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We propose C-NORTA, an exact algorithm to generate random variates from the tail of a bivariate NORTA
random vector. (A NORTA random vector is specified by a pair of marginals and a rank or product–

moment correlation, and it is sampled using the popular NORmal-To-Anything procedure.) We first demonstrate
that a rejection-based adaptation of NORTA on such constrained random vector generation problems may often
be fundamentally intractable. We then develop the C-NORTA algorithm, relying on strategic conditioning of the
NORTA vector, followed by efficient approximation and acceptance/rejection steps. We show that, in a certain
precise asymptotic sense, the sampling efficiency of C-NORTA is exponentially larger than what is achievable
through a naïve application of NORTA. Furthermore, for at least a certain class of problems, we show that
the acceptance probability within C-NORTA decays only linearly with respect to a defined rarity parameter.
The corresponding decay rate achievable through a naïve adaptation of NORTA is exponential. We provide
directives for efficient implementation.
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1. Introduction and Motivation
We consider the question of generating random vec-
tors with specified marginal distributions and a cor-
relation matrix, and constrained to a feasible region
characterized by linear constraints. The reader might
recognize this as the usual random vector generation
problem but with the additional stipulation that the
generated random variates fall within a prescribed
feasible region. We are particularly interested in con-
texts where the feasible region is so “rare” as to ren-
der naïve adaptations of existing methods for the
unconstrained problem (e.g., NORTA of Cario and
Nelson 1997, 1998; Avramidis et al. 2009; and copula-
based methods of Sklar 1959, Nelsen 1999) unim-
plementable. This last statement will become much
clearer further along in the paper, when we rigorously
characterize the performance of a straightforward
adaptation of NORTA to the current problem. The
solution we present, by contrast, is a certain nontrivial
extension of NORTA, accomplished through strategic
conditioning and efficient approximation of the prob-
ability laws inherent to the problem.

Applications of the ability to generate samples
of correlated random vectors from a constrained
space seem widespread. Consider, for example, esti-
mating tail measures of multivariate distributions
in the context of rare-event simulations (Juneja

and Shahabuddin 2006). This problem is important
because the quantity being estimated requires gen-
erating random vectors from a low-probability set,
and inefficient sampling will have a direct bearing
on the quality of the estimation. A specific appli-
cation of such estimation can be found in Huang
and Subramanian (2009), where a stochastic optimiza-
tion problem is posed to determine the most prof-
itable portfolio, subject to a constraint on the risk of
large losses associated with tail events modeled using
NORTA vectors. A similar need for such constrained
random vector generation problems arises (directly
or indirectly) in simulation optimization problems
within various settings (e.g., production flow lines,
call-center staffing, tandem production lines, and
stochastic PERT) and vehicle routing problems.

Another rather novel application of the constrained
random vector generation problem comes from the
Bayesian inference modeling literature. A common
Bayesian learning setting (Gelfand et al. 1992, Damien
and Walker 2001) models the distribution of uncer-
tain parameters using joint normal distributions, and
a learning step updates to a posterior that limits
the parameter values with linear constraints. The
next learning step needs to then sample parame-
ter values from this constrained joint normal space.
This is typically accomplished by the naïve approach
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of sampling and rejecting until a sample that sat-
isfies all constraints is obtained. A more sophis-
ticated, faster approach uses Markov chain Monte
Carlo techniques such as the Metropolis-Hastings
algorithm (Ross 2006), but these methods can produce
samples with only approximately close distributions.
An efficient sampler that can directly sample from
the rare set would provide a big speed boost to such
learning algorithms.

It is worth mentioning here that the methods we
present in this paper may be mildly reminiscent of
techniques that underlie importance sampling. We
hasten to add, however, that the change-of-measure
constructions within importance sampling are aimed
at a much more specific problem, i.e., that of reduc-
ing the variance of a point estimator of a specific
quantity that can be expressed as an expectation.
(See Asmussen and Glynn 2007 for an introduction,
and see Glasserman et al. 2000, 2002; Glasserman
and Li 2005 for certain specific contexts.) We ask a
different and arguably more fundamental question
in this paper: How can correlated random vectors
constrained to lie in a feasible region be generated
efficiently? Although it is true that the methods we
present apply within estimation contexts, the ques-
tion we tackle often arises well before any estimation
happens.

1.1. Notation
Throughout this paper, random vectors are repre-
sented in bold capitalized letters X1N, etc., whereas
plain capitalized letters represent univariate random
variables. � is used to denote the real field, and � is
used to represent the set of extended reals, i.e., real
numbers, �, and −�. Call N the standard (i.e., zero
mean, unit variance) univariate normal random vari-
able with density � and distribution ê. The related
function °ê4 · 5= 1−ê4 · 5 will be used heavily. The ran-
dom vector N denotes the standard (zero mean, unit
variance, independent marginals) bivariate joint nor-
mal random vector. (Note that the covariance matrix
of N is the 2 × 2 identity matrix.) By contrast, the
random vector Z represents a bivariate joint normal
with standard normal marginals but a nonidentity
covariance matrix. In all sections except §5, linear con-
straints of the form 8ctx = c1x1 +c2x2 ≥ v9 are assumed
to be posed such that the vector c is a unit vector; i.e.,
c2

1 + c2
2 = 1. In §5, for ease of exposition, we switch to

the equivalent representation 8c1x1 + x2 ≥ v9.

1.2. Problem Statement and Preliminaries
The question of sampling random vectors with speci-
fied marginals and correlation matrix is well studied.
Among available methods, the NORmal-To-Anything
(NORTA) method (Cario and Nelson 1997, 1998) is
arguably the most popular. The NORTA method

essentially involves a component-wise transformation
of a multivariate normal random vector and exploits
the fact that multivariate normals are easily gen-
erated (Law and Kelton 2000, p. 480). Specifically,
suppose that we wish to generate independent and
identically distributed (i.i.d.) replicates of a random
vector X = 4X11X21 0 0 0 1Xq5 with prescribed marginal
univariate distributions

Fi4x5= Pr4Xi ≤ x51 i = 1121 0 0 0 1 q1 x ∈Xi ⊆�

and product–moment or rank correlation matrix

�X =�X4i1j51 1≤ i1j≤q1 where �X4i1j5=Corr4Xi1Xj50

Let F −1
i 4u5 = inf8x2 Fi4x5 ≥ u9 be the inverse of the

ith marginal distribution. Assume �X to be feasible for
the given marginals. (Not all product–moment corre-
lations are theoretically feasible for a given pair of
marginals; see Whitt 1976 for more on this point.)
Then the NORTA method generates i.i.d. replicates
of X by the following procedure.

Algorithm 1 (NORTA)
Inputs: Marginal distributions Fi1 i = 1121 0 0 0 1 q;

correlation matrix �X.
Outputs: Random variate X.

1. Generate an �d valued joint normal random
vector Z = 4Z11Z21 0 0 0 1Zq5 such that
Zi1 i = 1121 0 0 0 1 q have a standard normal
distribution, and Z has correlation matrix �∗

Z.
2. Compute the vector X = 4X11X21 0 0 0 1Xq5 via

Xi =ëi4Zi5= F −1
i 4ê4Zi551 for i = 1121 0 0 0 1 q0 415

The vector function ë2 �q → X = X1 × X2 × · · · ×

Xq is the NORTA transformation from the joint nor-
mal Z to the NORTA vector X. Random vector X will
have the prescribed marginal distributions. To see
this, note that each Zi has a standard normal distribu-
tion so that ê4Zi5 is uniformly distributed on 40115,
and so F −1

i 4ê4Zi55 will have the required marginal
distribution. The correlation matrix �∗

Z is chosen in a
preprocessing phase so as to ensure that it induces the
prescribed correlation matrix �X for X. This is usually
the most difficult step in implementing the NORTA
method but has recently been well studied (Cario and
Nelson 1998, Chen 2001, Ghosh and Henderson 2003,
Avramidis et al. 2009).

Whereas NORTA in its generic form addresses
the question of generating X on its original sup-
port X, this paper concerns the question of generat-
ing NORTA random vectors from constrained regions
F= 8ctx ≥ v9 on the support X of X. Of course, a naïve
adaptation of NORTA is certainly possible on the lat-
ter problem. Specifically, to generate random vectors
X �F, simply generate unconstrained NORTA random
vectors X and accept only those that lie within F.
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Such a naïve rejection procedure is akin to sampling
geometrically, with the acceptance probability equal
to the probability assigned to F by the NORTA gen-
erated joint distribution of X.

How efficient is this approach as the set F becomes
increasingly rare? A simple example of sampling the
standard bivariate normal N constrained on a set F=

8ctz ≥ v9 is illustrative. With the specific intent of
studying the behavior of the acceptance probability as
the set F becomes rarer, let us parameterize the con-
straint set as F� = 8ct4z − �d5 ≥ v9 = 8ctz ≥ v + �ctd9,
where � ≥ 0 is the “rarity” or translation parameter,
d is a unit vector, and the resulting half-space F�

is called the translated set. (Such a parameterization
allows us to make the feasible set rarer by increasing
a single parameter �.) For each � and d, the linear
subspace that defines the boundary of the set F when
translated by �d gives the boundary of the translated
set F�. The random variable ctN is univariate normal
with zero mean and variance ctc = 1. The acceptance
probability is the mass P4�5 = Pr4N ∈ F�5 assigned
to F� by the standard bivariate normal random vec-
tor N. Thus, P4�5 is the tail-probability °ê4v + �ctd5,
and the set F� becomes rarer as � → � for ctd > 0.
This leads us to the following result.

