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Abstract

Branch-and-price algorithms combine a branch-and-bound search with an exponentially-
sized LP formulation that must be solved via column generation. Unfortunately, the standard
branching rules used in branch-and-bound for integer programming interfere with the structure
of the column generation routine; therefore, most such algorithms employ alternate branching
rules to circumvent this difficulty. This paper shows how a zero-suppressed binary decision
diagram (ZDD) can be used to solve the pricing problem in a branch-and-price algorithm for
the graph coloring problem, even in the presence of constraints imposed by branching decisions.
This approach facilitates a much more direct solution method, and can improve convergence of
the column generation subroutine.

1 Introduction

Branch-and-price algorithms are of increasing interest in many areas of operations research, includ-

ing assignment and scheduling problems (Savelsbergh, 1997; Maenhout and Vanhoucke, 2010), ve-

hicle routing problems (Fukasawa et al., 2006), graph coloring (Mehrotra and Trick, 1996; Malaguti

et al., 2011), multicommodity flow problems (Barnhart et al., 2000), and cutting stock problems

(Vance, 1998; Pisinger and Sigurd, 2007), among others. These algorithms combine a branch-and-

bound search together with a tight linear programming relaxation having an exponential number

of variables (such a formulation can be derived, for example, by the Dantzig-Wolfe decomposition

method described in Dantzig and Wolfe, 1960). This LP relaxation, called the master problem,

is used to produce good bounds that are used to prune suboptimal regions of the search space.

Because the LP relaxation is too large to be stored in memory, it must be solved via column

generation.

Let S be the set of variables for the LP relaxation; each of these variables is associated with a

column of the master problem’s constraint matrix (thus, the constraint matrix has an exponential

number of columns). In the column generation method, a related LP called the restricted master

problem (RMP) is built using a (small) subset S ′ ⊆ S of variables. The RMP can be solved
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efficiently by standard linear programming techniques; however, the solution to the RMP is not

necessarily optimal for the master problem. Therefore, a subroutine called the pricing problem

must be called to either produce a variable in S \ S ′ that may improve the objective value of the

RMP, or provide a guarantee that no such variable exists. If an improving variable is found, it

is added to S ′, and the RMP is re-optimized. New columns are iteratively added to S ′ until the

pricing problem reports that no (potentially) improving variables exist, at which point column

generation is terminated and the solution to the RMP is provably optimal for the master problem.

In this paper, the pricing problem is assumed to be a weighted binary combinatorial optimization

problem which is characterized by a family of “valid” subsets of some universe; in a slight abuse of

notation, solutions to the pricing problem are interchangeably referred to as “variables”, “columns”,

or “subsets”, where the meaning is clear from context. The weights associated with the pricing

problem are usually the optimal dual prices for the current solution to the RMP. Thus, the pricing

problem returns a new variable with negative reduced cost if one exists; if such a variable exists,

it may improve the value of the RMP (Bertsimas and Tsitsiklis, 1997). From this perspective, the

pricing problem is a separation oracle for the dual of the RMP, since new variables for the RMP

correspond to additional constraints in the dual.

Since the pricing problem is itself often NP-hard, and must be solved exactly, solving it is

typically the most computationally-intensive part of a branch-and-price procedure. Moreover, when

combined with the standard integer branching scheme used in most branch-and-bound algorithms,

the structure of the pricing problem is destroyed (Barnhart et al., 1998). In such a branching

scheme, a variable xi with fractional value α is selected at a subproblem in the search tree, and

two children are created with additional bounding constraints xi ≤ bαc and xi ≥ dαe (when all

variables are binary, this is called 0− 1 branching). However, imposing these constraints changes

the structure of the dual problem, which in turn means that a different separation oracle must be

queried at each subproblem in order to generate new columns.

In effect, the pricing problem at these subproblems no longer seeks a variable of minimum

reduced cost; it now must produce a variable with minimum reduced cost that respects the current

branching decisions. This problem, called the constrained pricing problem, is much harder

than the regular (or unconstrained) pricing problem, and is often related to the kth-shortest-path

problem, which is well-known to be a challenging NP-hard problem (Garey and Johnson, 1979).
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Moreover, many branch-and-price formulations have an inherent asymmetry due to the large

number of variables in the formulation. This asymmetry can lead to extremely lopsided search trees

if standard integer branching techniques are used. For example, in a problem with many covering

constraints (of the form
∑

i xi ≥ b), fixing a variable to zero may not induce much change in the LP

relaxation, but fixing a variable to 1 may immediately satisfy many constraints. Thus long paths

in the search tree can exist where many variables are fixed to 0 but no progress towards a solution

is made.

Therefore, most branch-and-price algorithms employ specialized branching rules or other tech-

niques to avoid eliminating the pricing problem structure, as well as to maintain a more balanced

search tree. For example, some branching rules modify the problem structure at each subproblem

in the search tree (e.g., the graph coloring rule of Mehrotra and Trick, 1996); others branch on orig-

inal (non-reformulated) problem variables, or problem constraints (Vanderbeck, 2011). A related

scheme by Morrison et al. (2014a) uses a modified branching scheme called wide branching, which

does not wholly eliminate calls to the constrained pricing problem, but restructures the search tree

in an attempt to reduce the number of such calls.

An alternate approach, called robust branch-and-cut-and-price (BCP), eliminates calls to

the constrained pricing problem by further modifying the RMP so that branching restrictions can

be added without interfering with the pricing problem structure (de Aragão and Uchoa, 2003). This

approach introduces additional variables and constraints into the RMP to form a linear program

called the explicit master, which has the same objective value as the RMP. Furthermore, branch-

ing decisions made by the algorithm can be communicated to the pricing problem by imposing

constraints on the reduced cost values in the dual of the explicit master. This approach has been

used successfully in many variants of the capacitated vehicle routing problem (Pessoa et al., 2008;

Fukasawa et al., 2006), as well as related problems such as the capacitated minimum spanning tree

problem (Uchoa et al., 2008).

However, no algorithm in the literature has described a way to perform branch-and-price without

using techniques like robust BCP or alternative branching rules, which often come at the expense

of ease of implementation and less-direct (global) solution methods. Alternate branching rules do

not allow variables to be directly fixed to values, but rely on problem structure to implicitly fix

variables. Similarly, the robust branch-and-cut-and-price methods require the solution of a larger
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LP at each subproblem, and again use implicit methods to fix variables. The wide branching

approach allows variables to be fixed explicitly, but to obtain good performance, it requires the

derivation of a problem-specific branching rule.

Therefore, the primary contribution of this research is to establish an efficient method for solving

the pricing problem in a branch-and-price algorithm for graph coloring that is directly compatible

with the standard integer branching scheme for graph coloring. Two algorithmic ideas enable this

result: the first is to use a data structure called a zero-suppressed binary decision diagram

(ZDD) to compactly store all valid solutions to the pricing problem. A linear-time algorithm

is presented which adds restrictions to the ZDD to prohibit previously-generated columns from

being produced a second time, which allows the constrained pricing problem to be solved at every

iteration of column generation. The second idea combines the above solution procedure with the

cyclic best-first search (CBFS) strategy to overcome the lopsided search trees that can result when

using standard integer branching with exponentially-sized problems. Computational results are

presented showing nearly order-of-magnitude improvements in solution time for some instances

when using these two ideas, together with a proof of optimality for several previously unsolved

instances.

The remainder of this paper is organized as follows: Section 2 defines the ZDD data struc-

ture and shows how it can be used to solve the pricing problem for the graph coloring problem.

