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Abstract 

Parallel computation offers the poten ial for quickly solving large computational problem :. 

However, it is often a non-trivial task to effectively use parallel computers. Solution methods 

must sometimes be reformulated to exploit parallelim; the reformulations are often more com- 

plex than their slower serial counterparts. We illustrate these points by studying the parallelha- 

tion of 1par8e one-dimensional dynamic programming problems, those which do not obviously 

admit substantial parallelbation. We propose a new method for parallehing such problems, 

develop analytic models which help us to identify problems which parallelize well, and compare 

the performance of our algorithm with existing algorithms on a multiprocessor. 

'Research was supported under the National Aeronautics and Space Administration under NASA Contract No. 

NASL-18605 while the author was in residence at the Institute for Computer Applications in Science and Engineering 

(ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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The availability of commercial parallel computers offers the potential for quickly solving large 

computational problems. However, to  exploit parallelism it may be necessary t o  reformulate the 

solution algorithm; the construction of effective parallel algorithms is still an art in its infancy. 

Parallel solutions may be more complex than their serial counterparts, and may rely on insights 

not generally called for in serial algorithms. 

Consider the following general one-dimensional dynamic programming problem: find the solu- 

tions to  the functional equation 

V(1) = 0 

V( j )  = min { C ( i , j )  -t V(i)} for j = 2,. . . ,n ,  
i E N ( j )  

where for each j ,  N ( j )  is a non-empty subset of {1,2,. . . , j - 1). It can be useful to  view this prob- 

lem as that of finding the length of the shortest path from node 1 to every other node in an acyclic 

graph, where i E N ( j )  implies the existence of a directed edge from i to  j, i < j ,  weighted by 

C(i , j ) .  This formulation is extremely general, since the nodes of any directed acyclic graph may 

be so ordered. If instead the nodes are numbered so that the edges go from higher to  lower nodes, 

this formulation arises in classic problems such as optimal production scheduling (with or without 

backlogging) when holding costs are 

We are interested in solving this problem on a medium-scale multiprocessor, where the size 

of the graph is significantly larger than the number of processors. An obvious parallel solution 

method, the vertical method, computes the V ( j )  values serially, but employs P multiple processors 

to  compute the edge sums specified on the right-hand-side of (1). The set N ( j )  is partitioned among 

the processors, who each find the index optimizing C ( i , j )  + V(i) among their assigned indices. 

Finally, the processors cooperatively compute V(j)  in O(1og P) steps. This scheme can effectively 

exploit parallelism, provided there is a large amount of necessary parallelizable computation. This 

condition is violated if the average cardinality of the N ( j )  sets is small, or equivalently, the average 

indegree of a node is small. In this situation, relatively little parallel work is performed between each 

synchronization, and its attendant overhead. The vertical approach exploits intra-node parallelism; 

sparse graphs with relatively few edges tend to have little intra-node parallelism. We propose and 

analyze a method which exploits inter-node parallelism, where a multiprocessor works concurrently 

on the solution of multiple V ( j )  values. We call this type of approach horitontaZ. 
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This work is an outgrowth of earlier work[’] where we considered the parallel solution of equa- 

tions 

V ( 1 )  = 1 

V ( j )  = C ( j )  + min { V ( i ) }  for j = 2, ... ,n,  
i(j) 5 i < j 

where i ( j )  is nondecreasing in j .  This type of equation arises in the context of mapping compu- 

tations onto parallel computers[6]. Even though the indegree of a node may be large, the vertical 

approach is inefficient relative to  the optimal serial solution. An efficient serial solution maintains 

a priority heap of previously computed V ( j )  values, allowing i t  to find the min term for a given j 

in O(1og n) time. By contrast, the vertical method requires O ( n / P  + log P )  time to  find the same 

quantity. We proposed a horizontal method which computes P min terms 0ptimi:stically each step, 

meaning that if V ( i )  and V ( j )  ( i  < j )  are computed concurrently in a step, then V ( j )  assumes 

that its min term is not defined by V ( i )  (the value of which is not yet known). A simple check 

determines whether the optimism is warranted-if V ( j ) ’ s  min term is defined by V ( i ) ,  then the 

function values for that step are recomputed serially. The probability of serializaiion is O ( l / P )  if 

j - i(j) is O ( P 2 )  and the C ( j )  values are independent and identically distributed random variables. 