Proposition 1. If ctd > 0, the naïve procedure for
sampling N �F� obeys

lim
�→�

�e4v+�ctd52/2P4�5=
1

ctd
√

2�
0

Proof. Equation (2.1) in Lu and Li (2009) gives the
following bounds for the univariate Gaussian tail:

z2

1 + z2

1
√

2�

e−z2/2

z
≤ °ê4z5≤

1
√

2�

e−z2/2

z
1 z > 00 (2)

Using these bounds for P4�5 = °ê4v + �ctd5 for
all �≥ �0, where �0 is sufficiently large such that
v + �0c

td > 0, we obtain the result by multiplying
throughout with �e4v+�ctd52/2 and taking the appropri-
ate limit on either side. �

Proposition 1 asserts that the acceptance probability
of the naïve adaptation of NORTA decays exponen-
tially as the set F as defined above becomes rarer.
(Although we have stated this proposition for bivari-
ate standard normals for illustrative purposes, a sim-
ilar exponential decay can be shown to hold for more
general vectors under mild conditions.) As we shall
see, the C-NORTA method we describe in this paper
improves substantially on this by reducing the decay
to a linear rate (Theorem 1). Furthermore, such gains
are achieved with no corresponding increase in the
effort or complexity of the generation steps within the
algorithm.

1.3. Contributions
The question of generating random vectors having a
prescribed correlation and prescribed marginal dis-
tributions is a well-studied problem in the stochas-
tic simulation literature. Its extension—that of gen-
erating such random vectors but when constrained
to a given space F—seems to have received much
less attention. In fact, apart from the naïve extension
of algorithms available for the unconstrained context,
we know of no other technique that is currently avail-
able. To this extent, we see the family of algorithms
presented in this paper (C-NORTA) as the first (to our
knowledge) available nontrivial method for solving
the two-dimensional constrained version of the ran-
dom vector generation problem.

Our specific contributions through this paper in-
clude the following.

1. We present an exact rejection algorithm for
generating bivariate normals constrained by a sin-
gle hyperplane. This algorithm is shown to pos-
sess an acceptance probability that decays linearly
with respect to a certain rigorously defined rarity
parameter.

2. We present C-NORTA—an exact rejection algo-
rithm for generating bivariate random vectors of the
NORTA type, constrained to a region bounded by lin-
ear constraints.

3. We demonstrate that the acceptance probabil-
ity within C-NORTA algorithms is exponentially bet-
ter (in a certain precisely defined asymptotic sense)
than what is obtainable through the naïve adaptation
of NORTA to constrained problems. Furthermore,
on certain classes of problems, we demonstrate that
C-NORTA achieves an acceptance probability that
decays linearly with respect to the rarity parameter.
The corresponding decay rate in NORTA is always
exponential.

2. An Overview of C-NORTA
Recall from the previous section that we are con-
cerned with the problem of generating a random
vector X = 4X11X25 such that (i) X1 and X2 have
the prescribed marginals F1 and F2, respectively;
(ii) Corr4X11X25 = � for prescribed � ∈ 4−1115; and
(iii) the vector X is constrained to the prescribed
region F ⊂ X1 × X2. In achieving this, and in a
manner much more efficient than a naïve adapta-
tion of NORTA, we now present an algorithm called
C-NORTA. Algorithm C-NORTA relies on the follow-
ing two simple facts.

(a) Under mild conditions (see §5), there exists
a one-to-one mapping between the required vector
X ∈F and a corresponding vector Z = 4Z11Z25 ∈ FN

in the bivariate normal space.
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(b) If 4Z11Z25 is a bivariate normal random vector,
the distributions of the conditional random variables
Z2 � 8Z1 = z11Z ∈ G9 and Z1 � 8Z ∈ G9 are fully charac-
terizable for any set G⊂�2.
That (a) is true is evident from the basis of NORTA
itself. Specifically, we know from the theory under-
lying NORTA (as discussed in §1.2) that a bivariate
normal vector Z = Z4�∗5 can be chosen to have stan-
dard normal marginals and correlation �∗, such that
the two random variables X1 and X2 defined via the
NORTA transformation (1) have marginals F1 and F2,
respectively, and Corr4X11X25 = �. Furthermore, the
choice of �∗ that accomplishes this is a well-studied
problem; see, for instance, Cario and Nelson (1998),
Avramidis et al. (2009), and Chen (2001). The image
FN of the set F in the normal space is then

FN =
{

4z11 z252 �4z11 z25= 4�14z151�24z255 ∈F
}

1

and the measures Z4�∗5 �FN and X �F are equivalent.
For exposition of (b), denote the set G4z15= 8z2 ∈�:

4z11 z25 ∈ G9. Then, Proposition 2 asserts that, under
certain conditions, the random variable Z2 � 8Z1 = z11
Z ∈G9 has a normal distribution that is truncated and
appropriately scaled over the feasible set G4z15. Sim-
ilarly, Proposition 2 states that the random variable
Z1 � 8Z ∈G9 has a distribution that is a normal mixture
of certain normal probabilities.

Proposition 2. Let 4Z11Z25 be a bivariate normal ran-
dom vector with standard normal marginals and correlation
Corr4Z11Z25 = �∗. Assume that G4z15 = 8z2 ∈ �: 4z11 z25
∈ G9 is nonempty for all z1 ∈ �, and denote T4z11�

∗5 =

8t2 t
√

1 −�∗2 +�∗z1 ∈G4z159. Then
(i) Z1 � 8Z ∈G9 has the density function

f14z15=
1

Pr8Z ∈G9
�4z15Pr8Z2 ∈T4z11�

∗59 z1 ∈�0

(ii) Z2 � 8Z1 = z11Z ∈G9 has the density function

fz1
4z25 =

1
Pr8Z2 ∈G4z15 �Z1 = z19

·
1

√

1 −�∗2
�

(

z2 −�∗z1
√

1 −�∗2

)

I8z2 ∈G4z159 z2 ∈�0

Proof. To prove (i), we recall that Z2 � 8Z1 = z19 is
normal with mean �∗z1 and variance 1 −�∗2 (Johnson
et al. 1994), and we write

Pr8Z1 ≤z1 �Z∈G9 =
1

Pr8Z∈G9

∫ z1

−�

∫

y∈G4x5
�4x5

1
√

1−�∗2
�

·

(

y−�∗x
√

1−�∗2

)

dydx0 (3)

Differentiate the above expression with respect to z1
using the Leibniz rule (Bartle 1976, p. 245) to conclude
that the density is

f14z15=
1

Pr8Z ∈G9
�4z15Pr

{

Z2 ∈T4z11�
∗5
}

0

To prove (ii), we note that the density of the condi-
tional random variable Z2 � 8Z1 = z11Z ∈G9 is

fz1
4z25=

fZ2�Z1=z1
4z25

Pr8Z ∈G �Z1 = z19
1

where fZ2�Z1=z1
4z25—the density function of the condi-

tional random variable Z2 � 8Z1 = z19—is the normal
density with mean �∗z1 and variance 1 −�∗2. �

Algorithm C-NORTA exploits fact (a) and Proposi-
tion 2 to arrive at a very simple generation technique.

Algorithm 2 (C-NORTA)
Inputs: Marginal distributions F11 F2; correlation �;

feasible region F.
Outputs: Random variate 4x11x25.

0. Characterize FN from F.
1. Select G such that G⊃FN .
2. Generate z1 ∼ f14 · 5.
3. Generate z2 ∼ fz1

4 · 5.
4. Set x1 = F −1

1 4ê4z1551 x2 = F −1
2 4ê4z255.

5. If 4x11x25 ∈F, then deliver 4x11x25.
Otherwise, go to Step 2.

The correctness of the C-NORTA algorithm is self-
evident. The efficiency, however, depends critically
on Steps 1, 2, and 3. For instance, the naïve adapta-
tion of NORTA that was discussed in §1.2 is essen-
tially C-NORTA with the outer set G chosen to be �2.
This turns out to be very inefficient because, when
FN has very small measure, choosing G=�2 ensures
that most random variates generated in Step 4 of
the C-NORTA algorithm end up getting rejected in
Step 5. (Why do we choose G ⊃ FN in Step 1 of
C-NORTA? Choosing G ⊂ FN in Step 1 would lead
to incorrect marginals owing to no generation in cer-
tain regions of F having positive probability under
the desired bivariate distribution. Choosing G = FN ,
although ideal from an efficiency standpoint, may not
lend itself to easy generation because the structure of
the set FN is not readily available.)

