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In this paper, we model and solve the strategic problem of minimizing the expected loss inflicted by a hostile
terrorist organization. An appropriate allocation of certain capability-related, intent-related, vulnerability-

related, and consequence-related resources is used to reduce the probabilities of success in the respective attack-
related actions and to ameliorate losses in case of a successful attack. We adopt a nested event tree optimization
framework and formulate the problem as a specially structured nonconvex factorable program. We develop two
branch-and-bound schemes based, respectively, on utilizing a convex nonlinear relaxation and a linear outer
approximation, both of which are proven to converge to a global optimal solution. We also design an alterna-
tive direct mixed-integer programming model representation for this case, and we investigate a fundamental
special-case variant for this scheme that provides a relaxation and affords an optimality gap measure. Several
range reduction, partitioning, and branching strategies are proposed, and extensive computational results are
presented to study the efficacy of different compositions of these algorithmic ingredients, including comparisons
with the commercial software BARON. A sensitivity analysis is also conducted to explore the effect of certain
key model parameters.
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1. Introduction
The international community applies significant effort
and resources to counter the effects of terrorism.
Unfortunately, niche agencies with different missions
focus on disparate aspects of combating terrorism,
and a holistic approach is often lacking. Military and
paramilitary agencies work to preemptively degrade
terrorists’ abilities to mount attacks, intelligence agen-
cies focus on detecting and preventing attacks, law
enforcement agencies strive to interdict attacks, and
emergency services work to mitigate the conse-
quences of successful attacks. These elements each
provide important services; however, the proponent
agencies are often based in different executive gov-
ernmental departments and levels. For example, the
National Counterterrorism Center (NCTC) is charged
with the mission of “leading the U.S. government
in counterterrorism intelligence and strategic oper-
ational planning in order to combat the terrorist
threat to the U.S. and its interests” (National Counter-
terrorism Center 2008). However, the NCTC lacks the
ability or authority to extend its influence to tac-
tical implementation at the level of state and local

agencies, which encompass nonfederalized National
Guard units, state and local police, and local first
responders such as medics and firefighters. There
is a need, therefore, to better coordinate resources
toward an integrated strategy for combating terrorism
that envelops both preemptive (counterterrorism) and
responsive (antiterrorism) actions.
The present work seeks to model the application

of resources for combating terrorism to minimize the
overall risk (or expected loss) associated with the
contemplation of an attack by a terrorist organiza-
tion. We represent the basic attack-to-consequence
phenomenon as an event tree (Sherali et al. 2008),
having tiers of event branches with associated proba-
bilities that are nested (or layered) to consider multiple
threats as determined by combinations of the terror-
ists’ developed capabilities and their intent to mount
attacks using these capabilities against specific sets of
targets. Furthermore, we consider the application of
resources across four domains of combating terrorism:
capabilities, intent, vulnerability, and consequences.
These correspond to the three-component paradigm
of threat, vulnerability, and consequences that has been
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established for terrorist-related risk analysis (Willis
et al. 2005), with the threat component further refined
by the U.S. Department of Homeland Security into the
capability of an organization to mount an attack and
its intent to conduct an attack against a specific target
(Masse et al. 2007). Capability-related resources degrade
the terrorists’ ability to mount an attack, intent-related
resources employ deterrence to reduce the likelihood
that such an attack will be conducted against a spe-
cific target, vulnerability-related resources reduce the
level of success of the attack, and consequence-related
resources reduce the severity of the outcome associated
with a successful attack against the target. We refer
to the resulting formulation that seeks to apply these
resources in order to minimize the overall risk as the
nested event tree optimization (NETO) model.
Within the context of U.S. efforts to combat terror-

ism, examples of capability-related resources are mili-
tary strikes and raids against terrorist training camps,
international agency collaborations to seize financial
assets, and military or surrogate military interdic-
tion of chemical, biological, radiological, nuclear, or
high-yield explosive (CBRNE) material during trans-
port and prior to assembly for an attack. Examples
of intent-related resources include overt employment
of intelligence assets to detect a planned attack,
U.S. Customs inspections at national points of entry,
and visible local security measures such as surveil-
lance, monitoring, and trained personnel to protect
the target from attack. Vulnerability-related resources
include safety measures for containing damage such
as automated shutdown procedures for a nuclear
plant, armored cars to protect political leaders dur-
ing transport, and electronic devices installed on civil-
ian aircraft to detonate antiaircraft missiles prior to
impact with fuselage. Some resources have the poten-
tial to affect more than one domain of terrorists’
ability to attack a target. For example, surveillance
resources provide a means of early detection that can
be used to reduce capability, intent, or vulnerability.
Therefore, we will consider capability-related, intent-
related, and vulnerability-related resources under
one overall category: countermeasure resources. This
contrasts with the remaining category of consequence-
related resources. Resources belonging to the latter
category might include trained emergency respon-
ders, including medics and weapons of mass destruc-
tion civil support teams (WMD-CSTs), to isolate and
treat personnel exposed to CBRNE agents, as well as
redundancy in computer networks to mitigate a suc-
cessful electronic attack on a server.
Although previous work does not incorporate the

breadth of strategic resource allocations considered
herein, several related discussions in the literature
have addressed a single tier in this strategic prob-
lem. For example, Albores and Shaw (2008) propose

a consequence management model that restricts con-
sideration to the application of constrained resources
to respond to a catastrophic incident (or incidents)
and applied a discrete-event simulation approach to
study the effect of resource-usage scenarios. In con-
trast, Golany et al. (2009) examine an event-focused
model within the context of three different objectives,
wherein resource application influences the likelihood
of a successful terrorist attack against a set of targets
via linear relationships and for which the conse-
quences of a successful attack against a given target
are fixed. Another notable event-focused model, pro-
posed by Scaparra and Church (2008), considers the
application of constrained resources to protect criti-
cal infrastructure in the context of a game theoretic
approach, which results in a bilevel integer program.
Within a game-theoretic context for defending tar-
gets from attacks, Zhuang and Bier (2007) develop
closed-form solutions for optimal opponent strate-
gies and equilibria for simultaneous and sequen-
tial games for a single target, and they extend this
investigation to multiple-target games. In related
research that considers resource application to influ-
ence both event probabilities and consequences, Mehr
and Tumer (2006) propose a multiobjective model to
minimize the expectation and variance for risk of
events in a space exploration system but restrict their
model to consider linear probability-resource relation-
ships. Stranlund and Field (2006) formulate nonlinear
models to apply constrained event- and consequence-
related resources and study the effect of uncertainty
on the expected loss. Sherali et al. (2008, 2010)
examine mixed-integer programming formulations
for the application of event- and consequence-related
resources to reduce probabilities and outcome costs,
respectively, to minimize the overall risk (expected
loss) within a Bernoulli event tree representing a
cascading sequence of occurrences following an ini-
tiating hazardous event. They employed nonlinear
logit models for the probability-resource relation-
ships and a linear model for the outcome-resource
relationships to formulate a nonconvex model that
was solved to global optimality by adopting suit-
able outer-approximating linear programming relax-
ations. In an earlier work, Beim and Hobbs (1997)
also model net risk using an event tree with condi-
tional probabilities but without the context of strategic
planning for resource allocation, so that the prob-
abilities in their model are subjectively determined
and are fixed. Dillon and Paté-Cornell (2005) explore
the application of suitable resources to minimize the
expected risk in an information system over three dis-
tinct tiers—initial failures, intermediate failures, and
total failures—along with the associated cost of fail-
ures. Although the form of their objective function
and the use of conditional probabilities most closely
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align with our approach, Dillon and Paté-Cornell
considered a limited set of resource allocation deci-
sions with a discrete probability distribution, which
results in a finitely countable set of feasible solutions
that can be explicitly enumerated for objective value
comparison.
The principal contributions of this paper are

threefold. First, we present a novel nested event
tree optimization modeling framework that compre-
hensively addresses capability, intent, vulnerability,
and consequence issues in combating terrorism. Sec-
ond, we design alternative reformulations along with
effective specialized global optimization algorithms to
solve the challenging nonconvex programming prob-
lems that result. Third, we provide insights into the
effectiveness of different algorithmic and modeling or
reformulation strategies via extensive computational
test results, including comparisons with a contempo-
rary commercial software product (BARON).
The remainder of this paper is organized as fol-

lows. In §2, we formulate the proposed NETO model.
In §3, we design two relaxation-based branch-and-
bound algorithms and also propose a piecewise lin-
ear approximation approach that results in a linear
mixed-integer programming model. This latter model
is further refined to address an important fundamen-
tal and special case of the problem. In §4, we propose
a series of branching and partitioning strategies as
well as certain range reduction techniques to enhance
algorithmic performance. In §5, we present extensive
computational results along with sensitivity analy-
ses to provide insights into algorithmic performance
and the effect of various key modeling parameters on
the nature of the solutions produced. We conclude in
§6 with further discussion and recommendations for
future research.