Our algorithm is based upon this approach, and we will derive similar results for it. 

Bertsekas and Tsitsiklis (1989) explain other parallel dynamic programming algorithms[2]. These 

algorithms are iterative, requiring multiple passes over the node set. Our algorithms solve the prob- 

lem in a single pass, but use more global synchronizations. We present empirical results showing 

our methods to  be superior on the problems we study. 

This study relies on random directed graphs in order to characterize general properties of 

problems, and algorithm behavior. These graphs are described by two parameters, a (constant) 

expected indegree, and the size of an interval from which a node’s incoming edges may be taken. 

All of our experiments and analyses assume this model. 

The paper is organized as follows. $2 discusses our methods for generating raxdom graphs. $3 

describes the block window algorithm, while $4 derives a performance model, and identifies classes 

of graphs which support the algorithm’s approach. $5 describes our computational experience on 

a sixteen processor shared memory architecture. We find that our algorithm outperforms both the 

vertical and iterative methods, achieving good speedups for a variety of problem types. $6 presents 
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our conclusions. 

1 Random Graph Generation 

I 

Before discussing the algorithm, we first describe the methods used to  generate random graphs. 

Our experiments and analysis concern graphs whose edges and weights are created randomly. We 

view a graph as a linear sequence of nodes 1,. . . , n, where directed edges feed forward from lower 

to  higher numbered nodes. We study random graphs that are connected, where an edge ( i , j )  is 

constrained by j - i 5 w for some w, and where, whenever i,j > w, nodes i and j have the same 

expected number of incoming edges. To construct such graphs we employ a node interval length 

w and an indegree parameter D 5 w, both user defined. For each node j we first create an initial 

edge from some node i in the interval [max{l,j - w},j - 11, chosen uniformly a t  random. This 

ensures that every node is reachable from node 1. We then compute an edge probability 

(D - 1) 
min{w,j - 1) - 1’  

p j  = min 

p j  takes value 1 when j 5 D. p j  is constant for j > w, we denote that constant 

p ,  = (D - l ) / ( W  - 1). 

For each potential edge from nodes in j’s interval (other than the initial edge) we perform a Bernoulli 

trial, accepting the edge with probability p j .  The expected indegree of j is D when j 2 D, and is 

j - 1 otherwise. Random edge weights are constructed using a variety of methods described in $4. 

2 Block Window Algorithm 

The block window algorithm partitions the graph into blocks P nodes wide. The algorithm slides 

a window from block to  block, from left to  right. When the window is positioned over a block, 

the V values for nodes within the block are computed in parallel. When all the block’s V values 

have been correctly computed the window is repositioned over the next block. Figure 1 depicts a 

partitioned graph, and the assignment of processors within a block. We label the nodes within the 

window by w1 through wp. Processor j is responsible for computing V(wj). 
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1 2  3 4 1 1  2 3 4 ; 1  2 3 4 

Figure 1: Partitioning a graph into blocks 

Consider the computation associated with a node wj in the window: compute 

V(Wj) = min {C(i ,  wj) + V(i)}. 

For each w j  we take N(wj) = Nr(wj) U No(wj), the union of edges rooted inside and outside the 

window, respectively. Block processing has two phases. In a first phase, each processor j computes 

( i ? W , )  E W W , )  

u j  = min {C(i ,  wj)  + V(i)), 
( i ,  W j )  E NO(WJ) 

in parallel with the others, assigns V(wj) = uj, and then synchronizes globally. With this assign- 

ment processor j is optimistically assuming that V(wj) is not defined by a V value within the 

current block. If all processors are correct in this assumption, then the V values computed for this 

block are correct. The second phase determines whether any such V value is incorrect. For every 

edge (w;, wj) E Nl(wj) processor j compares C(wi ,  wj) t ui with u j .  If any such sum is strictly less 

than u j  we do not have u j  = V(wj). Following this test, the processors again synchronize globally, 

each one passing a flag indicating whether u j  # V(utj). Let j(min) be the smallest index of a pro- 

cessor indicating this inequality; define j(min) = 7t + 1 in the complete absence of ,the inequality. If 

j(min) 5 P, then values V(wj(finl), . . . V(wp) are recomputed serially. The algorithm's correctness 

rests on the following proposition. 
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Proposition 1 Let k E [l,P]. If 

for all j = 1,. . . , k - 1, then V(wj) = uj  for j = 1,. . . , k 

Proof: NI(w~) is empty, so that V(w1) = u1. Suppose then that for some j < k, V(w;) = u; for 

i =  1, . . . , j -  1. NOW 

The conclusion follows by repeated application of this argument to  j = 2 , .  . . , k. 
0 