This is done in three parts: first, Section 2.1 shows how ZDDs can be used to solve an arbitrary

unconstrained pricing problem; secondly, Section 2.2 shows how to modify this ZDD to solve the

constrained pricing problem; finally, Section 2.3 shows how to build a ZDD for the pricing problem

in the graph coloring problem, namely, the maximal independent set problem. Next, Section 3

describes the cyclic best-first search strategy and how it is used to mitigate the effects of lopsided

search trees. In Section 4, the computational results are given showing the effectiveness of the de-

veloped algorithm. Finally, Section 5 outlines several future research directions for this technique.

2 Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (Minato, 1993) is an extension of the binary decision

diagram (BDD) data structure proposed by Lee (1959) and Akers (1978). A BDD is a directed
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acyclic graph that compactly encodes a binary function. Previously, BDDs have been used in

circuit design and verification, as well as a number of formal logic applications (Bryant, 1992).

More recently, BDDs have been used in a number of different optimization applications: Bergman

et al. (2012a) explore different variable orderings for BDDs used to characterize the independent

sets of a graph, and Hadžić and Hooker (2008) add weights to the edges of a BDD to perform

post-optimality analysis in a discrete optimization setting. Finally, Cire et al. (2012) and Bergman

et al. (2012b) describe how to use BDDs to compute upper and lower bounds to prune subproblems

in a branch-and-bound algorithm.

Despite their success in these related areas, BDDs and ZDDs have not appeared in conjunction

with branch-and-price in the literature before. Behle and Eisenbrand (2007) give a method for

using BDDs to enumerate vertices and facets of 0/1 polyhedra (which can be viewed as solving

the pricing problem for a problem which has been reformulated via Dantzig-Wolfe decomposition),

but they do not extend this result to the branch-and-price setting. Additionally, Behle (2007)

uses BDDs to generate valid inequalities in a branch-and-cut algorithm to perform row generation

instead of column generation.

The use of decision diagrams together with branch-and-price algorithms can provide substantial

benefits to algorithm performance. This is because decision diagrams often yield a way to compactly

(in practice) store all the columns even for an exponentially-sized integer program. Note that

column generation techniques must still be used to solve the RMP, because the columns encoded

in the ZDD cannot be operated on directly by the LP solver. Nonetheless, since the LP solver

has (implicit) access to all columns, the pricing problem can be solved exactly at every iteration

of column generation, which may improve the convergence of the column generation procedure. In

contrast, most branch-and-price solvers terminate the pricing problem solver as soon as a column

with “sufficiently negative” reduced cost is found, due to the difficulty of solving the pricing problem.

Moreover, as shown in Section 2.2, the set of valid pricing problem solutions can be modified in

place, allowing branch-and-price algorithms using ZDDs to employ standard integer branching

methods.
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2.1 Definitions and Notation

A ZDD is a modified version of a BDD that removes some nodes from the data structure to reduce its

size. ZDDs are most useful when the binary function it encodes is “sparse” in the sense that there are

relatively few valid solutions to the function compared to the number of invalid solutions. Minato

(1993) observed that many combinatorial optimization problems have the sparsity characteristic;

thus, ZDDs are likely to be more useful in a branch-and-price setting than ordinary BDDs.

Formally, a ZDD Z is defined as follows. Let E be an ordered set of n elements (e1, e2, . . . , en);

then Z is a directed acyclic graph satisfying the following properties:

1. There are two special nodes in Z (denoted 1 and 0), called the true node and false node,

respectively. Additionally, there is exactly one “highest” node in the topological ordering of

Z, called the root of Z, and denoted r.

2. Every node a ∈ Z − {1,0} has two outgoing edges, a high edge and a low edge, which

point to the high child and low child, respectively. The high (low) child of a is denoted

hi(a) (lo(a)). The true and false nodes have no outgoing edges. The indegree of a, denoted

δ−(a), is the number of incoming edges to a; thus, δ−(r) = 0.

3. Every node a ∈ Z−{1,0} is associated with some element ei ∈ E ; the index of the associated

element for a is given by var(a), that is, var(a) = i. By convention, var(1) = var(0) = n+ 1.

Finally, if var(a) = i, then var(hi(a)) > i and var(lo(a)) > i.

4. No a ∈ Z has hi(a) = 0 (this property, called the zero-suppressed property, is not satisfied

by ordinary BDDs).

Any set A ⊆ E induces a path PA from the root of Z to either 1 or 0, in the following manner:

starting at the root of Z, if a is the current node on the path, the next node along the path

is hi(a) if evar(a) ∈ A, and lo(a) otherwise. The output of Z on A, denoted Z(A), is the last

node along this path, which must be either 1 or 0. If Z(A) = 1(0), then Z accepts (rejects)

A. Note that it is not required for var(b) = var(a) + 1 when b is a child of a; in the case when

var(b) > var(a) + 1, the edge is called a long edge, and when an induced path PA includes such an

edge, if {evar(a)+1, evar(a)+2, . . . , evar(b)−1}∩A 6= ∅, then Z rejects A. Finally, a ZDD characterizes
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a family of sets F ⊆ 2E (denoted ZF ) if Z accepts all sets in F , and rejects all sets not in F (see

Figure 1).

Figure 1: Let E = (e1, e2, e3, e4), and F = {∅, {e1, e2}, {e3, e4}, {e1, e2, e3, e4}} (Andersen, 1997).
Solid lines represent high edges, and dashed lines represent low edges; all edges are directed down-
wards. Grey nodes indicate whether ZF accepts A.

e1

e2

e3

e4

1 0

(a) The unique small-
est ZDD characteriz-
ing F for the given
variable ordering.

e1

e2

e3

e4

1 0

(b) The induced path
corresponding to the
set A = {e3, e4}.

e1

e2

e3

e4

1 0

(c) The induced path
corresponding to the
set A = {e3}.

e1

e2

e3

e4

1 0

(d) The ZDD
does not accept
A = {e1, e2, e4} since
the long edge skips
e4, but e4 ∈ A.

For an arbitrary family F and an arbitrary vertex ordering, the size of ZF (that is, the number

of nodes and edges in the graph, denoted |ZF |) may be exponential in n. However, Bryant (1986)

shows that for any fixed variable ordering, every boolean function has a unique smallest BDD

characterizing it. This result extends to ZDDs by observing that membership in F can be defined

as a boolean function. One way to construct the unique smallest ZDD characterizing F is to first

construct the BDD for F ’s indicator function, and then iteratively delete nodes whose high edge

points to 0, connecting the low edge to the node’s parent. Alternately, there exists a recursive

algorithm to construct ZF directly (Knuth, 2008).

Note that the choice of ordering on the elements of E is important; Bryant (1986) shows examples

where different variable orderings yield BDDs of dramatically different sizes for the same function.

In fact, it is NP-hard to determine the variable ordering for any arbitrary boolean function that

will yield the smallest BDD (Bollig and Wegener, 1996). These results apply for ZDDs as well;

nevertheless, the use of heuristic variable orderings often results in tractably-sized ZDDs in practical

applications.
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To see how ZDDs can be used to solve the unconstrained pricing problem in a branch-and-price

algorithm, let F be the set of all valid solutions to the pricing problem. Then, using the technique

of Hadžić and Hooker (2008), assign weights to the edges of ZF and compute the longest path or

shortest path in ZF from the root to 1, depending on whether the pricing problem is a maximization

or minimization problem. Specifically, let (π1, π2, . . . , πn) be a weight vector for the elements of

E ; set the weight of edge (a, b) ∈ ZF to πvar(a) if b = hi(a), and 0 otherwise. Then, finding the

longest or shortest path with respect to {π} from the root of ZF to 1 can be found in O(|ZF |) time

using dynamic programming (Sedgewick and Wayne, 2011). The resulting path corresponds to the

optimal solution to the pricing problem (see Figure 2).

e1

e2

e3

e4

1 0

−1

−1

2

1

Figure 2: The ZDD from Figure 1a with weights given by the objective function
max [−e1 − e2 + 2e3 + e4]; the bold path corresponds to the maximum-weight valid set, that is
{e3, e4}. Weights not shown are 0.