2. Model Formulation
To facilitate our model formulation, we begin by
introducing notation for the sets of attack capabilities,
targets, and outcomes and for the influencing resource
sets that affect related probabilities. Figure 1 depicts
the relationship between the defined indices and the
associated sets and resource applications. Also dis-
played are the probabilities associated with tiers of
the nested event tree as defined later in this section,
which are affected by the application of countermea-
sure resources and consequence-related resources.
The notation used is defined as follows:
• n ∈N : set of possible targets.
• i ∈ I : set of possible types of terrorist capabilities

for attacks, where

In = {i ∈ I : terrorist capability i could be used
against a target n}, n ∈N .

pA

Influencing resources

r ∈ R

Loss Cinj

…

…

…

n

Index sets

I n ∈ N: i ∈ In j ∈ Jn

…

i

j

pM
i

(in | i)

pO
(nj | in)

s ∈ SM
i s ∈ SA

n s ∈ SO
n

Figure 1 Nested Event Tree Displaying Indices, Resources, and
Probabilities

• j ∈ J : set of possible outcomes of the attacks,
where

Jn = {j ∈ J : outcome j is a possible occurrence at
target n because of some form of attack},
n ∈N .

• S ≡ set of countermeasure resources, where

SMi = {s ∈ S: resource s can influence the terror-
ists’ ability to mount an attack using capa-
bility type i}, i ∈ I .

SAn = {s ∈ S: resource s can influence the terror-
ists’ intent to attack target n}, n ∈N .

SOn = {s ∈ S: resource s can influence the vulnera-
bility of target n with respect to the possible
outcomes at that target}, n ∈N .

STn ≡ SAn ∪ SOn .
• R≡ set of consequence-related resources.
For reference, examples of types of capabilities, tar-

gets, and attack outcomes indexed by i, n, and j ,
respectively, are listed in Table 1.
As illustrated in Figure 1, the proposed model for-

mulates the problem of combating terrorism using
the framework of a nested event tree and assum-
ing discrete probability distributions. Our focus is

Table 1 Examples of Entities Indexed by i, n, and j

Capabilities (i) Targets (n) Attack outcomes (j)

Assassination Military base Serious injuries
Dirty bombs Political leader Fatalities
Kidnapping High population Property

density area damages
Chemical attack Water treatment plant Water supply contamination
Biological agents Nuclear power plant Infectious disease propagation
Nuclear weapons Economic center Economic impact
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to apply a set of available countermeasure resources
(s ∈ S) under a budgetary restriction to safeguard
a potential set of targets against a known terrorist
group and to mitigate the resulting damage by apply-
ing consequence-related resources, thereby minimiz-
ing the overall risk as measured by the total expected
loss because of attacks.

Principal Decision Variables
• �x�y� ≡ overall decision vector defined as

follows:
• x= �xM�xT � for which
xM ≡ (xMsi , s ∈ SMi � i ∈ I� ∈ �

∑
i∈I �SMi �, where each

component xMsi represents the amount of
resource type s applied to prevent the ter-
rorists from being able to mount an attack of
capability type i.

xT ≡ �xTsn� s ∈ STn �n ∈ N� ∈ �
∑
n∈N �STn �, where each

component xTsn represents the total amount
of resource type s applied at target n to ame-
liorate the potential intent and vulnerability
with respect to terrorist attacks.

• y ≡ �yrj� r ∈ R� j ∈ J � ∈ ��R��J �, where yrj represents
the amount of consequence-related resource r applied
to mitigate the loss because of an inflicted attack that
produces outcome j .

Intermediate Variables (Influenced by �x�y�)
• p= �pM�pA�pO�, a vector of probabilities defined

as follows (see Figure 1):

pM ≡ (pMi � i ∈ I�, where pMi represents the proba-
bility that the terrorist group can mount an
attack using capability type i.

pA ≡ (pA�in � i�� i ∈ In�n ∈N�, where pA�in � i� represents
the conditional probability that the terror-
ist group conducts an attack using capabil-
ity type i against a potential target n, given
that such an attack can be mounted.

pO ≡ (pO�nj � in�� i ∈ In� j ∈ Jn�n ∈ N�, where pO�nj � in�
represents the conditional probability that
an attack at target n results in outcome j ,
given that a capability type i attack has
been conducted against that target.

• Cinj ≡ loss (cost) incurred when a capability
type i attack has been conducted against target n,
resulting in outcome j .

Parameters
• �s ≡ amount of countermeasure resource s avail-

able, s ∈ S.
• �r ≡ amount of consequence-related resource r

available, r ∈R.
• a ≡ �asi� s ∈ SMi � i ∈ I�, where asi represents the

per-unit cost of applying countermeasure resource s
to reduce the ability of the terrorist group to mount a
capability type i attack.

• b ≡ �bsn� s ∈ STn �n ∈ N�, where bsn represents the
per-unit cost of applying countermeasure resource s
at target n to ameliorate the potential intent and vul-
nerability with respect to terrorist attacks.
• c≡ �crj � r ∈R� j ∈ J �, where crj represents the per-

unit cost of applying consequence-related resource r
to mitigate the effects of outcome j because of an
inflicted attack.
• B≡ total amount of budget available.
• � ≡ ��si� s ∈ SMi � i ∈ I� a vector of nonnegative

constants for defining the logit choice models for the
probabilities pMi (see Equation (5)). Moreover, we have

�0 ≡ (�0i � i ∈ I�, where �0i provides an upper
bound on pMi through the logit choice model.

• �≡ ��isn� s ∈ SAn � i ∈ In�n ∈N�, a vector of nonneg-
ative constants for defining the logit choice models for
the probabilities pA�in � i� (see Equation (6)). Moreover,
we have

�0 ≡ (�0in � i ∈ In�n ∈ N ), where �0in provides an
upper bound on pA�in � i� through the logit
choice model.

• � ≡ ��insj � s ∈ SOn � i ∈ In� j ∈ Jn�n ∈ N�, a vector of
nonnegative constants for defining the logit choice
models for the probabilities pO�nj � in� (see Equation (7)).
Moreover, we have

�0 ≡ (�0inj � i ∈ In� j ∈ Jn�n ∈ N�, where �0inj pro-
vides an upper bound on pO�nj � in� through the
logit choice model.

• pMli > 0 and pMui < 1≡ lower and upper bounds,
respectively, for pMi . Considering the case for the logit
choice model (see Equation (5)) in which no coun-
termeasure resources are applied, we have pMui ≤
e�

0
i /�1+ e�0i � ∀ i ∈ I .
• pAl�in � i� > 0 and pAu�in � i� < 1 ≡ lower and upper

bounds, respectively, for pA�in � i�. Considering the case
for the logit choice model (see Equation (6)) in which
no countermeasure resources are applied, we have
pAu�in � i� ≤ e�0in /�1+ e�0in � ∀ �i ∈ In�n ∈N�.
• pOl�nj � in� > 0 and pOu�nj � in� < 1 ≡ lower and upper

bounds, respectively, for pO�nj � in�. Considering the case
for the logit choice model (see Equation (7)) in which
no countermeasure resources are applied, we have
pOu�nj � in� ≤ e�

0in
j /�1+ e�0inj � ∀ �i ∈ In� j ∈ Jn�n ∈N�.

• % ≡ �%inrj � r ∈ R� i ∈ In� j ∈ Jn�n ∈ N�, a vector of
nonnegative constants for defining the negative expo-
nential model that represents the effect of applying
the consequence-related resource r to reduce the cost
Cinj resulting from outcome j under an attack using
capability type i against target n (see Equation (12)).
In addition, we have

%0 ≡ (%0inj � i ∈ In� j ∈ Jn�n ∈ N�, where %0inj repre-
sents the unmitigated consequence or cost
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for outcome j because of an inflicted attack
using capability type i against target n.

