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In this paper, we consider a network design problem arising in
the context of deploying synchronous optical networks
(SONET) using a unidirectional path switched ring architecture,
a standard of transmission using optical fiber technology.
Given several rings of this type, the problem is to find an
assignment of nodes to possibly multiple rings, and to deter-
mine what portion of demand traffic between node pairs
spanned by each ring should be allocated to that ring. The
constraints require that the demand traffic between each node
pair should be satisfiable given the ring capacities, and that no
more than a specified maximum number of nodes should be
assigned to each ring. The objective function is to minimize the
total number of node-to-ring assignments, and hence, the cap-
ital investment in add-drop multiplexer equipments. We formu-
late the problem as a mixed-integer programming model, and
propose several alternative modeling techniques designed to
improve the mathematical representation of this problem. We
then develop various classes of valid inequalities for the prob-
lem along with suitable separation procedures for tightening
the representation of the model, and accordingly, prescribe an
algorithmic approach that coordinates tailored routines with a
commercial solver (CPLEX). We also propose a heuristic pro-
cedure which enhances the solvability of the problem and pro-
vides bounds within 5-13% of the optimal solution. Promising
computational results are presented that exhibit the viability of
the overall approach and that lend insights into various model-
ing and algorithmic constructs.

In this paper, we consider a network design problem arising
from the deployment of synchronous optical networks
(SONET). The SONET is a standard of transmission technol-
ogy used in optical fiber networks. The typical capacity of
current technology permits the transmission of 2.4 Gbps
over a single fiber, which is equivalent to over 38,000 voice
circuits (see Wu 1992 for technical details). Thus, a failure in
even a single link may result in a tremendous loss in cus-
tomer service. In response, telecommunication companies
are adopting SONET ring architectures, where the structure
of the ring promotes an enhanced survivability of the net-
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work. The problem that arises in this context is to determine
cost-effective topological designs and deployment strategies
for the SONET rings.

This paper addresses such a SONET ring design problem
faced by network planners at any regional operating com-
pany that incorporates this technology in its territory. In
order to route the traffic between the clients or nodes as-
signed to a ring in a SONET network configuration, we need
a special type of equipment that is capable of adding and
dropping the traffic to be installed at each node. This device
is called a SONET add-drop multiplexer (ADM). Since the cost
of SONET ADMs has dropped quite significantly over the
past few years, a fully ADM-based network having no dig-
ital cross-connect systems (DCS) has become quite an attrac-
tive alternative architecture for providing link survivable
topologies, especially for interoffice facility networks in
larger metropolitan areas. In particular, the demand for high
capacity transport has grown very rapidly, especially for a
metropolitan region within a local access transport area. The
main concept that characterizes the routing of traffic using
this SONET technology is that the high capacity interchange
among demand nodes can be grouped into a few clusters
that can then be transported more efficiently and economi-
cally using a direct connection in a ring, instead of using the
traditional hierarchical routing scheme inherent in a DCS-
based network. Note that due to the capacity limit of SONET
equipments such as an OC-48 ring (which, as defined and
explained in greater detail below, allows only 48 channels in
a unidirectional configuration and 24 channels in a bidirec-
tional configuration with two fibers), we need to partition
the traffic demand into several clusters of nodes. The prob-
lem considered here then becomes one of finding an optimal
partition of the traffic demand in the network, while mini-
mizing the total ADM cost. In our context, we consider only
unidirectional rings having a fixed capacity.

To describe the problem more precisely, consider a set N
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of nodes in the network, indexed by i € N = {1,..., n},
where n = 2. Let d;; be the traffic demand (number of
required channels to carry the traffic) between node i € N
and node j (> i) € N. Accordingly, define an edge set E =
{G,)): i <j,d; > 0} comprised of such demand pairs. Fur-
thermore, let m = 2 be the number of rings we are permitted
to install, and let b be the capacity of each ring, measured by
the number of available (unidirectional) channels (some fur-
ther elucidation on this parameter is provided below). Also,
let R = 2 be the maximum number of ADMs (and hence
nodes) allowed to be installed on a single ring. Then, the
ring design problem of concern is to assign the nodes to
rings, and to route the traffic between the nodes, so as to
minimize the total number of ADMs, while satisfying the
ring capacity restrictions as well as the demands for all pairs
of nodes in the edge set E, possibly splitting demand over
several rings. Note that inter-ring traffic is not permissible.

The ring architecture considered in this paper is a unidi-
rectional path switched ring (UPSR) of the type OC-24 or
OC-48 having respectively a maximum capacity of 24 or 48
channels. Each channel is of type STS1 (synchronous transport
signal), and has a bit transmission rate of 51.84 Mega-bits per
second (equivalent to 810 voice circuits). In this unidirec-
tional ring architecture, the ADMs equipped at each node
are connected by a pair of optical fibers, one for the working
path and the other for protection. In the case of OC-48 rings,
for example, each of these fibers has a capacity of 48 chan-
nels and the same (integral) number of channels on each
fiber are dedicated to serve the demand signal traffic be-
tween each pair of nodes assigned to the ring. Hence, in
effect, the capacity b is allocated or distributed in a dedicated
fashion among the pairs of nodes on the ring. In practice,
when the model is used for planning purposes, due to the
stochasticity in demand as well as the uncertainty in future
growth in demand over the typical horizon of five years, the
value of b is assumed to be 30—-80% of the maximum capac-
ity, depending on the uncertainty and the risk attitude of the
carrier. Hence, in our computations, the value of b varies in
the range [15, 40] over the test cases.

Whenever a signal transmission originates between any
pair of nodes assigned to the ring, the working path prop-
agates this as a primary signal in the clockwise direction, and
the protection fiber carries an identical secondary signal in the
counterclockwise direction. Consequently, at the receiving
node, two identical signals are observed. During normal
operation, only the primary signal is used, although both
signals are monitored for alarms and maintenance signals,
with a switch occurring in case of interruptions or a loss in
data being detected along the working path. Of course, if a
hardware failure or a fiber cut occurs in the working path,
service is sustained by switching to select the secondary
signal being propagated along the protection fiber. Hence,
this pair of fibers improves both the reliability and the
survivability of the network. Note also that whenever a link
fails in either fiber, by monitoring the loss in the clockwise or
counterclockwise transmission between pairs of nodes, the
failed link can be isolated. We also comment here that in the
case of bidirectional line switched rings (BLSR), the ring archi-
tecture might be composed of four fibers, or even of only
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(a) (b)

Figure 1. An example of the problem (b = 14, R = 4).

two fibers at half the maximum capacity, and moreover, the
channel allocation among node pairs occurs on a link-by-
link basis in either the clockwise or counterclockwise direc-
tion. Consequently, the modeling of capacity consumption is
quite different in this case (see Dell’Amico et al. 1999, for
example), although for conservative network planning pur-
poses, even when bidirectional rings are deployed, the ca-
pacity concept of UPSR rings is frequently employed.