2.2 The ZDD Restriction Algorithm

In order to use standard integer branching methods in a branch-and-price algorithm it is necessary

to solve the constrained pricing problem. Recall that this problem seeks a new variable of minimum

reduced cost that respects all branching decisions made at the subproblem. Note that it is sufficient

to generate a new variable that does not appear in the pool S ′ for the RMP; to see this, observe that

if any variable in S ′ has negative reduced cost, then the current solution to the RMP is not optimal.
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Therefore, in this section, an algorithm is presented to add restrictions to a ZDD characterizing the

pricing problem so that any time a new column is generated and added to S ′, it can be immediately

restricted from ever being generated as a solution to the pricing problem again. In this way, the

ZDD will actually solve the constrained pricing problem at each iteration of the algorithm.

Let F be the family of valid solutions to the pricing problem, where each A ∈ F is a subset

of E = (e1, e2, . . . , en), and let ZF be the ZDD characterizing F . The restriction algorithm for

ZDDs, called RestrictSet, takes as input a set A ∈ F , and builds a new ZDD ZF ′ that accepts

F ′ = F − A. The key feature of the ZDD restriction algorithm that makes it effective in practice

is that it operates in O(n) time, and it increases the size of ZF by at most n nodes and 2n edges

(and often by much less).

Intuitively, the RestrictSet algorithm identifies the path PA in ZF corresponding to the set

A, and updates this path so that it ends at the false node instead of the true node. However, if

there exists A′ 6= A such that PA and PA′ overlap, this update could also restrict A′. Therefore,

RestrictSet duplicates the portion of PA that could overlap with some other root-to-1 path, and

sets the endpoint of the duplicate path to 0. This ensures that no additional sets are restricted by

the algorithm. The first node on PA with indegree greater than one, referred to as the split node,

is the first node with some potential overlap; thus it, and all subsequent nodes, are duplicated.

Pseudocode for the RestrictSet algorithm is given in Algorithm 1; this algorithm makes use of

a function called ZF .insert(i, a1, a2), which takes as input an index i ∈ {1, 2, . . . , n} and pointers

to two pre-existing nodes a1, a2 ∈ ZF . The function inserts a new node into ZF associated with

element ei, with low edge pointing to a1 and high edge pointing to a2, and returns a pointer to the

newly-inserted node. It also updates the indegrees of the high and low children. ZF .insert can be

implemented in (average) constant time (see Andersen, 1997 for details).

The following theorem establishes the correctness of the RestrictSet algorithm and proves

the claims made previously about its time and space complexity behavior; an example of the

RestrictSet applied to the ZDD in Figure 1a is given in Figure 3.

Theorem 1. Given a ZDD ZF describing a family of subsets F of an ordered set E with n elements,

together with a set A ∈ F , the RestrictSet algorithm modifies ZF in O(n) time to produce a new

ZDD called ZF ′ such that F ′ = F −A. Furthermore, |ZF ′ | ≤ |ZF |+ 3n.
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Algorithm 1: RestrictSet(ZF , A)

input: A ZDD ZF and a characteristic vector (α1, α2, . . . , αn) for a set A ∈ F
output: A modified ZDD ZF ′ such that F ′ = F −A

1 〈〈 Find the first node on PA with indegree higher than 1 〉〉
2 a = root(ZF ); b = −1
3 while δ−(a) < 2 and a 6∈ {1,0} :
4 i = var(a); b = a
5 if αi : a = hi(a)
6 else: a = lo(a)

7 〈〈 The node c is the “split” node, and b is its parent 〉〉
8 c = a

9 〈〈 Make copies of all remaining nodes on PA and point to 0 〉〉
10 list = ()
11 while a 6∈ {1,0} :
12 list.append(a)
13 if αvar(a) : a = hi(a)

14 else: a = lo(a)

15 a′ = 0
16 〈〈 Insert the duplicated nodes into ZF 〉〉
17 for each a ∈ list (in reverse order) :
18 if αvar(a) : a

′ = ZF .insert(var(a), lo(a), a′)

19 else: a′ = ZF .insert(var(a), a′,hi(a))

20 〈〈 Point the correct edge of the parent node b to the root of the duplicated path 〉〉
21 if αvar(b) : hi(b) = a′

22 else: lo(b) = a′

23 return ZF

Proof. First, note that RestrictSet visits each node along PA at most twice, and PA has at most

n nodes. Furthermore, the algorithm performs a constant amount of work for each visited node.

Thus the running time of RestrictSet is O(n). Also, since node c is at most the root of ZF , at

most |E| nodes are added to ZF to form ZF ′ , and each new node has two outgoing edges.

To prove that ZF ′ has the desired properties, let a′1, a
′
2, . . . , a

′
l be the nodes added to ZF in lines

18-19 (Algorithm 1), in increasing order of depth. Consider some set A′ ⊆ E ; if A′ = A, the path

from the root of ZF ′ to the bottom of the ZDD is the same as the path from the root of ZF up to

the parent b of the split node c. By construction, the next node visited in ZF ′ is a′1 (lines 21 and

22, Algorithm 1). Then, the remainder of the path in ZF ′ follows the added nodes; at each a′i, the

high and low children are constructed to agree with the values of A. Finally, the last node along

this path is 0 (line 15, Algorithm 1), so ZF ′(A′) = 0.
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Furthermore, if A′ 6= A, then consider the first index i where the characteristic vectors of A

and A′ differ; if i < var(c), then the modifications to ZF ′ have no effect on whether A′ is accepted,

since the only nodes added to ZF ′ appear at depths greater than or equal to that of c. However, if

i ≥ var(c), the path will follow along the newly added nodes a′1, a
′
2, . . . , a

′
j , where var(a′j) = i. At

this point, A and A′ differ, and by construction, the path returns to the original node in ZF and

never returns to the newly-added nodes. Therefore, ZF ′(A′) = ZF (A′), as desired. �

To reduce the size of ZF ′ , a check can be performed to see if the high and low edges of newly-

inserted nodes both point to 0; in this case, the node is suppressed (see Figure 3c). Finally, note

that the ZDD produced by the RestrictSet is no longer necessarily minimal with respect to F ′.

In particular, in the worst case, if all 2n subsets of E are restricted, the size of the ZDD can grow by

O(n2n) nodes. However, in this case, the resultant ZDD is Z∅, which can be described with only

two nodes. In the event that the ZDD becomes too large, a reduction algorithm can be periodically

called that searches for duplicate nodes in ZF that can be merged.

Figure 3: The result of applying the RestrictSet algorithm to ZF from Figure 1a with A =
{e1, e2, e3, e4}. The final ZDD accepts F ′ = {∅, {e1, e2}, {e3, e4}}.

e1

e2

e3

e4

1 0

c

b

a1

a2

(a) The path PA is in bold; the
split node c is the first node
along this path with indegree
larger than 1. The parent of
the split node is b.

e1

e2

e3

e4

1 0

b

e3

e4

a′1

a′2

a1

a2

(b) Copies of nodes a1 and a2
are created, and the high edge
from b points to this new path.
The new path points to 0, thus
restricting the set A.

e1

e2

e3

e4

1 0

e3

(c) The new ZDD ZF−A; since
both high and low edges of
a′2 point to 0, it can be sup-
pressed. a′1 is also suppressed
to satisfy the zero-suppressed
property.
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Using the RestrictSet procedure, a branch-and-price algorithm can be developed that uses

traditional integer branching. This branch-and-price algorithm first builds a ZDD characterizing

all valid solutions to the pricing problem; in the worst case, this may take exponential time,

but dynamic programming or memoization techniques can be used to speed up the construction.