The algorithm is described in pseudo-code in figure 2. The parallel synchronization routine 

Checkserial identifies j(min), and computes V ( W ~ ( ~ ~ ) ) ,  . . . , V(wn) serially. 

It is worthwhile pointing out that the the block window method in no way requires the problem 

of interest to be a minimization problem. We could equally well use it to solve equations having 

the general form of (l), but with a max operator. This observation increases the applicability of 

the algorithm to classic problems such as the one-resource integer knapsack problem[3]. 

The section to  follow constructs a performance model for this algorithm, and identifies a class 

of graphs on which the second phase serializes with low probability. 

3 Analysis 

To achieve good performance the parallel algorithm must balance the workload well, avoid undue 

overhead, and avoid serialization in the second phase. In this section we construct a performance 
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I* pid is processor id, from 1 to P *I 
int pid; 

{ int uj, wo, wj, correct; 

I* wo is node “before” window */ 
wo = 0; 
while (wo < n)  

{ 
/* compute node index */ 

I* first phase -* / 
wj = wo + pid; 

uj = minimum value of C(i ,  wj) + V(i) over all i E No(wj); 
/* store optimistic solution, synchronize-*/ 
V(Wj) = uj; 

I* synchronize globally */ 
Barrier( pid); 
/* begin second phase -*/ 
If (C(i ,  wj) + V(i) < uj for any i E N~(wj) ) then correct = 0; 
else correct = 1; 

/* synchronize and correct values -*/ 
SynchP: Checkserial( pid,wj ,correct); 

Figure 2: Pseudo-code for block window algorithm 

model for the algorithm, and show that if serialization is infrequent or if the indegree is moderately 

large we should achieve good speedups. We then show that if edge weights are independent and 

identically distributed ( i . i .d . )  and w is 0 ( P 3 ) ,  then the probability of serialization is only 0 ( 1 / P ) .  

3.1 Performance Model 

The time required to  process a block is determined by the processor with the heaviest workload. Our 

first task is to estimate the expected load on the most heavily loaded processor in the first phase, 

and then in the second phase. We can compare the sum of those loads to “perfectly balanced” 

loads to  determine the extent of load imbalance. For simplicity, our analysis ignores the startup 
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anomalies, and only considers blocks sufficiently far into the graph, where the average indegree 

of each node is D. Let O j  be the cardinality of No(wj). Due to the graph construction method 

the random variables 0 1 , .  , . , O p  are independent. However, they are not identically distributed; 

consider the construction of N ( w j ) .  The initial edge is in N ~ ( w j )  with probability ( j  - l ) / w .  In 

this case, each of the possible w - j + 1 edges for No(zuj) has probability p,  of being chosen, and 

O j  has a binomial distribution, B(w - j + l ,pe).  If the initial edge is in No(wj) then we know 

that O j  has the distribution of one plus a B ( w  - j , p e )  random variable. Consequently, Oj  has the 

mixed distribution 

(2) Distribution of O j  (G) B(w - j +  l ,pe) + (*) (I + B ( w  - j , p e ) ) .  

Now let Ij be the cardinality of N ~ ( w j ) .  The distribution of Ij is also found by conditioning on 

where the initial edge lies, and so is found to be the mixture 

(3) Distribution of Ij E (e) B ( j  - 1, p,) + (G) (1 + ~ ( j  - 2, p e ) ) .  

It is straightforward to  estimate the expected values of X o  = maxj{Oj}, and XI = maxj{Ij}. 