For example, consider Figure 1 that illustrates the nature
of the problem for an instance having n = 5 nodes and m =
2 rings, with capacity parameters b = 14 and R = 4. Part (a)
of Figure 1 depicts the demand pattern, and part (b) displays
a feasible solution of two clusters that require a total of eight
ADMs. The numbers against the links represent the allo-
cated traffic demands. Note that the demand between nodes
3 and 4 is split between the two rings in this example.
Observe also that the solution to this problem essentially
prescribes clusters of (possibly overlapping) sets of nodes
along with an allocation of demand traffic between pairs of
nodes that are assigned to each ring. The solution does not
prescribe an actual configuration by which the nodes in each
cluster should be connected in order to form a ring structure.
This latter problem, referred to as a physical ring design
problem, is itself a complex optimization problem that con-
siders existing fiber connections and variable costs of new
fiber connections along with fixed costs of inserting suitable
non-ADM nodes for the purpose of relaying traffic, and is
typically solved subsequent to determining the foregoing
clusters of nodes to be assigned to each ring (Lee et al. 1999a,
1999b).

Wu and Burrowes (1990) and Wu (1992) describe in detail
the advantages of SONET ring architectures over the tradi-
tional hubbing network in terms of cost and survivability.
Wasem et al. (1994) have developed SONET design software
considering demand growth over time. They consider two
types of network architectures, a self-healing ring (SHR)
structure and a hubbing network having point-to-point di-
verse protection systems in order to incorporate SHR into an
existing hubbing network. Cosares and Saniee (1994) present
a SONET ring design model and propose heuristic proce-
dures for minimizing the traffic load on each ring. Myung et
al. (1997) have developed a polynomial-time procedure for
minimizing the traffic load on each ring, where this traffic
may be split among the rings for each node pair. For the case
of non-split traffic among rings, Karunanithi and Carpenter
(1997) describe a genetic algorithm to minimize traffic loads.
In contrast, we consider in this paper the problem of design-
ing a SONET ring architecture that minimizes the number of
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ADMs to be installed, subject to ring load and capacity
constraints for a single period, and present a new solution
procedure for finding an optimal solution.

Laguna (1994) has proposed a mixed-integer program-
ming (MIP) model of a logical SONET clustering problem
that permits inter-ring traffic, and has obtained promising
computational results using a tabu search algorithm. Gold-
schmidt et al. (1998) also consider the problem that allows
inter-ring traffic and develop a model to minimize the total
number of rings used. (We show later that in our context,
this is not equivalent to minimizing the number of ADMs
placed on the rings.) Since inter-ring traffic is prohibited in
our problem, we call our problem an intra-ring design prob-
lem. For the non-split case of our problem, Lee et al. (1999a,
1999b) discuss a branch-and-cut algorithm, and Sutter et al.
(1998) utilize a column generation approach to solve this
problem. Note that this non-split case facilitates the routing
and management of traffic and the administration of the
network, but being more restrictive than the case that per-
mits demand splitting, it could result in more capital inten-
sive solutions. Moreover, demand splitting provides greater
flexibility in dealing with peak demand surges as well as
with future growth in the demand pattern. For this reason,
most real-world implementations of the SONET ring tech-
nology accommodate the splitting of demand. In our com-
putational experience on both these classes of problems (see
Section 6), we found that the non-split case problems are
relatively harder to solve, and are more likely to result in
infeasible or somewhat more expensive solutions than the
split-demand case considered herein.

The remainder of this paper is organized as follows. In
Section 1 we model the problem as a mixed-integer program
and evaluate several alternative formulations for this prob-
lem. We provide additional insights into the structure of this
problem in Section 2 by establishing the NP-hardness of the
problem, even for specific classes of demand graphs. Next,
we present certain algorithmic details for the problem that
pertain to preprocessing routines and branching priorities in
Section 3, and in Section 4, we describe several classes of
valid inequalities along with suitable separation procedures
for further tightening the representation of the problem. A
heuristic procedure for facilitating the branch-and-bound
process and providing upper bounds to the problem is
developed in Section 5. Finally, Section 6 provides a sum-
mary of our computational results, and Section 7 concludes
the paper.

1. Problem Formulation

To model the split-demand SONET ring design optimization
problem, we define a primary set of decision variables x;,
Vie N, ke M ={1,..., m}, where x;, = 1 if node i is
assigned to ring k, and 0 otherwise. We also define a sec-
ondary set of decision variables f;; V (i, ) EE (i <j)and k €
M, representing the fraction of demand between the node
pair (i, j) that is assigned to ring k. Letting

S;i={p€E:p=1(i,j) orp=(j, i) forsomej}, (1)

RIGHTS L

the ring design problem (RD) can be stated as follows.

RD: Minimize E E Xie (2a)
iEN kEM
subject to

Y fu=1Vp€EE (2b)

kEM
> dfi<bv¥kEM (2¢)

pEE

> xy<RVkEM (2d)

iEN
0§f0k$xikViEN,kEM,pES,- (28)
x binary. (2f)

The objective function seeks to minimize the total number of
node-to-ring assignments. Since each such assignment in-
volves the installation of an ADM, this objective is equiva-
lent to minimizing the total ADM capital plus deployment
costs (assuming that these costs per ADM unit are the same
at all node locations). Constraint (2b) requires that the de-
mand between each node pair be satisfied across all the
rings, Constraint (2c) requires that the total demand as-
signed to each ring should not exceed the ring demand
capacity as discussed in the introduction, while (2d) requires
the number of nodes assigned to each ring to be no more
than the allowable limit R. Finally, (2e) states that any por-
tion of the demand between nodes i and j may be satisfied
on ring k only if both nodes i and j are placed on ring k, and
(2f) represents logical restrictions. For feasibility to (2), note
that we must necessarily have

2d,
pEE

b and Rm = n. 3)

m =

Observe that Problem RD bears some resemblance to capac-
itated facility location, multiple-knapsack resource alloca-
tion, or bin packing problems (see Nemhauser and Wolsey
1988 for a general description of such problems). Here, the
rings play the role of facilities or knapsacks or bins, each
having a capacity of satisfying b demand units, but unlike
typical problems of the foregoing type, also having an ad-
ditional capacity restriction of accommodating at most R
nodes. The customers in this problem are represented by
pairs of nodes p, having respective demands for d, resource
units, for p € E. The problem involves determining an
assignment of each node to one or more facilities/knap-
sacks/bins, along with an allocation of customer demands
based on this assignment, such that the total number of node
placements are minimized, subject to the node cardinality
and demand resource capacity restrictions. Hence, this prob-
lem possesses certain specialized as well as generalized fea-
tures with respect to the foregoing related classes of prob-
lems, which motivates the need for an independent analysis.

To begin with, consider the following result which ex-
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Table I. Description of Test Sets

n m b R # Demand Pairs
Set 1 7 4 15 4 8
Set 2 10 6 25 5 15
Set 3 13 7 40 5 24

poses the inadequacy of the formulation RD and prompts
the generation of improved model representations.