Throughout the rest of this paper, our interest
will be limited to piecewise-linear (PL) sets G, i.e.,
sets G that are obtained by outer-bounding FN using
an appropriately chosen piecewise-linear curve. As
we shall see, the reason for such stipulation is that
PL sets, in addition to having the ability to outer-
approximate FN to an arbitrary level of accuracy,
afford great tractability in the generation Steps 2
and 3. Also, because the identification of �∗ and the
inversion in Step 4 are well-studied problems (Cario
and Nelson 1997, 1998; Avramidis et al. 2009; Ghosh
and Henderson 2003; Chen 2001), all our ensuing dis-
cussion is limited to Steps 1, 2, and 3. Accordingly,
§§3 and 4 simply focus on the question of generat-
ing bivariate normal random vectors constrained to a
given PL set G, i.e., on Steps 2 and 3 in the C-NORTA

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 0

5 
Fe

br
ua

ry
 2

01
4,

 a
t 0

7:
19

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Ghosh and Pasupathy: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions
INFORMS Journal on Computing 24(2), pp. 295–310, © 2012 INFORMS 299

algorithm. In §5, we discuss the choice of an appro-
priate PL set G, i.e., Step 1 in the C-NORTA algorithm
and its implications on Step 5.

3. C-NORTA on Normal Half-Spaces
In this section, we treat the special case where the
required random vector X is itself bivariate normal,
and the PL set G is a linear half-space. In addition
to this special case being important in its own right,
it serves to ease the exposition of the more general
case. In what follows, we thus provide a generation
technique for N �G when G is a linear half-space, and
we establish a certain asymptotic efficiency property
for the technique.

Define G = 8ctz ≥ v9. Assume the coefficients
c11 c2 > 0; each of the other three cases are treated
identically by the symmetry of the standard bivari-
ate joint normal N. Define l4z15= inf8z22 z2 ∈G4z159=

4v − c1z15/c2. Then, the set G4z15 = 8z2 ≥ l4z159. The
marginal f1 and conditional fz1

densities are given by

f1 =
1

°ê4v5
�4z15 °ê4l4z1551

fz1
=

1
°ê4l4z155

�4z25I8z2 ∈G4z1590 (4)

The first term in each expression represents the nor-
malizing constants for each density. The f1 marginal
is a mixture of normal tail distributions by a normal
density.

Let a = v/c1 represent the z1 value at which the
linear function l4z15 = 0. We construct the following
majorizing function t14z15 for f14z15:

t14z15=



















1
2

1
°ê4v5

�4z15e
−l24z15/2 if z1 < a1

1
°ê4v5

�4z15 if z1 ≥ a0

(5)

That the function t1 dominates the marginal f1 on the
left side z1 < a is evident since, for y ∈�,

°ê4y5 = 1 −ê4y5≤ 1 −
1
2 41 +

√

1 − e−y2/25

≤ 1 −
1
2 41 + 41 − e−y2/255=

1
2e

−y2/20 (6)

The first inequality in (6) follows from the left side
of the famous bound on the normal cumulative dis-
tribution function (cdf) (Johnson et al. 1994, p. 115),
and the second inequality holds since

√
1 − e−y2/2 ≥

1 − e−y2/2 for all y ∈�. That the function t1 dominates
the marginal f1 on the right side z1 ≥ a of (5) follows
from using the loose upper bound 1 for the normal
tail probability °ê.

On the left interval z1 < a, the majorizing function
t14z15 is proportional to a univariate normal density
with mean vc1 and variance c2

2 . To see this, write

�4z15 e
−l24z15/2

=
1

√
2�

e−41/42c2
2 554z

2
1−2vc1z1+v25

=
1

√
2�

e−41/42c2
2 554z1−vc15

2
e− 1

2 v
2
1 (7)

where the first equality in (7) follows upon using
l4z15= 4v−c1z15/c2 and c2

1 +c2
2 = 1. (Note that this den-

sity is different from the importance sampling change-
of-measure optimal for estimating the probability of
this tail set, which is the standard univariate normal
density shifted to have mean vc1.) On the right inter-
val z1 ≥ a, it can be seen that the majorizing function
t14z15 is proportional to a standard normal density.

The cdf corresponding to the majorizing function
t14z15 is then a mixture of two normal densities
defined over disjoint half-intervals of the real line, and
it is given by

R14z15 =
w1

w1 +w2
R1114z15

+
w2

w1 +w2
R1124z15 z1 ∈�1 (8)

where R111 ∼ w−1
1 4vc1 + c2N5I8z1 < a9 and R112 ∼

w−1
2 NI8z1 ≥ a9, and the constants w1 and w2 sim-

plify to

w1 =
1

°ê4v5

1

2
√

2�

∫ a

−�

e−z2
1/2e−l24z15/2dz1

=
c2

2 °ê4v5
e−v2/2ê44v/c1 − vc15/c253

w2 =
1

°ê4v5

∫ �

a
�4z15dz1 =

1
°ê4v5

°ê4a50 (9)

The composition method (Law and Kelton 2000,
p. 433) can be utilized to generate samples from R1.
Generation from the densities f1 and fz1

thus follows
the steps laid down in Algorithm 2a. (We note that
Algorithm 2a is presented for the more general con-
text of generating random vector Z on the half-space
G= 8ctz≥ v9.)

Algorithm 2a (Generating from Z �G, where Z = Z4�∗5
and G= 8ctz≥ v9)

Inputs: correlation �∗; constant vector c = 4c11 c25;
constant scalar v.

Outputs: Random variate 4z11 z25.

(i) Initialize C 2=
[

1 �∗

0
√

1 −�∗2

]

, and redefine
c = 4C t5−1c.

(ii) Generate u11u2 ∼U40115 independently.
(iii) If u1 <w1/4w1 +w25, sample z1 ∼R111.

Else, sample z1 ∼R112.
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(iv) If u2t14z15 > f14z15, then go to Step (ii).

(v) Let l4z15=
v− c1z1

c2
.

(vi) Generate u3 ∼U40115 independently.
(vii) Set z2 =ê−14u341 −ê4l4z1555+ê4l4z1555.
(viii) Return z=C t4z11 z25

t .

The initialization step calculates the linear transform
to the standard bivariate normal N � G, and the final
Step (viii) applies the reverse transformation. Step (iii)
generates z1 from the majorizer t1, and the variate
is accepted as being from f1 in (4) if the check of
Step (iv) is satisfied. Step (vii) generates z2 given z1
via inversion of the conditional density in (4).

How efficient is C-NORTA in generating nor-
mal random vectors in a specified half-space G?
Toward understanding this, Theorem 1 provides the
asymptotic acceptance probability of C-NORTA on
translated half-spaces G� of the sort introduced for
Proposition 1.

Theorem 1. Let G� denote the translated half-space

G�
= 8z ∈�22 ctz≥ v+�ctd91

where c = 4c11 c25 is a constant vector, v is a constant
scalar, �> 0 is the rarity parameter, and d is a unit vector.
If ctd > 0, Algorithm 2 (C-NORTA) to sample from Z �G
obeys

lim
�→�

�P4�5=
2
c2

1

ctd
√

2�
0

Proof. It is sufficient if we establish the stated
result for the standard bivarate normal N on the set
G� (as opposed to Z on G�). To see this, we note
first that N and A−1Z have the same distribution for
A =

[

1 0

�∗

√
1−�∗2

]

. Consequently, the conditional ran-

dom variables Z � G and A× N � A−1G have the same
distribution, and the random vector Z �G can be gen-
erated by first generating N �A−1G and then multiply-
ing it by the matrix A. The probability of accepting a
sample P4�5 with such generation is then exactly the
same as the probability of accepting a sample when
generating N � A−1G. This and the fact that A−1G is a
half-space if G is a half-space assures us that it is suf-
ficient to prove the stated result for standard bivariate
normal vectors. (Also, note that the linear transforma-
tion A−1 ensures that this correspondence continues
to hold for PL sets G.)

We now prove the stated result for standard bivari-
ate normal random vectors. The probability of accept-
ing a sample in Step (iv) of Algorithm 2a is given
by the inverse of the normalizing constant of the
majorizer t1 (Asmussen and Glynn 2007, Remark 2.5).
Thus, we have

P4�5 =
1

4w1 +w25

=
°ê4v�5

4c2/25e−005v2
�ê4�5+ °ê4v�/c15

1

v� = v+�ctd1 �= 4v�/c1 − v�c15/c21

after substituting v� for v, � for l4z15, and v�/c1 for
a, in (9). Using the bounds on °ê4z51 z > 0 introduced
in (2), we can then write

4v2
�/4v

2
�+1554e−005v2

�/v�5

4e−0054v�/c15
2/4v�/c155+4c2/25

√
2�e−005v2

�ê4�5
≤P4�5

≤
4e−005v2

�/v�5

4v2
�/4v

2
�+c2

1554e
−0054v�/c15

2/4v�/c155+4c2/25
√

2�e−005v2
�ê4�5

1

4v2
�/4v

2
�+155

c1e
−0054v�c2/c15

2
+v�4c2/25

√
2�ê4�5

≤P4�5

≤
1

4v2
�c1/4v

2
�+c2

155e
−0054v�c2/c15

2
+v�4c2/25

√
2�ê4�5

0

Recalling that v� = v+�ctd, the result is now obtained
by multiplying throughout with � and taking the
limit. �

Theorem 1 asserts that C-NORTA’s efficiency falls
linearly with respect to �. This compares very favor-
ably with the exponential drop in efficiency of the
naïve sampling technique, rigorized through Proposi-
tion 1. Additionally, rejection in C-NORTA is limited
to a univariate marginal.