For example, let 

Fj(S) = PT{Oj 5 s }  

Now, X o  5 s if and only if O j  5 s for all j .  Consider the identity: E [ Y ]  = Ego Pr{Y > s }  for 

any discrete nonnegative random variable Y .  Using it we find that 

03 03 P 

- m o l  = P r ( X 0  > s} = 1 - J-J Fj(S) . 
s=o s=o ( j=1 ) 

An identical approach allows us to  compute E [ X I ] .  For computational reasons we will ap- 

proximate the binomial distributions involved with Poisson distributions (this is a reasonable 

approximation[']). A B(s,r) random variable is approximately equal to  the number of Poisson 

arrivals in time [0,2], where T is the arrival rate. We can view E[Xo] as the expected time to 

complete the first phase, measured in units where the time required to  process one edge takes one 

time unit. E [ X I ]  is an estimate of the time needed to  complete the second phase, if no serializa- 

tion occurs. E [ X I ]  is not exact because the knowledge that no serialization occurs alters these 
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distributions. If serialization does occur, we estimate the number of edges processed serially by 

S = EICF=l Ij]. Again, this is not exact because knowledge that serialization occurs alters the 

distributions. It is also not exact because our implementation does not recompute all inter-block 

edges once the need for serialization is detected. With careful programming we can reduce the 

number of edge sums computed serially by ignoring those already known to be larger than their 

corresponding u j  values. I f f  is the fraction of blocks requiring serialization, we estimate the time 

required to  complete the second phase (ignoring the synchronization cost) by 

The sum E [ X o ]  + E[TI( f ) ]  is a measure of the time required to  process a block (again, ignoring 

synchronization delays). 

The expected value of N ( j )  is just D; the expected number of edges processed in a block is 

consequently PD. If we could assign the load to processors perfectly, every processor would process, 

on average, D edges. A natural measure of load imbalance given the probability of' serialization is 

b ( f ) ,  the balance efficiency: 

Figure 3 plots the maximal and minimal balance efficiencies (take f = 0 and f = 1) as a 

function of w, for fixed D = 4, D = 16, and D = 256, and sixteen processors. We see that good 

efficiencies can be achieved even when f = 0, especially when D or w are large. In these cases the 

number of edges from outside the block is so large relative to  those in the block that serialization 

scarcely affects performance. Poor load balance occurs i f f  is high and both w and D are small. 

93.2 will show the dependence o f f  on the behavior of the edge weights. 

Load imbalance is only once source of performance degradation. Parallel algorithms frequently 

have a higher overhead per unit of computation than do their serial counterparts. We suppose that 

a serial solution requires a units of time per edge processing, while the parallel solution requires 

,O 2 a units of time per edge. We call a/@ the overhead efficiency. Both a and ,3 are problem 

sensitive; for example, they depend on the amortization of loop bounds checking over the number 

of loop iterations. The overhead efficiency can be estimated by dividing the execution time of the 

parallel algorithm running on one processor by the execution time of the specifically serial version. 

For the problems we studied the overhead efficiencies range from 0.5 to 0.83. 
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There is also a delay cost associated with executing the global synchronization; let G ( P )  be 

the time required for P processors to  perform the global synchronization between windows. Our  

algorithm uses two synchronizations per block. The overall efficiency of the parallel solution is the 

speedup divided by the number of processors used, and so is given by 

Q P D  
P (P(E[Xo] t E[Tz(f)]) + 2G(P)) 

Efficiency = Optimized Serial Time - - 
Processors x Parallel Time 

(4) 

It is important to  note that true speedup measurements use an optimal, specifically serial program. 

It is well-known that a barrier synchronization can be performed in O(1og P )  time. However, on 

the architecture we used the fastest barrier algorithm has a linear cost[']. We consequently use the 

model G(P) = 7P, for some 7. Measured in units where Q = 1, we have found y x 0.5. Our test 

suite of problems consists of four replicates each of problems where D = 8,16,32,64,96,128, and 

w = 64 and w = 256. On this suite the average magnitude of the relative error between measured 

speedup for up to  eight processors, and that predicted by (4) is approximately five percent. These 

figures used measured frequencies of serialization. The performance model sometimes overestimates 

speedup for sixteen processors by as much as 33%, although the absolute error never exceeded 1.2. 
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This error seems to  be due primarily to  an under-estimation of G(16); although it  is also possible 

that ,O increases in P ,  a phenomenon unaccounted for by the model. 