Proposition 1. If RD is feasible, then an optimal solution to its LP
relaxation RD is given by

_ 1 . - 1
Xig = o Vi, k), fo = " Vp, k. 4)

Proof. Feasibility of (4) to RD is readily verified using (3).
The objective value for this solution (4) is equal to n, while
from (2e, 2b), we have for any feasible solution that

D2 =2 D fun= (1) =n )
i k i k i

where for each i € N, p(i) is some node pair from E that
contains i. Noting the objective function (2a) and (5), we
deduce that (4) is an optimal solution to RD. This completes
the proof. =

In the algorithmic design described in Sections 3-5, there
are various alternative strategies for performing different
steps or operations that we will be evaluating computation-
ally. Toward this end, we generated three sets of 15 test
problems each. Each of these sets contains problems having
different sizes to illustrate the effect of the different strate-
gies on solving problems of increasing difficulty. Table I lists
the problem specifications for each set of problems. The
demand values were generated as follows: 80% of the de-
mands were generated uniformly between 1 and 5, while the
other 20% were generated uniformly between 1 and 25. This
scheme, adopted from Lee et al. (1999a, 1999b), generates
more difficult problems than a simple uniform generation
scheme. Also, the selected values of 1, b, and R are typical to
those encountered in practice. The values for m were se-
lected feasible to Equation (3) such that the ratio of m to n
lies between 0.5 and 0.6, as is common in such planning
scenarios.

One difficulty with solving problem RD is the number of
alternative optimal solutions it possesses because of the fact
that for any design, there are several equivalent (identical)
designs that can be obtained by simply changing the index-
ing of the rings. This symmetry can hopelessly encumber a
branch-and-bound process. We therefore investigated sev-
eral alternative formulations to RD which incorporate hier-
archical structures for reducing the problem symmetry of
RD by enforcing branching decisions or by requiring certain
allocation functions to take on monotone values over the set
of rings. One such formulation places a hierarchy on the
number of nodes that are assigned to each ring, where the
first ring is designated to receive the most nodes, followed

RIGHTS L

by ring 2, and so on. We denote this formulation as RDS and
accordingly, in lieu of (2d), we include

R>Ex,-122x,‘2>...>2x,-m‘ (6)

iEN iEN iEN

Table II shows a comparison of the effectiveness of the
formulations RD and RDS with respect to the average num-
ber of branch-and-bound nodes enumerated by CPLEX 6.0,
and the corresponding cpu time on a SUN Ultra 10 Work-
station, using the foregoing test-bed of 45 problems. We
denote RDS(RD) as the computational statistics for RDS
corresponding to the set of problems solvable by RD. Note
that RD performs quite poorly in comparison with RDS due
to number of different symmetric solutions that must be
eliminated by the branch-and-bound process. Hence, we
will adopt the model RDS to study further enhancements
and algorithmic strategies.

Remark 1. Note that there are several different constraint
hierarchies that we may impose to reduce the symmetry of
this problem. One such hierarchy could place the most de-
mand on ring 1, then on ring 2, and so on. Also, for the
hierarchy used in formulation of RDS itself, wherever there
exist ties in the number of nodes assigned, we could employ
the aforementioned demand hierarchy to break ties. (A sin-
gle function can be derived to enforce this two-level hierar-
chy.) Another option might be to substitute the use of total
demand assigned to each ring in the hierarchy with the total
fractions of such demands. Alternatively, we may enforce a
hierarchy based on the sum of node indices assigned to each
ring, or to reduce the likelihood of any remnant symmetry,
we may enforce a hierarchy on the squared sum of node
indices assigned to each ring. Although RDS is perhaps
milder than several of these alternative hierarchies in break-
ing symmetry, we discovered empirically that it results in a
relatively superior computational performance. The reason
for this might be that it adds a set of constraints to the
problem in which the nonzero variable coefficients are all *
1’s, exhibiting a network structure, which tends to encour-
age integrality of solutions.

Before proceeding with any further analysis of this SO-
NET design problem, let us point out a practical aspect of
the demand allocation scheme. Note that given integral
values of the demands d,, p € E, and the capacity b, we
would expect that an optimal solution to Problem RDS, if it
exists, would also have integral values of the portions of
individual node-pair demands allocated to each ring. The
following result establishes this fact, and shows that a linear
programming based branch-and-bound algorithm would
automatically determine such an optimal allocation scheme.
Notationally, any non-subscripted variable below represents
the vector of the set of subscripted variables corresponding
to the same symbol.

Proposition 2. Consider Problem RDS, possibly augmented with
additional valid inequalities in terms of the x-variables, and as-
sume that the data is all integral and that an optimum exists.
Define

Yok = dpfpk (7)
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Table II. Comparison of Formulations

Set 1 Set 2 Set 3
Formulation A B C A B C A B C
RD 592.00 2.31 15 13982.4 124.70 15 161543.27 2792.59 9
RDS 344.33 1.28 15 2219.33 31.86 15 113378.60 2926.21 15
RDS(RD) 344.33 1.28 15 2219.33 31.86 15 30606.56 1158.86 9

A, Average number of nodes enumerated by the branch-and-bound tree. B, Average CPU Time (in seconds) required by the
algorithm. C, Number of problems (out of 15) solved within a limit of 5 hours. The averages in columns A and B are for

problems solved within 5 hours.

to be the portion of demand d, that is allocated to ring k, Vp € E
and k € M. If (x*, f*) solves Problem RDS, where f* is an extreme
point of the feasible region to RDS with x fixed at x*, then the
corresponding vector y* given by (7) has all integral components.

Proof. Consider Problem RDS with x fixed at x*, and for
each p = (i, j) EE, let M,, = {k € M: x = xj; = 1}. The feasible
region of RDS for x = x* is then given by

F:{fBO: > fx=1YpEE, > dfi<bVkEM,

keEM pEE
fi=0VYp€EE, keéMp}.

Now, consider the transformation of F under the substitu-
tion (7). This yields the set

Y:{yZO: Ey,,k=d,,VpEE,Ey,,kaVkEM,

keM pEE
Y =0VYpEE, keéMp}.

Since (7) represents a nonsingular linear transformation, the
set of extreme points of the polyhedra F and Y defined above
are in a one-to-one correspondence. Moreover, the set Y
possesses a (transportation) network structure (see Bazaraa
et al. 1990, for example), and hence has integral extreme
points, given that Y # 0. Therefore, the vector y* correspond-
ing to the solution f* specified in the proposition is integral
valued, and this completes the proof. =

2. Computational Complexity Analysis

Define the following decision problem SONET-DP based on
the synchronous optical network ring optimization problem
(RD or RDS) introduced in the foregoing section. SONET-
DP: Given m rings, each with a capacity of accommodating
R nodes and routing b demand units; given a demand graph
G(N, E) having node set N = {1,..., n} and edge set E =
{(i, j), i < j: there exists a demand d;; > 0 between node pairs
i and j}, and given k ADMs, does there exist an assignment
of nodes to rings (permitting a node to be assigned to more
than one ring), along with an allocation of demand between
assigned pairs of nodes on each ring, such that the total
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demand is satisfied, the ring capacity restrictions are satis-
fied, and the total number of node-to-ring assignments (ob-
jective value) is less than or equal to «?

Proposition 3. Problem SONET-DP is NP-Complete, even if the
demand graph G is restricted to be a forest graph having only two
nodes per component.

