF: although selecting t* is in principle difficult, in practice it can be easily guessed
by looking at a few test executions of the code.

An innovative feature of our code is the Lagrangean Variables Generation (LVG) strategy: rather than
always working with the full vector of Lagrangean multipliers, we maintain a (hopefully small) set of
“active” variables and only solve the restricted (Πβ́t). Every p1 (≈ 10) iterations, we add to the active
set all “inactive” variables having the corresponding entry of d strictly positive; this is also done for
the first p2 (≈ 30) iterations, and when the algorithm would terminate because the STOP condition is
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verified. Usually, almost all the active variables reveal themselves in the first few iterations, and the
active set is very stable. Note that, from the primal viewpoint, the LVG strategy is a row generation
scheme, where a complicating constraint is added only if it is violated by the primal unfeasible
solution corresponding to d[16].

The LVG strategy has a dramatic impact on the time spent in solving (Πβ́t), which is reduced by up to
a factor of 5 even on small instances. Clearly, the LVG strategy can be beneficial only if the QP
solver efficiently supports the online creation and destruction of variables of subproblem (Πβ́t): this is
the case of the specialized solver used in the code[24], which employs a two-level active set strategy for
handling the d ≥ − λ̄ constraints. The availability of the specialized solver has been crucial for
developing an efficient Bundle code: other than supporting the LVG strategy, it is much faster than
non-specialized QP codes in solving sequences of (Πβ́t) problems. This has been shown in [24] by
comparing it with two standard QP codes (interestingly enough, one of them being exactly the QP
solver used for the previous Bundle approach to MMCF[54]), which have been outperformed by up to
two orders of magnitude; since the coordination cost ranges from 1% to 20% of the total running
time, a Bundle algorithm using a non-specialized QP solver would rapidly become impractical as the
instances size increases.

To keep the size of the Bundle low, we delete all the subgradients that have θi = 0 for more than a
fixed number (≈ 20) of consecutive iterations. We do not perform subgradients aggregation, since it
usually has a negative impact on the total number of iterations.

In most cases, and especially if k is large, most of the time is spent in solving the MCF subproblems;
hence, it is important to use a fast MCF solver with efficient reoptimizing capabilities. However, in
many classes of instances the MCF subproblems have a special structure that can be exploited: the
typical case is when all individual capacities uij

h are either 0 or +∞ and there is only one source node
for each commodity, that is when the subproblems are Shortest Path Tree problems (SPT). In our
C++ code, Object-Oriented Programming techniques have been used to accomplish this: MCF
subproblems are solved with an implementation of the Relaxation algorithm[7], while SPT
subproblems are solved with classical Shortest Path algorithms[35]. Even on small problems with few
commodities, this gives a speedup of up to four.

Object-Oriented Programming techniques have also been used in order to make it easy to develop
specialized or extended versions. In fact, we already developed a parallel version of the code[14, 25], as
well as extended versions for computing lower bounds for the Fixed Charge MMCF[25, 15] and for the
Reserve Problem[25]. Only minor changes would be required for solving the Nonhomogeneous
MMCF, while the Nonlinear commodity-separable MMCF would only require the availability of a
suitable nonlinear MCF solver.

Finally, we remark that, unlike other dual algorithms, our code is a “complete” MMCF solver, in that
upon termination it not only gives a dual optimal solution λ̄, but also a primal optimal solution

x̄ = [ x̄1 ... x̄ k ] = Σi ∈ β [ x i
1 ... x i

k ]θi

where x i
h is the solution of the h-th MCF with costs ch + λi and θ is the solution of the latest (∆β́t).

Obtaining x̄ requires keeping the flow solutions of the k MCFs relative to any subgradient in β, hence
it may considerably increase the memory requirements of the code; therefore, this feature has been
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made optional in the code, and in our experiments we have not used it. The impact on the running
times, however, is negligible (always well under 5%).

3. The other codes

One of the objectives of this research was to understand where a modern Cost Decomposition code
stands, in terms of efficiency, among the solution methods proposed in the literature: hence, an effort
has been made to compare MMCFB with recent alternative MMCF solvers. The efficiency of Cost
Decomposition methods is controversial: although they have been used with success in some
applications, many researchers[37, 38] would agree that “... the folklore is that generally such schemes
take a long time to converge so that they’re slower than just solving the model as a whole, although
research continues. For now my advice, unless [...] your model is so huge that a good solver can’t fit
it in memory, is to not bother decomposing it. It’s probably more cost effective to upgrade your
solver, if the algorithm is limiting you ...”[27]. However, if Cost Decomposition approaches are of any
value, MMCF is probably the application where such a value shows up, as demonstrated by our
experiments.

3.1 A general-purpose LP solver

In principle, any LP solver can be used to solve MMCF: actually, our experience shows that
(according to above statement) commercial general-purpose LP solvers can be the best choice for
solving even quite large instances. This should not be surprising, since these codes are the result of
an impressive amount of work and experience obtained during many years of development, and
exploit the state of the art in matrix factorization algorithms, pricing rules, sophisticated data
structures, preprocessing and software technology. CPLEX 3.0[17] is one of the best commercial LP
solvers on the market: it offers Primal and Dual simplex algorithms, a Network simplex algorithm for
exploiting the embedded network structure of the problems and a Barrier (Interior Point) algorithm.

Size PP PD HP HD
5 1 2 5 9.02 2.72 4.73 1.36

1 6 0 0 0 50.90 23.47 21.37 6.07
2 5 0 0 0 81.05 14.15 22.65 5.41
4 7 8 5 0 504.04 124.33 25.48 10.06
6 8 2 2 5 1393.63 42.24 18.96 8.10
6 1 2 7 5 1646.35 254.13 185.04 78.94

2 0 7 7 3 3 16707.66 492.33 244.89 44.67
2 5 7 7 0 0 13301.88 556.39 165.56 48.55

Table 1: different simplex options for CPLEX

Size HD1 HD2 HD3 HD4
5 1 2 5 4.08 1.36 2.11 1.34

1 6 0 0 0 19.65 5.99 11.00 6.08
2 5 0 0 0 18.24 6.16 19.71 5.39
4 7 8 5 0 13.35 11.95 51.03 10.00
6 8 2 2 5 8.05 10.76 71.59 8.06
6 1 2 7 5 1 0 0 0 * 54.07 152.36 79.16

2 0 7 7 3 3 1 0 0 0 * 88.38 681.27 44.88
2 5 7 7 0 0 57.53 92.58 846.65 48.48

Table 2: different pricing rules for CPLEX

In our experimentation, to make the comparisons meaningful, efforts have been made to use CPLEX
in its full power by repeatedly solving subsets of the test problems with different combinations of the
optimization parameters, in order to find a good setting. CPLEX can identify the network structure
embedded in a LP, and efficiently solve the restricted problem to obtain a good starting base for the
“Pure” Primal and Dual (PP and PD) simplex algorithms: the performances of the resulting “Hybrid”
Primal and Dual algorithms (HP and HD) are reported in Table 1, where Size = mk is the number of
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variables of the LP and figures are the average running times over groups of several problems of the
same size. From these results, we see that a Dual approach can be 30 times faster than a Primal one,
and that the “warm start” speeds up the solution by up to a factor of 70, so that the Hybrid Dual
version can be 400 times faster than the Pure Primal one. Hence, it is not unfair to regard CPLEX as
a semi-specialized algorithm for network-structured problems. Other details, such as the pricing
strategy, can have a dramatic impact on the number of iterations and hence on the performance: Table
2 reports a comparison between the four available pricing rules for the Dual simplex, the standard
dual pricing HD1 and three variants of the steepest-edge rule HD2-4.  Performance improvements of
up to a factor of 15 (and more, since the instances marked with “*” had taken much longer than 1000
seconds to terminate) can be obtained by selecting the appropriate rule.

