
On Chubanov’s method for Linear Programming

Amitabh Basu, Jesus De Loera, Mark Junod
Department of Mathematics, University of California, Davis

October 29, 2018

Abstract

We discuss the method recently proposed by S. Chubanov for the linear feasibility
problem. We present new, concise proofs and interpretations of some of his results.
We then show how our proofs can be used to find strongly polynomial time algorithms
for special classes of linear feasibility problems. Under certain conditions, these results
provide new proofs of classical results obtained by Tardos, and Vavasis and Ye.

1 Introduction

In their now classical papers, Agmon [1] and Motzkin and Schoenberg [15] introduced the
so called relaxation method to determine the feasibility of a system of linear inequalities
(it is well-known that optimization and the feasibility problem are polynomially equivalent
to one another). Starting from any initial point, a sequence of points is generated. If the
current point zi is feasible we stop, else there must be at least one constraint cTx ≤ d that
is violated. We will denote the corresponding hyperplane by (c, d). Let p(c,d)(zi) be the
orthogonal projection of zi onto the hyperplane (c, d), choose a number λ (usually chosen
between 0 and 2), and define the new point zi+1 by zi+1 = zi + λ(p(c,d)(zi)− zi). Agmon,
Motzkin and Schoenberg showed that if the original system of inequalities is feasible, then
this procedure generates a sequence of points which converges, in the limit, to a feasible
point. So in practice, we stop either when we find a feasible point, or when we are close
enough, i.e., any violated constraint is violated by a very small (predetermined) amount.

Many different versions of the relaxation method have been proposed, depending on how
the step-length multiplier λ is chosen and which violated hyperplane is used. For example,
the well-known perceptron algorithms [3] can be thought of as members of this family of
methods. In addition to linear programming feasibility, similar iterative ideas have been
used in the solution of overdetermined system of linear equations as in the Kaczmarz’s
method where iterated projections into hyperplanes are used to generate a solution (see
[12, 19, 16]).

The original relaxation method was shown early on to have a poor practical convergence
to a solution (and in fact, finiteness could only be proved in some cases), thus relaxation
methods took second place behind other techniques for years. During the height of the

1

ar
X

iv
:1

20
4.

20
31

v1
 [

m
at

h.
O

C
]

 1
0

A
pr

 2
01

2

fame of the ellipsoid method, the relaxation method was revisited with interest because
the two algorithms share a lot in common in their structure (see [2, 9, 21] and references
therein) with the result that one can show that the relaxation method is finite in all cases
when using rational data, and thus can handle infeasible systems. In some special cases
the method did give a polynomial time algorithm [14], but in general it was shown to be
an exponential time algorithm (see [10, 21]). Most recently in 2004, Betke gave a version
that had polynomial guarantee in some cases and reported on experiments [4]. In late 2010
Sergei Chubanov presented a variant of the relaxation algorithm, that was based on the
divide-and-conquer paradigm. We will refer to this algorithm as the Chubanov Relaxation
algorithm. The purpose of the Chubanov Relaxation algorithm [6] is to either find a solution
of

Ax = b,
Cx ≤ d (1)

in Rn, with A an m×n matrix, C an l×n matrix, b ∈ Rm, and d ∈ Rl, where the elements
of A, b, C, and d are integers, or determine the system has no integer solutions. The
advantage of Chubanov’s algorithm is that when the inequalities take the form 0 ≤ x ≤ 1,
then the algorithm runs in strongly polynomial time. This result can then be applied to
give a new polynomial time algorithm for linear optimization [7]. The purpose of this paper
is to investigate these recent ideas in the theory of linear optimization, simplify some of
his arguments, and show some consequences.

Our Results

We start by explaining the basic details of Chubanov’s algorithm in Section 2; in particular,
we outline the main “Divide and Conquer” subroutine from his paper. We will refer to
this subroutine as Chubanov’s D&C algorithm in the rest of the paper. Chubanov’s D&C
algorithm is the main ingredient in the Chubanov Relaxation algorithm. In the rest of
Section 2, we prove some key lemmas about the D&C algorithm whose content can be
summarized in the following theorem.

Theorem 1.1. Chubanov’s D&C algorithm can be used to infer one of the following state-
ments about the system (1) :

(i) A feasible solution to (1) exists, and can be found using the output of the D&C
algorithm.

(ii) One of the inequalities in Cx ≤ d is an implied equality, i.e., there exists k ∈ {1, . . . , l}
such that ckx = d for all solutions to (1).

(iii) There exists k ∈ {1, . . . , l} such that ckx = d for all integer solutions to (1).

A constructive proof for the above theorem can be obtained using results in Chubanov’s
original paper [6]. Our contribution here is to provide a different, albeit existential, proof

2

of this theorem. We feel our proof is more geometric and simpler than Chubanov’s original
proof. We hope this will help to expose more clearly the main intuition behind Chubanov’s
D&C algorithm, which is the workhorse behind Chubanov’s results. Of course, Chubanov’s
constructive proof is more powerful in that it enables him to prove the following fascinating
theorem.

Theorem 1.2. [see Theorem 5.1 in [6]] Chubanov’s Relaxation algorithm either finds a
solution to the system

Ax = b,
0 ≤ x ≤ 1,

(2)

or decides that there are no integer solutions to this system. Moreover, the algorithm runs
in strongly polynomial time.

This is an interesting theorem and leads to a new polynomial time algorithm for Linear
Programming [7]. However, it suffers from the drawback that it does not lead to a strongly
polynomial time linear programming algorithm, even in the restricted setting of variables
bounded between 0 and 1. Using the intuition behind our own proofs of Theorem 1.1, we
are able to demonstrate how Chubanov’s D&C algorithm can be used to give a strongly
polynomial algorithm for deciding the feasibility or infeasibility of a system like (2), under
certain additional assumptions. In particular, we show the following result about bounded
linear feasibility problems in Section 3.

Theorem 1.3. Consider the linear program given by

Ax = b,
0 ≤ x ≤ λ1. (3)

Suppose A is a totally unimodular matrix and λ is bounded by a polynomial in n,m (the
latter happens, for instance, when λ = 1). Furthermore, suppose we know that if (3) is
feasible, it has a strictly feasible solution. Then there exists a strongly polynomial time algo-
rithm that either finds a feasible solution of (3), or correctly decides that the system is infea-

sible. The running time for this algorithm is O

(
m3 +m2n+ n2m+ n2(2nλ

√
2n+ 1)

1

log2(7
5)

)
.

If λ = 1, then the running time can be upper bounded by O(m3 +m2n+ n2m+ n5.1).

This theorem partially recovers E. Tardos’ result on combinatorial LPs [20]. Tardos’
results were also obtained by Vavasis and Ye using interior point methods [22], which
is different from Tardos’ approach. Our Theorem 1.3 proves a weaker version of these
classical results using a completely different set of tools, inspired by Chubanov’s ideas.
Tardos’ result is much stronger because she does not assume any upper bounds on the
variables (λ = ∞), does not assume strictly feasible solutions, and only assumes that the
entries of A are polynomially bounded by n,m. Nevertheless our result has some interest
as the techniques are completely different from those in [20], [22].