Proof. The problem SONET-DP is clearly in class NP be-
cause given any yes-instance of the problem, there exists an
assignment of nodes to rings from among the finite popu-
lation of all possible polynomial-length assignment vectors
for which an answer of yes can be verified in polynomial
time by solving a linear programming (LP) problem to de-
termine the associated feasible routing of demand. Hence, to
demonstrate NP-completeness of SONET-DP, we need to
show that it is NP-Hard (Garey and Johnson 1979). We
accomplish this via a polynomial reduction from the NP-
Complete Partition Problem (PP) (Garey and Johnson 1979).
Problem PP considers a given finite set of p nonnegative
integers {a, ..., ap} indexed by A = {1,..., p}, where § =
3F_, a;is even, and seeks if there exists a partition {A’, A —
A'} of A such that

2 a= X a;=5/2 8)

i€A’ iEA-A’

Given any instance of PP, let us construct the following
equivalent instance of SONET-DP. Letm = 2, n = 2p, R = 2p,
b=5/2,E={Gp+i)i=1,...,ptwithd,, =4 Vi=
1,...,p, and let k = n = 2p. Note that the size of SONET-DP
is polynomially related to that of PP. Moreover, if PP has an
answer yes given by A" C A, then by assigning the nodes i
and p + i Vi € A’ to one ring, and the remaining nodes to the
other ring, we would satisfy the demand and the capacity
constraints, and obtain an objective value of n = 2p. Con-
versely, if SONET-DP has a yes-answer for k = n = 2p, then
since this means that the demand is satisfied without repli-
cating any node on the two rings, we must have a solution
in which for some A" C A, the set of nodes {iand p + i Vi €
A'} are assigned to one ring and the remaining nodes {i and
p +iViE A — A’} are assigned to the other ring, such that
(8) holds true. Hence, PP would then have a solution. There-
fore, a given instance of PP is a yes-instance if and only if the
polynomially transformed instance of SONET-DP is a yes-
instance, and so, SONET-DP is NP-Hard. Noting that the
transformed instance of SONET-DP has a forest demand
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graph having two nodes per component, this completes the
proof. ®m

Remark 2. By the nature of the proof, both the present case
considered in this paper, as well as the special case in which
demand cannot be split among rings, are NP-Complete.
Note that for the non-split demand case, the transformed
instance of SONET-DP would have a feasible solution re-
gardless of k = n if and only if the given instance of PP is a
yes-instance. For the split demand case of this instance, by
assigning one suitable pair of nodes to both the rings, we can
always find a feasible solution to SONET-DP when k =
n+ 2.

Proposition 4. SONET-DP is NP-Complete even if G is re-
stricted to be a star tree graph.

Proof. Following the proof of Proposition 3, given PP,
construct an instance of SONET-DP having m =2, n =p +
LR=p+1,b=S/2,E={Gp+1),i=1,...,p} with
dip1=a;fori=1,...,p,andletk =p + 2= (n + 1). Then
if PP has a solution given via A" C A, SONET-DP has a
solution in which the nodes {A’, p + 1} are on one ring and
the nodes {A — A’, p + 1} are on the other ring. Conversely,
if SONET-DP has a solution, since it is impossible to achieve
this without assigning some node to both the rings by the
nature of this given instance, we must have the number of
node allocations equal to (1 + 1) = p + 2. Since node p + 1
must necessarily belong to both rings, the remaining nodes
{1,..., p} = A must be partitioned into a set A’ that resides
on one ring, and the set A — A’ that resides on the other,
such that (8) holds true. Hence, a given instance of PP is a
yes-instance if and only if the polynomially transformed
instance of SONET-DP is a yes-instance. This completes the
proof. ®m

Remark 3. It is insightful to note that the following situa-
tion can occur in the context of the problem SONET-DP. Let
G(N, E) be a connected demand graph, and let m be the
fewest number of rings for which a feasible solution exists.
Then the fewest number of ADM allocations for a feasible
solution with m available rings could exceed that if more
than m rings are available. The following example illustrates
this fact.

Example 1. Consider a forest demand graph having two
nodes per component, withm =2, n=6,R=4,b=3,E =
{(1,2), (3,4), (5 6)}), and with all demands equal to 2. The
optimal solution to this problem uses 8 ADMs, with ring 1
being assigned to handle all of the demand between nodes 1
and 2 and half the demand between nodes 3 and 4, and ring
2 being assigned to handle all of the demand between nodes
5 and 6 and half the demand between nodes 3 and 4.
However, if m = 3, then the optimal solution would use only
6 ADMs, with each ring being assigned to each demand pair.

3. Algorithmic Details: Preprocessing and Branching Priorities
In this section we discuss some specific algorithmic strate-
gies for solving the SONET ring design problem. In partic-
ular, we describe a specialized preprocessing step for fixing
certain x variables based on logical tests derived from RDS,
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and we also describe node ordering strategies designed to
enforce integrality first on certain critical variables in a
branch-and-bound process.

3.1 Preprocessing

The special preprocessing routine that we implement to
further tighten the representation of Problem RDS is based
on the following results. Proposition 5 below examines a
node having the highest traffic demand with the other
nodes, or having positive traffic demand with the highest
number of nodes, and prescribes a minimal number of rings
to which this node must necessarily be assigned.

Proposition 5. Consider a node i, having a highest total traffic
demand with the other nodes, i.e., i; € argmax;e {2 cx. ic, 4,)-
Letr, = FEDEE: iep dp/b—|. Then the following inequality is valid:

E Xig = 1. 9
k

Also, let i, € N be a node having the maximum degree in G
(denoted deg(i,), and let r, = [deg(i,)/(R — 1)1. Then

> x>, (10)
k

must also hold true. Thus, by letting r =ryand i =i, ifr,=r,
and r = r,and i = i, otherwise, we may fix x; = X, = ... = X;, =
1 in any optimal solution.

Proof. The validity of (9) and (10) follows from (2c, e, f)
and (2d, f), respectively. Given that the identified node i
must be assigned to at least r rings, we may mitigate effects
of symmetry by pointedly assigning it to rings 1, . . . ,r with-
out any loss of generality. This completes the proof. =

Remark 4. Note that if we fix node i on rings 1 through r as
in Proposition 5, the hierarchical loading constraints of the
form (6) must be imposed separately on the two sets of rings
(1,...,7}(@{fr=2),and {r +1,...,m} (if r <m — 2).

The next result given below characterizes part of an op-
timal solution, given that the demand graph has a compo-
nent that can be feasibly assigned to a single ring, and given
a sufficient number of admissible rings. Based on this, Cor-
ollaries 1 and 2 prescribe optimal solutions for related spe-
cial cases.

Proposition 6. Let G(N, E) represent the demand graph for
Problem RDS, and suppose that G'(N', E') is a component (max-
imal connected subgraph) of G that satisfies

IN'|<Rand D> d,<b.

pEE’

(11)

Then,ifm=1+ 3 cp p |_dp/b-|, we will have that all the nodes
in N' along with the demand represented by E' will be allocated to
one single ring in any optimal solution.