Computer manufacturers are now planning architectures with fast hardware support for global 

synchronization. It is reasonable to ask how good the performance would be if synchronization costs 

were negligible. Equation (4) helps answer this question. If G ( P )  vanishes the overall efficiency is 

just the product of the load and overhead efficiencies. We have already seen that load efficiencies 

are often good, a t  least under the assumed analytic model. The overhead efficiencies are between 

50% and 83%. The product of load and overhead efficiences (assuming sixteen processors) can 

exceed 50%, yielding a speedup of a t  least 8. Of course, i t  can be much lower. $4 will show that 

speedups depend primarily on D; with D = 128 and w = 256 we do achieve 50% efficiencies on 

sixteen processors. 

3.2 Probability of Serialization 

We now turn to  a more qualitative analysis of the algorithm, where we focus on the behavior of 

V as a random function. To highlight the difference between .the length of shortest path to  j on 

a given problem, and the random length of the shortest path to  j under our model, we will use 

V ( j )  to denote the random variable. Likewise, we will use C ( i , j )  t o  describe the random weight on 

extant edge ( i , j ) .  

We first show that if the edge weight random variables increase stochastically in their length, 

then V ( j )  increases stochastically in j .  We then show that if the edge weights are i.i.d or if the 

edge weights are identically distributed and all edge weights into a node are identical, and i f  w is 

O ( P 3 ) ,  then the probability of serialization is O( l /P) .  Surprisingly, the data in figure 3 show that 

this is a secondary concern, a t  least when D is not small. Nevertheless, it is an important question 

when D is small and the time spent in the second phase contributes significantly to the overall 

execution time. 

Our understanding of V ( i )  as the length of the optimal path from node 1 to 2' suggests that 

Y ( i )  should tend to  increase in i, at least if edge weights tend to  increase in their length. Our first 

result affirms this intuition by using order relations between random variables. Principally, random 

variable X is said to be stochastically larger than random variable Y if for all a, P T { X  > u }  2 

PT{Y  > u } .  This is denoted X > s t  Y ,  or Y i s t  X .  An equivalent definition says that Y Lst  X if 
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there exists a random variable Z distributed identically as Y ,  with the property that 2 5 X .  A 

common way to show that Y X is to  construct a variable 2 “based on” X, show that Y and 

2 are identically distributed, and show that 2 2 X. Called coupling, this will be our approach to 

showing that when V ( i  - 1) Sst Y ( i )  when i > w and edge weights increase stochastically in length. 

Proposition 2 Suppose that C ( i , j -  1) Sst C ( i , j )  whenever i < j -  1, and that for all j ,  C ( i , j )  is 

independent of V ( i ) .  Then V ( i  - 1) Ist V ( i )  for i = w + 1,. . . ,n. 

Proof: We use a coupling argument as described above. Define N ( j  - l), given N ( j ) ,  as follows. 

Whenever ( i , j )  E N ( j )  and i # j-1, then place (i,j-1) E N(j-1). If (j-1,j) E N ( j ) ,  then define 

( j  - 1 - w , j  - 1) E N ( j  - 1). Because the edge weights increase stochastically in length, whenever 

i < j - 1 and ( i , j )  E N ( j )  has a weight c, we may chose a weight i. 5 c for ( i , j ) ’ s  corresponding 

edge in N ( j  - 1). If ( j  - 1 - w , j  - 1) E N ( j  - 1) we may weight it with an arbitrary sample from 

C ( j  - 1 - w , j  - 1)’s distribution. Let 2 be the length of the shortest path from node 1 to node 

j - 1. 2 has V ( j  - 1)’s distribution, because the choice of arcs into j - 1 is driven by the appropriate 

distributions, and the choice of edge weights are also from the appropriate distributions. We must 

now show that 2 5 V ( j ) .  

Let H be the sum of all edge weights in the graph. For every i and j with i < j define 

BI = ( H  otherwise 
C ( i , j )  + V ( i )  if ( i , j )  E N ( j )  

By construction Bj 1 for all i E [ j  - w,j - 21. Now define 

M =  min { B ! ) ,  and n;r= mi n { B;-1} 
j - w s i s j - 2  j - w _ < i < j - 2  

It follows that M 2 M. Now 

V ( j )  = min{M, Bj-l} 2 min{M, Z }  

= min { M, min{BfI:-,, ~ } }  

= min{BiI:-w, k} 
= 2. 