3

We also show that Chubanov’s D&C subroutine can be used to construct a new algo-
rithm for solving general linear programs. This is completely different from Chubanov’s
linear programming algorithm in [7]. However, the general algorithm that we present in
this paper is not guaranteed to run in polynomial time. On the other hand, it has the
advantage of avoiding some complicated reformulations that Chubanov uses to extract a
general purpose LP algorithm from the Chubanov Relaxation algorithm. Moreover, we can
solve the problem in a single application of the D&C subroutine, whereas the Chubanov
Relaxation algorithm needs multiple applications.

2 Chubanov’s Divide and Conquer Algorithm

In this section we will outline Chubanov’s main subroutines for the D&C algorithm as
presented in [6].

First, a couple of assumptions and some notation. We assume the matrices A and C
have no zero rows and that A is of full rank. Note if A does not have full rank we can easily
transform the system into another, A′x = b′, Cx ≤ d, such that A′ has full rank without
affecting the set of feasible solutions. Let ai denote the i-th row of A and ck denote the
k-th row of C. P will denote the set of feasible solutions of (1). Finally, B(z, r) will denote
the open ball centered at z of radius r in Rn.

One new idea of Chubanov’s algorithm is its use of new induced inequalities. Unlike
Motzkin and Schoenberg [15], who only projected onto the original hyperplanes that de-
scribe the polyhedron P (see top of Figure 1), Chubanov constructs new valid inequalities
along the way and projects onto them too (bottom part of Figure 1).

z

z

Figure 1: Chubanov’s method generates new inequalities on the way.

The aim of Chubanov’s D&C algorithm is to achieve the following. Given a current
guess z, a radius r and an error bound ε > 0, the algorithm will either:

4

(1) Find an ε-approximate solution x∗ ∈ B(z, r) to (1), i.e. some x∗ such that

Ax∗ = b, Cx∗ ≤ d+ ε1,

(2) Or find an induced hyperplane hx = δ that separates B(z, r) from P .

This task is achieved using a recursive algorithm. In the base case, Chubanov uses a
subroutine called Chubanov’s Elementary Procedure (EP), which achieves the above goal if
r is small enough; namely, when r ≤ ε

2‖cmax‖ , where ‖cmax‖ = max1≤k≤l(‖ck‖). Let p(A,b)(z)
denote the projection of z onto the affine subspace defined by Ax = b.

Algorithm 2.1. THE ELEMENTARY PROCEDURE

Input: A system Ax = b, Cx,≤ d and the triple (z, r, ε) where r ≤ ε
2‖cmax‖ .

Output: Either an ε-approximate solution x∗ or a separating hyperplane hx = δ.

If ‖p(A,b)(z)− z‖ < r and ckz−dk
‖ck‖ < r for all k

Then x∗ = p(A,b)(z) is an ε-approximate solution (see Figure 2)
Else If ‖p(A,b)(z)− z‖ ≥ r

Then let h = (z − p(A,b)(z))
T and δ = h · p(A,b)(z) (see Figure 3)

Else
ck0z−dk0
‖ck0‖

≥ r for some index k0

Then let h = ck0 and δ = dk0 (see Figure 4)
End If

z

Cx ≤ d

Ax = b

p(z)

Figure 2: The projection p(z) is an ε-approximate solution.

Note ckz−dk
‖ck‖ tells us how far z is from the hyperplane ckx = dk, and it is in fact negative

if z satisfies the inequality ckx ≤ dk. Thus if ckz−dk
‖ck‖ < r, then any point in B(z, r) is an ε-

approximation of ckx ≤ dk. This simple observation is enough to see that the EP procedure
solves the task when r ≤ ε

2‖cmax‖ . See Chubanov [6] Section 2 for more details and proofs.
The elementary procedure achieves the goal when r is small enough, but what happens

when r > ε
2‖cmax‖? Then the D&C Algorithm makes recursive steps with smaller values of

5

z

Ax = b

Figure 3: A separating hyperplane is given by the projection direction (z − p(z))T .

Cx ≤ d

z

ckx = dk

Figure 4: A separating hyperplane is given by a violated constraint.

6

r. To complete these recursive steps, the D&C algorithm uses additional projections and
separating hyperplanes. We give more details below. Figure 5 illustrates some of the steps
in this recursion. A sample recursion tree is shown in Figure 6.

r

r
1+θ

z

z0 = z − h1z−δ1
h1·h1 h1

r
1+θ

h1x = δ1

Figure 5: The recursive step in D&C works on two smaller balls with centers z and z0

Algorithm 2.2. THE D&C ALGORITHM

Input: A system Ax = b, Cx ≤ d and the triple (z, r, ε).
Output: Either an ε-approximate solution x∗, or a separating hyperplane hx = δ.

If r ≤ ε
2‖cmax‖

Then run the EP on the system
Else recursively run the D&C Algorithm with (z, 1

1+θr, ε)
End If

If the recursive call returns a solution x∗

Return x∗

Else let h1x = δ1 be returned by the recursive call
End If

Set z0 = z − h1z−δ1
h1·h1 · h1, i.e., project z onto (h1, δ1) (see Figure 5)

Run the D&C Algorithm with (z0,
1

1+θr, ε)

If the recursive call returns a solution x∗

Return x∗

Else let h2x = δ2 be returned by the recursive call

7

End If

If h1 = −γh2 for some γ > 0
Then STOP, the algorithm fails

Else Find α such that h = αh1 + (1− α)h2, δ = αδ1 + (1− α)δ2, and hz−δ
‖h‖ ≥ r

Return hx = δ End If

(z, r, ε)

(z0,
1

1+θr, ε)(z, 1
1+θr, ε)

(z,
(

1
1+θ

)2
r, ε) (z1,

(
1

1+θ

)2
r, ε) (z0,

(
1

1+θ

)2
r, ε)

...

(z2,
(

1
1+θ

)2
r, ε)

Figure 6: D&C Recursion Tree

We now state the running time of the Chubanov D&C Algorithm.

Proposition 2.1. [Theorem 3.1 in [6]] The matrix A is assumed to have m rows and n
columns and let N be the number of non-zero entries in the matrix C. Let µ = 2ε

28n‖cmax‖2
where cmax is the row of C with maximum norm. Let ρ be a number such that |zj | ≤ ρ and
ρzj is an integer for all components zj of the center z in the input to the D&C algorithm.

Let K =
(r‖cmax‖

ε

) 1
log2(7/5) .

Chubanov’s D&C algorithm performs at most

O(m3 +m2n+ n2m+K
(
n log(

ρ+ log(K)(r + nµ)

µ
) + n2 +N

)
) (4)

arithmetic operations.

2.1 Using the D&C Algorithm

One possible way to exploit the D&C algorithm is the following. Since D&C returns ε-
approximate solutions, we can try to run it on the system Ax = b, Cx ≤ d − ε1; if the
algorithm returns an ε-approximate solution, we will have an exact solution for our original
system Ax = b, Cx ≤ d. However, we need a z and an r as input for D&C. To get around
this, we can appeal to some results from classical linear programming theory. Suppose
one can, a priori, find a real number r∗ such that if the system Ax = b, Cx ≤ d − ε1 is
feasible, then it has a solution with norm at most r∗. In other words, there exists a solution

8

in B(0, r∗), if the system is feasible. Such bounds are known in the linear programming
literature (see Corollary 10.2b in Schrijver [18]), where r∗ depends on the entries of A, b, C, d
and ε. Then one can choose z = 0 and r = r∗ for the D&C algorithm. If the algorithm
returns an ε-approximate solution, we will have an exact solution for our original system
Ax = b, Cx ≤ d; whereas, if the algorithm returns a separating hyerplane, we know that
Ax = b, Cx ≤ d− ε1 is infeasible by our choice of r.