Proof. On the contrary, suppose that more than one ring
contains nodes from N’ in some optimal solution (x*, f*).
Since G’ is connected, there exists a pair of rings for which
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Table ITI. Comparison of Procedure with and without Preprocessing

Set 1 Set 2 Set 3
Preprocessing Nodes CPU Time Nodes CPU Time Nodes CPU Time
Without 310.07 1.38 2,730.60 34.40 63,992.79 1,350.74
With 126.07 0.70 903.27 14.83 28,077 1,082.63

some node in N’ appears in both these rings. Hence, we have

>3 xh=|N'| + 1. (12)

iEN’" kEM

Note that there exists at least one ring 7, say, that either has
no nodes assigned to it or that contains nodes only from N'.
Otherwise, all the m rings would contain at least a pair of
nodes from N — N’, and an improved solution would result
by simply assigning G’ to one ring, and then assigning the
demand d, for each p € E — E’ to |—dp/ bl separate rings,
becausem =1+ 2 cp_p |_dp/ b1. But now, by moving all the
demand on G’ and all the nodes in N’ to this ring r, we
would maintain feasibility due to (11), while the objective
value would strictly fall due to (12), since no nodes in N’
would repeat in this revised solution. This is a contradiction,
and the proof is complete. ®

Corollary 1. If G is such that (11) is satisfied for each of its
components, and if the number of components of G' is no more
than m, then an optimal solution is obtained by assigning each
component of G along with its associated demand to a single,
separate ring.

Proof. Note that the stated solution is feasible and has an
objective function value of n. Since n is a lower bound on the
problem, this completes the proof. =

Corollary 2. If G is such that it can be partitioned into subgraphs
where each subgraph is a union of some components of G, and if
each subgraph G'(N', E') satisfies (11) with m being at least equal
to the number of such subgraphs, then an optimal solution is
obtained by assigning each subgraph along with its associated
demand to a single, separate ring.

Proof. Similar to that of Corollary 1. =

The overall preprocessing routine for RDS that is per-
formed prior to inputting it into CPLEX may then be spec-
ified as follows.
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Step 1. If Corollary 1 applies, construct an optimal solution
and stop.

Step 2. Check if Corollary 2 applies by assigning compo-
nents in order of nonincreasing total demand weight to a
ring that has the highest residual capacity. If this reveals that
Corollary 2 is applicable, construct the corresponding opti-
mal solution and stop.

Step 3. If Proposition 6 is applicable, assign G’ to a single
ring and reduce the problem to solving the residual problem
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Note: The numbers represent averages over the test problems solved for each set.

having a demand graph G — G’ on the remaining (m — 1)
rings.

Step 4. Apply Proposition 5, revising the hierarchy con-
straints as necessary based on Remark 4.

In order to make the 45 test problems generated suffi-
ciently challenging, we avoided cases where Proposition 6
or Corollaries 1 and 2 would be applicable. Yet, using only
Step 4 of the above routine, and even though r rarely ex-
ceeded two in these test problems, the computational ad-
vantage of this preprocessing routine turned out to be sig-
nificant, as evident from Table III. In these computations,
formulation RDS has been used, along with an initial heu-
ristic solution derived as discussed in Section 5, prior to
inputting it into CPLEX. Note that Table III actually de-
scribes the average performance of 14 of the 15 test problems
from Set 3, since one problem from Set 3 could not be solved
without this preprocessing routine due to memory restric-
tions on the branch-and-bound tree.

3.2 Priorities for Selecting Branching Variables

This subsection discusses different branching variable selec-
tion priority rules that we experimented with in our solution
procedure. Given branching priorities for groups of vari-
ables, the branch-and-bound strategy implemented within
CPLEX will branch on a lower priority variable only if all the
relatively higher priority variables are integer valued at the
current solution. Here, the following branching priority
rules were investigated.

B1 Branch on the set of m variables {x,, k = 1,..., m}
associated with the lowest degree node i € N first, then on
the set of x-variables associated with the next lowest degree,
and so on.

B2 Same as Bl, except that instead of sorting nodes by
their degrees, nodes are sorted by the sum of the demands
on the incident edges, henceforth referred to as the demand
degree of a node.

B3 Same as Bl, except that instead of sorting nodes by
their degrees, nodes are sorted by the products of their
respective degree and demand degree.

B4 Same as B1, but where ties are broken between nodes
having the same degree by selecting a lower demand degree
node first.

B5 Same as B1, but where ties are broken between nodes
having the same degree by selecting a higher demand de-
gree node first.

B6 Same as B5, but now, for each group of m variables
{x4o Kk = 1,..., m} for i € N, an additional priority is
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Table IV. Comparison of Branching Rules on Different Formulations

Set 1 Set 2 Set 3
Formulation Order Nodes CPU Time Nodes CPU Time Nodes CPU Time
RDS BO 126.07 0.70 903.27 14.83 30,744.53 1,206.32
RDS B5 59 0.47 797.13 12.33 24,235.47 1,027.38
RDS B7 83.07 0.50 574.13 9.45 22,073.13 859.55
RDI BO 137.80 0.74 1,209.73 22.83 47 906.20 2,222.55
RDI B5 91.87 0.59 584.20 11.16 19,653.33 897.26
RDI B7 64.87 0.49 618.80 11.67 38,330.60 1,146.17

imposed that considers the variables within each such group
in the stated order.

B7 Same as B6, but where the variables within each group
are prioritized in the reverse order. (Note that the ordering
scheme imposed by B6 and B7 attempts to investigate the
joint effect of such a strategy used in concert with the hier-
archical constraints of (6).)

There were several other branching variable prioritization
schemes that were explored. For example, rules Bl through
B5 were reversed with respect to the ordering prescribed by
B1, but this produced vastly inferior results. Evidently,
nodes having relatively smaller degrees of interactions have
a greater tendency to fractionate while consuming portions
of residual demand capacities on more than one ring, and
resolving their integrality hastens the completion of the
overall solution. Among nodes having the same degree, it is
more critical to resolve integrality on those having a rela-
tively higher demand degree. Furthermore, because the hi-
erarchical constraint (6) imposes a greater number of node
assignments to lower indexed rings, the resolution of inte-
grality on the assignments made to the relatively higher
indexed rings tends to induce integrality on the remainder
of the solution. In addition, we attempted various combina-
tions of the hierarchical constraints embodied by (6) and
Remark 1 with the above branching priority rules. One such
additional formulation imposes a hierarchy on the squared
sum of node indices assigned to a ring. To formalize this
hierarchy, we create the formulation RDI by adding the
following constraints to RD:

E izx“ = E izx,‘zz = E ile‘n.

iEN iEN iEN

(13)

Table IV illustrates the effectiveness of certain key or prom-
ising combinations that are worthy of attention, using the
preprocessing scheme of Section 1.1 and the heuristics of
Section 5. Here, BO denotes the default branching order used
by CPLEX. Preliminary tests demonstrated that B5 and B7
were the most effective branching priority rules. Note also
that RDI becomes an attractive formulation when used in
concert with B5. The best combination strategy appears to be
to use RDS with B7.