3.2 A Primal Partitioning code

PPRN 1.0[12] is an available (in .a format at ftp://ftp-eio.upc.es/pub/onl/codes/pprn/libpprn) recent
implementation of the Reduced Gradient algorithm for the
Nonlinear MMCF, i.e. a Primal Partitioning approach when
applied to the linear case. In their computational experience[18], the
authors show that it generally outperforms the known Primal
Partitioning code MCNF85[46]. In our experience, PPRN has
never shown to be dramatically faster then CPLEX: however, this
should not lead to the conclusion that it is inefficient. In fact,
PPRN is a primal code, and it is definitely much faster than the
primal simplex of CPLEX: hence, it can be regarded as a good
representative of its class of methods.

Again, an appropriate tuning of its (several) parameters can
significantly enhance the performances. The most important
choice concerns the Phase 0 strategy, i.e. whether the starting
base is obtained from any feasible solution of the k MCF
subproblems rather than from their optimal solutions (as in the
“warm start” of CPLEX). As shown in Table 3, exploiting the
optimal solutions decreases the running times by up to a factor of
20 (Opt vs. Feas columns): moreover, appropriate selection of the
pricing rule[12] can result in a speedup of 3, as shown in Table 4.

3.3 Interior Point codes

A beta version of IPM, a specialized Interior Point code for MMCF[19], has been made available by the
author for comparison purposes. Like most Interior Point methods, IPM must solve at each step a
linear system with matrix AΘ -2

AT, where A is the full nk × m(k + 1) coefficient matrix of the LP.
Rather than calculating a Cholesky factorization of such a matrix, however, IPM uses a
Preconditioned Conjugate Gradient method where, at each step, k independent m × m subsystems are
solved. The code does not currently handle zero individual capacities (uij

h = 0), that were present in all
but one of the classes of instances that we tested; the obvious workaround, i.e. setting uij

h to some

Size Opt Feas
7 1 2 5 2.21 6.89

1 8 2 5 0 7.87 29.62
2 8 7 5 0 7.76 53.68
5 0 7 8 3 9.43 43.24
6 3 8 5 0 32.33 145.39
9 1 2 5 0 11.24 271.73

2 0 7 8 6 7 55.62 425.68
2 6 8 2 0 0 29.28 626.73

Table 3: Phase 0 options for PPRN

Size P1 P3
7 1 2 5 21.99 64.02

1 8 2 5 0 8.40 41.41
2 8 7 5 0 30.13 32.84
5 0 7 8 3 8.98 25.99
6 3 8 5 0 4.67 5.88
9 1 2 5 0 42.06 53.50

2 0 7 8 6 7 31.85 36.33
2 6 8 2 0 0 8.90 16.38

Table 4: pricing rules for PPRN
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very small number and/or cij
h to some very large number, might result in numerical problems, yet the

code was able to solve (almost) all the instances.

Since only indirect comparisons were possible for the other specialized Interior Point methods (Cf.
§3.5), we also tested two general-purpose Interior Point LP solvers: CPLEX 3.0 Barrier (that will be
referred to as IPCPLEX) and L0Q0 2.21[66, 65], a recent implementation of the primal-dual, path
following, predictor-corrector approach. Also in this case, the parameters were tuned in order to get
the best performances: the most important choice is the one between “myopic” (Minimum Local
FillIn) and “global” (Priority Minimum Degree modified Cholesky and Multiple Minimum Degree
respectively) heuristics for columns ordering when computing the LLT factorization of AΘ−2

AT. For
IPCPLEX, the myopic heuristic is more efficient; this is shown in Table 5, where for both of MMD
and MLF, the two columns with “-L” and “-R” report the time obtained with Leftward and Rightward
Cholesky factorization (another possible degree of freedom). The table also shows that the total
number of iterations is very small, and that it is not always possible to find the “best” setting for a
given parameter (MMD-L is better than MMD-D on small problems and worse on larger ones). For
L0Q0, the global heuristic is uniformly better, but does not dramatically improve the performances;
this difference is not surprising, since the two codes use different (normal equations and reduced-
KKT respectively) approaches to matrix factorization.

k n m Size I te r MMD-L MMD-R MLF-L MLF-R
1 0 5 0 6 2 5 6 2 5 0 1 2 37.70 30.97 33.24 27.84
1 0 5 0 6 2 5 6 2 5 0 1 2 37.35 30.98 33.13 27.60

1 0 0 3 0 5 1 8 5 1 8 0 0 1 2 3709.12 3344.74 1789.23 1829.65
1 0 0 3 0 5 1 9 5 1 9 0 0 1 3 4036.83 3382.39 1927.01 1935.82

Table 5: some examples from CPLEX-Barrier optimization parameters tuning

3.4 A Column Generation code

A limited comparison was also possible with BCG, a modern Column Generation code[9], developed
for repeatedly solving MMCF subproblems in a Branch & Price approach to the Integer MMCF, and
using CPLEX for solving the “Master” problem at each iteration. The BCG code was not directly
available; however, the authors kindly shared the test instances and the results (even some not
reported in the article), allowing an indirect comparison. It should be noted that, in its present
version, BCG only solves the undirected MMCF, although only minor modifications would be
needed to extend it to the directed case. Hence, the comparison is not completely satisfactory.
However, the efficiency of a Column Generation code depends on many important implementation
details, and it would not have been fair to compare MMCFB with some (most likely naïve)
implementation of ours. Hence, we preferred to keep this limited comparison with a sophisticated
code such as BCG. The relative performances of LP-based Cost Decomposition methods like the
Column Generation approach (but see also[25, 26]) and QP-based ones like MMCFB are currently under
research, and will be the subject of a future article.
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3.5 Other codes

The above codes do not exhaust all the proposed computational approaches to MMCF: indirect
comparison have been made also with other Interior Point methods[70, 62], different Cost
Decomposition approaches[61, 69] and ε-approximation algorithms[33]. The comparison concerns the
PDS problems (Cf. §4.3), that are difficult MMCFs with large graphs but few commodities and MCF
subproblems: hence, the results do not necessarily provide useful information on other classes of
instances, such as those arising in telecommunications, which are characterized by a large number of
commodities. Furthermore, the codes were ran on a heterogeneous set of computers, ranging from
(vector or massively parallel) supercomputers to (clusters of) workstations, making it difficult to
extract meaningful information from the running times reported.

No comparison at all was possible with Resource Decomposition approaches[49] or Primal-Dual
methods[67]: however, the available codes are at least sufficient to draw an initial picture of the current
scenery of computational approaches to MMCF. Hopefully, other tests will come to further enhance
our understanding.

4. The test problems

The other fundamental ingredient for obtaining a meaningful computational comparison is an adequate
set of test problems. Some data sets and random generators of MMCFs have been used in the
literature to test some of the proposed approaches: however, many of these test problems are small,
and even the larger ones have a small number of commodities. This is probably due to the fact that,
with most of the methods, the cost for solving an MMCF grows rapidly with k, so that problems with
hundreds of commodities have for long time been out of reach. For our experiments, some known
data sets have been gathered that might be considered representative of classes of instances arising in
practice: when no satisfactory test problems were available, different random generators have been
used to produce data sets with controlled characteristics. All these instances, and some others, can be
retrieved at http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html together with an instance-by-
instance output for all the codes listed in §3. We hope that this database will grow and will form the
basis for more accurate computational comparisons in the future.

4.1 The Canad problems

The first data set is made of 96 problems, generated with two random generators (one for bipartite
and the other for general graphs) developed to test algorithms for the Fixed Charge MMCF
problem[15]. A parameter, called capacity ratio, is available as a “knob” to produce lightly or heavily
capacitated instances. As MMCFs, these instances have proven a posteriori to be quite “easy”; on the
contrary, the corresponding Fixed Charge problems are known to be “hard”, and hence the efficient
solution of “easy” MMCFs can still have an interest. Furthermore, this data set is the only one having
instances where the number of commodities is considerably larger that the number of nodes (up to
400 vs. 30), as in some real applications. The instances are divided into the three groups:

− 32 bipartite problems (group A) with multiple sources and sinks for each commodity;
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− 32 nonbipartite problems (group B) with single source/sink for each commodity;

− 32 nonbipartite problems (group C) with multiple sources and sinks for each commodity.

The characteristics of the instances are shown in Table 6 (§5.1): for each choice of (k, n, m), two
“easy” and two “hard” instances have been generated.