This strategy suffers from three problems.

1. There is a strange outcome in the D&C procedure - when it “fails” and stops. This
occurs when the two recursive branches return hyperplanes with normal vectors h1, h2

with h1 = −γh2 for some γ > 0. It is not clear what we can learn about the problem
from this outcome. Later in this paper, we will interpret this outcome in a manner
that is different from Chubanov’s interpretation.

2. It might happen that Ax = b, Cx ≤ d − ε1 is infeasible, even if the original system
Ax = b, Cx ≤ d is feasible. In this case the algorithm may return a separating
hyperplane, but we cannot get any information about our original system. All we
learn is that Ax = b, Cx ≤ d− ε1 is infeasible.

3. Finally, the running time of the D&C algorithm is a polynomial in n,m and r = r∗.
Typically, the classical bounds on r∗ are exponential in the data. This would mean
the running time of the algorithm is not polynomial in the input data.

Let us concentrate on tackling the first two problems, to progress towards a correct
linear programming algorithm. Then we can worry about the running time. This requires
a second important idea in Chubanov’s work. We address the first two problems above by
homogenizing, or parameterizing, our original system, and we show how this helps in the
rest of this section. Geometrically this turns the original polyhedron into an unbounded
polyhedron, defined by

Ax− bt = 0,
Cx− dt ≤ 0,
−t ≤ −1.

(5)

Note this system (5) is feasible if and only if (1) is feasible. Let (x∗, t∗) be a solution to (5).
Then x∗

t∗ is a solution of (1). Similarly, if x∗ is a solution of (1), then (x∗, 1) is a solution
of (5). Thus we can apply the D&C to a strengthened parameterized system

Ax− bt = 0,
Cx− dt ≤ −ε1,
−t ≤ −1− ε

(6)

and any ε-approximate solution will be an exact solution of (5), and thus will give us
an exact solution of (1). We still need to figure out what z and r to use. For the rest
of the paper, we will use ε = 1 as done by Chubanov in his paper. It turns out that if
we choose the appropriate z and r, we can get interesting information about the original

9

system Ax = b, Cx ≤ d when D&C fails, or returns a separating hyperplane. We explain
this next.

Let us summarize before we proceed. Given a system (1) we parameterize and then
strengthen with ε = 1 (to obtain a system in the form (6)). Then we apply the D&C to
(6) with appropriately chosen z and r. Our three possible outcomes are:

(I) The D&C gives us a solution (x∗, t∗) which is an ε = 1-approximate solution to (6).
This is the best possible outcome, because we can then return the exact solution x∗

t∗

to (1).

(II) The D&C fails. The reader can look ahead to our Proposition 2.4 for an interpreta-
tion of this outcome.

(III) The D&C returns a separating hyperplane hx = δ. Our Proposition 2.5 tells us how
to interpret this outcome.

In the rest of this section, we give some more geometric intuition behind the process of
homogenizing the polyhedron and why it is useful. Our goal will be to prove Theorem 1.1.

2.2 Meaning of “Failure” Outcome in D&C

First we show that if the Chubanov D&C algorithm fails on a particular system, then in
fact that system is infeasible. This observation is never made in the original paper by
Chubanov [6] and, as far as we know, is new.

Proposition 2.2. Suppose Chubanov’s D&C Algorithm fails on the system Ax = b, Cx ≤
d, i.e., it returns two hyperplanes h1x = δ1 and h2x = δ2 with h1 = −γh2 with γ > 0.
Then the system Ax = b, Cx ≤ d is infeasible.

Proof. Let P = {x ∈ Rn | Ax = b, Cx ≤ d}. If Chubanov’s algorithm fails, then there
exists z ∈ Rn, r > 0 such that the following two things happen :

(i) h1x ≤ δ1 is valid for P and for all y ∈ B(z, 1
1+θr), h1y > δ1.

(i) h2x ≤ δ2 is valid for P and for all y ∈ B(z0,
1

1+θr), h2y > δ2, where z0 = z− h1z−δ1
h1·h1 ·h1.

Since z0 − r
2(1+θ)

h2
‖h2‖ ∈ B(z0,

1
1+θr), h2 · (z0 − r

2(1+θ)
h2
‖h2‖) > δ1. Therefore,

h2z0 −
r‖h2‖

2(1 + θ)
> δ2. (7)

Now we use the fact that h1 = −γh2 and so − 1
γh1 = h2 which we substitute into (7)

to get − 1
γh1z0 − r‖h2‖

2(1+θ) > δ2. From the definition of z0, we have h1z0 = δ1. Therefore,

− 1
γ δ1 >

r‖h2‖
2(1+θ) +δ2 > δ2. So δ1 < −γδ2. Now h1x ≤ δ1 is valid for P using (i) above. Using

h1 = −γh2 and δ1 < −γδ2, we get −γh2x < −γδ2 is valid for P , i.e., h2x > δ2 is valid for
P . But we also know that h2x ≤ δ2 is valid for P from (ii) above. This implies that P = ∅
and the system Ax = b, Cx ≤ d is infeasible.

10

Ax = b, Cx ≤ d (degenerate)

Homogenizing cone

Strengthened homogenized region

Ax = b, Cx ≤ d (non-degenerate)

Ax− bt = 0, Cx− dt ≤ −1,−t ≤ −2 is nonempty

Ax− bt = 0,
Cx− dt ≤ 0

Figure 7: This Figure illustrates our Lemma 2.3. In the left figure, the original feasible re-
gion is non-degenerate and so the strengthened, homogenized cone is nonempty. The figure
on the right shows an example where the original system is degenerate; the strengthened
cone is empty because we have two parallel hyperplanes which get pushed away from each
other, creating infeasibility in the strengthened system.

We now interpret the “failure” outcome of the D&C algorithm on the strengthened
parameterized system. First we prove the following useful lemma.

Lemma 2.3. If the system Ax − bt = 0, Cx − dt ≤ −1,−t ≤ −2 is infeasible, then there
exists l ∈ {1, . . . , k} such that cl · x = dl for all x satisfying Ax = b, Cx ≤ d.

Proof. We prove the contrapositive. So suppose that for all k ∈ {1, . . . , l}, there exists
xk satisfying Axk = b, Cxk ≤ d with ck · xk < dk. Then using x̄ = 1

l (x1 + . . . + xl), we
get that Ax̄ = b and ckx̄ < dk for all k ∈ {1, . . . , l}. Let ηk = dk − ck · x̄ > 0 and let
η = min{1

2 , η1, . . . , ηl}. Therefore, η > 0. Let x∗ = x̄
η and t∗ = 1

η . Then

Ax∗ − bt∗ =
1

η
(Ax̄− b) = 0.