4. Classes of Valid Inequalities
In this section, we derive two classes of valid inequalities,
along with separation routines, designed to further tighten
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the continuous feasible region for Problem RDS. Constraints
(2c) and (2d) motivate the construction of these inequalities,
as expounded by the following propositions. The proofs for
these results are similar to those for the case of non-split
demand allocations analyzed in Lee et al. (1999a, 1999b), and
are therefore omitted for brevity. However, the separation
routines for generating effective members of these classes of
inequalities are new, and are therefore presented in greater
detail below. We also investigated another class of valid
inequalities by constructing a higher dimensional partial
convex hull formulation of RD with respect to each binary
variable along with constraints (2c, e, f) using the Reformu-
lation-Linearization Technique of Sherali and Adams (1994),
and then surrogating subsets of the remaining constraints
using the optimal dual multipliers to derive strong valid
constraints in the space of the original variables. However,
because the formulation RDS is relatively tight, the effort to
generate such additional constraints far outweighed the in-
cremental strength imparted to the model representation,
and hence did not reveal an overall benefit. In contrast, the
following classes of valid inequalities significantly enhanced
the solution approach, because they are sufficiently strong
and can be efficiently generated as shown below.

Proposition 7. Suppose that G'(N', E') is a connected subgraph
of G(N, E) such that [N'| > R. Let r = [((N'| = 1)/R — 1)]. Then
the following inequality is valid for Problem RDS:

E E xi = IN'| + (r = 1).

iEN’' keM

(14)

Proposition 8. Suppose that G'(N', E') is a connected subgraph
of G(N, E), where E' is induced by N', such that 3 ,cp. d, > b.
Then the following inequality is valid for Problem RDS:

E E x = N[+ (r—1)

iEN' kEM

{29

Also, if r = 2 in (16) and G’ does not contain any node of
articulation (i.e., a node which when removed along with its

(15)

where

(16)
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Obtain (2, f), compute w; = Yp &% Vi € N,
and set flag = false. Let N' = {;j}, where j € {arg min;en{w;}}.

Let ¢ € arg min;en vy {wi},
N’ — N'U{i}

Delete j* from N’,

Add (14),
and stop.

add k* to N',
and set flag = false

Let a = 0. Initialize H = {j:j is
a node of articulation of Gy}

l

Select a node j € {N'\ H}

H — HU{j}

Select k € arg ming{wy : k € N(N'\ J)}|

k* =k, a = 1, — iy

flag = true, j* = 7,

Figure 2. Growth procedure for generating (14).

incident arcs would disconnect the remainder of G' into more than
one component), then the following inequality is valid:

> 2 x=|N|+2 (17)
iEN' keM

[ ]
For each of the inequalities of type (14) and (15), an
appropriate subgraph G’ of G must be chosen. The following
separation routines identify such subgraphs for generating
these constraints based on the linear relaxation solution
obtained for Problem RDS. Accordingly, let (£, f) denote the
solution obtained for the linear relaxation RDS of RDS.
Define y; to be equal to one if node i € N is included in G’,
and zero otherwise, and define @, = =}, %, for each node
i € N. Then we can conceptualize the following separation

problem for generating (14) via Proposition 7.

Minimize >, Wy, (18a)

i=1

subjectto >, y;=R + 1 (18b)

i=1

N’ ={i € N: y; = 1} induces a connected subgraph
(18¢)
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y binary. (18d)

If the optimal value of (18) is less than the right-hand side of
(14) for the subgraph generated by the optimal solution y to
this problem, the corresponding inequality (14) would be a
valid cut that deletes the current solution to RDS. One
possible heuristic solution procedure for solving this prob-
lem is to select a seed node, and to then grow a subgraph
from this node by selecting the lowest @,-valued nodes from
among all the nodes that are reachable from the current
subgraph. This greedy heuristic is described in Figure 2.
Here, we define N(N') = {i € N:i &€ N', i is adjacent to some
node in N'}, and Gy, to be the subgraph induced by nodes
N’ on the graph with edge set E. After the seed subgraph is
grown to [N’| = R + 1, this procedure attempts to minimize
the objective function in (18) by selecting a node j to be
removed from N’ and a node k to be added to N’ such that
the new subgraph is still connected. This is ensured by
requiring that j is not a node of articulation in Gy, and that
k is connected to some node other than j in N'. These
exchanges are repeated until either a cutting plane is gener-
ated, or until no such exchange that reduces the objective
function value can be found. Alternatively, Figure 3 de-
scribes a heuristic which shrinks G one node at a time by
removing the node having the largest @; value at each iter-
ation, such that the graph remains connected, having more
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Let G'(N', E’) be a component of
G having at least R + 1 nodes

N Add (14), and stop.

Y

Let 7 € arg max;en{wW;: @ is not a
node of articulation of Gn+},
and set N’ — N'\ {i}

Figure 3. Shrinking procedure for (14).

than R nodes. Each of these procedures checks to see if the
current solution is violated by Equation (14) for each valid
G’ = G, that is generated during the procedure.

Similar procedures may be devised for generating valid
inequalities of the type (15) or (17). Here, instead of satisfy-
ing the requirement of including more than R nodes in G’,
we wish to satisfy a requirement on the total demand in G'.
Thus, we wish to construct G' using nodes that contribute a
minimal value to the objective of type (18a) relative to the
demand they add to the subgraph. Accordingly, define §; =
Zien @) 4y where N'(i) is the set of nodes adjacent to i in G'.
The separation problem for this case can be conceptualized
as follows.

n
Minimize E Wy,

i=1

(19a)

subject to E 5;=2b+1

iEN'

(19b)

The subgraph Gy induced by N’ = {i € N:
y: = 1} is connected (19¢)

y binary. (19d)

The proposed heuristics for solving (19) are similar to those
for solving (18). Note that the graph G’ = G in this context.
Figures 4 and 5 provide details for the proposed separation
routines. Note that a version of these procedures could be
run a priori using @; = 1 Vi € N to determine small sub-
graphs which exhibit the property of having demand greater
than b. The resulting solution can be used to generate the
corresponding valid inequalities (15) or (17) that can be
added to the model RDS prior to solving its initial relax-
ation.

We ran our test-bed of 45 problems on the formulation
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RDS with and without the valid inequalities generated using
our separation routines in the following manner. We ran
each of the routines in Figures 2 through 5, and augmented
the model with each constraint generated. After updating
the solution to the new linear programming relaxation, we
re-ran the cutting plane generation routines. This was con-
tinued until no more cutting planes could be generated in
this fashion. The average number of valid inequalities gen-
erated via this procedure is 0.53 for Set 1, 3.4 for Set 2, and
2.53 for Set 3. Table V presents the results obtained, exhib-
iting a significant decrease in the average number of branch-
and-bound nodes generated as well as in the overall com-
putational effort by incorporating these valid inequalities.
This table demonstrates that the valid inequalities based on
the demand capacity constraints embodied by (15) and (16)
account for most of the tightening of the problem. The
inclusion of valid inequalities also reduces the amount of
memory necessary to store the branch-and-bound tree, thus
enabling the solution of larger problems on systems having
a limited memory capacity.

In a separate experiment, we also tested the effectiveness
of incorporating (9) and (10) into the model as valid inequal-
ities. Note that such valid inequalities can be actually gen-
erated for each node i € N in a similar fashion. However,
neither the strategies of including these constraints directly
in the model for each i € N, nor including only that subset
of these inequalities which delete the current fractional so-
lution improved the efficiency of the algorithm. Of these two
strategies, the latter appears to help slightly with the more
difficult class of problems in Set 3, resulting in an average
number of nodes enumerated and average cpu time of
17384.13 and 859.28 seconds, respectively.