Consequently, V ( j  - 1) Sst Y ( j ) .  

I 
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The proposition above is also true in the case of a maximization problem; the proof above works 

by replacing all min’s with max’s. 

Two special cases are of particular interest. One occurs when the edge weights are independent 

and identically distributed, a degenerate case of C ( i , j  - 1) sst C ( i , j ) .  A second case occurs 

when edges are identically distributed, and all weights on edges entering a node are identical. 

Both cases are consistent with the hypothesis of proposition 1,  and lead to the situation where 

we can stochastically order the edges entering a node. That is, if N ( j )  is ordered increasing as 

N ( j )  = {il,. . . ,ik}, then for h = 2 , .  . . ,k, C(ih-l,j) + Y ( i h - 1 )  sst C ( i h , j )  + U(l lh ) .  To see this, 

observe that U ( i h - 1 )  i s t  V ( i h )  implies the existence of a random variable 2 having the distribution 

of U(ih-l), and 2 5 V ( i h ) .  Under the identified conditions we can choose a weight i having the 

distribution of C(ih-l,j), where i 5 C ( i h , j ) .  Then i + Z  has the distribution ofC(ih-l,j)+V(ih-l) 

and i: + 2 5 C ( i h , j )  + V ( i h ) ,  establishing proposition 3. 

Proposition 3 Suppose that all edge weights are i.i.d., or that for each filed j ,  C ( i , j )  is in- 

dependent of Y ( i )  and C ( i , j )  = C(k,j) for all i , k  E N ( j ) .  If N ( j )  is ordered increasing as 

N ( j )  = {il,. . . , ik}, then for h = 2 , .  . . , I C ,  we have 

0 

Let 

In the case of a tie between two or more edges, we define the edge from the least indexed nodes 

as the minimum. If the conditions of proposition 3 are satisfied, an immediate consequence of its 

conclusion is that q1 2 q2 2 . . . 2 Q k .  Now for any j such that 1 5 j 5 k, 

k Since Ch=l qh = 1, we have E”,=, qh 2 j/k. It follows that if e j  is the edge defining U ( w j ) ,  then 
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The second step follows from Jensen’s inequality[s]. When w is large relative to P, then E[Oj]  is 

close to  D. Such a situation supports our optimistic hope that serialization not be required. 

To avoid serialization we must have ej E No(wwj) for all j .  The events that ej E N o ( w j )  

and e; E No(w;) are not independent. Intuitively though, we expect these events t o  be positively 

correlated-one way for e; E No(w;) is t o  have i t  rooted in a node with an unusually low V value. 

If that node has an edge to wj as well, the probability that e; is also rooted in that node increases. 

A formal proof of positive correlation appears to be formidable. Assuming positive correlation, the 

probability of serializing the second phase is bounded from above by the probability of serializing 

if the events were independent. This gives 

( 5 )  

We can compute E[Oj]  from (2). By subtracting the product from 1 we obtain an upper bound on 

the probability of serialization. Figure 4 plots this bound for D = 4 when P = 4,8 and 16, as a 

function of w (the same problem set represented in figure (3). Plots for D = 16 and D = 256 are 

indistinguishable from that of D = 4. We see that low serialization probabilities are achieved when 

w is large compared with P .  In fact, we next demonstrate that the probability of serialization is 

O ( l / P )  when w is O ( P 3 ) .  This is significant, because then the expected complexity of the second 

phase is the same as the complexity if no serialization occurs. 

Proposition 4 Let the conditions of proposition 3 be met, and suppose that w = O ( P 3 ) .  Then the 

probability of serialization is O( l / P ) .  

Proof: Beginning with ( 5 )  we have 

(6) 

The last step follows from the inequality14]: nrZ1(1 

u j=1 
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Figure 4: Probability of serialization as a function of w, when D = 4 and I' = 4,8,16 

all j .  Note that E[lj] 5 E [ l p ]  for all j ;  consulting (3) we see that 

= O(l /P2)  + O(D/P2). 