For every k ∈ {1, . . . , l},

dkt
∗ − ckx∗ =

1

η
(dk − ckx̄) =

ηk
η
≥ 1.

Therefore, ckx
∗ − dkt∗ ≤ −1 for every k ∈ {1, . . . , l}. Finally, since t = 1

η ≥ 2 by definition
of η, we have −t ≤ −2.

An illustration of the above lemma appears in Figure 7. The following is the important
conclusion one makes if the D&C algorithm “fails” on the strengthened parameterized
system.

11

Ax = b, Cx ≤ d (“thin”)

Homogenizing cone

Strengthened homogenized region

Ax = b, Cx ≤ d (“fat”)

is closer to the origin
Strengthened homogenized region

is farther from the origin

Figure 8: This Figure illustrates our Proposition 2.5. When the original feasible region is
“thinner”, the strengthened homogenized cone is pushed farther away from the origin.

Proposition 2.4. If Chubanov’s D&C algorithm fails on the system Ax−bt = 0, Cx−dt ≤
−1,−t ≤ −2, then there exists l ∈ {1, . . . , k} such that cl · x = dl for all x satisfying
Ax = b, Cx ≤ d.

Proof. Follows from Proposition 2.2 and Lemma 2.3.

2.3 The meaning of when a separating hyperplane is returned by D&C

We now make the second useful observation about the strengthened parameterized system
Ax−bt = 0, Cx−dt ≤ −1,−t ≤ −2. Suppose we know that all solutions to Ax = b, Cx ≤ d
have norm at most r∗. Then we will show that if all solutions to the strengthened system
are “too far” from the origin, then the original system is “very thin” (this intuition is
illustrated in Figure 8). More precisely, we show that if all solutions to the strengthened
parameterized system have norm greater than 2k(r∗ + 1), then there exists an inequality
clx ≤ dl such that all solutions to Ax = b, Cx ≤ d satisfy dl− 1

2 ≤ clx. That is, the original
polyhedron lies in a “thin strip” dl − 1

2 ≤ clx ≤ dl. This would then imply that all integer
solutions to Ax = b, Cx ≤ d satisfy clx = dl since cl, dl have integer entries. Here is the
precise statement of this observation.

Proposition 2.5. Suppose r∗ ∈ R is such that ‖x‖ ≤ r∗ for all x satisfying Ax = b, Cx ≤ d.
If ‖(x, t)‖ > 2k(r∗ + 1) for all (x, t) satisfying Ax − bt = 0, Cx − dt ≤ −1,−t ≤ −2, then
there exists l ∈ {1, . . . , k} such that dl − 1

2 ≤ clx ≤ dl for all x satisfying Ax = b, Cx ≤ d.

Proof. Suppose to the contrary that for all j ∈ {1, . . . , k}, there exists xj such that Axj =
b, Cxj ≤ d, and cjx

j ≤ dj − 1
2 , i.e., cj(2x

j) − 2dj ≤ −1. This implies that the following

12

equations hold for all j ∈ {1, . . . , k}

cj(2x
j)− 2dj ≤ −1,

cj(2x
i)− 2dj ≤ 0 ∀i 6= j.

(8)

Now consider x̂ =
∑k

j=1 2xj and t̂ = 2k. It is easily verified Ax̂−bt̂ = 0 since Axj = b for all

j ∈ {1, . . . , k}. Moreover, adding together the inequalities in (8), we get that cj x̂−dj t̂ ≤ −1
for all j ∈ {1, . . . , k}. Therefore, (x̂, t̂) satisfies the constraints Ax − bt = 0, Cx − dt ≤
−1,−t ≤ −2.

Finally, ‖(x̂, t̂)‖ ≤ ‖x̂‖+ 2k ≤∑k
j=1 2‖xj‖+ 2k ≤ 2k(r∗ + 1), where the last inequality

follows from the fact that all solutions to Ax = b, Cx ≤ d have norm at most r∗. We have
thus reached a contradiction with the hypothesis that ‖(x, t)‖ > 2k(r∗ + 1) for all (x, t)
satisfying Ax− bt = 0, Cx− dt ≤ −1,−t ≤ −2.

The above proposition shows that if Chubanov’s D&C algorithm returns a separating
hyperplane separating the feasible region of Ax− bt = 0, Cx− dt ≤ −1,−t ≤ −2 from the
ball B(0, 2k(r∗ + 1)), one can infer that there exists an inequality clx ≤ dl that is satisfied
at equality by all integer solutions to Ax = b, Cx ≤ d.

We now have all the tools to prove Theorem 1.1.

Proof of Theorem 1.1. As discussed earlier, we can assume that there exists r∗ such that
‖x‖ ≤ r∗ for all x satisfying Ax = b, Cx ≤ d. We then run the D&C algorithm on
the strengthened system (6) with ε = 1, z = 0 and r = 2k(r∗ + 1). Recall the three
possible outcomes of this algorithm. In the first outcome, we can find an exact solution
of Ax = b, Cx ≤ d - this is (i) in the statement of the theorem. In the second outcome,
when D&C fails, Proposition 2.4 tells that we have an implied equality, which is (ii) in
the statement of the theorem. Finally, in the third outcome, D&C returns a separating
hyperplane. By Proposition 2.5, we know that there exists an inequality clx ≤ dl that is
satisfied at equality by all integer solutions to Ax = b, Cx ≤ d. This is (iii) in the statement
of the theorem.

2.4 Chubanov’s proof of Theorem 1.2

Chubanov is able to convert the existential results of Propositions 2.4 and 2.5 into con-
structive procedures, wherein he can find the corresponding implied equalities in strongly
polynomial time. He then proceeds to apply the D&C procedure iteratively and reduce the
number of inequalities by one at every iteration. One needs at most l such iterations and
at the end one is left with a system of equations. This system can be tested for feasibility
in strongly polynomial time by standard linear algebraic procedures. This is the main idea
behind the Chubanov Relaxation algorithm and the proof of Theorem 1.2 that appears
in [6].

13

3 Linear feasibility problems with strictly feasible solutions

We will now demonstrate that using the lemmas we proved in Section 2, we can actually
give strongly polynomial time algorithms for certain classes of linear feasibility problems.
More concretely, we aim to prove Theorem 1.3. Consider a linear feability problem in the
following standard form.

Ax = b,
−x ≤ 0,

(9)

where A ∈ Rm×n and b ∈ Rm. We will assume that the entries of A and b are integers
and that A has full row rank. Let

∆A = max{|det(B)| | B is an n× n submatrix of A}

be the maximum subdeterminant of the matrix A. Let P (A, b) = {x ∈ Rn | Ax = b,−x ≤
0} denote the feasible region of (9).

Lemma 3.1. Let x be any vertex of P (A, b). If xi > 0 for some i ∈ {1, . . . , n}, then
xi ≥ 1

∆A
.

Proof. Since x is a vertex, there exists a nonsingular n× n submatrix B of A such that x
is the basic feasible solution corresponding to the basis B. That is, the non basic variables
are 0 and the basic variable values are given in the vector B−1b. If for some i, xi > 0 then
this is a basic variable and therefore its value is at least 1

|det(B)| since b is an integer vector.