5. Heuristic Procedures

In order to derive strong upper bounds for the SONET
problem, we developed two heuristic procedures. The first
heuristic solves a series of increasingly restricted linear pro-
grams, fixing at least one node-to-ring assignment at each
step. The second heuristic is a greedy construction proce-
dure. We also augmented these heuristics with an improve-
ment procedure that attempts to reduce the node-to-ring
assignments for any given feasible solution.

LP Rounding Heuristic

Step 1: To initialize, set some tolerance level T = .99, and
let HLP be the linear relaxation RDS to RDS. Proceed to Step
2.

Step 2: Solve HLP and obtain an optimal solution £. If no
feasible solution exists, stop and return no solution. If £ is
integer feasible, stop and return £ as the prescribed heuristic
solution. Otherwise, proceed to Step 3.

Step 3: For each £, = T, fix x; = 1 within HLP. Proceed
to Step 4.

Step 4: Find the maximum fractional value %, and fix
Xy = 1 in HLP. Return to Step 2.

Note that Step 4 ensures that at least one additional node-
to-ring assignment is made in each loop of the algorithm,
thus ensuring finite convergence of the process. Also, note
that while it is possible that some more than necessary



Downloaded from informs.org by [128.173.125.76] on 21 February 2014, at 12:02 . For personal use only, all rights reserved.

294

Sherali, Smith, and Lee

Obtain (&, f), compute ; = Y &k ViEN,
and set flag = false. Let N’ = {j}, where j € {arg min;en{w;}}.

N
Let j € arg min]‘eN(N’){%j‘}
! ,dy, > b7
N = N'UGY Zaene
Y

Let a = 0. Set A = {i: i is a node
of articulation of Gy}, let H = A

Add (17),

Add (15),

Select a node j € {N'\ H}
E— H — HU{5}
ke N(N'\5)}

Let K = {k:

ﬂG t fG; Select k € arg maxg {w;}
Sl N [N\ {7} Uk}
G(N,E) =Gy

flag = true
G*—G

a‘—lf)j—’lf)k

Figure 4. Growth procedure for (15) or (17).

assignments result in the solution following the final itera-
tion of this heuristic, the improvement routine described
below is designed to identify and delete such assignments.
Construction Heuristic
In essence, this procedure searches at each iteration for the
node which, when added to the current nodes on a ring,
contributes the most additional demand. If the additional
demand exceeds the demand capacity for a ring, then de-
mand edges are evaluated one by one to consider their
inclusion in the current ring. In addition, a threshold value
T is used to determine whether or not a partial demand
should be added to the current ring, in case the full demand
allocation on an edge exceeds the residual capacity. This is
done only if the residual capacity exceeds T and if the
remaining unsatisfied demand on this edge after the partial
allocation is made will also exceed T. This check tends to
obviate the situation where a partial demand is added to a
ring via a node assignment to simply consume its residual
capacity, but at the undesirable expense of having to incur a
perhaps unnecessary additional node-to-ring allocation cost.
Figure 6 provides a flow-chart to describe the details of this
procedure. In this procedure, G’ represents the current sub-

RIGHTS L | M Hdz

graph of G whose edge set E’ is comprised of the as-yet
unsatisfied demands. Also, given any node set L C N cur-
rently assigned to a ring under consideration, and given a
node j € N, we define E/; to be the set of demand edges in
E’ that involve node j and some node in L. Accordingly, we
define D; = 2, d, to be the total demand corresponding
to the edge set E;; . The procedure examines the inclusion of
a suitable node j in L on the current ring, along with the
allocation of a subset of the demand D; as outlined above,
and detailed in Figure 6.

Remark 5. For the configurations produced by the fore-
going heuristics, it is possible for two or more rings to have
enough spare capacity such that they could be merged onto
one ring. However, the number of rings is generally not a
limiting factor in this design problem, although if the num-
ber of available rings is indeed limited, we can perform a
quick check for merging ring allocations in Step 2 of this
procedure.

Improvement Routine
The improvement routine is designed to examine the feasi-
bility of rearranging nodes on rings so as to reduce the
number of node-to-ring (ADM) assignments for a given
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Select G'(N', E') as some component
of G for which Y

pcg dp > b.

Let H = {j: j is a node
of articulation of G'}

Add (17),

Let K={ke N'\H:
stop. ZpEE’ dp

— 0 > b} stop.

Add (15),

Select k € arg maxex {wWi}
L NN\ (k) B
Update G'(N", E') = Gn

K =0?

X

Figure 5. Shrinking procedure for (15) or (17).

Table V. Evaluating the Effect of the Valid Inequalities (VI)

Set 1 Set 2 Set 3
VI Nodes CPU Time Nodes CPU Time Nodes CPU Time
No VIs 126.07 0.70 903.27 14.83 30,744.53 1,206.32
With (14) 75.13 0.54 675.93 13.46 20,327.00 1,035.21
With (15) & (16) 69.33 0.50 544.27 11.00 22,094.60 868.08
With all VIs 69.80 0.52 674.50 13.31 18,170.13 861.92

Note: The numbers represent average values over the 15 problems from each set.

solution. This routine solves a mixed-integer program (de-
noted as IMIP) in which all the x; variables that are pres-
ently zero in the incumbent solution are fixed at zero, but the
remaining variables are free to switch values from 1 to 0 if
necessary. Solving this restricted problem thus checks for
possible consolidations of demands for replicated nodes
while reducing the corresponding node-to-ring assignments.
IMIP is solved very quickly in practice, with CPLEX usually
giving an integer feasible solution at node zero itself. Natu-
rally, if neither heuristic yields a feasible solution, the im-
provement routine is not performed.

Tables VI and VII present computational results pertain-
ing to the heuristics proposed in this section. These test runs
were made with formulation RDS, along with preprocess-
ing. (Note that this choice affects only the LP Rounding
heuristic.) Although the construction heuristic often outper-
forms the LP rounding heuristic, since both these routines
are computationally inexpensive, we execute both these pro-
cedures and use the resulting solution that has the minimum
objective value. Table VII demonstrates the advantage of
using IMIP to improve the best upper bound obtained on the
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problem via this pair of heuristics, especially for larger prob-
lems.

Furthermore, in order to assess the effectiveness of the
heuristic procedure within the overall algorithm, we ran
formulation RDS on the test bed of problems along with
branching order B7, preprocessing, and valid inequalities,
both with and without this heuristic. Table VIII displays the
results obtained. Observe that as the problem size increases,
the importance of implementing the proposed heuristic pro-
cedure becomes more evident.

6. Computational Summary

In this section, we present a summary computational anal-
ysis demonstrating the overall viability of the solution pro-
cedure proposed in this paper. Table IX displays the results
for Formulation RDS using CPLEX's default settings, as well
as for the “Proposed Algorithm” comprised of solving For-
mulation RDS using the branching priority order B7, with
the prescribed cutting plane generation scheme, preprocess-
ing routine, and heuristic procedures. A comparison of these
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Figure 6. Construction heuristic.