4.2 The Mnetgen generator

Mnetgen[1] is a well-known random generator. An improved version has been developed for our tests,
where the internal random number generator has been replaced with the standard drand48()
routine, the output file format has been “standardized”[41] and a minor bug has been fixed. 216
problems have been generated with the following rules: the problems are divided in 18 groups of 12
problems each, each group being characterized by a pair (n, k) for n in {64, 128, 256} and k in {4,
8, ... , n} (as Mnetgen cannot generate problems with k > n). Within each group, 6 problems are
“sparse” and 6 are “dense”, with m / n respectively equal to about 3 and 8. In both these subgroups, 3
problems are “easy” and 3 are “hard”, where an easy problem has mutual capacity constraints on 40%
of the arcs and 10% of the arcs with an “high” cost, while these figures are 80% and 30%
respectively for a hard problem. Finally, the 3 subproblems characterized by the 4-tuple (n, k, S, D)
(S ∈ {sparse, dense}, D ∈ {easy, hard}) have respectively 30%, 60% and 90% of arcs with
individual capacity constraints. Randomly generated instances are believed to be generally “easier”
than real-world problems; however, the “hard” Mnetgen instances, especially if “dense”, have proven
to be significantly harder to solve (by all the codes) than both the “easy” ones and instances of
equivalent size taken from the other sets of test problems.

4.3 The PDS problems

The PDS (Patient Distribution System) instances derive from the problem of evacuating patients from
a place of military conflict. The available data represents only one basic problem, but the model is
parametric in the planning horizon t (the number of days): the problems have a time-space network
whose size grows about linearly with t. This characteristic is often encountered in MMCF models of
transportation and logistic problems. However, in other types of applications k also grows with the
planning horizon, while in the PDS problems k is a constant (11); hence, the larger instances have a
very large m / k ratio.

4.4 The JLF data set

This set of problems has been used in [42] to test the DW approach to MMCF: it contains various
(small) groups of small real-world problems with different structures, often with SPT subproblems
and with never more than 15 commodities.

4.5 The dimacs2pprn “meta” generator

Several MMCFs, especially those arising in telecommunications, have large graphs, many
commodities and SPT subproblems; all these characteristics are separately present in some of the
previous data sets, but never in the same instance. To generate such instances, we developed a
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slightly enhanced version of the dimacs2pprn “meta” generator, originally proposed in [18], that allows
a great degree of freedom in the choice of the problem structure. Dimacs2pprn  inputs an MCF in
DIMACS standard format (ftp://dimacs.rutgers.edu/pub/netflow), i.e. a graph Ḡ with arc costs c̄,
node deficits b̄, arc capacities ū and three parameters k, r and f, and constructs an MMCF with k
commodities on the same graph Ḡ. Deficits and capacities of the i-th subproblem are a “scaling” of
those of the original MCF, i.e. k numbers { r1 .. rk } are uniformly drawn at random from [ 1 .. r ]
and the deficits and individual capacities are chosen as bh = rhb̄ and uh = rhū; costs cij

h are
independently and uniformly drawn randomly from [ 0 .. c̄ij ]. The mutual capacities u are initially
fixed to fū, and eventually increased to accommodate the multiflow obtained by solving the k MCFs
separately (with random costs uncorrelated with the cij

h), in order to ensure the feasibility of the
instance. At the user’s choice, the individual capacities can then be set to +∞. This is a “meta”
generator since most of the structure of the resulting MMCF is not “hard-wired” into the generator,
like in Mnetgen, but depends on the initial MCF; in turn, this initial MCF can be obtained with a
random generator. For our tests, we used the well-known Rmfgen[29], which, given two integer
values a and b, produces a graph made of b squared grids of side a, with one source and one sink at
the “far ends” of the graph. For all 6 combinations of a in {4, 8} and b in {4, 8, 16}, an “easy” and a
“hard” MCF have been generated with maximum arc capacities respectively equal to 1/2 and 1/10 of
the total flow to be shipped. Then, for each of these 12 MCFs, 4 MMCFs have been generated, with
k in {4, 16, 64, 256}, r = 16 and f = 2k (so that the mutual capacity constraints were four times
“stricter” than the original capacities ū), yielding a total of 48 instances with up to one million of
variables.

4.6 The BHV problems

Two sets of randomly generated undirected MMCFs have been used to test the Column Generation
approach of [9]. In both sets, the commodities are intended to be Origin / Destination pairs, but the
commodities with the same origin can be aggregated in a much smaller number of single origin -
many destinations flows. The 12 “qx” problems all have 50 nodes, 130 arcs (of which 96 are
capacitated) and 585 O/D pairs that can be aggregated into 48 commodities, yielding a total LP size of
6.2.103; a posteriori, they have proven to be quite easy. The 10 “r10-x-y” problems all have 301
nodes, 497 arcs (of which 297 are capacitated) and 1320 O/D pairs that can be aggregated into 270
commodities, yelding a total LP size of 1.3.105. The group is divided into 5 “r10-5-y” and 5 “r10-55-
y” instances that are similar, but for the fact that the arc capacities in the first group are integral while
those in the second one are highly fractional: the two subgroups have proven to be of a surprisingly
different “difficulty”.

5. Computational results and conclusions

In this paragraph, we report on the comparison of MMCFB with the codes described in §3 on the test
problems described in §4. The approaches being very different, it appears that the only performance
measure which allows a meaningful comparison is the running time. In the following, we report CPU
time in seconds needed to solve the different problems; the loading and preprocessing times have not
been included. Information like the number of iterations (with different meanings for each code) or
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the time spent in different parts of the optimization process (e.g. for computing ϕ and solving (∆βt))
has not been reported in the tables for reasons of space and clarity: all these data are however available
at the above mentioned Web page.

Unless explicitly stated, the times have been obtained on a HP9000/712-80 workstation: for the codes
run on different machines, the original figures will be reported and a qualitative estimate of the relative
speed has been obtained—if possible—by comparing the SPECint92 and SPECfp92 figures (97.1
and 123.3 respectively for the HP9000/712-80). For MMCFB, CPLEX (both simplex and Interior
Point) and L0Q0, the required relative precision was set to 10-6: in fact, the reported values of the
optimal solution always agree in the first 6 digits. PPRN do not allow such a choice, but it always
obtained solutions at least as accurate as the previous codes. Upon suggestion of the authors, the
relative precision required for IPM was instead set to 10-5, as smaller values could cause numerical
difficulties to the PCG: in fact, the values obtained were often different in the sixth digit. The
precision of the BCG code is not known to us, but should be comparable: the other codes will be
explicitly discussed later.

In all the following tables, b (< m), if present, is the number of arcs that have a mutual capacity
constraint, and, for large data sets, each entry is averaged from a set of instances with similar          
size = mk. The columns with the name of a code contain the relative running time; “*” means that
some of the the instances of that group could not be solved due to memory problems, “**” means that
the code aborted due to numerical problems and “***” indicates that the computation had to be
interrupted because the workstation was “thrashing”, i.e. spending almost all the time in paging
virtual memory faults.

5.1 The Canad problems

The results of the three groups of instances A, B and C are summarized in Table 6: they are also
visualized in Figure 4, Figure 5 and Figure 6 for the three groups separately, where the running time
of each algorithm is plotted as a function of the size.