Since |det(B)| ≤ ∆A, we have that xi ≥ 1
∆A

.

Lemma 3.2. Suppose we know that (9) has a strictly feasible solution, i.e. there exists
x̄ ∈ Rn such that Ax̄ = b and x̄i > 0 for all i ∈ {1, . . . , n}. If P (A, b) is bounded, then
there exists a solution x∗ ∈ Rn such that Ax∗ = b and x∗i ≥ 1

n∆A
for all i ∈ {1, . . . , n}.

Proof. Since we have a strictly feasible solution and P (A, b) is a polytope, then for every
i ∈ {1, . . . , n} there exists a vertex x̄i of P such that x̄ii > 0. By Lemma 3.1, we have that
x̄ii ≥ 1

∆A
. Therefore, if we consider the solution

x∗ =
1

n

n∑
i=1

x̄i,

i.e., the convex hull of all these n vertices, then x∗i ≥ 1
n∆A

for all i ∈ {1, . . . , n}.

We now consider linear feasibility problems of the form (9) such that either it is infeasi-
ble or has a strictly feasible solution. We will present an algorithm to decide if such linear
feasibility problems are feasible or infeasible. We call this algorithm the LFS Algorithm,
as an acronym for Linear Feasibility problems with Strict solutions. As part of the input,
we will take ∆A, as well as a real number r such that P (A, b) ⊂ B(0, r), i.e., ‖x‖ < r for
all feasible solutions x. The running time of our algorithm will depend on ∆A, r, and n.

14

Algorithm 3.1. THE LFS ALGORITHM

Input: Ax = b, −x ≤ 0, such that either this system is infeasible, or there exists a strictly
feasible solution. We are also given a real number r such that P (A, b) ⊂ B(0, r), i.e.,
‖x‖ < r for all feasible solutions x. Moreover, we are given ∆A as part of the input.
Output: A feasible point x∗ or the decision that the system is infeasible.
Parameterize (9):

Ax− bt = 0,
−x ≤ 0,
−t ≤ −1.

(10)

Run Chubanov’s D&C subroutine on the strengthened version of (10):

Ax− bt = 0,
−x ≤ −1,
−t ≤ −2.

(11)

with z = 0, r̂ = 2n∆A

√
r2 + 1, and ε = 1

If Chubanov’s D&C subroutine finds an ε-feasible solution (x∗, t∗)
Return x̂ = x∗

t∗ as a feasible solution for (9).
Else (Chubanov’s D&C subroutine fails or returns a separating hyperplane)

Return “The system (9) is INFEASIBLE”

Theorem 3.3. The LFS Algorithm correctly determines a feasible point x∗ of (9) or
determines the system is infeasible. The running time is

O

(
m3 +m2n+ n2m+ (2n∆A

√
r2 + 1)

1

log2(7
5) (n2 + n log ∆A + n log(r)

))
Proof. We first confirm the running time. We will use Proposition 2.1. Observe that for
our input to the D&C algorithm, ‖cmax‖ = 1, ε = 1 and r̂ = 2n∆A

√
r2 + 1 and N = n.

Therefore, K = (2n∆A

√
r2 + 1)

1

log2(7
5) , ρ = 0 since we use the origin as the initial center

for the D&C algorithm, µ = 1
14n . Substituting this into (4), we get the stated running time

for the LFS algorithm.

To prove the correctness of the algorithm, we need to look at each of the three cases
Chubanov’s D&C can return.
CASE 1: An ε-approximate solution (x∗, t∗) is found for (17). Then (x∗, t∗) is an exact
solution to (10), and x∗

t∗ is a solution to (9).
CASE 2: The D&C algorithm fails to complete, returning consecutive separating hyper-
planes (h1, δ1) and (h2, δ2) such that h1 = −γh2 for some γ > 0. Then Proposition 2.4 says
that there exists i ∈ {1, . . . , n} such that xi = 0 for all feasible solutions to (9). But then
the original system (9) has no strictly feasible solution, and by our assumption, is therefore
actually infeasible. Therefore if the D&C fails, our original system Ax = b, −x ≤ 0 is
infeasible.

15

CASE 3: The final case is when the D&C algorithm returns a separating hyperplane (h, δ),
separating B(0, r̂) from the feasible set of (11). We now show that this implies the original
system Ax = b, −x ≤ 0 is infeasible.

If not, then from our assumption, we have a strictly feasible solution x∗ for (9). By
Lemma 3.2, we know that x∗i ≥ 1

n∆A
for all i ∈ {1, . . . , n}. Consider the point (x̄, t̄) =

(2n∆Ax
∗, 2n∆A) in Rn+1. We show that (x̄, t̄) is feasible to (11). Since Ax∗ = b, we

have that Ax̄ − bt̄ = 0. Moreover, since x∗i ≥ 1
n∆A

for all i ∈ {1, . . . , n}, we have that
x̄ = 2n∆Ax

∗ ≥ 1, i.e., −x̄ ≤ −1. Finally, t̄ = 2n∆A ≥ 2, since ∆A ≥ 1 and n ≥ 1.
Therefore, −t̄ ≤ −2. Now we check the norm of this point ‖(x̄, t̄)‖ = ‖(2n∆Ax

∗, 2n∆A)‖ =
2n∆A‖(x∗, 1)‖. Since x∗ ∈ P (A, b) ⊂ B(0, r), we know that ‖x∗‖ < r. Therefore, ‖(x̄, t̄)‖ <
r̂. So (x̄, t̄) is a feasible solution to (11) and (x̄, t̄) ∈ B(0, r̂). But D&C returned a separating
hyperplane separating B(0, r̂) from the feasible set of (11). This is a contradiction. Hence,
we conclude that Ax = b, −x ≤ 0 is infeasible.

Corollary 3.4. Consider the following system.

Ax = b,
0 ≤ x ≤ λ1. (12)

Suppose that we know that the above system is either infeasible, or has a strictly feasible
solution, i.e., there exists x̄ such that Ax̄ = b and 0 < x̄ < λ1. Then there exists an
algorithm which either returns a feasible solution to (12), or correctly decides that the
system is infeasible, with running time

O

(
m3 +m2n+ n2m+ (2n∆Aλ

√
2n+ 1)

1

log2(7
5) (n2 + n log ∆A + n log(λ)

))
.

Proof. We first put (12) a standard form.

Ax = b,
x+ y = λ1,
−x ≤ 0,
−y ≤ 0.

(13)

We will use the constraint matrix of (13) :

Ã =

[
A 0m×n
In In

]
,

where 0m×n denotes the m × n matrix with all 0 entires, and In is the n × n identity
matrix. Therefore, P (Ã, [b, λ1]) is the feasible set for (13). Also, note that ∆Ã = ∆A.

Since 0 ≤ x, y ≤ λ1 for all (x, y) ∈ P (Ã, [b, λ1]), we know that P (Ã, [b,1]) ⊂ B(0, λ
√

2n).
Therefore, we run LFS with r = λ

√
2n and the system (13) as input. Observe that since

(12) has a strictly feasible solution, so does (13). By Theorem 3.3, LFS either returns a
feasible solution to (13) which immediately gives a feasible solution to (12), or correctly

16

decides that (13) is infeasible and hence (12) is infeasible. Moreover, the running time for
LFS is

O

(
(m3 +m2n+ n2m+ (2n∆

√
r2 + 1)

1

log2(7
5) (n2 + n log ∆A + n log(r)

))

= O

(
m3 +m2n+ n2m+ (2n∆Aλ

√
2n+ 1)

1

log2(7
5) (n2 + n log ∆A + n log(λ)

))
.