• h ≡ �hinj � i ∈ In� j ∈ Jn�n ∈ N�, a vector of
nonnegative constants that determine the (exponen-
tially decaying) rate at which the consequence is
decreased with respect to the combined resource-
effect

∑
r∈R %inrj yrj (see Equation (12)).

The nested event tree optimization model can then
be formulated as follows:

(NETO) ' min Risk≡∑
n∈N

∑
i∈In

∑
j∈Jn
pMi p

A
�in�i�p

O
�nj �in�Cinj (1)

subject to
∑

i∈I ' s∈SMi
xMsi +

∑
n∈N's∈STn

xTsn≤�s

∀s∈S� (2)∑
j∈J
yrj≤�r ∀r ∈R� (3)

∑
i∈I

∑
s∈SMi

asix
M
si +

∑
n∈N

∑
s∈STn
bsnx

T
sn

+∑
j∈J

∑
r∈R
crjyrj≤B� (4)

ln
[
pMi

1−pMi

]
=�0i −

∑
s∈SMi

�six
M
si

∀i∈ I� (5)

ln
[
pA�in�i�

1−pA�in�i�

]
=�0in −

∑
s∈SAn
�isnx

T
sn

∀�i∈ In�n∈N�� (6)

ln
[
pO�nj �in�

1−pO�nj �in�

]
=�0inj − ∑

s∈SOn
�insj x

T
sn

∀�i∈ In�j ∈ Jn�n∈N�� (7)

pMli ≤pMi ≤pMui ∀i∈ I� (8)

pAl�in�i�≤pA�in�i�≤pAu�in�i�
∀�i∈ In�n∈N�� (9)

pOl�nj �in�≤pO�nj �in�≤pOu�nj �in�
∀�i∈ In�j ∈ Jn�n∈N�� (10)

p∈P� (11)

Cinj=%0inj e−h
in
j

∑
r∈R%inrj yrj

∀�i∈ In�j ∈ Jn�n∈N�� (12)

�x�y�≥0) (13)

The objective function (1) computes the overall risk,
i.e., the expected loss, as given by the sum over all
possible events of incurring a cost Cinj because of an
outcome j resulting from a capability type i attack
inflicted against a target n times the probability pinj ≡
pMi p

A
�in � i�p

O
�nj � in� that this event will occur. Although the

National Strategy for Combating Terrorism (2006) and
the National Strategy for Homeland Security (2007)
provide a conceptual framework for the taxonomy
of the �x�y� variables, the relational effect of these
principal decision variables on the intermediate vari-
ables for computing the expected loss is specific to our
model. Note that to analyze the model solution (or
to formulate a multiobjective model), we can use par-
tial sums over appropriate terms in (1) to assess the
risk associated with a particular outcome j or the risk
pertaining to a particular type of loss having at least
some specified severity level over all possible types
of attacks on all targets.
Constraints (2) and (3) represent the restrictions on

each type of resource. Constraint (4) asserts that the
overall expenditure should not exceed the available
budget. Constraints (5)–(7) represent the logit models
for relating the pertinent probabilities to the applied
resources. By the choice of the functional relation-
ships in (5)–(7), note that the governed probabilities
decrease at an increasing rate initially with respect to
additional committed resources and then continue to
decrease at a diminishing marginal rate, asymptoti-
cally approaching zero. There exist several alternative
approaches to representing such resource-probability
relationships. For example, Bier et al. (2008) assume
a simple exponential decay function for assessing
the success probability of an attack but adopt a
more sophisticated representation for the probabil-
ity of launching an attack based on determining the
maximum expected valuation (following a Rayleigh
distribution) of the different targets by the terrorist.
A very different and even more intricate approach
would be to model the problem as a simultaneous
or sequential two-person (defender–attacker) game
as in Zhuang and Bier (2007), where the effect of
the defender’s resource investments is only implic-
itly defined via the response of the attacker. Whereas
we model in greater detail the defender’s strategies
in this work, we assume for the sake of compu-
tational tractability that the logit models described
above can be adequately calibrated to capture the dif-
ferent resource-probability relationships. Constraints
(8)–(10) bind the probabilities to certain imposed
intervals within (0, 1). Note that, as indicated ear-
lier, the imposed upper bounds in (8)–(10) are at least
as tight as the corresponding implied bounds when
no countermeasure resources are applied. For exam-
ple, we have pMui ≤ e�

0
i /�1 + e�

0
i � ∀ i ∈ I based on

(5) and (13). Constraint (11) enforces any additional
applicable restrictions on the p-variables, for exam-
ple, based on suitable natural properties of the sam-
ple space at each node in the event tree. For example,
the capabilities i ∈ I for some terrorist organization
might be mutually exclusive and collectively exhaus-
tive where (11) would inherit a constraint of the
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type
∑
i∈I pMi = 1. Constraint (12) computes the con-

sequences based on the resources applied to mitigate
the effect of the inflicted attacks, and constraint (13)
requires nonnegative resource allocations. Note that
some of the decision variables �x�y� may also be log-
ically restricted to integer values, for example, when
representing trained personnel allocations. However,
we shall assume in such cases that an appropriate
rounding of such variable values based on an opti-
mal solution derived for problem NETO provides an
acceptable strategy. Assuming that the specified logit
parameters are such that we satisfy constraint (11) by
substituting x = 0 in constraints (5)–(7), the applica-
tion of no resources yields a feasible solution for prob-
lem NETO.

3. Algorithmic Development
In this section, we propose three reformulations and
algorithmic approaches for determining a global opti-
mal solution to problem NETO, including the analysis
of a special fundamental case of the model in which
the generic side constraint (11) is absent; i.e., P ≡ �n̄,
where n̄ is the number of p variables.

3.1. Algorithm 1: Convex Relaxations
We begin by reformulating NETO to isolate the inher-
ent nonlinearities into a set of two specially struc-
tured nonconvex constraint sets having common form
and identifying a hyperrectangle to bound the auxil-
iary decision variables that are used to define these
nonlinear constraint sets. Although similar in concept
to Sherali et al. (2008, 2010), in which the authors
reformulate the original problem as per Sherali and
Wang (2001), our solution methodology exploits the
particular structure of the NETO problem, and we
also design different tailored procedures to solve a
fundamental special case of our model. We then
construct a polyhedral outer approximation to these
isolated nonconvex sets and embed this in a branch-
and-bound algorithm, which ensures that a sequence
of convex programs solved over recursively parti-
tioned hyperrectangles will yield an optimal solu-
tion to NETO (within any prescribed *-optimality
tolerance).

3.1.1. Reformulation. Consider the following
transformations to simplify the nonlinearities in
problem NETO:

qM1i = ln�pMi � ∀ i ∈ I� (14)

qM2i = ln�1− pMi � ∀ i ∈ I� (15)

qA1�in � i� = ln�pA�in � i�� ∀ �i ∈ In�n ∈N�� (16)

qA2�in � i� = ln�1− pA�in � i�� ∀ �i ∈ In�n ∈N�� (17)

qO1�nj � in� = ln�pO�nj � in�� ∀ �i ∈ In� j ∈ Jn�n ∈N�� (18)

qO2�nj � in� = ln�1− pO�nj � in�� ∀ �i ∈ In� j ∈ Jn�n ∈N�) (19)

We reference the above original and auxiliary vari-
ables in generic terms as pLk and qLvk, where L ∈
/M�A�O0, v ∈ /1�20, and k ∈ /i� �in � i�� �nj � in�0. These
latter indices correspond, respectively, to /M�A�O0
and comprise the sets KL�L ∈ /M�A�O0. Based on
the upper and lower bounds for each intermediate
variable pLk , we will inherit upper and lower bounds
for the corresponding auxiliary variable qLvk over the
appropriately indexed sets, which results in

qLlvk ≤ qLvk ≤ qLuvk < 0 ∀L� v� �k ∈KL��
where

qLl1k = ln�pLlk �� qLu1k = ln�pLuk ��

qLl2k = ln�1− pLuk �� and

qLu2k = ln�1− pLlk � ∀L� �k ∈KL�)
(20)

To transform the costs Cinj , we define

2inj = ln�Cinj�= ln%0inj −hinj
∑
r∈R
%inrj yrj

∀ �i ∈ In� j ∈ Jn�n ∈N�) (21)