If compared to the faster code, the general-purpose Interior Point solvers are 2 to 3 orders of
magnitude slower on groups B and C and 1 to 2 on group A; furthermore, they were not able to solve
the largest instances due to memory or numerical problems. The specialized IPM is (approximately) 3
to 20 times faster on group A, 20 to 70 times faster on group B and 10 to 40 times faster on group C:
however, it is almost never competitive with any of MMCFB, CPLEX and PPRN. Among those
latter solvers, MMCFB is 10 to 40 times faster than CPLEX and 5 to 20 times faster than PPRN on
all instances; an exception is the first half of group A, where MMCFB is less than 2 times slower.
These are “difficult” small instances with few commodities, where MMCFB requires considerably
more ϕ evaluations than for all the other problems. This may lead to the conjecture that MMCFB is
not competitive on “difficult” instances, but the following experiences will show that this is true only
if the number of commodities is also small.
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k n m size MMCFB Cplex PPRN IPM L0Q0 IPCplex
1 0 5 0 4 0 0 4 0 0 0 2.37 1.27 2.13 3.38 13.59 11.76
1 0 5 0 6 2 5 6 2 5 0 3.40 1.99 2.18 9.13 49.83 34.82
1 0 1 0 0 1 6 0 0 1 6 0 0 0 3.01 3.66 4.66 17.87 100.09 * *

A 1 0 1 0 0 2 5 0 0 2 5 0 0 0 3.04 4.24 6.13 31.42 387.88 * *
1 0 0 5 0 4 0 0 4 0 0 0 0 0.76 10.31 10.23 18.53 472.95 358.47
1 0 0 5 0 6 2 5 6 2 5 0 0 2.43 89.96 29.79 42.49 2609.69 1729.01
1 0 0 1 0 0 1 6 0 0 1 6 0 0 0 0 1.39 28.95 28.00 103.04 * *
1 0 0 1 0 0 2 5 0 0 2 5 0 0 0 0 1.46 36.51 27.03 174.03 * *

4 0 2 0 2 3 0 9 2 0 0 0.06 0.90 0.26 6.11 193.53 100.64
4 0 2 0 2 8 9 1 1 5 6 0 0.06 1.14 0.28 3.71 154.13 176.97

2 0 0 2 0 2 2 9 4 5 8 0 0 0.24 5.56 2.02 26.61 645.80 988.65
B 1 0 0 3 0 5 1 7 5 1 7 0 0 0.45 6.16 3.93 29.25 9895.41 1988.24

2 0 0 2 0 2 8 7 5 7 4 0 0 0.36 7.54 3.52 32.45 888.71 1343.36
1 0 0 3 0 6 6 9 6 6 9 0 0 0.25 7.07 1.64 32.11 14016.83 2915.02
4 0 0 3 0 5 1 9 2 0 7 6 0 0 1.03 30.18 24.96 145.15 * * * *
4 0 0 3 0 6 8 8 2 7 5 2 0 0 1.19 38.32 23.32 170.14 * * * *

4 0 2 0 2 3 0 9 2 0 0 0.23 1.02 0.37 5.64 223.79 108.88
4 0 2 0 2 8 9 1 1 5 6 0 0.15 1.22 0.31 5.79 182.43 189.19

2 0 0 2 0 2 2 9 4 5 8 0 0 0.90 7.86 6.23 22.92 727.55 1044.92
C 1 0 0 3 0 5 1 7 5 1 7 0 0 1.10 8.05 6.51 25.99 12126.88 2156.04

2 0 0 2 0 2 8 7 5 7 4 0 0 0.51 6.93 4.28 25.85 947.17 1429.17
1 0 0 3 0 6 6 9 6 6 9 0 0 0.79 8.76 4.24 32.18 16093.50 3392.77
4 0 0 3 0 5 1 9 2 0 7 6 0 0 3.26 48.21 38.53 129.10 * * * *
4 0 0 3 0 6 8 8 2 7 5 2 0 0 3.62 60.87 42.69 167.04 * * * *

Table 6: results for groups A, B and C of the Canad problems
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Figure 4: Canad problems, bipartite graphs (group A)
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Figure 5: Canad problems, generic graphs (group B)
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Figure 6: Canad problems, generic graphs (group C)

5.2 The Mnetgen problems

The Mnetgen problems have a wide range of different characteristics, from small to very large sizes
(more than 5.105 variables), and from small to very large m / k ratios. Table 7 and Figure 7
summarize the results we have obtained; the times are the averages taken over 12 problems with the
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same (n, k).

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
4 6 4 3 6 2 1 4 8 1.4e+3 0.07 0.22 0.13 1.44 1.73 1.45
8 6 4 3 7 1 1 8 3 3.0e+3 0.26 0.50 0.52 4.26 9.22 7.56

1 6 6 4 3 5 6 1 9 1 5.7e+3 1.08 2.01 3.41 16.03 58.96 40.14
3 2 6 4 3 6 2 2 0 8 1.2e+4 3.42 12.99 22.04 43.27 190.76 98.73
6 4 6 4 3 6 1 2 1 3 2.3e+4 8.53 115.99 147.10 114.19 244.66 216.44

4 1 2 8 6 9 4 2 9 3 2.8e+3 0.58 0.54 0.85 6.45 7.18 6.49
8 1 2 8 7 3 5 3 6 3 5.9e+3 2.57 1.81 4.79 26.32 66.65 50.56

1 6 1 2 8 7 6 6 4 2 4 1.2e+4 11.30 17.31 40.57 116.26 683.47 394.19
3 2 1 2 8 7 7 9 4 4 5 2.5e+4 27.72 212.09 503.48 346.91 * *
6 4 1 2 8 7 8 4 4 6 9 5.0e+4 44.04 1137.05 2215.48 719.69 * *

1 2 8 1 2 8 8 0 8 4 8 5 1.0e+5 52.15 5816.54 6521.94 1546.91 * *
4 2 5 6 1 4 0 1 5 7 0 5.6e+3 7.54 2.38 9.88 51.00 50.70 40.37
8 2 5 6 1 4 8 6 7 4 3 1.2e+4 25.09 15.48 105.89 208.10 568.02 377.87

1 6 2 5 6 1 5 5 3 8 5 4 2.5e+4 60.85 180.06 955.20 844.09 * *
3 2 2 5 6 1 5 7 2 9 0 7 5.0e+4 107.54 1339.46 6605.45 1782.47 * *
6 4 2 5 6 1 5 7 3 9 3 1 1.0e+5 144.75 7463.14 18467.73 3441.62 * *

1 2 8 2 5 6 1 5 8 1 9 3 2 2.0e+5 223.13 35891.37 61522.94 9074.31 * *
2 5 6 2 5 6 1 5 0 3 9 0 2 3.8e+5 445.81 110897+ 187156+ 17279.00 * *

Table 7: aggregated results on the Mnetgen problems

4 8 1 6 3 2 6 4 1 2 8 2 5 6
6 4 2.93 1.90 1.87 3.80 13.60

1 2 8 0.93 0.70 1.53 7.65 25.82 111.53
2 5 6 0.32 0.62 2.96 12.46 51.56 160.85 251* 

Table 8: ratio between CPLEX and MMCFB times - problems in the same row have fixed n and varying k

4 8 1 6 3 2 6 4 1 2 8 2 5 6
6 4 1.73 1.98 3.16 6.45 17.25

1 2 8 1.47 1.86 3.59 18.17 50.30 125.06
2 5 6 1.31 4.22 15.70 61.42 127.58 275.72 424* 

Table 9: ratio between PPRN and MMCFB times - problems in the same row have fixed n and varying k

4 8 1 6 3 2 6 4 1 2 8 2 5 6
6 4 19.69 16.24 14.85 12.66 13.39

1 2 8 11.14 10.23 10.29 12.52 16.34 29.66
2 5 6 6.77 8.29 13.87 16.57 23.78 40.67 38.76

Table 10: ratio between IPM and MMCFB times - problems in the same row have fixed n and varying k

Again, the general-purpose Interior Point codes are not competitive, but this time the specialized IPM
is better than both CPLEX and PPRN on the instances with large k (greater than 32): the speedup also
increases with both m and k, reaching over an order of magnitude in the (256, 256) instances.
However, MMCFB is even faster, outperforming the simplex-based codes by about three orders of
magnitude on the largest instances. Furthermore, the hard and dense (256, 256) problems could be
solved by neither CPLEX nor PPRN in reasonable time: they were stopped after having run for
several days without produceing any result. Therefore, the corresponding entries in Table 7, marked
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with a “+”, are actually (mild) estimates.
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Figure 7: aggregated results on the Mnetgen problems

However, a closer examination of the results enlightens the weakness of MMCFB on large instances
with few commodities. This is better seen in Table 8, Table 9 and Table 10, and the corresponding
Figure 8, Figure 9 and Figure 10, where the ratio between the running times of CPLEX (respectively
PPRN and IPM) and MMCFB is reported for different values of (n, k)—the entries marked with a
“*” are those based on estimates, and should actually be larger. MMCFB is slower than CPLEX by
up to a factor of 4 for instances with a large m / k ratio: more disaggregated data about some “critical”
256-nodes problems are reported in Table 11 for a better understanding of the phenomenon.
Noticeably, “hard” problems (h) are really harder to solve, for all the codes, than “easy” ones (e) of
the same size; moreover, they are much harder than, e.g., Canad problems of comparable size, since
a 1.6.105 variables (100, 100, 1600) Canad instance can be solved in 1.5 seconds, while a hard
1.5.105 variables (64, 256, 2300) Mnetgen instance requires over 350 seconds.
On problems with few commodities, MMCFB is about 2 times slower than CPLEX when the
instances are easy, and about 4 times slower in the case of hard ones. Conversely, as the number of
commodities increases, the relative efficiency (the Cplex% and PPRN% columns) of MMCFB is
larger on hard instances than on easy ones, and it increases with the problem size. This is probably
due to the fact that the number of ϕ evaluations depends on the “hardness” of the instance, but much
less on k, while the number of simplex iterations tends to increase under the combined effect of m and
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k. This is true for both (the dual) CPLEX and (the primal) PPRN, possibly indicating that
decomposition methods may inherently perform better on many-commodities problems.