Corollary 3.4 is related to the following theorem of Schrijver. Let ∆̃A = max{|det(B−1)| |
B is a nonsingular submatrix of A}.
Theorem 3.5 (Theorem 12.3 in [18]). A combination of the relaxation method and the
simultaneous diophantine approximation method solves a system Ax ≤ b of rational linear
inequalities in time polynomially bounded by size(A, b) and by ∆̃A.

On one hand, we have the additional assumptions of being bounded and having strictly
feasible solutions. On the other hand, we can get rid of the dependence of the running time
on size(A, b) and the use of the simultaneous diophantine approximation method, which
utilizes non-trivial lattice algorithms. It is also not immediately clear how ∆A is related
to ∆̃A. We finally prove Theorem 1.3.

Proof of Theorem 1.3. If A is totally unimodular, then ∆A = 1. The result now follows
from Corollary 3.4.

4 A General Algorithm for Linear Feasibility Problems

In this section, we describe an algorithm for solving general linear feasibility problems using
Chubanov’s D&C algorithm and the ideas developed in Section 2. We call this algorithm
the LFG Algorithm, as an acronym for Linear Feasibility problems in General. Before
we can state our algorithm and prove its correctness, we need a couple of other pieces.

Lemma 4.1. [Schrijver Corollary 10.2b] Let P be a rational polyhedron in Rn of facet
complexity φ. Define

Q = P ∩ {x ∈ Rn| − 25n2φ ≤ xi ≤ 25n2φ for i = 1, . . . , n}.

Then dim(P) = dim(Q).

Thus, if we use r̂ = 25n2φ√n then B(0, r̂) will circumscribe the hypercube in the above
lemma from Schrijver. We will also have dim(P) = dim(P ∩B(0, r̂)).

The second piece we need comes from Papadimitriou and Stieglitz [17]. Simply put, the
theorem states that (1) is feasible if and only if some other system is strictly feasible (i.e.
all the inequalities are strict inequalities). The lemma stated below is a stronger version
of their Lemma 8.7 in [17].

17

Lemma 4.2. [Lemma 8.7 in [17]] The system (1) is feasible if and only if

Ax = b,
Cx < d+ ν.

(14)

is feasible, where ν = 2−2T when T is the size of the input data. Moreover, given a solution
to (14), we can construct a solution to (1) in strongly polynomial time.

Algorithm 4.1. THE LFG ALGORITHM

Input: Ax = b, −x ≤ 0.
Output: A feasible point x∗ or the decision the system is infeasible.
Set ν = 2−2T where T is the bit length of the input data
Set a new system

Ax = b,
Cx ≤ d+ ν

2 .
(15)

Parameterize (15):
Ax− bt = 0,
Cx− (d+ ν

2)t ≤ 0,
−t ≤ −1.

(16)

Run Chubanov’s D&C subroutine on the strengthened version of (16)

Ax− bt = 0,
Cx− (d+ ν

2)t ≤ −1,
−t ≤ −2.

(17)

with z = 0, r = r̂ from Lemma 3.2 applied to (17), and ε = 1
If a feasible solution (x∗, t∗) is found

Return x̂ from the proof of Lemma 3.3, with x0 = x∗

t∗

Else Lemma 3.1 implies one of our inequalities is an implied equality
Return “The system (15) is INFEASIBLE”

Theorem 4.3. The LFG Algorithm correctly determines a feasible point x∗ of (1) or
determines the system is infeasible in a finite number of steps.

Proof. To prove the correctness of the algorithm, we need to look at each of the three cases
Chubanov’s D&C can return.
CASE 1: An ε-approximate solution (x∗, t∗) is found for (17). Then (x∗, t∗) is an exact
solution to (16), and x∗

t∗ is a solution to (15), and hence is also a solution to (14). Using
Lemma 4.2, we can construct a feasible solution to our original system (1).
CASE 2: The D&C algorithm fails to complete, returning consecutive separating hyper-
planes (h1, δ1) and (h2, δ2) such that h1 = −γh2 for some γ > 0. By Proposition 2.4,
we know that there exists k ∈ {1, . . . , l} such that ckx = dl + ν

2 for all solutions to
Ax = b, Cx ≤ d+ ν

2 . But this simply implies that Ax = b, Cx ≤ d is infeasible.
CASE 3: The final case is when the D&C returns a separating hyperplane (h, δ). Note

18

that due to the r̂ we use, this already implies (17) is infeasible. Then by Lemma 2.3, we
know there exists some l such that clx = dl + ν

2 for all x satisfying Ax = b, Cx ≤ d + ν
2 .

Again, as in Case 2, this implies that Ax = b, Cx ≤ d is infeasible.

Since the running time of the D&C subroutine is a polynomial in r̂, and r̂ is exponential
in the input data, our algorithm is not guaranteed to run in polynomial time. However,
as mentioned in the Introduction, it has certain advantages over Chubanov’s polynomial
time LP algorithm from [7]. Firstly, it avoids the complicated reformulations used by
Chubanov, which can potentially cause the actual runtime of his algorithm to be bad
in practice. Secondly, the Chubanov Relaxation algorithm requires multiple iterations of
the D&C subroutine, whereas the LFG algorithm uses only one application of the D&C
subroutine.

5 Computational Experiments

In this final section, we investigate the computational performance of the various relax-
ation methods mentioned in the preceding sections. We used MATLAB to implement the
following algorithms.

1. The Chubanov D&C algorithm, as described in Section 2. We use this algorithm on
linear feasibility problems in the following way. We choose z = 0, ε = 1× 10−6 and r
is taken as

√
n+ 1 for binary problems, and it is taken as the input dependent bound

given in Lemma 4.1. This would mean that when the algorithm terminates, we either
have an ε-approximate solution, or we conclude that the system is infeasible.

2. The Chubanov Relaxation algorithm, as described in [6]. Apart from the input data
A, b, C, d, this algorithm requires as input a real number r such that the feasible
region is contained in B(0, r). As with the Chubanov D&C algorithm above, r is
taken as

√
n+ 1 for binary problems, and it is taken as the input dependent bound

given in Lemma 4.1 for general linear feasibility.

3. The LFS algorithm, as described in Section 3. This algorithm also requires as input
a real number r such that the feasible region is contained in B(0, r). As with the
Chubanov D&C algorithm above, r is taken as

√
n+ 1 for binary problems, and it is

taken as the input dependent bound given in Lemma 4.1 for general linear feasibility
problems. Moreover, we require as input ∆A, the maximum subdeterminant of the
matrix A. We use the standard bound ∆A ≤ n

n
2 |amax|n, where amax is the entry of

A with largest absolute value.