Table VI. Comparison of LP Rounding and Construction Heuristics

Set 1 Set 2 Set 3
Heuristic Avg Obj % Infeasible Avg Obj % Infeasible Avg Obj % Infeasible
LP rounding 12.0 33 0 315 20
Construction 10.38 47 0 25.47 0

results reveals a strong dominance of implementing the
proposed algorithmic enhancements versus using CPLEX's
defaults. The savings in cpu time using our algorithm over
CPLEX’s defaults is considerable: 60.9% for Set 1, 70.3% for
Set 2, and 70.6% for Set 3. Furthermore, the savings in the
number of branch-and-bound nodes enumerated are 75.9%
for Set 1, 74.1% for Set 2, and 80.5% for Set 3.

In a separate experiment, we compared the results and
performance of a restricted version of this algorithm on the
split-demand case of this problem versus the non-split case.

RIGHTS L | M Hdz

Note that for the non-split case, all f variables are binary
valued, which in turn implies that the x variables are binary
at optimality. Since the branching orders and heuristics
specified for the split-demand case are not relevant to the
solution of the non-split case, these algorithmic strategies
were omitted. On the other hand, the customized prepro-
cessing step (see Lee et al. [1999a, 1999b] for the non-split
demand case) and the generation of valid inequalities were
uniformly included for each case in Formulation RDS. The
results depicted in Table X demonstrate that the non-split



297

Enhanced Model Representations for an Intra-Ring Synchronous Optical Network Design Problem Allowing Demand Splitting

Table VII. Effectiveness of the Improvement Routine
Set 1 Set 2 Set 3
Upper Bound % Gap Upper Bound % Gap Upper Bound % Gap
Before IMIP 11.09 5.17 17.73 13.68 25.47 15.41
After IMIP 11.09 5.17 17.13 8.55 25.07 13.60
Note: The numbers represent average values over the 15 problems from each set.
Table VIII. Evaluating the Effect of the Heuristic Procedure
Set 1 Set 2 Set 3
Heuristic Nodes CPU Time Nodes CPU Time Nodes CPU Time
Without 68.87 0.37 673.33 10.52 26,100.87 1,057.36
With 83.07 0.50 574.13 9.45 22,073.13 859.55

Note: The numbers represent average values over the 15 problems from each set.

Table IX. Results for the Formulation RDS with Default CPLEX Settings Versus the Proposed Algorithm

Set 1 Set 2 Set 3
A B A B A B
Prob. Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU Nodes CPU
1 59 0.29 4 0.23 1929 3225 2271 27.71 27663 1133.63 5844 209.54
2 1254 4.08 248 1.00 1599 23.73 781 13.75 4568 172.77 1654 89.23
3 0 0.08 0 0.13 306 4.67 52 2.02 41812 1418.35 4696 151.54
4 228 0.94 26 0.46 390 5.46 16 1.50 177271 7596.58 50167 1814
5 65 0.35 4 025 1746 24.96 323 5.67 185454 7978.25 36487 1358.83
6 58 0.35 0 021 7427 117.63 2344 35.50 40387 1265.56 9001 343.54
7 100 0.40 18 0.42 534 9.48 91 2.75 60796 1896.67 13966 568.96
8 163 0.65 0 0.27 1539 20.65 77 2.65 9690 472.60 441 23.38
9 56 0.31 0 0.25 3664 57.63 750 1294 158713 4749.42 25504 701.71
10 241 1.02 24 0.38 1540 21.58 136 342 490806 2185.75 8501 375.48
11 1858 6.17 247 1.10 5063 58.88 363 6.52 39075 2081.90 5015 316.77
12 176 0.88 45 0.40 6260 80.19 532 9.94 39162 1377.33 6025 213.40
13 472 1.71 32 0.33 605 9.75 342 6.73 12306 610.96 2052 65.06
14 132 0.63 9 0.29 393 6.92 330 6.23 191658 7920.33 61115 2337.29
15 303 1.27 589 1.83 295 4.15 204 442 221318 3032.98 100629 4324.19
Avg 344.33 1.28 83.07 0.50 2219.33 31.86 574.13 9.45 113378.60 2926.21 22073.13 859.55

A, CPLEX default. B, Proposed algorithm.

case is much harder to solve than the split-demand case,
especially for larger problems. The row entitled “ratio” gives
the ratio of the measure for the non-split case divided by the
measure for the split-demand case. Note that 8 of the 15
problems in Set 1 were infeasible for the non-split case.
Hence the averages recorded for this case are for the seven
problems solved by both the scenarios. Also, all 15 of the
problems in Set 3 had identical optimal objective function
values for the two cases, although the ring configurations
and the demand allocations were not necessarily identical.
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7. Summary and Conclusions

In this paper, we have developed an exact cutting plane and
enumeration algorithm for a SONET design problem de-
ploying unidirectional path switched rings, modeling it as a
mixed-integer program and exploiting certain problem char-
acteristics to enhance its solution capability. We first showed
that a straightforward branch-and-bound strategy to solve a
traditional mixed-integer formulation for this problem per-
forms poorly, primarily due to the large number of symmet-
ric solutions that the enumeration process must sift through
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Table X. Evaluating the Effect of the Non-Split Restriction

Set 1 Set 2 Set 3
Demand
Splitting Nodes CPU Time Objective = Nodes  CPU Time Objective Nodes CPU Time  Objective
Not allowed  65.71 0.35 9.86 1,830.13 27.59 33.71 70,292.13 2,780.49 47.29
Allowed 33.14 0.23 9.86 691.40 12.76 33.43 24,039.67 1,098.80 47.29
Ratio 1.97 1.52 1.00 2.65 2.16 1.01 2.92 2.53 1.00

in determining an optimum. To alleviate this, we investi-
gated several different methods that tend to mitigate the
effects of symmetry by imposing certain valid configuration
hierarchies, and demonstrated that the inclusion of such
additional constraints significantly improves the perfor-
mance of the algorithm.

We then investigated the effectiveness of various prepro-
cessing routines and of different variable branching priori-
ties. The proposed specialized preprocessing routines imple-
mented led to a sharp decrease in the branch-and-bound
effort, and an appropriate prioritized ordering scheme for
selecting branching variables also moderately decreased the
execution time for the algorithm, especially when used in
concert with certain hierarchical constraints. Next, we exam-
ined the generation of cutting planes from various classes of
valid inequalities, designing suitable separation routines for
deriving strong cutting planes that delete the solution to the
current linear programming relaxation. Incorporating these
cuts was also shown to enhance the effectiveness of the
solution algorithm. While these cutting planes were imple-
mented only at node zero to allow the use of a powerful
commercial optimization package (CPLEX), it might be
worthwhile to explore a specialized branch-and-cut algo-
rithm in which such valid inequalities are generated at other
nodes of the enumerative tree as well. In addition, we de-
signed two heuristic procedures along with an improvement
routine for providing useful upper bounds on the problem
and reducing the amount of effort required by the branch-
and-bound process. These procedures typically determined
solutions having an objective value within 5-13% of the
optimum, thereby promoting their use for possibly obtain-
ing good solutions for larger problems which may not be
solvable to exact optimality. Finally, we provided some in-
sights into the non-split demand allocation version of the
problem considered in this paper, showing that this case
leads to problems that are relatively harder to solve, and its
reduced flexibility is more likely to result in infeasible in-
stances or somewhat more expensive optimal solutions.
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