The ZDD is then used to produce new variables at every iteration of column generation, which

correspond to solutions of the constrained pricing problem. Once a new set (or variable) has been

generated, RestrictSet is called to prohibit that column from being generated again at a later

time. The ZDD is therefore guaranteed to produce the optimal solution to the pricing problem at

each stage, and since in most cases n � |ZF |, the increase in size of the ZDD over the course of

the branch-and-price search is small. Hence, the time needed to solve the pricing problem does not

significantly increase over the course of the algorithm. Pseudocode for the resulting branch-and-

price search is given in Algorithm 2.

Algorithm 2: Branch-and-Price with ZDDs

1 Construct ZF , where F is the set of valid columns
2 Compute an initial pool S ′ of columns for the RMP
3 for each A ∈ S ′ : ZF = RestrictSet(ZF , A)
4 Initialize the branch-and-price search tree T

5 〈〈 Main branch-and-price loop 〉〉
6 while T has an unexplored subproblem :
7 Select a subproblem s that has not been explored
8 Generate children of s according to branching rule
9 for each child of s :

10 〈〈 Column generation loop 〉〉
11 while ∃ a variable in S \ S ′ with negative reduced cost :
12 Use ZF to generate a variable A ∈ S \ S ′ with negative reduced cost
13 RestrictSet(ZF , A)
14 Add A to S ′ and re-optimize the RMP

15 Apply pruning rules to delete child, or insert child into T

16 Mark s as explored

17 return the best solution found in T

2.3 The Maximal Independent Set ZDD

The graph coloring problem is a classic NP-hard problem (Garey and Johnson, 1979); given a graph

G = (V,E), the objective is to find a minimum proper coloring of vertices (i.e., a coloring in
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which no adjacent vertices share colors). The chromatic number χ of G is the minimum number

of colors required in any proper coloring. For a vertex v, the neighborhood of v, denoted by

N(v), is the set of vertices adjacent to v. For a subset S ⊆ V , the induced subgraph G[S] is the

subgraph of G with vertex set S that has an edge between u, v ∈ S if and only if (u, v) is an edge

in G. A set S ⊆ V is an independent set if G[S] has no edges, and S is a maximal independent

set if there is no vertex v ∈ V \S such that S+v is independent. For any set of vertices S, a vertex

v is covered if v ∈ S or v ∈ N(S). Finally, a set S ⊆ V is a clique if all pairs of vertices in S are

adjacent.

The integer programming formulation for graph coloring used in most state-of-the-art solvers,

initially proposed by Mehrotra and Trick (1996), is as follows:

minimize
∑
S∈S

xS

subject to
∑
S:v∈S

xS ≥ 1 ∀ v ∈ V

xS ∈ {0, 1}.

(1)

In this formulation, S is the (exponential) family of maximal independent sets in G; since any proper

coloring can be viewed as a partition of V into independent sets, this is equivalent to searching for

the smallest coloring. The binary variables xS indicate whether the maximal independent set S

is used in the coloring, and the constraints ensure that each vertex in the graph appears in some

color class.

The pricing problem for the graph coloring problem as formulated in (1) is a maximum-weight

maximal independent set problem, where the weights on the vertices are given by the values of the

dual variables of the RMP. If a maximal independent set S with weight larger than 1 is found, then

variable xS has negative reduced cost, which means that xS is a candidate to improve the solution

value of the RMP and can be added to S ′.

These solvers often use a branching rule called edge branching to avoid destruction of the

pricing problem. Edge branching selects two non-adjacent, uncolored vertices in G and creates

two branches, one in which the vertices are linked by an edge, and one in which they are merged

together (Mehrotra and Trick, 1996). However, in this paper, a ZDD is built characterizing the
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family of maximal independent sets of G, and is used with a standard 0 − 1 branching method

(called variable branching by Malaguti et al., 2011).

To build a ZDD for the pricing problem of formulation (1), fix an ordering {v1, v2, . . . , vn} on

the vertices of the graph, and for some vertex u ∈ V , let u− 1 be the vertex immediately preceding

u in this ordering (in this setting, the vertex set V plays the role of E). This section describes

a recursive algorithm for building the minimal ZDD (with respect to this vertex ordering) that

characterizes F = {A | A is a maximal independent set in G}.

The maximal independent set ZDD is stored as a lookup table; if a is an index in this table,

the lookup table stores var(a), lo(a), hi(a), and δ−(a). In addition, to facilitate the merging of

isomorphic regions of the ZDD, a reverse lookup table is stored that maps a tuple (i, b, c) to an

index a such that var(a) = i, lo(a) = b, and hi(a) = c, if such an a exists in ZF . This reverse table

is implemented as a hash table which allows for average constant insertion and lookup time.

A recursive construction algorithm for ZF , called MakeIndSetZDD, can be formulated following

the general approach given in Knuth (2008). At each stage, a set U of k vertices and an index

i ≤ k + 1 is given as input to MakeIndSetZDD; U is the set of uncovered vertices for some (not

necessarily maximal) independent set R ⊆ {v1, v2, . . . , ui − 1}. Here, vertices {ui, ui+i, . . . , uk} can

still be added to this (hypothetical) set R. To construct the ZDD node corresponding to U and

i, the high child bh and low child b` must first be constructed. To do this, vertex ui and all its

neighbors are removed from U to form a set UH , and h is set to the index (in UH) of the first vertex

appearing after ui in the vertex ordering, or |UH | + 1, if no such vertex exists. Then, to compute

bh, MakeIndSetZDD(UH , h) is called; this mimics the addition of vertex ui to an independent set R

at the current node. Conversely, to compute the low child, MakeIndSetZDD(U, i+1) is called, which

forbids vertex ui from being used in R. To ensure minimality of ZF , before a node corresponding

to some set U and index i is inserted, the algorithm checks to see if any node a exists in the ZDD

with var(a) = i, hi(a) = bh, and lo(a) = b`. If such a node exists, the index of that node is returned;

otherwise a new node is inserted.

In the base case, i = k + 1 (that is, no more vertices can be added to an independent set

from the current node). If U is empty, all vertices in G are covered by an independent set, so

the algorithm returns 1; if U is not empty, there is some uncovered vertex in U , so the algorithm

returns 0 (in fact, a tighter base case can be developed by observing that if there is some vertex in
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{u1, u2, . . . , ui−1} that is not adjacent to any vertex in {ui, ui+1, . . . , uk}, it is impossible to build

a maximal independent set from the current ZDD node).

Pseudocode for MakeIndSetZDD is given in Algorithm 3; to build ZF , MakeIndSetZDD(V, v1) is

called. An example of running MakeIndSetZDD on the graph in Figure 4 is given in Figure 5.

Algorithm 3: MakeIndSetZDD(U, i)

input: A set U = {u1, u2, . . . , uk} of uncovered vertices such that uj < uj+1 with respect to
the vertex ordering on V , and a “current index” i

output: The root node of a ZDD characterizing all the maximal independent sets in G[U ]
that can be formed with vertices in {ui, ui+1, . . . , uk}

1 if G[U ] cannot be covered by taking all vertices in {ui, ui+1, . . . , uk} : return 0
2 if U == ∅ : return 1

3 UH = U − ui −N(ui) 〈〈 Use vertex ui; remove it and its neighbors from U 〉〉
4 h = min{j | uj > ui and uj ∈ UH} or |UH |+ 1 if no such j exists
5 bh = MakeIndSetZDD(UH , h)
6 b` = MakeIndSetZDD(U, i+ 1)

7 if bh == 0 : return bl
8 〈〈 Use reverse lookup table 〉〉
9 if ∃ a ∈ ZF s.t. var(a) = i, lo(a) = b`, and hi(a) = bh : return a

10 else: return ZF .insert(i, b`, bh)

v1

v2

v3

v4v5

Figure 4: An example graph with a vertex ordering.