4. Two versions of the original relaxation algorithm developed by Agmon [1], and
Motzkin and Schoenberg [15].

Recall that the Chubanov Relaxation algorithm is not really a linear feasibility algo-
rithm; it may sometimes report that the solution has no integer solutions (see the statement

19

of Theorem 1.2). However, we feel it is still interesting to study its practical run time, and
compare it with our linear feasibility algorithms which are also based on the Chubanov
D&C algorithm.

It has already been shown that, for most purposes, the original relaxation method
is not able to compete with other linear programming algorithms [10, 21]. Thus, the
purpose of these experiments is not to compare the running times with current commercial
software. Rather, we want to determine how the new relaxation-type algorithms, based on
the Chubanov D&C algorithm, compare with the original relaxation algorithm suggested
by Agmon, and Motzkin and Schoenberg. Despite the improved theoretical performance of
the new algorithms, the tables below show that, in practice, the original relaxation method
is by far the preferred method in almost every case.

As noted above, the algorithms and experiment scripts were all developed in MATLAB
7.12.0. No parallelization was incorporated into the algorithms. The computational experi-
ments were run on a personal computer with an Intel Core i5 M560 2.67 GHz processor. The
problems used were drawn from the Netlib repository [8], the MIPLIB repository [5, 13],
Hoffman’s experiments [11], Telgen’s and Goffin’s example [10, 21] which shows the expo-
nential behavior of the original relaxation method, and some randomly generated problems.
The code and the problems used are available at http://www.math.ucdavis.edu/∼mjunod/.

In every table, a dash “–” denotes an experiment that exceeded our default time limit of
10 minutes. For example, in Table 1 Chubanov’s algorithm timed out on the third Telgen
experiment. Given the size and complexity of the problems involved, we determined that
any algorithm exceeding 10 minutes had already shown how practically inefficient it was
for that problem. When all of the algorithms timed out on a single problem, the results
for the problem are not reported in the tables. We note here that for some experiments
we rely on some familiarity with the problem and determine our own bound for r in the
algorithms, to speed up the computations. All of the run times reported are in seconds.

We note here that our LFS algorithm timed out on all instances tried. The Chubanov
Relaxation algorithm and the Chubanov D&C algorithms timed out on all Netlib and
MIPLIB problems, as well as on all the problems from Hoffman’s experiments. Hence, the
LFS algorithm is not reported in any table. Results for the Chubanov Relaxation algorithm
and the Chubanov D&C algorithms on the Telgen examples are reported in Table 1, and
their results on the random 0− 1 instances are reported in Table 3.

Table 2 compares two variants of the original relaxation method. The two versions
of the original relaxation method differ only in how the violated constraint is chosen. See
[1, 15] for a full explanation of the algorithm. In the first implementation, called “Regular”
in the tables, we chose the maximally violated constraint as specified by Agmon, and
Motzkin and Schoenberg. Our second implementation, called “Random” in the tables,
randomly chooses a violated constraint to see if there is any practical gain, as Needell’s
paper on the Kaczmarz method [16] suggests might be possible. Every time we ran the
“Random” version on a problem, we ran it 100 times and we are reporting the average
number of iterations, time in seconds, and the standard deviation of each data set. In
the experiments labeled Telgen, only two constraints exist in the problem and only one

20

http://www.math.ucdavis.edu/~mjunod/

Table 1: Telgen Results for the Chubanov Relaxation Algorithm and the Chubanov D&C
Algorithm

Chubanov Relaxation Chubanov D&C

Experiment Recursions
Time

Recursions
Time

(Sec) (Sec)

Telgen (α = 1) 139254 30.4761 51 0.0010

Telgen (α = 2) 2.12991× 106 451.817 109 0.0177

Telgen (α = 3) – – 116 0.0211

Telgen (α = 4) – – 124 0.0169

Telgen (α = 5) – – 132 0.0218

is violated at any iteration. Thus only the “Regular” version is reported as the two gave
identical results. For every experiment we set λ = 1.9 as a higher over-projection constant
increases the speed of convergence, and let ε = 1× 10−6 be our error constant.

Table 3 compares the performance of the Chubanov Relaxation algorithm, the Chubanov
D&C algorithm and the original relaxation algorithm, on the randomly generated 0-1 prob-
lem set. These were problems of the form Ax = b, 0 ≤ x ≤ 1 with the dimension noted in
each row. We limited ourselves to a randomly generated 0-1 matrix A with anywhere from
1 to n − 1 rows, also randomly chosen, and populated b with integers randomly chosen
from the set {1, . . . , n}. For each dimension, we generated 10 random problems and then
reported the average behavior along with the standard deviation. Note that for the D&C
algorithm, the high standard deviations indicate that for the vast majority of the problems
it ran quickly.

Despite what appears to be the reasonable performance of the Chubanov D&C algo-
rithm with the Random 0-1 problems, both the Chubanov Relaxation algorithm and the
LFS algorithm performed much worse (in fact, the LFS algorithm timed out on all in-
stances). Ironically, it is actually the D&C subroutine in these algorithms that causes this.
Indeed, when we strengthen and homogenize the linear system, we greatly increase the
parameter r that is used by the D&C subroutine in these two algorithms, creating a very
large number of new nodes that are added to the recursion tree of the D&C algorithm.
This creates a significant increase in the run times of these new algorithms, and as a result,
they cannot compete practically.

21

T
a
b

le
2
:

T
es

t
R

es
u

lt
s

fo
r

th
e

O
ri

gi
n

al
R

el
ax

at
io

n
A

lg
or

it
h

m
s

R
eg

u
la

r
R

an
d

om

E
x
p

er
im

en
t

It
er

at
io

n
s

T
im

e
(S

ec
)

It
er

at
io

n
s

T
im

e
(S

ec
)

A
v
g/

S
td

D
ev

M
in

/M
ax

A
v
g/

S
td

D
ev

M
in

/M
ax

T
el

ge
n

(α
=

1)
7

0.
00

77
N

/A

T
el

ge
n

(α
=

2)
1
4

0.
00

13
N

/A

T
el

ge
n

(α
=

3)
2
8

0.
00

33
N

/A

T
el

ge
n

(α
=

4)
9
4

0.
00

73
N

/A

T
el

ge
n

(α
=

5)
2
15

3
0.

09
91

N
/A

A
D

L
IT

T
L

E
1
77

4
0.

29
–

–
–

–

A
F

IR
O

1
01

8
0.

07
95

94
8/

0
94

8/
94

8
0.

11
02

/0
.0

05
2

0.
10

82
/0

.1
58

3

B
E

A
C

O
N

F
D

88
2

0.
32

96
–

–
–

–

B
L

E
N

D
5
62

41
7.

46
36

47
83

/0
47

83
/4

78
3

1.
14

51
/0

.0
17

9
1.

11
98

/1
.2

37
7

E
22

6
1
.0

15
92
×

10
6

4
90

.3
99

–
–

–
–

R
E

C
IP

E
L

P
1
10

08
0.

72
45

–
–

–
–

S
C

50
A

2
4

0.
02

45
13

7/
0

13
7/

13
7

0.
03

73
/0

.0
03

4
0.

02
39

/0
.0

58
7

S
C

50
B

9
0.

01
94

86
/0

86
/8

6
0.

03
21

/0
.0

02
8

0.
01

78
/0

.0
42

2

S
C

10
5

50
4

0.
11

33
85

6/
0

85
6/

85
6

0.
12

38
/0

.0
09

4
0.