Next, to convexify the objective function, we define

pMi p
A
�in � i�p

O
�nj � in�Cinj = ezinj ∀ �i ∈ In� j ∈ Jn�n ∈N��

which, upon taking the natural logarithm of both
sides and using (14), (16), (18), and (21), can be equiv-
alently stated as

zinj = qM1i +qA1�in�i�+qO1�nj �in�+2inj
∀�i∈ In�j ∈ Jn�n∈N�) (22)

In addition, we bound zinj as follows:



zlinj ≤ zinj ≤ zuinj
where zlinj = ln�pMli p

Al
�in � i�p

Ol
�nj � in�C

l
inj �

and zuinj = ln�pMui p
Au
�in � i�p

Ou
�nj � in�%

0in
j �



�

∀ �i ∈ In� j ∈ Jn�n ∈N�) (23)

Accordingly, we now have a hyperrectangle (�) that
bounds the intermediate variables as

4= /pLlk ≤ pLk ≤ pLuk ∀L� �k ∈KL�0� (24)

with an induced hyperrectangle (�) that bounds the
corresponding auxiliary variables as given by

5=




qLl1k ≤ qL1k ≤ qLu1k � ∀L� �k ∈KL��
qLl2k ≤ qL2k ≤ qLu2k � ∀L� �k ∈KL��
zlinj ≤ zinj ≤ zuinj� ∀ �i ∈ In� j ∈ Jn�n ∈N�)

(25)

We also define the vectors q ≡ �qLvk� ∀L�v� �k ∈ KL��
and z≡ �zinj� ∀ �i ∈ In� j ∈ Jn�n ∈N��. Accordingly, we
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shall refer to (25) as �q� z� ∈5. (We similarly refer to
(24) as p ∈4.) This results in the following equivalent
reformulation, NETO(�), of problem NETO:

(NETO(�)): min
∑
n∈N

∑
i∈In

∑
j∈Jn
ezinj (26)

subject to
∑

i∈I ' s∈SMi
xMsi +

∑
n∈N's∈STn

xTsn≤�s

∀s∈S� (27)∑
j∈J
yrj≤�r ∀r ∈R� (28)

∑
i∈I

∑
s∈SMi

asix
M
si +

∑
n∈N

∑
s∈STn
bsnx

T
sn

+∑
j∈J

∑
r∈R
crjyrj≤B� (29)

qM1i −qM2i =�0i −
∑
s∈SMi

�six
M
si

∀i∈ I� (30)

qA1�in�i�−qA2�in�i�=�0in −
∑
s∈SAn
�isnx

T
sn

∀�i∈ In�n∈N�� (31)

qO1�nj �in�−qO2�nj �in�=�0inj − ∑
s∈SOn
�insj x

T
sn

∀�i∈ In�j ∈ Jn�n∈N�� (32)

zinj=qM1i +qA1�in�i�+qO1�nj �in�+2inj
∀�i∈ In�j ∈ Jn�n∈N�� (33)

2inj= ln%0inj −hinj
∑
r∈R
%inrj yrj

∀�i∈ In�j ∈ Jn�n∈N�� (34)

qL1k= ln�pLk � ∀L��k∈KL�� (35)

qL2k= ln�1−pLk � ∀L��k∈KL�� (36)

p∈4∩P� �q�z�∈5��x�y�≥0) (37)
Note that the formulation NETO(4) is linear except
for the objective (26) (which is nonetheless convex)
and constraints (35) and (36) (which are, however,
nonconvex). We next discuss how to handle the latter
nonconvexity in this reformulated problem.

3.1.2. Convex Outer Approximation. To address
the nonconvexity within NETO(4), we begin by
developing a polyhedral outer approximation for each
of the constraints in Equations (35) and (36) to con-
struct a linearly constrained convex programming
relaxation of NETO(4), which we will subsequently
embed within a branch-and-bound algorithm. The
form of constraints (35) and (36) can be represented
generically as follows:

6 = ln�7�� where 0<7l ≤ 7 ≤ 7u < 1) (38)

The lower-bounding affine convex envelope of 6 over
7 ∈ 87l�7u9 is given by

6 ≥ ln�7l�+ ln�7u�− ln�7l�
7u−7l �7 −7l�� (39)

which is used together with four upper-bounding
tangential supports to construct the desired outer
approximation. The points of tangency include the
interval endpoints and are equispaced along the
6-axis to better control the approximation error:

6 ≤ ln�7t�+
7−7t
7t

� where 7t=e8ln�7l�+�t/3��ln�7u�−ln�7l��9�
t=0�1�2�3) (40)

When constraints (35) and (36) are replaced with
outer approximations of the form (39) and (40), a
convex program CP(�) results. The following prop-
erties readily hold for NETO(4) (referred to as relax-
ation properties RP1–RP4), given any (possibly further
restricted) hyperrectangle 4, where ;(P) denotes the
optimal value for any optimization problem P.
(RP1) By construction, ;[CP(4)] is a lower bound

on ;[NETO(4)].
(RP2) Given �x̄� ȳ� as part of an optimal solution

to CP(4), let p̂ and �C be computed using the origi-
nal NETO constraints (5)–(7) and (12), respectively, as
follows:

p̂Mi = ḡi
1+ ḡi

∀i∈ I�

where ḡi=e�
0
i−

∑
s∈SMi

��si x̄
M
si �� (41)

p̂A�in�i� =
ḡ�in�i�

1+ ḡ�in�i�
∀�i∈ In�n∈N��

where ḡ�in�i�=e�
0i
n −

∑
s∈SAn ��

i
snx̄

T
sn�� (42)

p̂O�nj �in� =
ḡ�nj �in�

1+ ḡ�nj �in�
∀�i∈ In�j ∈ Jn�n∈N��

where ḡ�nj �in�=e�
0in
j −∑

s∈SOn ��
in
sj x̄

T
sn�� (43)

�Cinj = %0inj e−h
in
j

∑
r∈R�%inrj ȳrj � ∀�i∈ In�j ∈ Jn�n∈N�) (44)

Then it can be verified that p̂ ∈ 4 (see Sherali et al.
2008 for a similar construction). Thus, if p̂ ∈ P , we
have that �x̄� ȳ� p̂� �C� is feasible to NETO, and its
objective value in (1) yields an upper bound on
the optimal values for both problems NETO and
NETO(4).
(RP3) If an optimal solution to CP(4) satisfies con-

straints (35) and (36), then it is also optimal to
NETO(4) with the same objective value.
(RP4) Given an optimal solution to CP(4), if each

of the pLk variables equals one of its bounds in the
hyperrectangle 4, then the solution automatically sat-
isfies constraints (35) and (36). By RP3, this solution
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is also optimal to NETO(4) with the same objective
value.
The cases enumerated in RP3 and RP4 indicate sit-

uations when the lower bound (LB) equals the upper
bound (UB) computed using RP1 and RP2, respec-
tively. In general, whenever we have UB−LB≤ * for
some tolerance * ≥ 0, then �x̄� ȳ� p̂� �C� is *-optimal to
NETO(4).

3.1.3. Branch-and-Bound Algorithm A1. Con-
sider the following notation:
• a ≡ index for node number in the branch-

and-bound tree, where the node has the following
characteristics:

4a ≡ the hyperrectangle for node a;
wa = (xa�ya� pa� qa� 2a� za� ≡ the solution to

CP(4a);
LBa = ;[CP(4a�9≡ the lower bound on NETO(4a)

based on wa;
�La�>a�≡ the two-tuple (with La ∈ /M�A�O0 and

>a ∈KLa ) that achieves the maximum abso-
lute violation in the logarithmic identity
(constraints (35) and (36)) as determined by

�La�>a� ∈ argmax/��qL1k�a− ln �pLk �
a��

��qL2k�a− ln�1− �pLk �a�� ∀L� �k ∈KL�0? (45)

�p
La
>a
�
a ≡ the value of the intermediate variable pLa>a

in the solution wa, indexed by >a ∈KLa ,
where La ∈ /M�A�O0, which is used to par-
tition the hyperrectangle at node a into
two hyperrectangles. Specifically, �pLa>a�

a
will

replace the upper bound on p
La
>a

in one
hyperrectangle and the lower bound in the
other;

@a = (xa�ya� p̂a� �Ca�≡ the corresponding feasible
solution to NETO, given that p̂a ∈ P , where

p̂a is calculated using xa and Equations
(41)–(43), and

�Ca is calculated using ya and Equation (44);
UBa ≡ an upper bound on NETO computed using

Equation (1), based on �p̂a� �Ca�, given that
p̂a ∈ P .