4 8 1 6 3 2 6 4 1 2 8 2 5 6
1 e - 1

1e+0

1e+1

1e+2

1e+3

4 8 1 6 3 2 6 4 1 2 8 2 5 6

6 4
1 2 8
2 5 6

Figure 8: ratio between CPLEX and MMCFB times - for each k, the columns correspond to different n
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4 8 1 6 3 2 6 4 1 2 8 2 5 6

6 4
1 2 8
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Figure 9: ratio between PPRN and MMCFB times - for each k, the columns correspond to different n

As we expected, IPM was less affected by the “difficulty” of the instance than all the other codes: in
fact, the relative efficiency of MMCFB (the IPM% column) is lower on hard instances, confirming
that the Interior Point approach is especially promising on difficult problems. However, since
MMCFB is more and more competitive with IPM as k increases, IPM is likely to be competitive only
on hard instances with small k: this is confirmed by the next data set, and by noting that (see Figure
10) the relative efficiency of MMCFB decreases as n increases for small k, but increases with n for
large k. Yet, these results must be taken with some care: in all the Mnetgen instances there are arcs
with uij

k = 0, that have been given a tiny capacity and a huge cost, and this workaround may have an
adverse effect on the performance of IPM that is currently impossible to estimate.
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Figure 10: ratio between IPM and MMCFB times - for each k, the columns correspond to different n

k m type MMCFB Cplex PPRN IPM Cplex% PPRN% IPM%
4 7 7 9 s / e 0 .99 0.68 1.47 8.97 0.69 1.49 9.06
4 7 8 1 s / h 7 .30 1.73 5.93 26.59 0.24 0.81 3.64
4 2 0 2 1 d / e 3 .21 1.76 5.88 42.06 0.55 1.83 13.09
4 2 0 2 1 d / h 18.65 5.36 26.22 126.38 0.29 1.41 6.78
8 7 9 5 s / e 1 .98 1.85 5.74 26.55 0.93 2.90 13.41
8 7 9 8 s / h 12.62 4.52 15.67 83.88 0.36 1.24 6.65
8 2 1 7 1 d / e 21.32 10.09 55.33 181.09 0.47 2.60 8.49
8 2 1 7 7 d / h 64.44 45.46 346.82 540.88 0.71 5.38 8.39

1 6 7 9 9 s / e 5 .56 6.15 28.16 65.87 1.11 5.07 11.85
1 6 8 3 1 s / h 21.76 19.97 77.01 208.20 0.92 3.54 9.57
1 6 2 2 8 0 d / e 45.74 54.53 272.50 735.33 1.19 5.96 16.08
1 6 2 3 0 3 d / h 170.33 639.59 3443.10 2366.96 3.76 20.21 13.90
3 2 8 1 6 s / e 11.01 20.52 100.64 197.00 1.86 9.14 17.90
3 2 8 2 0 s / h 47.16 164.15 488.98 451.94 3.48 10.37 9.58
3 2 2 3 3 1 d / e 79.03 464.85 1205.80 1391.59 5.88 15.26 17.61
3 2 2 3 2 1 d / h 292.98 4708.31 24626.37 5089.33 16.07 84.06 17.37
6 4 8 2 5 s / e 20.20 116.21 522.45 437.24 5.75 25.86 21.64
6 4 8 0 1 s / h 54.73 362.61 1197.35 699.22 6.63 21.88 12.78
6 4 2 3 3 7 d / e 146.11 5239.85 7298.90 3818.54 35.86 49.95 26.13
6 4 2 3 3 0 d / h 357.97 24133.90 64852.23 8811.50 67.42 181.17 24.62

Table 11: disaggregated data about some 256-nodes problems

5.3 The PDS problems

As shown in Table 12 and Figure 11, several PDS instances were solved up to t = 40: the LP sizes
range from 4.1.103 to 2.4.105, but k is always 11, so that the m / k ratio for PDS40 is about 2.103.
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Figure 11: results for the PDS problems

t n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
1 1 2 6 3 7 2 8 7 4.1e+3 0.70 0.81 1.12 3.80 7.38 3.76
2 2 5 2 7 4 6 1 8 1 8.2e+3 5.66 2.12 5.60 13.38 23.57 14.52
3 3 9 0 1 2 1 8 3 0 3 1.3e+4 13.10 5.32 15.88 32.22 93.91 42.93
4 5 4 1 1 7 9 0 4 2 1 2.0e+4 50.18 12.87 33.74 73.98 316.32 102.07
5 6 8 6 2 3 2 5 5 5 3 2.6e+4 127.03 19.54 60.16 120.34 799.49 215.09
6 8 3 5 2 8 2 7 6 9 6 3.1e+4 129.92 41.97 112.3 296.30 1118.41 387.11
7 9 7 1 3 2 4 1 8 0 4 3.6e+4 241.13 79.31 171.64 536.86 1860.80 635.53
8 1 1 0 4 3 6 2 9 9 0 8 4.0e+4 287.03 96.61 221.46 429.26 2171.42 1039.43
9 1 2 5 3 4 2 0 5 1 0 4 8 4.6e+4 424.59 147.93 272.28 667.90 3523.90 2281.92

1 0 1 3 9 9 4 7 9 2 1 1 6 9 5.3e+4 928.14 207.64 467.49 823.81 5437.82 3485.19
1 1 1 5 4 1 5 3 4 2 1 2 9 5 5.9e+4 813.08 324.78 499.58 1167.99 7820.92 5961.47
1 2 1 6 9 2 5 9 6 5 1 4 3 0 6.6e+4 828.58 373.35 560.25 1625.69 11785.1 6522.1
1 3 1 8 3 7 6 5 7 1 1 5 5 6 7.2e+4 1033.7 315.61 945.13 2060.11 15922.9 8281.6
1 4 1 9 8 1 7 1 5 1 1 6 8 4 7.9e+4 2198.5 524.05 1325.3 2172.29 19033.1 10276.9
1 5 2 1 2 5 7 7 5 6 1 8 1 2 8.5e+4 1666.6 885.88 1431.1 3054.57 *  *  
1 8 2 5 5 8 9 5 8 9 2 1 8 4 1.1e+5 2237.47 2132.57 3093.51 5182.26 *  *  
2 0 2 8 5 7 1 0 8 5 8 2 4 4 7 1.2e+5 3571.58 3766.72 5213.73 8910.87 *  *  
2 1 2 9 9 6 1 1 4 0 1 2 5 5 3 1.3e+5 3541.34 5823.80 7475.30 8237.08 *  *  
2 4 3 4 1 9 1 3 0 6 5 2 8 9 3 1.4e+5 5796.18 11936.5 10817.8 9151.14 *  *  
2 7 3 8 2 3 1 4 6 1 1 3 2 0 1 1.6e+5 8761.89 28790.4 14670.2 11687.2 *  *  
3 0 4 2 2 3 1 6 1 4 8 3 4 9 1 1.8e+5 10343.2 51011.5 18995.0 13935.1 *  *  
3 3 4 6 4 3 1 7 8 4 0 3 8 2 9 2.0e+5 15459.3 54351.3 28869.6 12537.9 *  *  
3 6 5 0 8 1 1 9 6 7 3 4 1 9 3 2.2e+5 17689.2 *  34453.8 17519.3 *  *  
4 0 5 6 5 2 2 2 0 5 9 4 6 7 2 2.4e+5 22888.5 *  *  20384.2 *  *  

Table 12: results for the PDS problems

The two general-purpose Interior Point codes were not able to solve instances larger than PDS15 due
to memory problems, but even for the smaller instances they were always one order of magnitude
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slower than the simplex-based codes. For t ≤ 18 CPLEX outperforms both PPRN and MMCFB, but
as the size increases the gap lessens, and for the largest instances MMCFB outperforms CPLEX by a
factor of four; also, for t = 24 PPRN is competitive with CPLEX, and for larger instances the
specialized simplex is better than the generic one of a factor of two. However, neither CPLEX nor
PPRN were able to solve PDS40 due to memory problems, while MMCFB solved the problem,
although it required more than 6 hours. The only other code that was capable of solving all the
instances is IPM; for t ≥ 33, it has analogous—but slightly better—performance than MMCFB.