4. C-NORTA on General
Piecewise-Linear Sets

In this section, we detail Steps 2 and 3 in Algorithm 2
(C-NORTA) for PL sets G. Recall that, for the pur-
poses of this paper, PL sets are sets that can be char-
acterized as lying above a piecewise-linear function.
Specifically, a set B ⊂ �2 is a PL set if there exists
a piecewise-linear function l2 � → � such that B =

84z11 z252 z2 ≥ l4z159.
We remind the reader that Step 1 of C-NORTA

involves generating from the density f14 · 5, which is a
certain normal mixture of normal probabilities. Step 2
involves generating from fz1

4 · 5, which is a certain
normal density that is truncated to the set G4z15. As
we shall see, both of these steps are accomplished
through a rejection technique that remains efficient (in
a certain precise sense) even as the set enclosed by G
becomes increasingly rare under the normal measure.
Mainly for ease of exposition, we note two properties
of the PL set G without proof.

Property 1. The set G4z15 = 8z2 ∈ �2 4z11 z25 ∈ G9 is
nonempty for all z1 ∈�.

Property 2. The set G4z15 is an interval of the form
6l4z151�5.
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Our assumption of G being PL precludes G being
bounded—something that we think is not a major
stipulation. Problems with bounded G sets, although
easily addressed through a simple extension of
the methods we present, are considered generally
uninteresting from the standpoint of this paper. Prop-
erty 2 essentially states that the set G4z15 is an interval
that lies “above” the chosen piecewise-linear bound-
ary. This again turns out not to be a serious stipu-
lation. For instance, if G is chosen so that G4z15 is a
finite union of intervals for every z1 (as opposed to
an interval), much of what we say in this section can
be easily adapted. Furthermore, for many problems
where the set G is unbounded but Property 2 is vio-
lated, a simple rotation of the coordinate axes will
ensure that the resulting set G becomes PL. Figure 1
illustrates typical G and G4z15 sets that are of interest.

4.1. Generating from f14 · 5 and fz1
in C-NORTA

As in §3, toward constructing a rejection technique for
generation, choose the majorizing function of f14 · 5 to
be

t14z15=















0054Pr8Z ∈G95−1�4z15exp8−00541 −�∗25−1

· 4l4z15−�∗z15
29 if l4z15 > �∗z11

4Pr8Z ∈G95−1�4z15 if l4z15≤ �∗z10

(10)

That the function t14z15 majorizes the function f14z15
follows from the derivation of the density function of
the conditional random variable Z2 � Z1 and a certain
bound on the normal tail probability. Proposition 3
asserts this formally.

Proposition 3. The function t14z15 ≥ f14z15 for all
z1 ∈�.

z1

z2

a

�(a)

�N

�

Figure 1 Illustration of Typical G and G4z15 Sets in C-NORTA
Notes. The region above the piecewise-linear boundary is the G set. The set
G4z15 is the set of ordinates of the points in G whose abcissa is z1. The set
FN is the image in the normal space of the feasible region F.

Proof. Recall from Proposition 2 that

f14z15=
1

Pr8Z ∈G9
�4z15Pr8Z2 ∈T4z11�

∗591 z1 ∈�1

where T4z11�
∗5 = 8t2 t

√

1 −�∗2 + �∗z1 ∈ G4z159. Since
Pr8Z2 ∈ T4z11�

∗59 ≤ 1, t14z15 clearly majorizes f14z15
when l4z15 ≤ �∗z1. Next, note that since l4z15 =

inf8z22 4z21 z15 ∈ G9, the set T4z11�
∗5 is the interval

64l4z15 − �∗z15/
√

1 −�∗21�5. Therefore, the probabil-
ity Pr8Z2 ∈ T4z11�

∗59 = 1 − ê44l4z15 − �∗z15/
√

1 −�∗25.
Now use the inequality 1 −ê4z5≤ 005 exp4−005z25 for
all z > 0 (as demonstrated through (6)) to conclude
that t14z15 serves as a majorizer when l4z15 > �∗z1. �

Again because of the equivalence (shown in the
beginning of the proof of Theorem 1) of the gen-
eral bivariate constrained normal Z �GZ and the con-
strained standard bivariate normal N � GN in the
present context, we limit the rest of this section to
the bivariate standard normal N constrained by G
(i.e., simply assuming �∗ = 0). Denote A = 8a0 =

−�1 a11 a21 0 0 0 1 an1 an+1 = �9 as the ordered set that
includes the locations where the function l4 · 5 either
changes slope or l4z15 = �∗z1 = 0 (for N1�∗ = 0).
See Figure 2 to get a sense of the set A. Because
the piecewise-linear boundary defining G has only
a finite number of “pieces,” it is clear that each
ai1 i = 1121 0 0 0 1n is finite. (If an entire segment of the
piecewise-linear boundary of G aligns with the z1 axis,
only the end points of the segment are included in A.)
Also denote the masses

wi =

∫ ai

ai−1

t14z15 dz11 ∀ i = 1121 0 0 0 1n+ 10

z1

z2

a1 a2 a3 a4
a0 a5

Boundary of the PL set �, i.e., l(z1)

Figure 2 Illustration of the Piecewise-Linear Boundary and the l4z15

Function in C-NORTA
Notes. The region above the piecewise-linear boundary is the G set. Note
that the function l4z15 is also piecewise linear but can have jump discontinu-
ities as shown.
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The calculation of these areas w11w21 0 0 0 1wn+1 is
made easy by the fact that the function l4z15 nei-
ther changes slope nor its sign in each of the
above integrals. More specifically, if the line seg-
ment of the boundary of G in 4ai1 ai+15 is defined by
c1iz1 + c2iz2 = vi, then l4z15 can be written as l4z15 =
∑n

i=04vi/c2i − c1iz1/c2i5I8z1 ∈ 4ai1 ai+159 for z1 ∈ �\A.
This implies, after some algebra, that in intervals
4ai1 ai+15 where l4z15 > 0, the integrand t14z15 is pro-
portional to a normal density with mean c1ivi and
variance c2

2i, and is proportional to a standard nor-
mal density otherwise. The computation of the areas
wi1 i = 1121 0 0 0 1n+1 hence amounts to the calculation
of a known normal probability on a finite segment.

The above characterization allows us to write the
cdf corresponding to the majorizing function t14z15 as
a mixture of known normal cdfs, i.e.,

R14z15=

n+1
∑

i=1

wi

w
R11 i4z15 z1 ∈�1 (11)

where w =
∑n+1

i=1 wi, R11 i4z15 is the cdf correspond-
ing to a normal density with mean c1ivi and vari-
ance c2

2i when −c1iz1 + vi > 0 and restricted to z1 ∈

4ai−11 ai5; otherwise, it is a standard normal cdf. This
provides for easy generation using the composition
method (Law and Kelton 2000, p. 433). The corre-
sponding ideas for generating from the density fz1

4 · 5
in Step 3 of Algorithm 2 are similar but far easier. It
can be seen from the expression in Property 2 that
fz1

4 · 5 is a standard normal density truncated to the
set G4z15. Generation from the densities f1 and fz1

thus
follow the steps laid down in Algorithm 3.

Algorithm 3 (Generating from Z �G, where Z = Z4�∗5
and G is a PL set)

Inputs: correlation �∗; PL set G.
Outputs: Random variate 4z11 z25.

(i) Initialize C 2=
[

1 �∗

0
√

1 −�∗2

]

. Use C to define

the set of points A, piecewise-linear
curve l4z15, and composite-distribution R1
with parameters 8wi1 i = 1121 0 0 0 1n9 as
described in §4.2. Set w =

∑n+1
i=1 wi.

(ii) Generate u11u21u3 ∼U40115 independently.
(iii) Use u1 to select an index i ∈ 81121 0 0 0 1n9

from the discrete mass function
8wi/w1 i = 1121 0 0 0 1n+ 19.

(iv) Set z1 =R11 i
−14R11 i4ai5+u24R11 i4ai+15−R11 i4ai555.

(v) If u3t14z15 > f14z15, then go to Step (i).
(vi) Let l4z15= 4vi − c1iz15/c2i.
(vii) Sample z2 ∼ 8N � z2 ≥ l4z159.
(viii) Return z=C t4z11 z25

t .

Step (iii) requires generating from a discrete dis-
tribution, and with some preprocessing, it is possi-
ble to do this in constant time (see, for example,

Walker 1977, Law and Kelton 2000, p. 472). Steps (iv)
and (vii) generate from a univariate normal condi-
tioned on a half-interval. Observe that the probabil-
ity Pr8N ∈ G9 need not be calculated explicitly for
any of the steps in Algorithm 3, including Step (iii)’s
discrete-mass sampling and rejection Step (v).