• s ≡ the stage of the branch-and-bound procedure.
• As ≡ the set of active (nonfathomed) nodes in

stage s.
• LB�s�≡ the least lower bound for all active nodes

a ∈As ; i.e., LB�s�≡mina∈As LBa.
• a�s�≡ the node selected for branching at stage s.

This is a node that yields the least lower bound
among the active nodes; i.e., a�s� ∈ argmina∈As LBa.
• ;∗ ≡ the incumbent objective value for NETO

with corresponding solution @∗.
• * ≡ the relative percent optimality tolerance for

terminating the branch-and-bound procedure.

Step 0. Initialization. Let the incumbent solution @∗

correspond to setting x = 0 and y = 0 in problem
NETO, and let ;∗ be the corresponding objective func-
tion value. Set s = 0, a = 0, As = /00, and let 40 be
given by (24). Solve CP(40) to find w0 and LB0. Deter-
mine @0, p̂0, �C0, and UB0. If p̂0 ∈ P and UB0 < ;∗, then
set ;∗ =UB0 and @∗ = @0. If LB0 ≥ ;∗�1−*�, then termi-
nate the algorithm and accept the incumbent solution
as *-optimal to NETO. Otherwise, determine �L0�>0�
and proceed to Step 1.

Step 1. Node Selection and Branching Step. Select
a node for branching based on the least lower bound
of active nodes; i.e., a�s� ∈ argmina∈As LBa. Branch
on the selected node a�s� by creating two subnodes,
indexedby a+1 and a+2 andupdateAs+1 =As∪/a+1�
a + 20 − /a�s�0. Define 4a+1 and 4a+2 to represent a
partitioning of 4a by replacing pLau>a ← �p

La
>a
�
a
for 4a+1

and pLal>a ← �p
La
>a
�
a
for 4a+2.

Step 2. Bounding Step. For nodes h = a+ 1� a+ 2,
do the following: (a) solve CP(4h) to determine wh

and LBh; (b) if LBh < ;∗�1−*�, then determine �Lh�>h);
(c) compute @h and UBh; and (d) if UBh < ;∗, then let
;∗ =UBh and @∗ = @h. Replace a← a+2 and s← s+1.

Step 3. Fathoming and Termination Check. For all
nodes a ∈ As , if LBa ≥ ;∗�1 − *�, then update As ←
As− /a0. If As = /�0, then terminate the algorithm and
accept the incumbent as *-optimal for NETO. Other-
wise, return to Step 1.

Proposition 1. The proposed branch-and-bound Algo-
rithm A1, with * = 0, either terminates finitely with
the incumbent solution for problem CP(4) being opti-
mal to problem NETO or an infinite sequence of stages
is generated such that, along any infinite branch of the
branch-and-bound tree, any accumulation point of the
�x�y�p�C�-variable part of the convex programming relax-
ation solutions generated for the corresponding node sub-
problems solves problem NETO.

Proof. By the validity of the lower and upper
bounds computed by the algorithm, the case of finite
termination is clear. Hence, suppose that an infinite
sequence of stages is generated. Consider any infi-
nite branch of the branch-and-bound tree generated
via the sequence of nested hyperrectangles 4a�s� that
correspond to a set of stages s in some index set S.
Thus, we have

LB�s�= LBa�s� = ;8CP�4a�s��9 ∀ s ∈ S) (46)

For each node a�s�, s ∈ S, let wa�s� be the solution
to CP(4). By taking any convergent subsequence,
if necessary, using the compactness of the feasi-
ble region, assume without loss of generality, that
/wa�s��4a�s�0S → �w∗�4∗�. We must show that the solu-
tion �x∗�y∗� p∗�C∗�, which is a part of w∗, solves prob-
lem NETO.
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Because LBa�s� is the least lower bound at stage s,
we have

V ∗ ≡ lim
s→��
s∈S

LBa�s� ≤ ;8NETO9)

Furthermore, along this infinite branch of the enu-
meration tree, some pLk variable (say, p

L̂

k̂
) is partitioned

infinitely over a subset S1 of the nodes S (so that
�La�s��>a�s�� = �L̂� k̂�� ∀ s ∈ S1). By virtue of the parti-
tioning scheme, it is evident that in the limit we have
either �pL̂

k̂
�∗ = pL̂l

k̂
or �pL̂

k̂
�∗ = pL̂u

k̂
. From the construction

of the polyhedral outer approximation (39) and (40),
we observe that when 7 = 7l or 7 = 7u, we have that
6 = ln�7�. Hence, in the limit as s→�, s ∈ S, we get

�qL̂
1k̂
�∗ = ln8�pL̂

k̂
�∗9 and �qL̂

2k̂
�∗ = ln81− �pL̂

k̂
�∗9) (47)

However, for all s ∈ S1, we have from (45) that

max/��qL1k�a�s�−ln�pLk �a�s��� ��qL2k�a�s�−ln�1−�pLk �a�s���0
≤max/��qL̂

1k̂
�
a�s�−ln�pL̂

k̂
�
a�s��� ��qL̂

2k̂
�
a�s�−ln�1−�pL̂

k̂
�
a�s�
��0

∀L��k∈KL�) (48)

Taking limits as s → �, s ∈ S1 in (48) and using
(47) along with /wa�s��4a�s�0S → �w∗�4∗�, it follows
that w∗ satisfies Equations (35) and (36). Hence,
�x∗�y∗� p∗�C∗� is a feasible solution to problem NETO
with the same objective value V ∗ as for NETO(4∗)
by RP4. Therefore, we also have ;8NETO9≤ V ∗. Com-
bined with (46), we obtain V ∗ = ;8NETO9, whereby
�x∗�y∗� p∗�C∗� solves problem NETO. �

Corollary 1. For * > 0, the proposed algorithm
applied to problem CP(4) will converge to an *-optimal
solution for problem NETO within a finite number of
iterations.

Proof. The proof follows directly from Proposi-
tion 1. �

3.2. Algorithm A2: Linear Programming
Relaxations

For the second algorithm, we reformulate NETO(4)
to replace the convex objective function by a lower-
bounding piecewise linear convex supporting func-
tion and combine this with the polyhedral outer
approximation of the nonlinear constraints (35) and
(36) as previously developed to derive a linear
programming (LP) relaxation. Following this, we
apply a modification to the recursive partitioning of
hyperrectangles in a branch-and-bound framework to
ensure a global optimal solution to NETO (within any
prescribed *-optimality tolerance).

3.2.1. Reformulation of NETO(4). We reformu-
late NETO(4) by rewriting the objective function as

min
∑
n∈N

∑
i∈In

∑
j∈Jn
Zinj� (49)

where we incorporate within the constraint set the
convex constraints

Zinj ≥ ezinj ∀ �i ∈ In� j ∈ Jn�n ∈N�) (50)

3.2.2. Outer Approximation to a Linear Program.
We now relax NETO(4) by replacing (50) with
four equispaced lower-bounding tangential supports,
including those at the two interval endpoints:

Zinj ≥ ez
t′
inj �1+ zinj − zt′inj �� where

zt
′
inj = zlinj +

t′

3
�zuinj − zlinj�� t′ = 0�1�2�3)

(51)

When constraints (35) and (36) are replaced with
outer approximations of the form (39) and (40) and,
furthermore, (50) is replaced with a lower-bounding
support as in (51), a linear program LP(4) results. The
following relaxation properties RP1′ to RP4′ hold for
LP(4):
(RP1′) By construction, ;8LP(4)9 is a lower bound

on ;8NETO(4)9.
(RP2′) Given �x̄� ȳ� as part of an optimal solution to

LP(4), compute p̂ and �C using Equations (41)–(44). If
p̂ ∈ P , then �x̄� ȳ� p̂� �C� is feasible to NETO and hence
yields an upper bound on the optimal values for both
problems NETO and NETO(4).
(RP3′) If an optimal solution to LP(4) satisfies con-

straints (35) and (36), and zinj = zt
′
inj for some t′ ∈

/0� ) ) ) �30 in (51) for each �i ∈ In� j ∈ Jn�n ∈N�, then it
is also optimal to NETO(4) with the same objective
value.
(RP4′) Given an optimal solution to LP(4), if each

of the pLk variables equals one of its bounds in the
hyperrectangle 4 and if zinj = zt

′
inj for some t′ ∈

/0� ) ) ) �30 in (51) for each �i ∈ In� j ∈ Jn�n ∈ N�, then
this solution is also optimal to NETO(4) with the
same objective value.
Again, for LP(4), whenever the LB and the UB

(computed using RP1′ and RP2′, respectively) satisfy
UB−LB≤ *, then �x̄� ȳ� p̂� �C� is *-optimal to problem
NETO(4).