Note that MakeIndSetZDD does not actually maintain the vertices that are used in a current

independent set R during the ZDD construction. It is sufficient to maintain a list of vertices that

are left uncovered by some independent set, since many independent sets may yield the same set

of uncovered vertices.

A number of different ordering heuristics can be applied to the vertex set of G to derive ZDDs

of varying size. The rule that was empirically found to produce the smallest ZDDs is the maximal

path decomposition rule, which computes a set of paths P1, P2, . . . , Pq such that Pi is maximal in
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Figure 5: A visualization of the steps taken by MakeIndSetZDD to build ZF for the example graph
given in Figure 4. Grey nodes and edges have been visited by a recursive call, but are not yet stored
in the ZDD. Black nodes and edges have been stored in the ZDD’s lookup table. Bold elements
have been inserted in the most recent step of the algorithm; nodes are labeled in order of insertion.
The set listed to the right of each node is the set U for that recursive call; the notation [n] denotes
the set {1, 2, . . . , n}.

v1

1 0

v3

[5]

{3, 4}

(a) Two recursive calls are made;
using vertices v1 and v3 leaves U
empty, so 1 is returned. No nodes
have been inserted into the ZDD
at this point.

v1

1 0

v3

v4

[5]

{3, 4}

{3, 4}

a

(b) If v1 is used and v3 is not used,
v4 must be used. Node a is the
first node inserted in the ZDD.

v1

1 0

v3

v4

[5]

{3, 4}

{3, 4}

a

b

(c) Both children of b, the high
branch of the root, have been
computed, so b is inserted into the
ZDD.

v1

v2

1 0

v3

v4

[5]

[5]

v4 {4}{3, 4}
a

b

a′

(d) If v1 is not used in an indepen-
dent set, and v2 is, v4 must also be
used to ensure maximality. Node
a′ is computed as the high child,
but is not inserted because it is a
duplicate of node a.

v1

v2

v3

v5

1 0

v3

v4

{1, 5}

[5]

[5]

[5]

a

b

c

(e) If v3 is the first vertex used in
an independent set, v5 must also
be used to ensure maximality.

v1

v2

v3

v5

1 0

v3

v4

a

b

c

d

e

r

(f) Some vertex in {v1, v2, v3}
must be used in any maximal in-
dependent set of G, so lo(d) = 0.
All branches are now complete
and the algorithm terminates.

16



G[V −⋃i−1
j=1 Pj ]. The vertices are then ordered as

v11, v
1
2, . . . , v

1
l1 , v

2
1, v

2
2, . . . , v

2
l2 , v

q
1, v

q
2, . . . , v

q
lq
,

where vji is the ith vertex along the path Pj , and lj is the length of path Pj . Morrison et al. (2014c)

show that the number of nodes associated with the kth vertex in this ordering is bounded by the

kth Fibonacci number Fk.

3 Cyclic Best-First Search

As described in Section 1, when using standard integer branching in a branch-and-price setting,

the structure of the search tree can become extremely unbalanced. In particular, long chains of

assignments that make no progress towards a solution exist, which (if explored) can dramatically

increase the search time. Moreover, in many cases these long chains appear more promising than

shorter chains which progress towards a solution. For instance, in a problem with many covering

constraints of the form
∑

i xi ≥ b, setting a variable xi = 0 generally does not change the lower

bound much, nor does it restrict the solution considerably since many other unfixed variables could

also satisfy the constraint.

Therefore, standard search strategies such as depth-first search (DFS) or best-first search (BFS)

do not perform particularly well in this setting. If DFS gets unlucky, it can start exploring some

long chain early in the process which does not improve the incumbent solution but requires a large

amount of search time. On the other hand, a strategy like BFS which relies on the lower bound

to perform node selection will also perform poorly, since the lower bounds along the long branches

will often be smaller than lower bounds in other parts of the tree.

Historically, the iterative deepening depth-first search (IDFS) strategy (Korf, 1985) has been

used in such settings to prevent the exploration of long chains that do not make progress towards

better incumbents. However, this paper proposes the use of the cyclic best-first search (CBFS)

strategy as an alternative search strategy that enables the use of lower bound information during

subproblem selection. The CBFS strategy, originally proposed by Kao et al. (2009) (and called dis-

tributed best-first search in their paper), has since been used successfully in a number of additional
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settings including two different scheduling problems (Morrison et al., 2014b; Sewell et al., 2012).

This search strategy can be thought of as a hybrid algorithm between DFS and BFS; the

algorithm uses a measure-of-best function µ to select the next subproblem to explore (as in BFS),

but repeatedly cycles through a set of labeled contours (i.e., a collection of subproblems), selecting

one subproblem from each contour to explore before advancing to the next contour. The cyclic

behavior can be thought of as a variant of backtracking in DFS. The contour labels are simply

taken from N0 as a way to order the set of contours. For example, the levels of the search tree

provide a natural contour definition, where subproblems are grouped by their distance from the

root of the tree (see Figure 6a).

Let Ci denote the contour with label i; Once a subproblem has been explored from Ci, CBFS

chooses the next subproblem for exploration from Ci+p, where p = min{p′ ∈ Z+ | Ci+p′ 6= ∅},

and index addition is done modulo K (the largest contour label currently in use). The subproblem

chosen from this contour is one that minimizes the measure-of-best function µ. In contrast, BFS

always chooses the subproblem with the best (global) value of µ to explore. Pseudocode for the

CBFS strategy is given in Algorithm 4; this code is called in Line 7 of Algorithm 2 to select a new

subproblem for exploration.

Previous implementations of CBFS have only used the depth-based contour definition; however,

this contour definition does not produce better performance than DFS or BFS, for the same reason

that BFS performs poorly. In fact, CBFS can produce worse performance than DFS in some

instances of the graph coloring problem, for instance if DFS gets lucky and finds a good incumbent

early. The key insight provided here is that other, more complicated, contour definitions are

possible which may dramatically improve the search process for branch-and-price algorithms for

graph coloring.

In particular, consider the following contour definition (called the positive assignment defini-

Algorithm 4: CBFS

1 Let i be the label of the contour containing the last explored subproblem
2 if ∃ Cj 6= ∅ with j > i :
3 Let j be the first index larger than i of a non-empty contour
4 else:
5 Let j be the first index in {0, 1, . . . , i} of a non-empty contour
6 return s ∈ arg mins′∈Cj

µ(s′)
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Figure 6: Subproblems in a search tree with two different contour functions. Dashed lines indicate
an assignment of 0 to the variable at that subproblem. The number in the center of each node is
the label of the contour that subproblem is assigned to.
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(b) The positive assignment contour definition

tion), which assigns a subproblem to contour ` if and only if there have been ` branching decisions

made of the form xi = 1 (called a positive assignment). Using this contour definition significantly

restructures the order in which subproblems are selected for exploration (see Figure 6b). In partic-

ular, using this definition prohibits the immediate exploration of a child subproblem which assigns

xi = 0, even if the lower bound at this child is better than the lower bound at the xi = 1 child.

In this way, the search is weighted towards exploration of subproblems that make positive assign-

ments, which serves to counterbalance the effects of a lopsided search tree. In essence, the positive

assignments can be thought of as discrepancies in limited discrepancy search (Harvey and Ginsberg,

1995; Korf, 1996): most of the maximal independent sets in G will not be used, but a few, the

discrepancies, will be.