4.2. Preprocessing in C-NORTA
Recall that Steps 2 and 3 of C-NORTA (Algorithm 2)
involve generating from the density functions f14 · 5
and fz1

4 · 5, respectively. As we saw in §4.1, the den-
sity f1 can be generated through a rejection technique
with a majorizing function that is a mixture of two or
more normal densities. Then, we can generate directly
from the density fz1

4 · 5 after noting that it is a normal
density that is truncated to an interval. The generation
Steps 2 and 3 of C-NORTA are thus fairly straightfor-
ward and can use fast, well-established techniques for
generating from normal densities.

The preprocessing steps in C-NORTA, however, are
slightly more involved, and it is not immediately
evident as to whether they will be efficient during
implementation. Accordingly, we now detail all the
operations that are required for preprocessing within
C-NORTA.

Preprocessing Steps in C-NORTA
Step P.1. Identify the PL set G such that G ⊃ FN =

84z11 z25: 4ë14z151 ë24z255 ∈F91 where F is the feasible
set, and ë is defined as in (1). Define the boundary of
G as the set of line segments 8ht

iz= vi1 i = 1121 0 0 0 1m9
with intersection points 84z̄0

11 z̄
0
25= 4−�1−�51 4z̄1

11 z̄
1
251

4z̄2
11 z̄

2
251 0 0 0 1 4z̄

m
1 1 z̄

m
2 51 4z̄

m+1
1 1 z̄m+1

2 5= 4�1�59.
Step P.2. Identify corresponding PL set G under N.

To do this, set C 2=
[

1 �∗

0
√

1−�∗2

]

, and to define line seg-
ments and intersection points, set 84C t5−1z̄i1 4C t5−1hi1
vi1 i = 1121 0 0 0 1m9.
Step P.3. Identify the function l4z15 = inf8z22 z2 ∈

G4z159, where G4z15= 8z22 4z11 z25 ∈G9.
Step P.4. Identify set A = 8a0 = −�1 a11 a21 0 0 0 1 an1

an+1 = �9—the ordered set where l4z15 either changes
slope or l4z15 = 0. These include the z1 intercepts of
intersection points.

Step P.5. Compute wi =
∫ ai
ai−1

t14z15 dz1 for i = 11
21 0 0 0 1n + 1, where t14z15, is the majorizing function
given in (10).

Among preprocessing Steps P.1–P.5, Step P.1 is the
least clear. Accordingly, we devote the ensuing §5 in
its entirety to this step.

Suppose for now that the piecewise-linear set G
has been constructed. This implies that we have “con-
structed” the piecewise-linear function l4z15 as well.
Upon such construction of the function l4z15, the
set A = 8a0 = −�1 a11 a21 0 0 0 1 an1 an+1 = �9 (Step P.4)
is simply the set of locations z1 ∈ � where l4z15
attains zero and the set of points z1 ∈ � where l4z15
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changes slope. Both of these sets can be identified in
a straightforward and efficient manner. Because the
majorizing function t14 · 5 involves only normal den-
sities, Step P.5 is easily accomplished using readily
available numerical quadrature. Note that for discrete
mass sampling Step (ii) of Algorithm 3, it is suffi-
cient to express all the wi as multiples of the quantity
4Pr8N ∈G95−1.

4.3. Asymptotic Sampling Efficiency
Sections 1.2 and 3 established the asymptotic sam-
pling efficiency of the naïve adaptation of NORTA
and the C-NORTA methods for a region G bounded
by a single linear constraint. Specifically, we demon-
strated that when normal random vectors are gen-
erated from the set G� = 8z2 ctz ≥ v + �ctd9 (�> 01
ctd > 0), C-NORTA guarantees an acceptance proba-
bility that decays linearly. This is remarkably more
efficient compared with the naïve adaptation of
NORTA, where the corresponding acceptance proba-
bility decays exponentially. In this section, we prove
a similar but slightly weaker efficiency guarantee
for the C-NORTA method when generating from
arbitrary PL sets G. To ease exposition, we first estab-
lish this result for the specific case of generating nor-
mal random vectors on “acute” and “obtuse” cones
(Proposition 4), and we then extend this to general
random vectors on general PL sets (Theorem 2).

Proposition 4. Let H1 = 8r tz ≥ u + �r td = u�9 and
H2 = 8stz ≥ v + �std = v�9, where d1 r = 4r11 r251 s =

4s11 s25 are vectors satisfying r td > 01 std > 0. Denote the
intersection of the lines r tz= u� and stz= v� as ��.

(i) (Acute Cone). Let the translated cone C� =H1 ∩H2;
r11 r21 s2 > 0, and s1 < 0. Then the C-NORTA procedure to
sample from Z � C� has acceptance probability P4�5 that
obeys

liminf
�→�

�−1 exp
{

−
1
2
����

2

}

P4�5

Pr8Z∈C�9
=�11 0<�1<�0

(ii) (Obtuse Cone). Let the translated cone C� be of
the form C� = H1 ∩ H2 or C� = H1 ∪ H2. Also, assume
s11 s21 r2 > 0 and r1 < 0. Then the C-NORTA procedure to
sample from Z � C� has acceptance probability P4�5 that
obeys

lim inf
�→�

exp8−��29
P4�5

Pr8Z ∈C�9
= �2 > 0

for some � > 0.

Proof. We again appeal to the equivalence of gen-
eral bivariate and standard bivariate normal random
vectors (shown in the beginning of the proof to Theo-
rem 1) and establish this result only for the standard
bivarate normal. See Figure 3 for a depiction of acute
and obtuse cones.

z2

a0(�)

C�

z2

a0(�) a1(�) a2(�)

C�

r tz = u�

r tz = u�

stz = v�

stz = v�

��

��

Figure 3 Illustration of Acute (Top) and Obtuse (Bottom) Cones
Considered in Proposition 4

Notes. The shaded regions represent the translated cones C�, where � is
the rarity or translation parameter. The direction of translation d is such that
the probability measure assigned to the cones tends to zero as �→ �; i.e.,
d satisfies r td > 01 std > 0.

For proving (i), we first note that, for large-
enough �, the “breakpoint” set A (the set where l4z15
either changes slope or is equal to zero, as illustrated
in Figure 3) corresponding to the feasible set G� con-
sists of exactly one point ��—the intersection of the
lines r tz = u� and stz = v�. Denote the abcissa of ��
as a04�5. Then, following the proof of Theorem 1, we
see that the acceptance probability P4�5= 1/4w1 +w25,
where

w1 =

∫ a04�5

−�

t14z15 dz1 w2 =

∫ �

a04�5
t14z15 dz1

and the majorizing function t14z15 is as given by
expression (10). Specifically, because the cone remains
above the z1 axis for large-enough �, and because we
have argued that it is sufficient to consider the stan-
dard bivariate case, we see that

w1 =
1

2 Pr8N ∈C�9

∫ a04�5

−�

�4z15exp8−005l24z159 dz1

=
r2

2 Pr8N ∈C�9
exp

{

−
1
2
u2
�

}

ê

(

a04�5−u�r1

r2

)

1 (12)

where r = 4r11 r25. Similarly, we have

w2 =
s2

2Pr8N∈C�9
exp

{

−
1
2
v2
�

}

°ê

(

a04�5−v�s1

s2

)

0 (13)

The statement of Proposition 4 assumes (without
loss of generality) that s21 r21 r1 > 0 and s1 < 0. Then,
noting that a04�5= 4s2u� − r2v�5/4s2r1 − r2s15, it is seen
with some algebra that 4a04�5 − u�r15/r2 ≤ 0. This
implies that ê44a04�5 − u�r15/r25 → 0 as � → �. Fur-
thermore, using the Gaussian tail bound given in (2),

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

12
8.

17
3.

12
5.

76
] 

on
 0

5 
Fe

br
ua

ry
 2

01
4,

 a
t 0

7:
19

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Ghosh and Pasupathy: A Rejection Procedure for Sampling from the Tail of Bivariate NORTA Distributions
304 INFORMS Journal on Computing 24(2), pp. 295–310, © 2012 INFORMS

we can write

ê44a04�5−u�r15/r25

= °ê44−a04�5+u�r15/r25

=O4�−1 exp8− 1
2 4a04�5−u�r15

2/r2
2 950 (14)

Using (12) and (14), and noticing that

u2
� +

4a04�5−u�r15
2

r2
2

= a2
04�5+

4u� − a04�5r15
2

r2
2

= ����
21

we see that

w1 Pr8N ∈C�9=O
(

�−1 exp8− 1
2����

29
)

0 (15)

Using analogous arguments, we also arrive at

w2 Pr8N ∈C�9=O
(

�−1 exp8− 1
2����

29
)

0 (16)

Use (15) and (16) to conclude that the assertion in (i)
holds.

In proving assertion (ii), if the translated cone is
of the form C� = H1 ∩ H2, then the corresponding
breakpoint set A will again contain only the vertex
�� of the cone C�. If the translated cone is of the
form C� = H1 ∪ H2, then the corresponding break-
point set A = 8a04�51 a14�51 a24�59, where a04�5 and
a24�5 are the locations where the lines r tz = u� and
stz= v� cross the z1 axis, respectively, and a14�5 is the
abcissa of their intersection (see Figure 3). Specifically,
a04�5 = u�/r1, a24�5 = v�/s1, and a14�5 = 4s2u� − r2v�5/
4s2r1 − r2s15. In what follows, we will prove assertion
(ii) only for the latter context. The proof for the for-
mer context follows in a very similar fashion, and we
omit it.