3.2.3. Branch-and-Bound Algorithm A2. We
maintain the same notation as before, with the
following exceptions:
• wa = �xa� ya� pa� qa� 2a� za�Za� ≡ the solution to

LP(4a).
• LBa = ;8LP�4a�9≡ the lower bound on NETO(4)

based on wa.
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The branch-and-bound algorithmic statement fol-
lows that for Algorithm A1, except that the linear
program LP(4a) is solved at each node a in lieu of
the nonlinear convex program CP(4a) to derive a
lower bound. To state the main convergence result
for this problem, define problem NETO′(4) as the
approximation of, or relaxation to, problem NETO(4)
in which the objective function (26) is replaced with
(49) along with the supporting constraint (51). Then
problem LP(4) is the linearized relaxation of prob-
lem NETO′(4) obtained by imposing the polyhedral
outer approximations (39) and (40) to constraints (35)
and (36). Furthermore, observe that given any *′ > 0,
by increasing the number of equispaced supports in
(51) as necessary (e.g., to t′�*′�), we can assure that
the maximum error between the objective function of
NETO(4) and its piecewise linear representation in
NETO′(4) is no more than *′. Consequently, the fol-
lowing result holds true.

Proposition 2. Given any * > 0, let NETO′(4) be
defined using t′�*′� equispaced supports in (51), where 0<
*′ < *. Then the proposed branch-and-bound algorithm A2,
executed with an optimality tolerance �* − *′�, will con-
verge to an *-optimal solution for problem NETO within a
finite number of iterations.

Proof. See the Online Supplement (available at
http://joc.pubs.informs.org/ecompanion.html). �

3.3. Algorithm A3: Mixed-Integer Programming
Approach

For a third proposed approach, we utilize the lin-
ear approximation of the objective function from
NETO’(4) but apply a piecewise linear mixed-integer
programming (MIP) approximation to the nonlinear
relationships (35) and (36) to derive a linear mixed-
integer program MIP(4), which can then be solved
directly using standard software. Considering Equa-
tions (35) and (36) stated generically as in Equa-
tion (38), Proposition 3 motivates the equispacing of
approximating segment breakpoints along the 6-axis
to maintain a fixed maximum error over the different
segments, which can then be bounded by manipulat-
ing the number of segments, T .

Proposition 3. Given a segment of a piecewise linear
approximation of the function 6 = ln�7�, constructed on
7 ∈ 871�729, where 0<7l ≤ 71 <72 ≤ 7u < 1, define w≡
ln�72�− ln�71�. Then the maximum approximating error
E∗ over 871�729 depends only on the width w along the
ordinal axis and is given by

E∗ = ln
[
ew − 1
w

]
+ w

�ew − 1�
− 1) (52)

Proof. Define E = 6− 6̃ , where 6̃ is the approximat-
ing segment over 871�729. Hence, we have

E= ln�7�−
[(

ln�72�−ln�71�
72−71

)
�7−71�+ln�71�

]
) (53)

Maximizing the strictly concave function (53) using
calculus yields

E∗ = ln
[

72−71
ln�72�− ln�71�

]
− 1

+
{
718ln�72�− ln�71�9

72−71

}
− ln�71�)

Substituting ln�72�− ln�71�=w, along with 72/71 = ew
and simplifying, yields (52). �

Because the segments are equispaced on the 6-axis,
Proposition 3 asserts that we can control the max-
imum approximation error simply by adjusting the
ordinal segment width, w. For any specified error tol-
erance * > 0, which lets w* be the value of w that
yields E∗ = * in (52), we can therefore select the num-
ber of segments, T , according to

T =
⌈
ln�7u�− ln�7l�

w*

⌉
) (54)

Remark 1. For illustration, when 87l�7u9 =
80)0001�0)99999, we get T = 2 in (54) for * ∈
80)0001�0)109. When 87l�7u9= 810−7�1− 10−79, Equa-
tion (54) yields T = 3 for * ∈ 80)0001�0)079, and T = 2
for * ∈ 80)08�0)109.
Considering Equations (35) and (36) stated generi-

cally as in Equation (38), a corresponding strong lin-
earized MIP approximation of these constraints that
yields a partial convex hull representation takes the
form (Sherali 2001):

6 =
T∑
t=1
86t−1Dt1+ 6tDt29 and 7 =

T∑
t=1
8e6

t−1
Dt1+ e6tDt29�

where

6t = 6l+ t

T
�6u− 6l� for t = 0� ) ) ) � T �

Dt1+Dt2 =Et for t = 1� ) ) ) � T � (55)

T∑
t=1
Et = 1� (56)

�Dt1�Dt2�≥0 and Et ∈/0�10 ∀ t=1�)))�T ) (57)

We found this MIP approximation representation to
suffice in the present context because T is typically
small (≈4). However, Vielma et al. (2010) describe
alternative representations that might be more suit-
able for contexts involving a relatively large number
of piecewise linear segments. Hence, we can solve
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MIP(4) directly to obtain a near-optimal solution to
problem NETO(4), wherein the degree of optimality
can be controlled via the granularity of the piecewise
linear approximations to (35) and (36) and the objec-
tive function, as governed by T and t′, respectively.
Note that, given an optimal solution to this MIP,
we can derive a corresponding near-optimal solution
to NETO by using Equations (41)–(44) in a manner
similar to applying (RP2)′, where (exact) feasibility
is attained provided the solution satisfies p ∈ P . We
henceforth refer to the application of this technique
as Algorithm A3.
Observe that Algorithm A3 simply provides an

approximating near-optimal solution to problem
NETO. Determining a precise optimality gap for the
resulting solution (provided it is feasible) via this
approach itself is elusive. However, as demonstrated
next, for the special case when P ≡�n̄, this approach
can indeed derive a near-optimal feasible solution
along with an optimality gap assurance.

3.3.1. Algorithm A3S: Special Case When P ≡�n̄.
We now consider a fundamental special case of prob-
lem NETO(4) given by (26)–(37) when P ≡�n̄. In this
case, NETO(4) is equivalent to relaxing constraints
(35) and (36), maintaining only �q� z� ∈5 and �x�y�≥ 0
from (37) and adding the relationship

qL2k = ln �1− eqL1k � ∀L� �k ∈KL�) (58)

This follows because the latter is a valid inequal-
ity implied by constraints (35) and (36). Once
�x�y� q�2� z� is determined via this revised model,
we can compute the pLk variable values as pLk =
eq

L
1k ∀L� �k ∈KL�, which results in (35), (36), and p ∈4

holding true. Henceforth, we will refer to this equiv-
alent representation of NETO(4) that dispenses with
the pLk variables and represents (35) and (36) in the
�q1� q2�-space via constraint (58) as NETOq(4).
For the special case NETOq(4) of NETO(4) under

the condition P ≡ �n̄, similar to the approach of
Algorithm A3, we construct a linear mixed-integer
program MIPq(4) by utilizing the tangential approx-
imations (49) and (51) to the objective function and
by replacing (58) with the following MIP approx-
imation, as stated for the generic functional form
q2 = ln�1− eq1�:

q1 =
T∑
t=1
8qt−11 Dt1+ qt1Dt29 and

q2 =
T∑
t=1
8ln�1− eqt−11 �Dt1+ ln�1− eqt1�Dt29� (59)

where

qt1 = ql1+
t

T
�qu1 − ql1� for t = 0� ) ) ) � T � (60)

along with Equations (55)–(57)) (61)

q1

q2

qu

ql

quq l
1 1

2

2

Figure 2 Inner Linearization for q2 = ln�1− eq1 � Along with Contours
of q1 − q2

Proposition 4. ;8MIPq(4)9 provides a lower bound
on ;8NETO9.