Since PDS problems have m / n ≈ 3, it is possible (and instructive) to compare the results with that on
hard (.h) and easy (.e) “sparse” Mnetgen instances: Table 13 shows that MMCFB solves a hard
Mnetgen instance much faster than a PDS instance of similar size. The running times of the other
methods for these pairs of Mnetgen and PDS instances are far less different: however, the difference
tends to increase when k >> 11 in the Mnetgen instance. The PDS problems are considered difficult,
but the “measure of difficulty” has never been explicitly stated: by taking it as the solution time
required by a simplex method, it would be possible to assert that the Mnetgen instances are about as
hard, but they can be efficiently solved by MMCFB. This statement can be criticized, however it is
reasonable that a Cost Decomposition method performs better on problems where the overall
“difficulty” is given by a large k rather than by a large m.

k n Size MMCFB Cplex PPRN IPM
16.256.e 1 6 2 5 6 1 2 7 8 9 5.56 6.15 28.16 65.87
16.256.h 1 6 2 5 6 1 3 3 0 1 21.76 19.97 77.01 208.20
PDS3 1 1 3 9 0 1 3 3 9 8 13.10 5.32 15.88 32.22
32.256.e 3 2 2 5 6 2 6 1 2 3 11.01 20.52 100.64 197.00
32.256.h 3 2 2 5 6 2 6 2 2 9 47.16 164.15 488.98 451.94
PDS5 1 1 6 8 6 2 5 5 7 5 127.03 19.54 60.16 120.34
64.256.e 6 4 2 5 6 5 2 7 7 9 20.20 116.21 522.45 437.24
64.256.h 6 4 2 5 6 5 1 2 6 4 54.73 362.61 1197.35 699.22
PDS10 1 1 1 3 9 9 5 2 7 1 2 928.14 207.64 467.49 823.81
256.256.e 2 5 6 2 5 6 2 1 0 8 5 9 183.37 4173.05 16150.89 3346.51
256.256.h 2 5 6 2 5 6 2 1 2 4 8 0 316.59 16222.97 27625.40 6735.61
PDS33 1 1 4 6 4 3 1 9 6 2 4 0 15459.30 54351.30 28869.60 12537.90

Table 13: Mnetgen and PDS problems of the same size

Cplex MMCFB ZaA PZ GK  SM ZaG
1 1 1 7 8 4 0

1 0 2 0 8 9 2 8 6 5 2 3 2 1 2 3 1 9 2 0 4 5
2 0 3 7 6 7 3 5 7 2 4 9 7 1 2 2 5 3 7 2 8 2 2 0 2 5 3
3 0 5 1 0 1 2 1 0 3 4 3 5 5 7 5 5 3 6 7 6 5 1 9 3 8 0 6 5 4
4 0 2 2 8 8 9 8 5 8 1 4 4 8 3 8 1 6 0 1 4 3 4

Table 14: comparison with approaches from the literature for the PDS problems

On the PDS problems, it is also possible to try a comparison with some of the other approaches
proposed in the literature. This is done in Table 14 with PDS1, 10, 20, 30 and 40.
The other approaches considered are:

− the parallel Nonlinear Jacobi Algorithm (ZaA) applied to the Augmented Lagrangean of [69], that



A Bundle-type approach to Multicommodity flow problems

22

was run on a Thinking Machine CM-5 with 64 processors, each one (apparently) capable of about
25 SPECfp92;

− the linear-quadratic exact penalty function method (PZ) of [61], that was run on a Cray Y-MP vector
supercomputer, whose performances with respect to scalar architectures are very hard to assess;

− the ε-approximation algorithm (GK) of [33], that was run on a IBM RS6000-550 workstation (83.3
SPECfp92, 40.7 SPECint92); the largest instances were solved to the precision of 4-5 significant
digits;

− the specialized Interior Point method (SM) of [62], that was run on a DECstation 3100 (whose
SPEC figures are unknown to us) and that obtained solutions with 8 digits accuracy;

− a modification and parallelization of the above (ZaG) that was run on a cluster of SPARCstation 20
workstations [70]; unfortunately, the exact model is not specified, so that the (SPECfp92,
SPECint92) can be anything between (80.1, 76.9) and (208.2, 169.4).

Unfortunately, extracting significant information from the figures is very difficult due to the different
machine used. However, it is clear that, for these instances, the ε-approximation algorithm provides
good solutions in a very low time: in Table 15, optimal objective function values (obtained with
CPLEX), lower bounds obtained by MMCFB and upper bounds obtained by GK are compared. The
reported Gaps for GK are directly drawn from [33], except for the last two problems for which an
estimate of the exact optimal objective function value had been used in [33].

Cplex MMCFB GK
n O.F. Value O.F. Value Gap O.F. Value Gap

1 29083930523 29083906658 - 8 e - 0 7 2.90839E+10 3 e - 0 9
2 28857862010 28857838002 - 8 e - 0 7 2.88579E+10 6 e - 0 8
3 28597374145 28597348614 - 9 e - 0 7 2.85974E+10 1 e - 0 8
4 28341928581 28341903396 - 9 e - 0 7 2.83419E+10 2 e - 0 7
5 28054052607 28054035803 - 6 e - 0 7 2.80541E+10 3 e - 0 7
6 27761037600 27761015915 - 8 e - 0 7 2.77611E+10 5 e - 0 7
7 27510377013 27510253762 - 4 e - 0 6 2.75107E+10 1 e - 0 5
8 27239627210 27239603634 - 9 e - 0 7 2.72399E+10 9 e - 0 6
9 26974586241 26974456167 - 5 e - 0 6 2.69749E+10 1 e - 0 5

1 0 26727094976 26727038830 - 2 e - 0 6 2.67280E+10 3 e - 0 5
2 0 23821658640 23821637841 - 9 e - 0 7 2.38232E+10 7 e - 0 5
3 0 21385445736 21385443262 - 1 e - 0 7 2.13888E+10 2 e - 0 4
4 0 18855198824 18855181456 - 9 e - 0 7 1.88595E+10 2 e - 0 4

Table 15: comparison of the relative gap of MMCFB and GK

Among the other methods, the two parallel ones seem to provide good results, since MMCFB could
not surely achieve a speedup larger than 11 (on the same machines): however, the comparison is very
difficult, and it is perhaps better not to attempt any comment. A remark can instead be done about the
concept of “solution” that is underneath some of the figures in the table: many of the codes—for
instance (GK), (SM) and (ZaG)—use heuristic stopping criteria, essentially performing a fixed
number of iterations before stopping. A posteriori, the solutions are found to be accurate, but the
algorithm is not capable of “certifying” it by means of appropriate primal-dual estimates of the gap.