4 Computational Results

A branch-and-price algorithm for the graph coloring problem was implemented using a ZDD to solve

the pricing problem, together with the CBFS strategy for subproblem exploration, and computa-

tional experiments were run on a subset of the instances from the DIMACS graph coloring challenge

(Johnson and Trick, 1996; Trick, 2005). This section describes some implementation details for this

program, called B&P+ZDD, and discusses the results of these experiments and a comparison to the
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best algorithms in the literature.

4.1 Initialization and Preprocessing

To reduce the size of problem instances, B&P+ZDD uses a standard preprocessing technique: a search

is done to find a large clique C in the graph, and any vertex v ∈ V with degree less than |C| is

removed. Since a valid coloring for G must use at least |C| colors, at least one color exists in any

proper coloring that is not assigned to any neighbor of v; thus, any proper coloring of G − v can

be extended to G without increasing the number of colors used (Méndez-Dı́az and Zabala, 2006).

A branch-and-bound search is employed in a heuristic manner to find an initial large clique. The

clique C can also be used to prove optimality – if a proper coloring of G is found that uses exactly

|C| colors, this coloring must be optimal.

To initialize B&P+ZDD, a starting pool of independent sets needs to be generated. A modified

version of the initialization procedure described in Malaguti et al. (2008) is used for this purpose.

Their algorithm employs a 2-phase approach to find good initial solutions. In the first phase, a

genetic algorithm combined with a local search rule searches for valid k-colorings of the graph for

some input parameter k. If a valid k-coloring is found, then the procedure is iteratively called

with successively smaller values of k until a user-specified time limit is reached. The second phase

takes the best solution found in phase 1 and applies a covering heuristic to improve the solution

further. B&P+ZDD uses a similar procedure to generate its initial pool of independent sets for the

RMP, which only runs the first phase of the algorithm described by Malaguti et al. (2008).

Any column generated by the initialization routine can be added to the initial pool S ′ for

the RMP. However, the initialization procedure often generates a large number of sets; thus, it is

necessary to reduce the size of the initial pool. To this end, the RMP is solved once with only the

sets used by the best available coloring to get initial dual prices. Only the generated sets with a

price above 0.8 are included in S ′. This rule includes all sets with negative or close-to-negative

reduced cost in S ′, since these sets are more likely to improve upon the LP solution to the RMP

in early stages of the search.
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4.2 Results from the DIMACS Database

B&P+ZDD was implemented in C++ and used CPLEX 12.5 with default settings to solve the RMP;

all computational experiments described in this section were performed on a desktop machine with

an Intel Core i7-930 2.8GHz quad-core processor and 12 GB of available memory. The branch-

and-price algorithm utilized only a single processor core; however, CPLEX operates in parallel by

default. All times reported here are aggregated over all cores. For the sake of comparison with the

results obtained with the MMT algorithm, the dfmax benchmark program was run on the r500.5

instance provided by Trick (2005). The computer used for these experiments took 6.60s CPU time

to solve this benchmark instance.

Comparisons were made against four different branch-and-price algorithms available in the liter-

ature. First, Malaguti et al. (2011) give an exact algorithm for the graph coloring problem that uses

an improved initialization heuristic, together with extensive computational results. The compared

results were obtained using standard 0−1 branching instead of edge branching. Secondly, Gualandi

and Malucelli (2012) describe a branch-and-price solver for graph coloring that uses constraint pro-

gramming techniques to solve the pricing problem; their implementation uses the edge branching

rule. Morrison et al. (2014a) provide extensive computational results using a wide branching tech-

nique, which modifies the standard 0− 1 branching rule to allow multiple children to be generated

from a subproblem in the search tree. Finally, Held et al. (2012) provide a method for computing a

numerically safe lower bound for graph coloring, which they embed inside a branch-and-price solver.

Using this algorithm, they are able to prove new lower bounds for a number of unsolved instances.

Experiments were run on 40 instances from the DIMACS instance database (Trick, 2005). Ex-

periments were not run on easy instances (those for which the lower bound at the root is sufficient

to prove optimality), since these instances do not demonstrate the effectiveness of the ZDD data

structure for solving the pricing problem in the presence of branching constraints. The remaining

instances were chosen to span a range of difficulty, including ones that are easily solved to optimal-

ity by all algorithms in the literature, and others for which no algorithm has yet been able to verify

optimality. In addition, experiments were run on 7 additional instances taken from Gualandi and

Malucelli (2012).

A time limit of 10 hours was imposed for all experiments, and the ZDD size was limited to
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Instance Name of the tested instance
n Number of vertices in the instance
m Number of edges in the instance
χ Chromatic number of the instance, if known

LB Lower bound found by B&P+ZDD

UB Best solution found by B&P+ZDD (if t < 10hrs, this value is optimal)
tZ Time needed to construct the maximal independent set ZDD
t Time spent in the branch-and-price phase of the algorithm

tMMT-init Total initialization time used by Malaguti et al. (2011)
tMMT Adjusted time to verify optimality by Malaguti et al. (2011)
twide Adjusted time to verify optimality by the wide branching solver

of Morrison et al. (2014a)
tCP-BnP Adjusted time to verify optimality by the branch-and-price solver

of Gualandi and Malucelli (2012)
exp Number of nodes explored in the search tree

id Number of nodes identified in the search tree
Zi Initial size of the ZDD
Zf Final size of the ZDD

% change Percent change in size of the ZDD over the course of the algorithm
|col| Number of columns generated over the course of the algorithm
tprice Time spent solving all pricing problems over the course of the

algorithm

Table 1: Notation used for computational results data (Tables 2 and 3).

100 000 000 nodes. The initialization procedure from Section 4.1 was run for 100 seconds for each

instance to generate an initial pool; this did not contribute to the 10-hour time limit. Of the 40

instances tested, most were extremely difficult, and could not be solved by any algorithm within the

10-hour time limit. Data for all 47 instances are shown in Table 2, and notation used in this table is

given in Table 1. To provide the most fair comparison between different computational platforms,

all running times are scaled according to the benchmark value of the dfmax utility reported. In

most cases, Held et al. (2012) is concerned with computing lower bounds instead of total solution

times, so data from this paper are omitted from Table 2 (though they are still discussed in the

sequel).

Computational comparisons across differing models, source code, and platforms is notoriously

difficult, and these data are no exception. The MMT algorithm uses an initialization procedure

with a variable running time, depending on the difficulty of the problem. However, B&P+ZDD is given

a flat 100 seconds of initialization, plus the length of time required to build the ZDD; moreover,
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Instance n m χ LB UB tZ t TMMT-init tMMT twide tCP-BnP