Suppose that the translated cone is of the form C� =

H1 ∪ H2. Then corresponding to the breakpoint set
A = 8a04�51 a14�51 a24�59, we have the four inte-
grals w1 =

∫ a04�5

−�
t14z15 dz, w2 =

∫ a14�5

a04�5
t14z15 dz, w3 =

∫ a24�5

a14�5
t14z15 dz1 and w4 =

∫ �

a24�5
t14z15 dz. Noting that

P4�5 = 1/4w1 + w2 + w3 + w45, and following the
approach leading to expressions (12) and (13),
we have

w1 =
r2

2 Pr8N ∈C�9
ê

(

a04�5−u�r1

r2

)

3

w2 =
r2

2 Pr8N ∈C�9
exp

{

−
1
2
u2
�

}

·

(

ê

(

a14�5−u�r1

r2

)

−ê

(

a04�5−u�r1

r2

))

3

w3 =
s2

2 Pr8N ∈C�9
exp

{

−
1
2
v2
�

}

·

(

ê

(

a24�5− v�s1

s2

)

−ê

(

a14�5− v�s1

s2

))

3

w4 =
s2

2 Pr8N ∈C�9
°ê

(

a24�5− v�s1

s2

)

0 (17)

Since r21 s11 s2 > 0 and r1 < 0, we know that
a04�5 → −� as � → �. Again appealing to the
Gaussian tail bound given in (2), we see that
w1 = O4�−1 exp8− 1

2 44a04�5 − u�r15
2/r2

2 595. Similarly,
we see that a24�5 → � as � → � and w4 =

O4�−1 exp8− 1
2 4a24�5−v�s15

2/s2
2595. Using these, and the

expressions for w3 and w4 appearing in (17), we con-
clude that the assertion in (ii) holds. �

Three observations about Proposition 4 are
noteworthy. First, the term Pr8N ∈ C�9 appearing in
the assertions of Proposition 4 has the interpretation
of the acceptance probability of the naïve adaptation
of NORTA method. Hence, the assertions of Propo-
sition 4 imply that, under all reasonable conditions,
i.e., the translated feasible region is an obtuse or an
acute cone that progressively becomes “rarer,” the
acceptance probability in C-NORTA can be expected
to be exponentially larger (asymptotically) than
that of naïve NORTA. Second, when the translated
feasible region is an acute cone, the rate at which the
limiting ratio of the acceptance probabilities tends to
infinity can be explicitly calculated. Interestingly, this
rate is dependent only on the distance of the vertex
of the acute cone from the origin. The corresponding
rate for the obtuse cone does not seem to be explicitly
calculable. This is why we allow the constant �2 that
appears in assertion (ii) to attain �. Third, unlike
Theorem 1, the assertions in Proposition 4 say noth-
ing about the absolute performance of C-NORTA.
They are weaker in the sense that they only say how
much better C-NORTA can be expected to perform
in comparison with a naïve adaptation of NORTA.

Recall that Proposition 4 is for the specific case of
feasible sets that are cones and where the underlying
random variables are Gaussian. We will see, however,
that Proposition 4 extends somewhat seamlessly to
general PL sets G and to general NORTA vectors X.
Toward this, define the characteristic cone C of the PL
set G as the cone formed by the two end segments
of the boundary of the set G. Specifically, if the two
semi-infinite end segments of the PL set G lie on the
lines r tz= u and stz= v, define the characteristic cone
C of G as C= 8z2 r tz≥ u1 stz≥ v9. As usual, the trans-
lated characteristic cone C� = 8z2 r tz ≥ u+ �r td1 stz ≥

v + �std9, where the unit vector d satisfies r td > 0
and std > 0. Accordingly, the translated PL set G�

is obtained by simply moving each of the segments
comprising the boundary of G in the direction d and
by an amount �. It is also clear that the characteristic
cone of the translated set G� is simply the translated
cone C�.

With the above notation in place, we are now ready
to generalize Proposition 4. Part (i) of Theorem 2
establishes the efficiency result for normal random
vectors on general PL sets G. This is extended to more
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general random vectors in part (ii) under a further
mild condition.

Theorem 2. (i) Let G� be a translated PL set with
translated characteristic cone

C�
= 8z2 r tz≥u+�r td1stz≥v+�std91

r td>01std>00 (18)

Then, the C-NORTA procedure to sample from Z � G� has
acceptance probability P4�5 that obeys

lim inf
�→�

exp8−��29
P4�5

Pr8Z ∈G�9
= �> 0

for some � > 0.
(ii) Let X = 4X11X25 be the NORTA vector, i.e.,

Xi = F −1
i 4ê4Zi4�

∗5551 i = 112, where Fi1 i = 112 are con-
tinuous strictly increasing distributions, and Z4�∗5 =

4Z14�
∗51Z24�

∗55 is a bivariate normal random vec-
tor with standard normal marginals and correlation
Corr4Z14�

∗51Z24�
∗55 = �∗. Denote X � F� as the vec-

tor X constrained to the translated half-space F� =

8z2 ctz≥ v+�ctd9, where d satisfies ctd > 0. Denote the
image of F� under the bivariate normal Z4�∗5 as F�

N .
If the chosen PL set G� with translated characteristic
cone C� (defined in (18)) satisfies

lim inf
�→�

Pr 8Z ∈F�
N 9

Pr 8Z ∈G�9
> 01 (19)

then the C-NORTA procedure to sample from X � F�

has acceptance probability P4�5 that obeys

lim inf
�→�

exp8−��29
P4�5

Pr8X ∈F�9
= �> 0

for some � > 0.

Proof. For proving (i), note that for any direc-
tion d, the PL set G� can be inner- and outer-bounded
by appropriate translations of the cone C� along d.
Specifically, if ã�i and ã�o are the respective trans-
lations, then we have C�+ã�i ⊆ G� ⊆ C�+ã�o . Thus,
P4�5= Pr 8N ∈G�9 is bounded on either side by quan-
tities that, as per Proposition 4, possess the desired
property.

Part (ii) follows upon noticing that

P4�5

Pr8X ∈F�9
=

P4�5

Pr8Z4�∗5 ∈F�
N 9

=
P4�5

Pr8Z4�∗5 ∈G�9

Pr8Z4�∗5 ∈G�9

Pr8Z4�∗5 ∈F�
N 9

(20)

and then using the assertion in (i) and the assumption
in (19) to the two fractions appearing on the right-
hand side of (20). �

For convenience, we have chosen to state only a
weaker and more general assertion within Theorem 2.
For the specific case of PL sets with an acute charac-
teristic cone, a more specific result of the form appear-
ing as assertion (i) in Proposition 4 is clearly possible.
Also, for the context of general random vectors, Theo-
rem 2 assumes that the assumption in (19) holds; i.e.,
the chosen PL set G� approximates the set F� well.
It so happens that making such a choice is reason-
ably easy. We say more on this in the subsequent sec-
tion, where we discuss the choice of PL sets G within
C-NORTA algorithms.

5. Implementation
In this section, we discuss C-NORTA’s implementa-
tion. Specifically, we provide further insight leading
to detail on the mechanics of construction of a PL
set G during implementation. We also demonstrate
the process on three illustrative examples and present
some numerical evidence. We remind the reader that
throughout this section, for ease of exposition, we
switch to the notation 8c1x1 + x2 ≥ v9 when represent-
ing linear constraints.

5.1. Constructing the PL Set
Consider constraint sets of form F= 8x � c1x1 +x2 ≥ v9
or F = 8x � c1x1 + x2 ≤ v90 The NORTA image of this
set in the bivariate normal space is FN = 84z11 z25 ∈

�2 � 4ë14z151ë24z255 ∈ F9, where the vector transform
ë = 4ë11ë25 is as defined in (1). Assume that the
marginal distributions Fi are continuous and strictly
increasing. This condition is mild; for instance, it
covers any distribution that has a density fi with
respect to the Lebesgue measure over the support Xi

that is nonzero over the entire set. The assump-
tion implies the continuity and strict monotonicity of
the inverses F −1

i and, consequently, that each com-
ponent of the map ë is one-to-one and maps Xi

onto �2. The set F then has a one-to-one onto ana-
logue FN ∈ �2 under the normal measure, and sam-
ples of NORTA vector X from within F are obtained
by transforming (via ë ) samples of Z from FN . The
set FN = 8c1ë14z15+ë24z25≥ v9, and the boundary of
this set is determined by the doubles 4z11 z25 that sat-
isfy the equality. Denote by ¡FN 4z15 the set of z2 that
satisfies the boundary condition

¡FN 4z15= 8z2 � c1ë14z15+ë24z25= v90 (21)

Assume c1 6= 0 to avoid trivialities. Then, we have the
following result that is crucial to constructing PL sets.