A. Frangioni and G. Gallo

23

5.4 The JLF problems

k n m b Size MMCFB Cplex PPRN IPM LOQO IPCplex
10term 1 0 1 9 0 5 1 0 1 4 6 5 1 0 0 0.27 0.84 1.07 9.16 26.17 10.97
10term.0 1 0 1 9 0 5 0 7 1 4 3 5 0 7 0 0.23 0.78 0.70 7.04 28.29 13.10
10term.50 1 0 1 9 0 4 9 8 1 3 4 4 9 8 0 2.00 0.82 1.22 7.97 18.05 11.60
10term.100 1 0 1 9 0 4 9 1 1 2 7 4 9 1 0 2.40 0.86 1.10 8.69 19.21 10.58
15term 1 5 2 8 5 7 9 6 2 5 3 1 1 9 4 0 4.81 3.39 11.57 41.35 210.94 106.98
15term.0 1 5 2 8 5 7 4 5 2 0 2 1 1 1 7 5 1.94 2.72 10.23 30.35 123.21 47.15
Chen0 4 2 6 1 1 7 4 3 4 6 8 0.30 0.25 0.32 0.25 0.44 0.38
Chen1 5 3 6 1 7 4 6 5 8 7 0 0.98 0.64 0.73 0.41 0.99 0.77
Chen2 7 4 1 3 5 8 1 5 5 2 5 0 6 5.98 4.89 3.77 1.59 4.17 3.91
Chen3 1 5 3 1 1 4 9 5 6 2 2 3 5 1.22 5.18 1.96 1.10 3.12 2.62
Chen4 1 5 5 5 4 2 0 1 7 6 6 3 0 0 25.49 83.39 20.05 5.92 46.92 32.75
Chen5 1 0 6 5 5 6 9 2 4 2 5 6 9 0 52.58 48.74 48.12 5.24 21.18 15.53
assad1.5k 3 4 7 9 8 9 8 2 9 4 0.03 0.11 0.09 0.36 0.39 0.22
assad1.6k 3 4 7 9 8 9 8 2 9 4 0.01 0.08 0.06 0.39 0.37 0.22
assad3.4k 6 8 5 2 0 4 9 5 1 2 2 4 0.08 0.33 0.55 1.41 4.26 1.44
assad3.7k 6 8 5 2 0 4 9 5 1 2 2 4 0.10 0.29 0.56 1.57 4.22 1.41

Table 16: results for some of the JLF problems

Table 16 shows the results obtained on some JLF problems, those with SPT subproblems: despite the
small number of commodities, MMCFB is still competitive on the “xterm.y” and “Assadx.y” sets.
The “Chenx” problems are more “difficult” than the others, since they require an order of magnitude
more time to be solved than the “xterm.y” instances of comparable size. For this data set, the Interior
Point codes are competitive with, and IPM largely outperforms, all the others, confirming the
potential advantage of the Interior Point technology on “hard” instances. However, such small
MMCFs are well in the range of general-purpose LP solvers, so that it makes little sense to use ad-
hoc technology. In this case, other issues such as availability, ease-of-use and reoptimization should
be taken into account.

5.5 The dimacs2pprn problems

Due to the previous results, the general-purpose Interior Point codes were not run on this data set,
that contains the largest instances of all. As described in §4.5, for any given dimension a hard and an
easy instance have been constructed: the results are separately reported in Table 17 and Table 18
respectively (note the difference in the number of mutual capacity constraints, b). As in the Mnetgen
case, CPLEX ran out of memory on the largest instances, and PPRN was sometimes stopped after
having run for a very long time without producing a result (the “+” entries): IPM also experienced
memory problems on the largest instances, with 1.2 millions of variables. Note that a 2.5.105

variables MMCF requires about 11, 20 and 129 megabytes of memory to be solved by MMCFB,
PPRN and CPLEX respectively: MMCFB requires an order of magnitude less memory than CPLEX.

The results obtained from these instances confirm those obtained from the previous data sets:
MMCFB is faster than the two simplex-based codes on all but the smallest instances, IPM is
competitive with both CPLEX and PPRN on instances with large k but MMCFB is even more
efficient—for k = 256 it is always more than an order of magnitude faster than the other codes,
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approaching the three orders of magnitude as m increases. Yet, especially on large problems,
MMCFB spends most of the time in the SPT solver, which suggests that substantial improvements
should be obtained by making use of reoptimization techniques in the SPT algorithms.

The results are also illustrated by Figure 12, Figure 13, Figure 14, Figure 15, Figure 16 and Figure
17, where the ratio of the running times of CPLEX, PPRN and IPM vs. MMCFB is reported for
“hard” and “easy” instances separately. It is interesting to note that the relative efficiency of MMCFB
with respect to the simplex-based codes for k = 4 is lower on easy problems than on hard ones, while
the converse is true for the relative efficiency of MMCFB with respect to IPM.

k n m size b MMCFB Cplex PPRN IPM
4 6 4 2 4 0 9.6e+2 2 4 0 0.46 0.32 0.37 1.23
4 1 2 8 4 9 6 2.0e+3 1 1 2 1.30 1.05 2.36 2.65
4 2 5 6 1 0 0 8 4.0e+3 1 0 0 7 21.50 8.85 14.82 23.13
4 2 5 6 1 0 8 8 4.4e+3 1 9 2 0.36 1.38 2.22 8.86
4 5 1 2 2 2 4 0 9.0e+3 4 4 7 5.97 14.39 32.26 63.44
4 1 0 2 4 4 5 4 4 1.8e+4 9 6 0 39.76 70.41 178.06 266.79

1 6 6 4 2 4 0 3.8e+3 2 4 0 0.44 1.23 1.68 7.58
1 6 1 2 8 4 9 6 7.9e+3 1 1 2 4.31 19.72 29.75 24.74
1 6 2 5 6 1 0 0 8 1.6e+4 2 4 0 64.79 230.82 550.11 437.41
1 6 2 5 6 1 0 8 8 1.7e+4 1 9 2 1.08 5.38 22.14 39.70
1 6 5 1 2 2 2 4 0 3.6e+4 4 4 8 14.15 218.55 479.96 540.90
1 6 1 0 2 4 4 5 4 4 7.3e+4 9 6 0 69.59 1079.63 2796.85 2363.02
6 4 6 4 2 4 0 1.5e+4 2 4 0 2.89 50.70 92.77 51.55
6 4 1 2 8 4 9 6 3.2e+4 1 1 2 9.23 222.65 562.71 410.42
6 4 2 5 6 1 0 0 8 6.5e+4 1 0 0 8 94.07 3256.52 10011.30 4556.57
6 4 2 5 6 1 0 8 8 7.0e+4 1 9 2 4.37 93.14 535.47 283.19
6 4 5 1 2 2 2 4 0 1.4e+5 4 4 8 37.69 2362.37 7146.33 2703.51
6 4 1 0 2 4 4 5 4 4 2.9e+5 9 6 0 215.70 18763.9 52787.6 22899.4

2 5 6 6 4 2 4 0 6.1e+4 2 4 0 17.52 668.27 1415.55 258.87
2 5 6 1 2 8 4 9 6 1.3e+5 1 1 2 48.72 3525.27 11443.50 501.80
2 5 6 2 5 6 1 0 0 8 2.6e+5 1 0 0 8 458.36 56756.9 2 0 0 0 0 0 + 6069.46
2 5 6 2 5 6 1 0 8 8 2.8e+5 1 9 2 15.30 821.86 7832.38 1475.91
2 5 6 5 1 2 2 2 4 0 5.7e+5 4 4 8 218.84 *  138225.0 22266.8
2 5 6 1 0 2 4 4 5 4 4 1.2e+6 9 6 0 898.51 *  4 0 0 0 0 0 + *

Table 17: results of the “hard” dimacs2pprn instances
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Figure 12: CPLEX / MMCFB ratio for easy problems
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Figure 13: CPLEX / MMCFB ratio for hard problems
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Figure 14: PPRN / MMCFB ratio for easy problems