10
78

/0
.2

10
7

S
C

A
G

R
7

4
17

16
8.

37
7

26
14

4/
0

26
14

4/
26

14
4

4.
85

54
/0

.0
50

7
4.

79
97

/5
.0

11
9

S
H

A
R

E
2
B

5
91

98
6

5
8.

77
18

18
46

9/
0

18
46

9/
18

46
9

5.
86

92
/0

.0
31

6
5.

82
74

/6
.0

65
5

S
T

O
C

F
O

R
1

1
.7

04
2
×

10
6

2
36

.9
71

–
–

–
–

H
off

m
an

(6
D

)
8

0.
00

17
6.

64
/0

.6
59

4
5/

7
0.

01
38

/0
.0

01
5

0.
01

25
/0

.0
16

4

H
off

m
an

(7
D

)
1
1

0.
00

26
8.

78
/0

.9
38

3
6/

10
0.

01
41

/0
.0

01
2

0.
01

31
/0

.0
18

5

H
off

m
an

(8
D

)
1
1

0.
00

19
10

.0
4/

2.
67

77
7/

16
0.

01
39

/0
.0

01
9

0.
00

45
/0

.0
15

1

H
off

m
an

(9
D

)
4
9

0.
00

45
61

.3
2/

6.
60

87
40

/7
7

0.
01

79
/0

.0
02

0
0.

01
48

/0
.0

19
1

H
off

m
an

(1
0
D

)
9
98

2
0.

32
53

–
–

–
–

22

Table 3: Test Results for Random Problems Bounded by the 0-1 Cube [0, 1]n

Chubanov Relaxation Chubanov D&C Original Relaxation

Experiment
Recursions Time (Sec) Recursions Time (Sec) Iterations Time (Sec)
(Avg/SD) (Avg/SD) (Avg/SD) (Avg/SD) (Avg/SD) (Avg/SD)

Random 2D
61420/ 12.309/ 64.7/ 0.0051/ 0.5/ 0.0004/

0 0.2771 21.679 0.0026 0.5 0.0003

Random 3D
151522/ 30.057/ 1258.3/ 0.2122/ 0.75/ 0.0005/

0 0.2518 3799.59 0.6538 0.5 0.0002

Random 4D
520152/ 102.52/ 419657.3/ 70.566/ 0.6667/ 0.0004/

0 0.7359 1.1198× 106 187.59 0.5774 0.0003

Random 5D
1.012× 106/ 199.94/ 1.3395× 106/ 247.76/ 0.3333/ 0.0002/

0 1.8034 1.6308× 106 304.01 0.5774 0.0001

Random 6D
1.733× 106/ 344.36/ 774996.6/ 140.28/ 20/ 0.0015/

0 1.0829 1.63× 106 250.41 26.870 0.0016

Random 7D
2.6938× 106/ 544.78/ 772084.4/ 120.01/

– –
68925 19.641 1.6303× 106 252.98

Random 8D – –
165.3/ 0.0108/ 0.6667/ 0.0004/
355.41 0.0209 0.5774 0.0002

Random 9D – –
309896.5/ 60.004/ 1/ 0.0004/
979808.4 189.74 0 0

Random 10D – –
32224.1/ 2.0451/ 239/ 0.0127/
101037.4 6.3976 0 0

23

References

[1] S. Agmon. The relaxation method for linear inequalities. Canadian J. Math., 6:382–
392, 1954.

[2] E. Amaldi and R. Hauser. Boundedness theorems for the relaxation method. Math.
Oper. Res., 30(4):939–955, 2005.

[3] A. Belloni, R. Freund, and S. Vempala. An efficient re-scaled perceptron algorithm
for conic systems. Mathematics of Operations Research, 34(3):621–641, 2009.

[4] U. Betke. Relaxation, new combinatorial and polynomial algorithms for the linear
feasibility problem. Discrete Comput. Geom., 32(3):317–338, 2004.

[5] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 1998.

[6] S. Chubanov. A strongly polynomial algorithm for linear systems having a binary
solution. Mathematical Programming (to appear), pages 1–38, 2011. 10.1007/s10107-
011-0445-3.

[7] S. Chubanov. A polynomial relaxation-type algorithm for linear programming, un-
published manuscript (2011).

[8] D. M. Gay. Electronic mail distribution of linear programming test problems. 13:10–
12, 1985.

[9] J.-L. Goffin. The relaxation method for solving systems of linear inequalities. Math.
Oper. Res., 5(3):388–414, 1980.

[10] J.-L. Goffin. On the nonpolynomiality of the relaxation method for systems of linear
inequalities. Math. Programming, 22(1):93–103, 1982.

[11] A. Hoffman, M. Mannos, D. Sokolowsky, and N. Wiegmann. Computational expe-
rience in solving linear programs. Journal of the Society for Industrial and Applied
Mathematics, 1(1):pp. 17–33, 1953.

[12] S. Kaczmarz. Approximate solution of systems of linear equations. Internat. J. Con-
trol, 57(6):1269–1271, 1993. Translated from the German original of 1933.

[13] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver Bastert, Timo Berthold,
Robert E. Bixby, Emilie Danna, Gerald Gamrath, Ambros M. Gleixner, Stefan Heinz,
Andrea Lodi, Hans Mittelmann, Ted Ralphs, Domenico Salvagnin, Daniel E. Steffy,
and Kati Wolter. MIPLIB 2010. Mathematical Programming Computation, 3(2):103–
163, 2011.

[14] J.-F. Maurras, K. Truemper, and M. Akgül. Polynomial algorithms for a class of linear
programs. Math. Programming, 21(2):121–136, 1981.

24

[15] T. S. Motzkin and I. J. Schoenberg. The relaxation method for linear inequalities.
Canadian J. Math., 6:393–404, 1954.

[16] D. Needell. Randomized Kaczmarz solver for noisy linear systems. BIT, 50(2):395–403,
2010.

[17] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization : Algorithms and
Complexity. Dover Books on Computer Science. Courier Dover Publications, 1998.

[18] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience Series in
Discrete Mathematics. John Wiley & Sons Ltd., 1986. A Wiley-Interscience Publica-
tion.

[19] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential
convergence. J. Fourier Anal. Appl., 15(2):262–278, 2009.

[20] E. Tardos. A strongly polynomial algorithm to solve combinatorial linear programs.
Math. of Oper. Res., 34(2):250–256, 1986.

[21] J. Telgen. On relaxation methods for systems of linear inequalities. European J. Oper.
Res., 9(2):184–189, 1982.

[22] S. Vavasis and Y. Ye. A primal-dual interior point method whose running time depends
only on the constraint matrix. Mathematical Programming, 74:79–120, 1996.

25

	1 Introduction
	2 Chubanov's Divide and Conquer Algorithm
	2.1 Using the D&C Algorithm
	2.2 Meaning of ``Failure" Outcome in D&C
	2.3 The meaning of when a separating hyperplane is returned by D&C
	2.4 Chubanov's proof of Theorem ??

	3 Linear feasibility problems with strictly feasible solutions
	4 A General Algorithm for Linear Feasibility Problems
	5 Computational Experiments