The last step depends on the fact that p ,  = (D - l ) / (w  - l ) ,  and that w = O ( n 3 ) .  Picking up 

from (6) we have 

P 1 
P r { e j  E No(wj) f o r j =  1, ..., P }  2 1-  - x E [ I j ]  

D j=1 

= 1 - O ( l / P )  because E[ lp]  = O(D/P2) .  

It follows that the probability of serialization is O( l/P). 

0 

It is interesting to  note that we place no conditions on D in order to  achieve a O( 1/P) probability 

of serialization. 

We strongly suspect that the probability of serialization is low more generally than just under 

the conditions of proposition 3. For example, one intuitively suspects that if edge weights are 
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concave in the edge length, then the edge defining a given V(j)  value will tend to  be long, and 

hence rooted outside of V(j)’s block. An algorithmically uninteresting, but extreme case of this 

occurs if edge weights are exactly proportional to  edge distance. In this case V(j)  = r j  for all j ,  

where r is the constant of proportionality, and C ( i , j )  + V(i) = r j  for all i E N ( j ) .  Assuming that 

ties are broken by choosing the longest edge, V ( j )  is always defined by the edge rooted furthest 

from j .  

4 Computational Experience 

We tested the block window algorithm against two competitors, an iterative, asynchronous “con- 

traction” algorithm, and the straightforward vertical method. We programmed all of these methods 

on the F le~ /32[~] ,  a shared memory multiprocessor. We find that under our implementations on 

this architecture, the block window algorithm substantially outperforms both of the other methods. 

Furthermore, efficiencies in excess of 50% are achieved when D is sufficiently large relative to  the 

number of processors. 

We have already mentioned the vertical method: the edges into each node are partitioned among 

processors, who then cooperatively compute the minimum edge sum. The pseudo-code in figure 5 

describes this algorithm. For each j we denote N ( j )  = { j l , .  . . , j k } .  The synchronization routine 

ComputeMinimum determines the minimum value passed to it, and writes that into V ( j ) .  

Load balancing under the vertical method is good when D is large-at every point no processor 

computes more than one more edge sum than any other. However, the method suffers when D is 

small, and i t  will always suffer a synchronization cost a t  each V point. 

An alternate method is based on iterative methods[2]. We annotate each V value with a super- 

script describing an “iteration number”. We initialize by setting Vo(l)  = 0, and Vo(i) = H for all 

i > 1, where H is the sum of all edge weights, and consequently bounds the true value of V(i) for 

each i. The iterative computation described by 

Vk( j )  = min { C ( i , j )  + V“-’(i)} for k > 0 
i E N ( j )  

(7) 

will converge to  the correct solution. This computation uses two arrays for V values, one for 

the “old” (iteration k - 1) values, and one for the new (iteration I C ) .  Processor j is responsible 

for computing values V k ( j  + iP) for i = 0, .  . ., does so in increasing sequence, and synchronizes 
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VerticalMethod( pid) 
I* pid is processor id *I 

int pid; 
{ int j ,  MinEdgeCost ; 

for j = 2 to n 
{ 

MinEdgeCost = minimum value of C ( j h , j )  + V ( j h )  over all j h  E N ( j ) ,  
h = pid + t P  for some t ;  

ComputeMinimum(pid, j, MinEdgeCost); 
1 

1 

Figure 5 :  Pseudo-code for vertical method 

globally after such a pass. This algorithm has the disadvantage of needing multiple passes over the 

V array; it has the advantage of synchronizing only between passes. If L is the minimal number of 

edges in any shortest path from node 1 t o  node P ,  then convergence is detected in L + 1 iterations. 

We can improve upon this substantially by allowing asynchrony. We use only one V array, so that 

when computing V ( j ) ,  the values V ( i ) , i  E N ( j )  may actually be “new”. For example, if we use 

only one processor, the true V values are correct after the first pass, and convergence is detected 

on the second. One processor processing of (7) will require L + 1 passes to  detect convergence. 

?‘he pseudo-code in figure 6 describes an asynchronous iterative algorithm. The global synchro- 

nization routine Checkconvergence returns a zero if any processor passed a “Change” value of one 

to it; it otherwise returns a one. 

All of the results we report use n = 1024. We did test larger problems, but found that the 

performance figures were largely unaffected. Four different methods of creating edge weights were 

used. Method 1 chooses each node weight independently, and uniformly from [O,n]. Method 2 

makes the weight sensitive to  the edge length, adding j - i to  a uniform [0,2n] random variable. 