DSJC125.5 125 3891 17 16 17 0.47 284.92 6100 17019.33 225.21 14372.75
DSJC125.9 125 6961 44 43 44 0 0.21 6100 3674.22 1.02 33.23
DSJC250.5 250 15668 ? 26 28 29.55 >10hrs 6100 >10hrs >10hrs >10hrs
DSJC250.9 250 27897 72 71 72 0.04 649.90 6100 >10hrs >10hrs >10hrs
DSJC500.5 500 62624 ? 43 53 3458.5 >10hrs 6100 >10hrs >10hrs -
DSJC500.9 500 112437 ? 123 129 0.38 >10hrs 6100 >10hrs >10hrs >10hrs
DSJC1000.5 1000 249826 ? 10 108 6608.86 oom 6100 >10hrs -
DSJC1000.9 1000 449449 ? 215 228 5.64 >10hrs 6100 >10hrs >10hrs -
DSJR500.1c 500 121275 85 85 85 0.14 0.10 6100 272.01 1.29 0.60
DSJR500.5 500 58862 122 122 122 689.48 102.75 6100 322.6 6862.28 >10hrs
le450_25c 450 17343 25 25 28 19889.92 oom 6100 init >10hrs -
le450_25d 450 17425 25 25 28 16262.45 oom 6100 init >10hrs -
queen9_9 81 1056 10 9 10 0.44 9.33 3 34.51 20.48 74.00
queen10_10 100 2940 11 10 11 4.09 140.76 3 647.65 587.32 26393.20
queen11_11 121 3960 11 11 11 33.1 14354.16 3 1759.08 19208.45 21858.50
queen12_12 144 5192 12 12 13 297.91 >10hrs 3 >10hrs >10hrs -
queen13_13 169 6656 13 13 14 2739.39 >10hrs 100 >10hrs >10hrs -
queen14_14 196 8372 14 14 15 3139.2 >10hrs 100 >10hrs >10hrs -
queen15_15 225 10360 15 15 16 3235.39 >10hrs 100 >10hrs >10hrs -
queen16_16 256 12640 16 16 18 3527.63 >10hrs 100 >10hrs >10hrs -
myciel3 11 23 4 3 4 0 0 3 0 0.01 -
myciel4 20 71 5 4 5 0 0.09 3 111.26 0.47 -
myciel5 47 236 6 4 6 0.01 392.21 3 - 3207.63 -
myciel6 95 755 7 4 7 0.76 >10hrs 3 >10hrs >10hrs -
myciel7 191 2360 8 5 8 2198 >10hrs 3 >10hrs >10hrs -
1-Insertions_4 67 232 5 3 5 0.69 >10hrs 3 >10hrs >10hrs -
1-Insertions_5 202 1227 ? 2 6 23708.86 >10hrs 3 >10hrs >10hrs -
2-Insertions_4 149 541 ? 2 5 >10hrs - 3 >10hrs >10hrs -
3-Insertions_3 56 110 4 3 4 1.8 >10hrs 3 >10hrs >10hrs -
3-Insertions_4 281 1046 ? 2 5 22684.73 >10hrs 3 >10hrs >10hrs -
4-Insertions_3 79 156 4 3 4 314.85 >10hrs 3 >10hrs >10hrs -
1-FullIns_4 93 593 5 4 5 8.76 122.58 3 >10hrs >10hrs -
1-FullIns_5 282 3247 6 3 6 >10hrs - 3 >10hrs >10hrs -
2-FullIns_4 212 1621 6 0 0 >10hrs - 3 >10hrs >10hrs -
2-FullIns_5 852 12201 7 4 7 >10hrs - 3 >10hrs >10hrs -
3-FullIns_4 405 3524 7 5 7 >10hrs - 3 >10hrs >10hrs -
4-FullIns_4 690 6650 8 0 0 >10hrs - 3 >10hrs >10hrs -
latin_square_10 900 307350 ? 90 100 36.4 >10hrs 6100 >10hrs >10hrs -
qg.order30 900 26100 30 0 0 >10hrs - 3 0.19 >10hrs -
wap06 947 43571 40 0 0 >10hrs - 170 165.00 >10hrs -
r250.5 250 14849 65 65 65 14.63 7.15 - - - 6.80
r1000.1c 1000 485090 ? 96 98 2.29 >10hrs - - - >10hrs
r1000.5 1000 238267 234 234 234 43020.09 4690.16 - - - >10hrs
flat300_28_0 300 21695 28 28 28 144.57 19883.45 - - - >10hrs
flat1000_50_0 1000 245000 ? 10 106 6795.93 >10hrs - - - >10hrs
flat1000_60_0 1000 245830 ? 10 105 6368.64 >10hrs - - - >10hrs
flat1000_76_0 1000 246708 ? 12 106 6628.52 >10hrs - - - >10hrs

Table 2: Results from computational experiments with B&P+ZDD, cells highlighted in grey show
the fastest algorithm. Entries labeled “init” indicate that the initial upper bound equaled the root
lower bound, cells labels “oom” indicate that the algorithm ran out of memory. Entries of 0.00
indicate that the length of time is lower than the precision of the timer, and a dash indicates that
the information is not available.
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the initialization procedure used by B&P+ZDD is strictly weaker than that of the MMT algorithm,

since it only uses the first phase of a two-phase procedure. This choice was made to highlight the

performance benefits of using ZDDs; in principle, if B&P+ZDD had access to the full initialization

procedure used by the MMT algorithm, its results would be even better. Therefore, to produce the

fairest comparison between the algorithms, the compared running times are solely the time spent

on the branch-and-price algorithm, not including the initialization time.

B&P+ZDD was able to find and verify optimality for 15 of the 47 instances tested. In four

cases, B&P+ZDD is able to find and verify optimality at least an order of magnitude faster than any

competing algorithm. Additionally, B&P+ZDD is able to verify optimality for three new instances

(1-FullIns_4, r1000.5, and flat_300_0) that have not been solved previously by branch-and-

price algorithms in the literature (however, in the case of r1000.5, the ZDD construction took

longer than 10 hours). One other instance, DSJC250.9, has only been solved by the branch-and-

price solver of Held et al. (2012); their algorithm found a solution in 8685 (adjusted) CPU seconds.

It was observed that modifying the initial pool size can dramatically improve the running

time of B&P+ZDD; for example, running the initialization procedure for 6100 seconds (the default

initialization time limit in Malaguti et al. (2011) and Morrison et al. (2014a)) allows B&P+ZDD to

solve DSJC125.5 in 31 seconds. Similarly, running the initialization procedure for only 3 seconds

allows B&P+ZDD to solve queen9_9 in 2.3 seconds. This is explained by noting that a large initial

pool can slow down the LP solver for the RMP.

Finally, there are five instances which were solved substantially faster by the MMT graph

coloring solver than by B&P+ZDD; however, four of these instances were solved at the root node by

the MMT solver due to a better initialization procedure, and so do not provide a useful comparison

against B&P+ZDD. This leaves only one instance (queen11_11) for which some other algorithm

substantially outperforms B&P+ZDD; for this instance, the lower bound is equal to the optimal

objective value, which means the search can be terminated as soon as an optimal solution is found.

Data were collected regarding the average length of time needed to solve the pricing problem

for each instance, as well as the growth in size of the ZDD over the course of the algorithm. The

average growth in size of a ZDD for any problem was 14%, with a standard deviation of 27%. In

one case, the size of the ZDD nearly doubled, at 94% growth; however, even in this case, the length

of time needed to solve the pricing problem was not impacted substantially. In most cases when
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the ZDD could be fully constructed, the length of time needed to solve one iteration of the pricing

problem was under a second.

Details regarding these data are shown in Table 3, with column headings again given in Table 1.

Here, note that the number of nodes explored in the tree (column 4) is the total number of nodes

at which children were generated. The number of nodes identified in the tree (column 5) includes

those nodes for which the RMP was solved, but could be pruned away before generating children.

Finally, the last column in this table shows the total CPU time taken to solve every pricing problem

for each instance. As the bulk of the work to solve an instance is in solving the RMP and solving

the pricing problem, the time needed to solve the RMP for a particular instance is approximately

t (column 8, Table 2) minus tprice.

In order to assess the efficacy of the search strategy, additional computational experiments were

run against the 12 instances from the DIMACS database that B&P+ZDD was able to solve within

the time limit. B&P+ZDD was modified for these tests to use DFS instead of CBFS, and the results

are presented in Table 4.

In these experiments, there are 3 instances in which CBFS (with the positive assignment rule)

significantly outperforms DFS, and 2 instances in which DFS outperforms CBFS. For the remaining

7 instances, both algorithms perform within a few seconds of each other. For the three instances

where CBFS outperformed DFS, the improvement was an order of magnitude in one case, and over

twice as fast in the other two cases. Therefore, it was concluded that in general, CBFS with the

positive assignment rule is a better choice of branching strategy for the graph coloring problem

than DFS.