Proof. Let �x∗�y∗� p∗�C∗� be an optimal solution to
NETO, and let us construct a corresponding feasible
solution F̄ = �x̄� ȳ� q̄� 2̄� z̄� Z̄� D̄� Ē� to MIPq(4) as fol-
lows. Let �x̄� ȳ� = �x∗�y∗�. Calculate q∗ using Equa-
tions (35) and (36), with p≡ p∗, so that (30)–(32) hold.
Now, for each pLk variable, while holding the dif-
ference �qLk1�

∗ − �qLk2�∗ fixed, decrease both �qLk1�
∗ and

�qLk2�
∗ simultaneously along the (generic) contour for

q1 − q2, as illustrated in Figure 2, until this contour
intersects with the piecewise linear approximation,
resulting in q̄Lk1 ≤ �qLk1�∗ and q̄Lk2 ≤ �qLk2�∗, along with
�D̄� Ē�, where �q̄� D̄� Ē� is feasible to (59)–(61) defin-
ing MIPq(4). Next, calculate 2̄ using Equation (21),
compute z̄ via Equation (22) using q̄ and 2̄, and then
determine Z̄ according to Z̄inj = ez̄inj ∀ �i ∈ In� j ∈ Jn�
n ∈ N�. Thus the resulting solution F̄ is feasible to
MIPq(4). Moreover, noting (33) and (26), because q̄Lk1 ≤
�qLk1�

∗ ∀L� �k ∈KL�, and because the objective function
tangents represented by (49) and (51) underestimate
(26), the corresponding objective value of this feasi-
ble solution F̄ to MIPq(4) is lesser than or equal to
;8NETO9. Hence, ;8MIPq(4)9≤ ;8NETO9. �

Therefore, upon solving MIPq(4), we directly
obtain a lower bound on ;8NETO9. Moreover, by
applying (RP2)′ as before to the resulting optimal
solution, we can construct a corresponding upper
bounding feasible solution to NETO, and thus com-
pute the associated relative optimality gap. We refer
to this approach as Algorithm A3S. Both Proposition 4
and (RP2)′ represent relatively unique characteristics
of the A3S formulation vis-à-vis other applications
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that utilize piecewise linear approximations (e.g., see
Martin et al. 2006, where the focus is on nonsepara-
ble functions). Moreover, by suitably increasing the
number of segments, T , in the MIP approximation,
along with the number of tangential supports, �t′ +1�,
for the objective function to obtain sufficient granular-
ity, we can accordingly derive a desired near-optimal
solution to problem NETO.
Remark 2. The Online Supplement details the con-

struction of special-case Algorithms A1S and A2S for
NETOq(4), based on solving similar convex and lin-
ear relaxations CPq(�) and LPq(�), respectively, at
each node in the branch-and-bound tree. Both relax-
ations incorporate a lower-bounding constraint and
upper-bounding tangential supports for constraint
(58) in �q1� q2�-space over q ∈5 and with LPq(4) fur-
ther replacing the objective function (26) with (49) and
the supporting constraint (51). Whereas Algorithms
A1S and A2S also attain global optimal solutions,
we suppress further discussion of these algorithms
because they were significantly dominated by Algo-
rithm A3S.

4. Algorithmic Enhancements
In this section, we propose certain branching variable
selection and partitioning strategies, along with range
reduction techniques, to improve the computational
effectiveness of Algorithms A1 and A2.

4.1. Branching Variable Selection and
Partitioning Strategies

We select a branching variable via the following rule,
which measures the relative (as opposed to absolute)
violations in the logarithmic identities (constraints
(35) and (36)):

�La�>a�

∈ argmax
{∣∣∣∣ �q

L
1k�

a− ln �pLk �
a

ln �pLk �
a

∣∣∣∣�
∣∣∣∣ �q

L
2k�

a− ln�1− �pLk �a�
ln�1− �pLk �a�

∣∣∣∣
∀L� �k ∈KL�

}
) (62)

The convergence arguments for Algorithms A1, A1S,
A2, and A2S remain identical under (62).
Having selected a branching variable, we split its

interval at the arithmetic mean to partition 4a at node
a as follows:

split the interval 8pLal>a � p
Lau
>a
9 at �p

Lal
>a

+ pLau>a �/2) (63)

Similar to the benchmark partitioning strategy, (63)
also ensures a finite number of partitions before an
*-optimal solution is attained. For additional branch-
ing variable selection and partitioning strategies
examined, along with related computational results,
we refer the reader to the Online Supplement.

4.2. Range Reduction
We also implement range reduction strategies within
our Algorithms A1 and A2 as recommended in differ-
ent contexts by Ryoo and Sahinidis (1996) and Sherali
and Tuncbilek (1997), which serve to strengthen
the underlying relaxations by tightening the bounds
defining 4. (For Algorithm A3, we apply the range
reduction process for Algorithm A2 and then formu-
late the MIP based on the resulting tightened inter-
vals.) Specifically, as a preprocessing step at any node
a, the imposed interval for each pLk variable is updated
by solving two linear programs that minimize and
maximize pLk in turn over the feasible region. Any
new bounds for a pLk variable will induce correspond-
ing new bounds on the qL1k and q

L
2k variables by (20)

as well as on the z variables by (23). Upon comple-
tion of the range reduction process, the polyhedral
approximations are updated as per (39) and (40). In
the case of LP(4a), we further impose the objective
function constraint

∑
n∈N

∑
i∈In

∑
j∈Jn Zinj ≤ ;∗, where ;∗

is the incumbent objective value within each of the
range reduction subproblems, and we also update
the tangential supports determined by (51) based on
the revised bounds on the z variables. This range
reduction process is continued at each new node
so long as a sufficient incremental tightening of the
bounds results or until a fixed number of iterations is
reached.

5. Computational Testing and
Evaluation

We coded Algorithm A1 using C++ and SNOPT 7.2
and Algorithms A2 and A3/A3S using C++ and
ILOG CPLEX 11.1, and we compared their perfor-
mance against BARON 8.1.5 using CPLEX for LP
subproblems and SNOPT for nonlinear programming
subproblems. All runs were executed on a computer
with an Intel 2.40 GHz Xeon Processor with 1.5 GB
of RAM. We tested our models over the generic net-
work structure depicted in Figure 1, using 10 ran-
domly generated instances having up to 4 types of
terrorist capabilities, 6 targets, 4 possible outcomes,
and 4 resources of each class. The Online Supplement
provides the detailed network attributes, data per-
taining to the random generation of instance param-
eters, detailed experimental results from preliminary
testing and sensitivity analyses discussed later in this
section, and the general performance results of Algo-
rithms A1S and A2S (neither of the latter significantly
improved over Algorithms A1 and A2, respectively).
Here, we shall briefly summarize our findings.
Preliminary tests prompted the following settings

for each of Algorithms A1, A2, A3, and A3S: con-
struct outer approximations for Equations (35) and
(36) with �t + 1� = 4 tangential supports, linearize
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the objective function as in (51) with �t′ + 1� = 32
lower-bounding supports, and generate MIP approx-
imations for the formulations in §3.3 using T = 4
segments. Each algorithm invokes range reduction,
as detailed in §4.2 for Algorithms A1 and A2. For
Algorithms A3 and A3S, range reduction is per-
formed using the respective Algorithms A2 and A2S
(as detailed in the Online Supplement) for a maxi-
mum of 100 reduction loops before solving MIP(4) or
MIPq(4), respectively. (On average, range reduction
conserves 89.3%, 90.5%, and 94.2% of the effort for the
A1-, A2-, and A3-based algorithms, respectively.) Fur-
thermore, the branch-and-bound algorithms attained
*-optimality most rapidly when selecting the branch-
ing variable according to Equation (62) and when par-
titioning the hyperrectangle utilizing Equation (63).
Hence, all of our results reported below pertain to
these parameter settings and algorithmic strategies.
We ran all test instances with a relative optimality tol-
erance of *= 0)01, a limit of 1,001 nodes in the branch-
and-bound enumeration tree, and a time limit of 1,800
CPU seconds (checked at the completion of any stage
in the algorithmic process). The results are displayed
in Table 2. For Algorithm A3, we report the implied
optimality gap, which is the actual optimality gap for
the solution produced by Algorithm A3 based on the
greatest lower bound available from Algorithm A2 at
its termination.
In Table 2, note that all of the proposed algorithms

tested outperformed BARON with respect to opti-
mality gap attained and computational time, with
the exception of Algorithms A1, A3, and A3S on
instance 2 (for which all computational times were
less than 9 CPU seconds), and for Algorithm A1 on
instance 9 (where BARON itself terminated without
identifying a feasible solution). Restricting considera-
tion to the four largest instances for which BARON
obtained a feasible solution (see the bottom row of
Table 2), all of the proposed algorithmic variants
exhibited a significantly more robust and improved
performance compared to BARON. As tested, only
Algorithm A3S attained the specified optimality gap
for all instances. Although applying t′ = 63 for Algo-
rithm A2 on instances 7 and 8 and for Algorithm A3
on instance 7 results in attainment of the required
optimality gap or implied optimality gap, respec-
tively, we recommend Algorithm A3S as the pre-
scribed solution technique among those considered
to solve problem NETO, and we further examine the
sensitivity of this procedure and the nature of NETO
solutions to different model and algorithmic parame-
ter settings.