Methods 3 and 4 both use uniform [O,n] weights; Method 3 ensures that edge weights rooted in a 

node increase as a function of their destination. Method 4 forces all weights on a node’s incoming 
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I 

IterativeMethod(pid) 
I* pid is processor id *I 

int pid; 
{ int j ,  MinEdgeCost, Converged, Change; 

Converged = 0; 

while( Converged = 0) 
/* loop through another pass */ 

I* 
j = pid; 
Change = 0; 
while (j 5 n ) 
{ 

pid does every Pth point -*/ 

MinEdgeCost = minimum value of C(i ,  j )  + V ( i )  over all i E N ( j ) ;  

If (MinEdgeCost < V ( j ) )  
/* look for improvement in solution -* I 

{ V ( j )  = MinEdgeCost; 
Change = 1; 

1 
j = j + P ;  

1 
/* synchronize with others, check convergence -*/ 

Converged = CheckConvergence(pid,Change); 

1 
1 

Figure 6: Pseudo-code for iterative algorithm 

edges to  be identical. All of these methods satisfy the hypothesis of proposition 2; only Methods 

1 and 4 satisfy the hypothesis of proposition 3. We take w = 64 and w = 256; we also vary the 

average indegree, taking D = 8,16,32,48,64,96,128, subject to D 5 w. 

Early evaluation of the algorithms revealed that the execution times of both the block window 

and vertical methods on problems this large are highly insensitive to  the particular edges and edge 

weights, and are insensitive to  the different methods we used of generating edge weights. Some law 

of large numbers seems to  keep the measured coefficient of variation (standard deviation divided 

by mean) well under 0.01 on ten replications. By comparison, execution time variation for the 
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iterative method was large. The asynchrony allows different runs (even on the :same problem) to 

have different convergence rates. 

For every set of graph characteristics (D,w,weight generation method) we generate four inde- 

pendent graphs, and solve the shortest path problem with each algorithm, using 2 ,4 ,8 ,  and 16 

processors. Each of our performance graphs plots the average efficiency as a function of D and the 

algorithm used-measurements from different problem types but with common w,D,  and algorithm 

characteristics are averaged together. Figure 7 shows four plots of measured mean efficiencies, when 

w = 256. Each graph reports measurements from a fixed set of processors. Similar tests were run 

using 20 = 64, but surprisingly very little difference was observed, at  least for the vertical and 

window block methods. Measurements from w = 256 tend to be better, but only marginally so. 

The iterative method does somewhat better on w = 256, because the number of edges in a shortest 

path tends to  be smaller. 

Three trends in this data are interesting. First and foremost, performance of the block window 

method increases as the graph density (D) increases, and is often quite respectable. On the given 

implementations, architecture, and problem set, the other algorithms are clearly inferior. Second, 

better efficiencies are achieved using a smaller number of processors. For a fixed problem size 

it is almost always the case that increasing the number of processors decreases the efficiency, 

because more processors usually imply more overhead. The third trend is that the \vertical method’s 

effectiveness decreases as the number of processors increases. This is due to the fact that the cost 

of synchronization increases as the number of processors increases, as does relative load imbalance. 

5 Summary 

This paper proposes the block window algorithm for solving sparse dynamic programming prob- 

lems on a parallel computer. Dynamic programming problems are characterized by their use of 

subproblem solutions to  construct “larger” problem solutions. Sparse problems tend to force a 

completely serial execution if, when constructing a larger problem solution, we always wait for the 

solutions to  all possible subproblems that might be needed. The key idea behind our algorithm 

is to optimistically assume in a first phase that the particular subproblem solution that will be 

needed is one that has already been computed. A second phase checks this assumption’s veracity, 

and corrects any erroneous calculations. 
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The bulk of this paper analyzes the method’s performance quantitatively and qualitatively. The 

analysis gives us insight into the type of performance we can expect, depending on problem and 

architectural characteristics. We then compare its performance against two ot.her algorithms on a 

shared-memory multiprocessor, observe that on the given problem set it performs markedly better 

than the others, and note that efficiencies in excess of 50% can be achieved using s.ixteen processors. 
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