Proposition 5. If each marginal distribution Fi has a
nonzero density fi with respect to (w.r.t.) the Lebesgue
measure over its support, then the boundary set ¡FN 4z15
defines a monotone function in z1, where the direction of
monotonicity is determined by the sign of c1.
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Proof. For a fixed x1, the set ¡F4x15 = 8x2 � c1x1 +

x2 = v9 is a singleton as per our assumptions. The
preceding discussion establishes that ë is one-to-one
onto. Thus, for a fixed z1, the set ¡FN 4z15 is a single-
ton, and ¡FN 4z15 defines a function in z1. Consider
the �2 curve 8z11G4z159 that is defined by the relation
ë24z25 = v − c1ë14z15. Taking derivatives w.r.t. z1 on
either side, we get

ë̇24z25ż2 = −c1ë̇14z151

ż2 = −c1
�4z15

�4z25

f24F
−1

2 4ê4z255

f14F
−1

1 4ê4z1555
0 (22)

The latter is obtained by applying the chain rule
over the composition map ëi = F −1

i 4ê4 · 55 and using
Ḟi

−1
4y5 = ẏ/fi4F

−1
i 4y55. Equation (22) gives the deriva-

tive of z2 w.r.t. z1, where all the z1 and z2 terms
are positive. Thus, the curve is strictly monotone, the
direction being determined by c1. �

Proposition 5 ensures that, for any linear-bounded
F set in X, the set FN is bounded by a monotone
function. This allows the construction of a PL set G
that outer-bounds the set FN using only a finite num-
ber of points on the boundary ¡FN 4z15 of the set
FN . To see this, we note from Proposition 5 that the
boundary ¡FN 4z15 can be expressed as the monotone
function

¡FN 4z15 = ë−1
2 4v− c1ë14z155

= ê−14F24v− c1F
−1

1 4ê14z155550

Suppose we observe this boundary at k points z1 = z1
11

z1 = z2
11 0 0 0 1 z1 = zk1; i.e., we calculate ¡FN 4z

1
15,

¡FN 4z
2
151 0 0 0 1 ¡FN 4z

k
15. Because the function ¡FN 4z15 is

known to be monotone increasing (c1 > 0) or mono-
tone decreasing (c1 < 0), an appropriate step function
l4z15 can be constructed using the observed doubles
4z1

11¡FN 4z
1
15514z

2
11¡FN 4z

2
155100014z

k
11¡FN 4z

k
155. The con-

struction ensures that the PL set formed with l4z15
as the boundary outer-approximates the set FN , as
shown in Figure 4. We now formally list this construc-
tion in the form of an algorithm. (The listing is pro-
vided only for the case c1 > 0. The corresponding con-
struction for c1 < 0 is analogous and straightforward.)

Algorithm 4 (Constructing the PL boundary)
Inputs: constants c1 > 01v.
Outputs: PL boundary function l4z15.

(i) Select k points z1
11 z

2
11 0 0 0 1 z

k
1 (in ascending

order) and compute ¡FN 4z
1
15,

¡FN 4z
2
151 0 0 0 1 ¡FN 4z

k
150

(ii) If F= 8x � c1x1 + x2 ≥ v9 go to Step (iii).
Otherwise, go to Step (iv).

(iii) Set

l4z15=















−�1 z1 < z1
11

¡FN 4z
i
151 zi1 ≥z1<zi+1

1 1 i=11210001k−11

¡FN 4z
k
151 z1 ≥ zki 0

(iv) Set

4z15=















¡FN 4z
1
151 z1 < z1

11

¡FN 4z
i+1
1 51 zi1 ≥z1<zi+1

1 1 i=11210001k−11

�1 z1 ≥ zki 0

Algorithm 4 explicitly writes the form of the step
function l4z15 depending on the sign of c1 (which
decides the direction of monotonicity of the function
¡FN 4z15) and the side of the constraint constituting
the feasible region. Accordingly, the resulting PL set G
will be either G = 84z11 z25 ∈ �2 � z2 ≥ l4z159 or G =

84z11 z25 ∈�2 � z2 ≤ l4z159.
Algorithm 4 is tractable and affords an arbitrary

level of accuracy (in principle) depending on the
number of “steps” used. As stated, however, it does
not answer the question of how many and which
points z1

11 z
2
11 0 0 0 1 z

k
1 should be chosen to best approx-

imate ¡FN 4z15. This is an important question that lies
outside the current scope of this paper. One redeem-
ing factor is that the PL set G formed by even the
simplest of such step functions—a step function with
a single step (see Figure 4)—satisfies the conditions
stipulated by Theorem 2 and thereby ensures the slow
linear drop-off of the acceptance probability P4�5.

To further illustrate the construction proposed
in Algorithm 4, in Figure 4 we demonstrate its
use through three prototypical examples, involving
various distributions and types of constraints. For
instance, the first row of plots in Figure 4 involves the
constraint 2x1 + x2 ≥ 10, with the two marginal ran-
dom variables being exponentially distributed with
parameter 1. The second row in Figure 4 involves
the constraint −2x1 + x2 ≥ 10, with one of the two
marginal random variables having a gamma distri-
bution with parameters 42125 and the other a Burr
Type XII distribution with parameters 41115, respec-
tively. Likewise, the third row in Figure 4 involves
the constraint −x1 + x2 ≤ −4, with one of the two
marginal random variables having a gamma distribu-
tion with parameters 42125 and the other a beta dis-
tribution with parameters 42125, respectively. In each
case, the step function constitutes the function con-
structed using Algorithm 4.

If additional information is available on the struc-
ture of the function ¡FN 4z15, we could potentially
construct a PL boundary l4z15 that approximates
¡FN 4z15 even better than the step function proposed
in Algorithm 4. For instance, if it is known that
the function ¡FN 4z15 is concave or convex (in addi-
tion to being monotone), a piecewise-linear approxi-
mation obtained by simply connecting the observed
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x1

x1

x2

x2

2x1 + x2 ≥ 10 (� )

�N

�

�

�

z1

z1

z1

z2

z2

z2

�N

�N

x1

x2

–2x1 + x2 ≥ 10 (� )

x1 – x2 ≥ 4 (� )

Figure 4 Illustration of the PL Set G Constructed Using Step Functions (Algorithm 4) for Three Different Distribution Pairs and Feasible Regions
Notes. The plots in the left column depict various feasible regions F. The plots in the right column depict the corresponding images FN in the normal space,
with the (dashed) step function being the constructed PL set boundary. The first row corresponds to two exponentials each with parameter 1. The second row
corresponds to gamma and Burr Type XII marginal distributions with the respective parameters 42125 and 41115. The third row corresponds to gamma and
beta marginal distributions with the respective parameters 42125 and 42125.

doubles 4z1
11 ¡FN 4z

1
1551 4z

2
11 ¡FN 4z

2
1551 0 0 0 1 4z

k
11 ¡FN 4z

k
155

would better approximate ¡FN 4z15. Such convexity or
concavity of ¡FN 4z15 can be shown for a variety of
distribution pairs. Proposition 6, for instance, demon-
strates this for the case where both marginal distribu-
tions are exponential.

Proposition 6. Let F1 and F2 be exponential cdfs with
means �1 = � and �2 = 1, respectively. The boundary
set ¡FN 4z15 in (23) defines a concave function in z1
when c11v > 0.

Proof. Since F1 and F2 are exponentials, Xi =

ëi4Zi5 = −�i ln 4 °ê4Zi55 with �1 = � and �2 = 1. This
leads to the curve

¡G4z15 ¬ 8z2 � c1ë14z15+ë24z25= v9

= 8z2 � −c1� ln4 °ê4z155− ln4 °ê4z255= v9

= 8z2 � °ê4z25= e−v4 °ê4z155
−c1�90 (23)

The support set of the NORTA vector is the positive
quadrant in �2; so to avoid trivial F sets, allow the
z2 axis intercept b of the line c1z1 +z2 = v to take only
positive values. Proceeding as in the proof of Propos-
tion 5, differentiate w.r.t. z1 on either side of (23) to get

�4z25ż2 = −c1�e
−v�4z154 °ê4z155

−c1�−11 or

ż2 = −c1�
�4z15
°ê4z15

°ê4z25

�4z25
0

The last equation uses the definition of the bound-
ary (23). Thus, given the assumption c1 > 0, the
derivative ż2 is a nonpositive function, and the curve
¡FN 4z15 is decreasing.

Call H4z5 the hazard-rate function �4z5/ °ê4z5 of the
standard univariate normal. The function H4z5 is non-
decreasing in z. To see why, differentiate to get

Ḣ4z5=
�4z5
°ê4z5

(

�4z5
°ê4z5

− z

)

1

where the term in the parentheses is nonnegative
because of the right inequality in (2). Now, ż2 =

4−c/�54H4z15/H4z255. Consider z′
1 > z1. Then, z′

2 ≤ z2
and H4z15/H4z25 ≤ H4z′

15/H4z′
25. We then have that

ż24z15≥ ż24z
′
15, and thus ż2 is a nonincreasing function

of z1, or that the second derivative is nonpositive. This
gives us the result. �

5.2. Numerical Illustration
We now illustrate the efficiency of the approach pre-
sented in this paper through a simple numerical
example. Suppose we wish to generate a bivariate
random vector 4X11X25 such that X1 ∼ Exponential415,
X2 ∼ Exponential415, Corr4X11X25= 0, and X1 +X2 ≥ �
for some known �> 0.