5.1. Sensitivity Analyses
We also conducted sensitivity analyses using the 10
test instances with respect to three issues in the con-
text of Algorithm A3S: (a) the effect of varying the

Table 2 Selected Algorithmic Strategies with Range Reduction:
Optimality Gap Attained (%), Nodes Explored, and
CPU Time (Sec)

Instance A1 A2 A3 A3S BARON

1 0�58 0�77 0�72 0�21 7�33
3 3 — — 266
16�688 5�015 18�265 5�672 1	884�6

2 0�21 0�27 0�27 0�05 1�00
1 1 — — 1
3�938 1�828 6�828 8�796 3�904

3 0�38 0�50 0�49 0�13 1�00
1 1 — — 84
7�516 1�968 7�765 9�734 195�6

4 0�91 0�34 0�35 0�26 1�00
1 3 — — 61
20�657 13�375 8�281 11�469 191�6

5 0�74 0�65 0�62 0�26 5�60
3 3 — — 141

120�32 30�891 232�03 35�515 1	887�8
6 0�45 0�81 0�85 0�76 6�17

5 5 — — 33
264�24 94�030 29�047 27�015 1	881�4

7 0�53 1�05 1�04 0�82 8�86
3 1,001 — — 21

369�73 853�57 524�78 60�172 1	881�0
8 0�94 1�03 0�91 0�47 6�61

7 1,001 — — 21
771�14 983�36 383�23 68�202 1	884�3

9 1�07 0�73 0�65 0�54 ∗

17 7 — — 39
1	884�5 242�74 38�109 35�077 1	884�2

10 0�87 0�98 0�95 0�15 1�00
1 1 — — 9

125�59 12�351 350�20 64�796 494�3

Average: 0�62 0�71 0�69 0�35 4�29
Instances 2�78 224�33 — — 70�78
1–8, 10 188�87 221�82 173�38 35�001 1	144�94

Average: 0�6975 0�9675 0�9375 0�55 5�66
Instances 4 502 — — 21
6–8, 10 382�675 485�83 321�82 60�956 1	535�25

Note. Implied optimality gap reported for A3.
∗No feasible solution found.

number of segments in the MIP approximation on the
optimality gap attained, (b) the impact of varying the
number of objective tangential supports on the same
measure, and (c) the sensitivity of the value of the
optimal solution to various resource parameters. The
following is a summary of our findings (the Online
Supplement provides detailed tabular results).
• As summarized in Table 3, increasing the number

of MIP approximation segments generally improved
the optimality gap attained for Algorithm A3S,
although at a faster-than-linear increase in compu-
tational times for larger instances. Using T = 2, the
Algorithm A3S did not attain *-optimal solutions for
all instances, whereas with T = 16, it exceeded the
specified time limit for 4 of the 10 instances.
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Table 3 Algorithm A3S with Varying T : Optimality Gap (%) and CPU
Time (Sec)

T = 2 T = 4 T = 8 T = 16

Averages 0.58 0.37 0�32 ∗
22.786 35.009 163�39 ∗

∗Solution not obtained within 1,800 CPU seconds for 4 of 10 instances.

Table 4 Algorithm A3S with Varying t ′: Optimality Gap (%) and CPU
Time (Sec)

t ′ = 31 t ′ = 63 t ′ = 127 t ′ = 255

Averages 0.37 0.14 0�088 0�072
35.009 52.339 81�900 157�33

• An increase in t′ consistently improved the value
of the optimality gap attained. As displayed in
Table 4, average computational times increased less
than fivefold for an eightfold increase in t′, which was
consistent across all instances.
• As evident from Tables 3 and 4, compared to

increasing the number of MIP approximation seg-
ments, it is much more effective to tighten the linear
approximation of the objective function with regard to
the attained optimality gaps and computational times.
• In response to an increase in the countermea-

sure resources �s� ∀ s ∈ S, the objective function value
decreased in near-linear proportions. Average perfor-
mances are displayed in Table 5, where for our test
instances the objective function values were reduced
by approximately 66.33% on average from the corre-
sponding values when no resources are applied. As
it turns out, additional resources are applied where
they are most effective, namely, near the points of
inflection on the logit probability-resource relation-
ships, ensuring the greatest marginal effect on proba-
bilities with a near-linear relationship.
• Linearly proportional increases in the conse-

quence-related resources �r , ∀ r ∈ R, caused a near-
linear improvement in objective function values, as
summarized in Table 6.

Table 5 Effect of Varying �s on the Optimal Solution Value (%)

+10% +20% +30% +40%

Average −2.67 −5.45 −8.33 −11.32
Range �−4�72	−1�53� �−9�73	−3�09� �−15�08	−4�65� �−20�69	−6�25�

Table 6 Effect of Varying �r on the Optimal Solution Value (%)

+10% +20% +30% +40%

Average −1.70 −3.42 −5.17 −6.94
Range �−2�80	−0�61� �−5�63	−1�21� �−8�58	−1�81� �−11�60	−2�40�

• The improvement in the objective function value
for a proportional increase in the consequence-related
resources �r was only 61% to 64% as effective as an
identical proportional increase in the countermeasure
resources �s on average, although this result did not
hold uniformly. For instances 1, 3, and 4, proportional
increases in �r were actually more effective at reduc-
ing the optimal objective function value, indicating
that a broader generalization is elusive.

6. Discussion and Recommendations
In this paper, we have studied the modeling and anal-
ysis of an optimization problem to combat terrorism
using a nested event tree framework to address capa-
bility, intent, vulnerability, and consequence issues
in the context of utilizing available resources to
minimize the expected loss as a result of potential
terrorist attacks. The importance of our model lies in
its suitability for higher-level strategic planning for
resource deployment. In addition to optimally allocat-
ing existing resources within budgetary constraints,
our model has further value for conducting what-if
scenario analyses, wherein a coordinating agency can
assess the impact of adjusting budgets or resource
levels, or it can seek to enhance effectiveness by con-
sidering the adjustment of resource levels between
the different capability-, intent-, vulnerability-, and
consequence-related domains. A principal component
in applying our model is to adequately calibrate
the resource-probability and resource-outcome logit
model parameters. We suggest that there are sufficient
data collected within recent decades to enable such
a calibration (albeit potentially classified or requir-
ing the cooperation of strategic partners), where the
nature of the logit models enables separable calibra-
tion steps specific to each resource type. Furthermore,
such calibration efforts might be facilitated by simu-
lating response functions using game-theoretic mod-
els (e.g., see Zhuang and Bier 2007).
For future research, our model could be modified

to better represent the current terrorist threat and the
complexity of international relations by expanding it
in scope to account for multiple terrorist organiza-
tions and for partially aligned interests between nations
applying resources to combat terrorism. These con-
siderations give rise to a cooperative game, thereby
requiring alternative measures of optimality or equi-
librium. Finally, we propose the application of our
model to the resource prioritization phase of the
U.S. National Infrastructure Protection Plan (Depart-
ment of Homeland Security 2009) to validate priorities
among and within the 18 sectors of critical infras-
tructure and key resources. Although the classified
nature of the data, even in aggregated form, precludes
addressing such a potential use here, such a study
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might be of insightful value to the U.S. Department of
Homeland Security as well as its federal, state, local,
and private sector partners.
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