1 e - 1

1e+0

1e+1

1e+2

1e+3

2 4 0 4 9 6 1 0 0 8 1 0 8 8 2 2 4 0 4 5 4 4

4 1 6 6 4 2 5 6

Figure 15: PPRN / MMCFB ratio for hard problems
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Figure 16: IPM / MMCFB ratio for easy problems
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Figure 17: IPM / MMCFB ratio for hard problems

k n m size b MMCFB Cplex PPRN IPM
4 6 4 2 4 0 9.6e+2 4 8 0.07 0.17 0.16 0.54
4 1 2 8 4 9 6 2.0e+3 1 1 2 0.18 0.24 0.26 1.61
4 2 5 6 1 0 0 8 4.0e+3 2 3 9 1.12 1.81 3.40 5.37
4 2 5 6 1 0 8 8 4.4e+3 1 9 1 0.08 0.54 1.80 4.17
4 5 1 2 2 2 4 0 9.0e+3 4 4 7 0.75 6.41 12.08 35.58
4 1 0 2 4 4 5 4 4 1.8e+4 9 6 0 1.84 14.02 34.84 101.49

1 6 6 4 2 4 0 3.8e+3 4 8 0.14 0.88 1.51 3.19
1 6 1 2 8 4 9 6 7.9e+3 1 1 2 0.66 3.50 7.67 10.88
1 6 2 5 6 1 0 0 8 1.6e+4 2 4 0 3.53 20.27 65.31 63.66
1 6 2 5 6 1 0 8 8 1.7e+4 1 9 2 0.37 3.42 8.05 31.60
1 6 5 1 2 2 2 4 0 3.6e+4 4 4 8 2.24 43.30 275.89 166.14
1 6 1 0 2 4 4 5 4 4 7.3e+4 9 6 0 6.64 74.82 1286.26 514.74
6 4 6 4 2 4 0 1.5e+4 4 8 1.37 11.03 34.00 19.72
6 4 1 2 8 4 9 6 3.2e+4 1 1 2 2.12 25.80 109.97 51.61
6 4 2 5 6 1 0 0 8 6.5e+4 2 4 0 15.75 445.28 1395.74 333.13
6 4 2 5 6 1 0 8 8 7.0e+4 1 9 2 2.75 47.05 339.72 195.77
6 4 5 1 2 2 2 4 0 1.4e+5 4 4 8 8.83 261.62 4492.95 754.25
6 4 1 0 2 4 4 5 4 4 2.9e+5 9 6 0 32.18 978.31 22511.3 3411.4

2 5 6 6 4 2 4 0 6.1e+4 4 8 9.21 208.90 694.94 94.94
2 5 6 1 2 8 4 9 6 1.3e+5 1 1 2 11.36 401.02 2662.57 228.16
2 5 6 2 5 6 1 0 0 8 2.6e+5 2 4 0 96.34 7324.71 28435.0 1340.8
2 5 6 2 5 6 1 0 8 8 2.8e+5 1 9 2 13.33 474.34 5270.80 1178.85
2 5 6 5 1 2 2 2 4 0 5.7e+5 4 4 8 85.17 *  81419.1 4236.8
2 5 6 1 0 2 4 4 5 4 4 1.2e+6 9 6 0 159.33 *  4 0 0 0 0 0 + *

Table 18: results of the “easy” dimacs2pprn instances



A Bundle-type approach to Multicommodity flow problems

26

5.6 The BHV problems

    MMCFB Cplex        BCG
I t e r Time Time I te r Time

q1 4 2 0.63 7.93 4 5.06
q2 3 4 0.51 9.03 5 4.15
q3 4 2 0.63 12.45 5 5.15
q4 5 5 0.83 16.08 6 6.78
q5 8 5 1.33 20.3 6 6.78
q6 1 0 0 1.55 26.75 7 7.78
q7 1 0 0 1.58 31.07 7 8.69
q8 1 5 6 2.66 37.41 8 10.66
q9 2 2 1 3.76 44.96 8 10.60
q10 1 7 2 2.92 51.95 9 12.88
q11 1 9 6 3.37 61.58 8 12.55
q12 2 7 0 4.75 64.96 9 15.95

Table 19: results for the “px” problems

    MMCFB Cplex        BCG
I t e r Time Time I te r Time

r 1 0 - 5 - 1 2 5 8.73 6570.19 4 3 9 1 6 6 2
r 1 0 - 5 - 2 2 6 9.01 9249.35 4 2 0 8 6 0 7
r 1 0 - 5 - 3 3 8 13.02 6598.73 3 2 3 7 3 9 8
r 1 0 - 5 - 4 2 0 7.14 8481.97 4 1 4 9 5 0 1
r 1 0 - 5 - 5 2 3 8.16 9262.55 3 6 3 3 4 2 0
r 1 0 - 5 5 - 1 8 7 7 311.01 10843.10 2 4 5 5 1 6 2
r 1 0 - 5 5 - 2 9 3 4 330.21 12978.80 2 6 9 0 1 9 9
r 1 0 - 5 5 - 3 1 2 4 3 445.27 13849.00 2 6 9 4 2 2 4
r 1 0 - 5 5 - 4 9 9 9 349.20 11581.60 2 5 1 1 2 1 8
r 1 0 - 5 5 - 5 8 7 7 318.00 * 2 7 0 6 2 3 4

Table 20: results for the “r10-x-y” problems

Among the available specialized solvers, only MMCFB is capable of solving undirected instances; the
three general-purpose LP solvers can be adapted for the task, but, due to the very poor results
obtained by the IP codes, only CPLEX was actually run on these data sets. The times for the Column
Generation algorithm (BCG) were obtained on an IBM RS6000-590 workstation, credited for 121.6
SPECint92 and 259.7 SPECfp92, i.e. essentially twice as fast as the HP9000/712-80: Table 19
shows that on the easy “px” problems MMCFB is 10 times faster than BCG. The results on the other
data set, shown in Table 20, are quite surprising: the two methods are essentially equivalent on the
(highly fractional) “r10-55-y” instances, but MMCFB is able to solve the similar (integral) “r10-5-y”
instances 30 times faster, while BCG needs about twice the time. A rationale for the behavior of
MMCFB exists: a smaller number of trees is likely to be necessary to form the optimal flow as a
convex combination in the integral data case. However, it is unclear why the same should not be true
for the CG code: should it be proved that this is due to the Bundle-type approach, the result could be
rather interesting.

5.7 Conclusions

The above computational experience shows that MMCFB can be a valuable tool for solving MMCFs
with many commodities: to stress one figure, MMCFB solved the hard, dense (256, 256) Mnetgen
instances in less than 20 minutes, but more than 6 and 10 days were needed by CPLEX and PPRN
respectively, while IPM required a little less than 5 hours. As the experience with the dimacs2pprn
data set shows, MMCFs with over one million of variables can be solved in less than 15 minutes of
CPU time by a low-end computer, provided that the subproblems have a SPT structure. In a
companion paper[14], we also show that a somewhat “naïve” parallelization of MMCFB obtains very
good parallel efficiencies on a massively-parallel computer for the same instances for which the
sequential code is more competitive, i.e. when k is large. Conversely, MMCFB does not appear to be
a good choice for problems with a small number of commodities, unless the instances are very large:
the PDS problems show that MMCFB can be competitive even on problems with m / k ratio larger
than 1000, but the speedup with respect to simplex-based codes is far smaller than on many-
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commodities problem.

The general-purpose Interior Point solvers are not competitive with the other approaches, and they are
not able to solve even moderately-sized instances due to excessive memory requirements. However,
the specialized one dramatically improves on them and it is competitive on difficult problems with few
commodities: it is also competitive with the simplex-based methods, although not with MMCFB, for
large values of k. Among the latters, CPLEX is (sometimes consistently) faster than PPRN on the
Mnetgen and dimacs2pprn problems, while the converse is true for the Canad ones: however, on the
largest (difficult) PDS problems PPRN neatly outperforms CPLEX.

The Column Generation code was found (on a limited set of problems) to be less effective than
MMCFB, even though in some cases not dramatically. For the subset of the problems where the
speedup is really impressive, it is still not clear which features of the codes determine such difference,
and further investigation is needed. Finally, the indirect comparison with methods from the literature
seems to indicate that alternative approaches can be at least comparably efficient, or even much more
efficient for rapidly finding approximate solutions, at least on some classes of problems. Even more
clearly, however, they show the need for further computational studies that help in assessing the
effectiveness of the various approaches on different classes of problems: we hope that this work
proves to be useful as a step in this direction.
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