5 Conclusions and Future Work

This paper presents a framework for using standard integer branching in conjunction with branch-

and-price algorithms; this framework solves the pricing problem using a zero-suppressed binary

decision diagram that is constructed during a preprocessing phase. When new columns are gener-

ated, they are restricted from generation by the ZDD a second time; this allows the constrained

pricing problem to be solved exactly at every iteration of the algorithm. Using this technique com-

bined with a new contour definition for the cyclic best-first search strategy to counterbalance the
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Instance n m exp id Zi Zf % change |col| tprice
DSJC125.5 125 3891 599 1199 48367 52207 7.9 3462 7.9
DSJC125.9 125 6961 55 111 623 627 0.6 81 0
DSJC250.5 250 15668 5122 10244 1476916 1511171 2.3 37404 4108.62
DSJC250.9 250 27897 16411 32823 2893 2960 2.3 808 2.88
DSJC500.5 500 62624 25 50 83507135 83509619 0.003 4519 30791.1
DSJC500.9 500 112437 46634 93268 15397 15913 3.4 5259 25.07
DSJC1000.5 1000 249826 - - - - - - -
DSJC1000.9 1000 449449 6466 12932 102909 105366 2.4 24892 141.52
DSJR500.1c 500 121275 18 37 2443 2447 0.2 68 0.03
DSJR500.5 500 58862 74 149 1809872 2222124 22.8 8 14.77
le450_25c 450 17343 - - - - - - -
le450_25d 450 17425 - - - - - - -
queen9_9 81 1056 11 23 50719 54727 7.9 216 0.34
queen10_10 100 2940 76 153 295500 308571 4.4 1088 11.99
queen11_11 121 3960 1902 3805 1867378 1923347 3 16394 2138.55
queen12_12 144 5192 1224 2448 12426874 12526852 0.8 24743 18255.37
queen13_13 169 6656 98 195 88797420 88874820 0.09 4985 33826.38
queen14_14 196 8372 3 6 100000008 100000008 0 5 37809.97
queen15_15 225 10360 - - - - - - -
queen16_16 256 12640 - - - - - - -
myciel3 11 23 4 9 29 29 0 0 0
myciel4 20 71 191 383 152 169 11.2 0 0.02
myciel5 47 236 160622 321245 1429 2188 53.1 26 35.7
myciel6 95 755 94395 188789 40191 70326 75 3658 357.24
myciel7 191 2360 7816 15632 7191878 7344883 2.1 3742 8653.59
1-Insertions_4 67 232 72106 144211 85112 106550 25.2 12596 443.94
1-Insertions_5 202 1227 - - - - - - -
2-Insertions_4 149 541 - - - - - -
3-Insertions_3 56 110 29128 58256 94885 183834 93.7 38580 394.57
3-Insertions_4 281 1046 - - - - - - -
4-Insertions_3 79 156 14177 28353 6585989 6693239 1.6 12115 12196.88
1-FullIns_4 93 593 7422 14845 148275 155237 4.7 1376 51.53
1-FullIns_5 282 3247 - - - - - - -
2-FullIns_4 212 1621 - - - - - - -
2-FullIns_5 852 12201 - - - - - - -
3-FullIns_4 405 3524 - - - - - - -
4-FullIns_4 690 6650 - - - - - - -
latin_square_10 900 307350 5265 10529 52807 52807 0 13310 26.35
qg.order30 900 26100 - - - - - - -
wap06 947 43571 - - - - - - -
r250.5 250 14849 25 51 137683 266893 93.8 0 0.57
r1000.1c 1000 485090 215082 430163 11762 11997 2 1298 165.64
r1000.5 1000 238267 192 385 37664084 38165484 1.3 1317 3741.64
flat300_28_0 300 21695 1004 2009 5817662 5858003 0.7 24665 8699.34
flat1000_50_0 1000 245000 - - - - - - -
flat1000_60_0 1000 245830 - - - - - - -
flat1000_76_0 1000 246708 - - - - - - -

Table 3: Detailed statistics for the computational experiments with B&P+ZDD. Cells with dashes
indicate that the information is not available due to time limits or memory constraints.
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Instance tDFS tCBFS
DSJC125.5 7689.02 284.92
DSJC125.9 0.17 0.21
DSJC250.9 1587.94 649.90
DSJR500.1c 0.07 0.10
DSJR500.5 103.70 102.75
queen9_9 11.31 9.33
queen10_10 134.07 140.76
queen11_11 32057.94 14354.16
myciel4 0.08 0.09
myciel5 244.37 392.21
1-FullIns_4 59.04 122.58

Table 4: A comparison of the running times of B&P+ZDD using DFS and CBFS.

resulting lopsided search tree, the standard integer branching scheme can be used in conjunction

with a branch-and-price algorithm, which yields a much faster and more direct solution method

in many cases. Computational results were presented showing that a branch-and-price algorithm

implementation for the graph coloring problem in some cases outperforms other branch-and-price

graph coloring solvers in the literature. In several cases, this performance is an improvement

of an order of magnitude or more, though an exact comparison is difficult due to differences in

initialization.

A number of future research directions exist for this method; firstly, this paper proposes a ZDD

algorithm for the graph coloring problem. However, there is nothing specific to graph coloring in

Sections 2.1 and 2.2; in fact, the techniques described here are general, and could be applied to

other problems. Some preliminary results using ZDDs with the generalized assignment problem

are described in Morrison (2014), but more work must be done to show their effectiveness on other

types of problems. Moreover, ZDDs can also be used even if the branch-and-price solver does not

require the solution of the constrained pricing problem (for instance, the robust branch-and-price-

and-cut algorithm of de Aragão and Uchoa, 2003). In these settings, the ZDD does not need to

have restrictions imposed via RestrictSet when a new variable is generated; however, they may

still provide benefits, since the ZDD is able to produce a variable of most negative reduced cost at

every iteration of column generation. Thus, additional research can be done to study how ZDDs

interact with other established branch-and-price methods.

Secondly, research can be performed to determine the best way to use ZDDs when the entire
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data structure will not fit in memory; one proposed idea uses approximate ZDDs (described in

Bergman et al., 2012b) to solve the pricing problem in these settings. An approximate ZDD is

a width-constrained ZDD that does not eliminate any valid solutions to the pricing problem, but

may accept some inputs that are not valid solutions to the pricing problem. In this setting, a

post-generation check can be performed to see if the ZDD produced a set that is a valid solution to

the pricing problem; if not, the RestrictSet routine can be called with the erroneous solution to

prevent it from being generated again. If the approximate ZDD can be constructed in an appropriate

fashion, it is hypothesized that invalid solutions will be generated relatively infrequently, and the

algorithm will not suffer much loss of efficiency.

A final important question addresses the addition and removal of restrictions from the pricing

problem ZDD. Many standard branch-and-price algorithms will generate multiple columns in be-

tween each intermediate solution of the RMP. It has been observed that this can improve algorithm

performance; thus, an interesting research direction may be to modify the ZDD algorithm to gen-

erate multiple columns in a single pass through the data structure. Moreover, in many cases the

variable pool for branch-and-price algorithms may grow quite large over the course of the algorithm.

Since the size of this pool directly impacts the solution time for the RMP, and most of the elements

of this pool are never used in any optimal solutions, most branch-and-price solvers will prune the

pool by deleting variables with very large positive cost. In such a setting, it is necessary to modify

ZF to allow removed variables to be generated again; these variables can be stored in an auxiliary

pool to be scanned before the ZDD is queried. Thus, future research should analyze the effects of

such a modification.
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