The acceptance probability when performing such
generation using a naïve adaptation of NORTA can
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be calculated rather simply. Because the stipulated
correlation between X1 and X2 is zero, NORTA will
generate X1 and X2 independently and then accept
the resulting vector 4X11X25 if X1 +X2 ≥ �. Thus, the
acceptance probability in such a case turns out to be

P4�5 = 1 −

∫ �

0

∫ �−x2

0
exp4−x15exp4−x25 dx1 dx2

= 41 +�5exp4−�50

As can be seen from Figure 5, it is clear that such gen-
eration becomes inefficient very rapidly. (For example,
if �= 71P4�5≈ 00007.)

5.2.1. C-NORTA vs. Naïve NORTA. Now con-
sider using C-NORTA for the example. Following the
recommendation given after Proposition 5, we choose
a PL set with a step function boundary as depicted in
Figure 4. For convenience, we choose the vertex of the
boundary to be the intersection of the 45� line pass-
ing through the origin and the step function bound-
ary. In other words, we choose the vertex 4z∗

11 z
∗
25 of

the boundary to be the point on the boundary satisfy-
ing z∗

1 = z∗
2. After some simple algebra, this gives z∗

1 =

z∗
2 = z∗ =ê−141−exp4−�/255. Also, following §4.1, the

majorizing function t14z15 of the marginal Z1 turns
out to be

t14z15=















00541 −ê24z∗55−1�4z15exp8−005z∗29

if z1 ≤ z∗1

41 −ê24z∗55−1�4z15 if z1 > z∗0

(24)

It then follows that

w1 =

∫ z∗

−�

t14z15dz1 =00541−ê24z∗55−1ê4z∗5exp4−005z∗25

3 4 5 6 7 8 9
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P(�)(C-NORTA)/P(�)(NORTA)

10

10

20

30

R
at

io
 o

f 
ac

ce
pt

an
ce

 p
ro

ba
bi

lit
ie

s

P(�)=O(� exp(–�)) for NORTA

Figure 5 Acceptance Probabilities for Naïve NORTA and C-NORTA on
the Simple Problem of Generating Uncorrelated Exponentials
X1 and X2 (Each with Mean 1) Such That X1 +X2 ≥ �

Notes. The acceptance probability for NORTA, as expected, falls off near
exponentially. The acceptance probability for C-NORTA is O41/�5.

and

w2 =

∫ �

z∗

t14z15dz1 = 41−ê24z∗55−1 °ê4z∗50

This results in an easy-to-generate majorizing func-
tion composed of two normals. Again following §4.1,
the density of the conditional random variable Z2 �Z1

is a standard normal if z1>z∗ and the tail of a stan-
dard normal if z1 ≤z∗.

Figure 5 depicts the performance of C-NORTA on
this problem. As the theory predicts, the probability of
acceptance in C-NORTA is O41/�5 and decays much
slower than that obtainable through naïve NORTA.
The difference between these methods becomes par-
ticularly prominent as the measure of the feasible set
gets rarer. For example, when �=10, the acceptance
probability in C-NORTA is almost 40 times that of
naïve NORTA.

5.2.2. Effect of Correlation. Recall that the exam-
ple considered thus far requests two exponential
random variables X1, X2 having a correlation �=0
that are constrained to the region X1 +X2 ≥�. We
now relax the assumption �=0 toward gaining some
insight on the effect of the correlation � on the per-
formance of C-NORTA. Specifically, we would like
to characterize the range of acceptance probabilities
within C-NORTA because of changing � and as a
function of the translation parameter �.

We first note that the feasible regions in the expo-
nential and normal spaces (depicted in the first row
of Figure 4) are independent of correlation � and thus
remain unchanged. The majorizing function, however,
depends on the correlation � and, following §4.1,
becomes

t14z15=















0054Pr8Z∈G95−1�4z15exp8−00541−�∗25−1

·4z∗−�∗z15
29 if a4�∗5<z1 ≤z∗1

4Pr8Z∈G95−1�4z15 otherwise,

(25)

where a4�∗5=−� if �∗ ≥0, and z∗/�∗ if �∗<0. Recall-
ing that the acceptance probability P4�5= 4

∫ �

−�
t14z155

−1

and integrating the expressions in (25) yields

Pr8Z∈G9

P4�5

=























































°ê4z∗5+005e−005z∗2√

1−�∗2ê

(

z∗

√

1−�∗

1+�∗

)

if �∗ ≥01

°ê4z∗5+ê

(

z∗

�∗

)

+005e−005z∗2
√

1−�∗2

·

(

ê

(

z∗

√

1−�∗

1+�∗
5−ê4z∗

√
1−�∗

�∗

))

if �∗<00

(26)
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Figure 6 Effect of Correlation on the Acceptance Probabilities Within
C-NORTA for the Problem of Generating Correlated
Exponentials X1 and X2 (Each with Mean 1) Such That
X1 +X2 ≥�

Note. As can be seen, the dependence on correlation increases as a func-
tion of the translation parameter, with the smallest acceptance probabilities
occurring for the uncorrelated context.

Note that the ratio P�4�
∗5=P4�5/Pr8Z∈G9 (inverse

of the expression in (26)) has the interpretation of the
acceptance probability realized in C-NORTA, scaled
by the factor Pr8Z∈G9. Because the factor Pr8Z∈G9 is
independent of the correlation �∗, plotting P�4�

∗5 as
a function of �∗ provides insight on how acceptance
probabilities within C-NORTA are affected by correla-
tion. Figure 6 does exactly this by depicting the ratio
P�∗4�5=P4�5/Pr8Z∈G9 as a function of �∗ for different
values of the translation parameter �.

Three observations about Figure 6, and relating
to the example problem, are noteworthy. First, the
dependence on �∗ increases as a function of the trans-
lation parameter �. Furthermore, it can be deduced
from the expression in (26) that the limiting values
of the ratio P�4�

∗5 as �∗ →−111 are 005/ °ê4z∗5 and
1/ °ê4z∗5, respectively. Second, the acceptance proba-
bility for C-NORTA seems to have a pronounced min-
imum for the uncorrelated context but only for large
values of the translation parameter �. Third, for low
to moderate values of the translation parameter �,
the acceptance probability within C-NORTA shows a
weak dependence on correlation �∗.

6. Concluding Remarks
The question of generating random vectors from the
tails of bivariate distributions seems to arise in a wide
variety of contexts. Despite such presence, little seems
to be known on this topic. Specifically, NORTA—
arguably the most popular existing method of gen-
erating correlated random vectors—is inadequate for

this purpose because it is designed for unconstrained
spaces and becomes severely inefficient if modified to
work on constrained spaces through simple rejection.

C-NORTA, the algorithm presented in this paper,
is an efficient alternative in such contexts. It general-
izes NORTA to work on constrained spaces through a
strategic conditioning of the NORTA vector, followed
by an efficient approximation of the conditional and
marginal densities that result from the conditioning.
C-NORTA tends to be far more efficient than NORTA
in the sense that the acceptance probability of the gen-
erated random variates in C-NORTA is exponentially
larger, asymptotically. Furthermore, for certain classes
of problems, the acceptance probability in C-NORTA
is O41/�5, where � is a certain precisely defined rarity
parameter. (A naïve adaptation of NORTA, by con-
trast, has an acceptance probability that decays expo-
nentially.) C-NORTA differs very little from NORTA
from the standpoint of generation. Both methods gen-
erate only from appropriate normal densities and use
inversion to convert the generated normal random
variates to those having the stipulated marginal dis-
tributions. C-NORTA’s preprocessing step involves,
among other things, constructing a set that encloses
the image of the feasible region in the normal space.
Owing to the immense structure of the feasible region,
such enclosure turns out to be tractable.

Two other remarks relating to future research are
now in order.

(i) It is important to note that C-NORTA’s accep-
tance probability is not bounded away from zero; i.e.,
although it easily outperforms naïve applications of
NORTA for the problem of generating correlated ran-
dom vectors on constrained spaces, the acceptance
probabilities in C-NORTA still decay to zero and can
be unacceptably low for certain applications. Given
the obvious importance of the problem considered in
this paper, further improvements to C-NORTA should
be investigated.

(ii) C-NORTA, as presented in this paper, works
only in two dimensions. Although we have found
numerous applications in the two-dimensional con-
text, extending C-NORTA into higher dimensions
would prove to be tremendously useful, particularly
if similar gains in efficiency are realizable. As in
the bivariate context, the main challenge for such
extension is the construction of a majorizing func-
tion for an appropriately defined marginal distribu-
tion. One possible factorization of the n-dimensional
joint normal X4n>2) leads to an 4n−15-dimensional
joint marginal for X−1 =8X21X310001Xn9 and a single-
dimensional conditional distribution for X1 �X−1. This
form allows us to again express the joint marginal
of X−1 as a normal mixture of normal tail probabil-
ities, which can further be majorized by a mixture
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of 4n−15-dimensional joint normal densities. Con-
struction of a generation scheme to sample from
such a density, especially with a multidimensional
piecewise-linear constraining boundary, is a nontriv-
ial extension and part of ongoing research.
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