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Expansion of natural gas networks is a critical process involving substantial capital expenditures with

complex decision-support requirements. Given the non-convex nature of gas transmission constraints, global

optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately,

state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study,

we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under

steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency.

In addition, the optimal solution of the relaxation can often be used to derive high-quality solutions to the

original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The

convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact

McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the

traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the

accuracy and computational speed of the relaxation and its ability to produce high-quality solutions.

1. Introduction

In recent years, the construction of natural gas pipelines has witnessed a tremendous

growth on a world-wide level. In the U.S., for instance, a $3 billion expansion project of

the gas pipeline system in New England is planned for late 2016. In Europe, the European

Investment Bank is supporting a e98 million project for the expansion of gas pipelines in
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western Poland, to be completed by 2017. These expansion projects aim at increasing gas

flow capacity on existing pipeline systems and/or bringing new gas wells into production

and commercialization. In addition, the expansion or reinforcement of a pipeline network

can also be considered as a risk-awareness strategy to fulfill short or long-term operational

management requirements when unforeseen events occur such as component failures or

excessive stress and congestion due to extreme weather conditions. These events were

observed in New England during the polar vortex experienced in January 2014, when

major gas-fired power plants in the northeast of the U.S. were forced to shut down due

to mechanical problems and shortages of gas fuel supplies, which drove wholesale power

prices up

According to the U.S. Energy Information Administration (EIA), a project

for the development and expansion of a Gas Transmission Network (GTN)

takes an average of three years from its first announcement until its comple-

tion (U.S. Energy Information Administration 2008). The project starts by determining

the market needs within an open season exercise where nonbinding agreements of capac-

ity rights are offered to potential customers. The second step consists in developing the

expansion design with initial financial commitments from the potential customers. Note

that expansions of the gas system include the installation parallel pipelines along existing

ones (looping), the conversion of oil pipelines to natural gas pipelines, or the reinforcement

of specific pipeline sections.

In this paper, we address the Gas Transmission Network Expansion Planning (GTNEP)

problem where the goal is to fulfill projected future gas contracts and to increase the

reliability of a gas system under steady-state conditions. A Mixed-Integer NonLinear Pro-

gramming (MINLP) formulation is proposed to model the design requirements and mini-

mize expansion costs. Given the non-convex nature of the problem, a convex mixed-integer

second-order cone relaxation is introduced. The proposed convex relaxation is based on

four key ideas: (1) the introduction of variables for modeling the flux directions; (2) exact

McCormick relaxations; (3) on/off constraints; and (4) valid integer cuts. Experimental

results on the Belgian gas network and a test bed of large-scale synthetic instances demon-

strate three key findings:
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1. The convex relaxation produces tight lower bounds with high computational effi-

ciency;

2. The solution to the convex relxation can almost always be used to derive high-quality

solutions to the original problem, leading to provably tight optimality gaps and, in some

cases, global optimal solutions.

3. The proposed approach scales to large-scale instances.

The rest of this paper is organized as follows. Section 2 presents the literature review.

Section 3 introduces the problem formulation. Section 4 specifies the convex relaxation.

Section 5 presents the computational results and Section 6 concludes the paper.

2. Literature review

The last four decades have seen an interest in natural gas planning problems such as

optimal design, optimal reinforcement, and optimal expansion of gas pipeline systems.

Algorithms for these problems can be classified in a number of different ways such as exact

approaches (Andre et al. 2009, Bonnans et al. 2011, Edgar et al. 1978, 2001b, Wolf 2004)

and heuristics (André 2010, Boyd et al. 1994, Humpola et al. 2015, Andre et al. 2009,

Humpola and Fügenschuh 2014a). Exact methods include cutting planes (Atamturk 2002,

Humpola and Fügenschuh 2014b, Humpola et al. 2015a, Poss 2011) and branch-and-bound

(André 2010, Elshiekh et al. 2013, Humpola and Fügenschuh 2015) and they use a variety

of commercial (Bakhouya and De Wolf 2008, Elshiekh et al. 2013, Soliman and Murtagh

1982) and open-source (Pfetsch et al. 2012, Uster and Dilaveroglu 2014) solvers. Like this

paper, much of the literature relies on approximations and relaxations to improve the

tractablity of the underlying planning problems. Examples include continuous relaxations

of the discrete design variables (De Wolf and Smeers 1996, Hansen et al. 1991, Soliman

and Murtagh 1982) and approximation or relaxations of constraints (Babonneau et al.

2012, Bakhouya and De Wolf 2008, Humpola and Fügenschuh 2015, Poss 2011). Common

approaches for implementing these approximations/relaxations include succesive linear

programming (De Wolf et al. 1991, Hansen et al. 1991, O’Neill et al. 1979, Wilson et al.

1988) and piecewise linearizations (Correa-Posada and Sánchez-Mart́ın 2014, Markowitz

and Manne 1957, Vajda 1964, Zheng et al. 2010).
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The contribution of this paper is a novel Second-Order Cone (SOC) relaxation that

efficiently addresses the design of large-scale cyclic networks for which flow directions are

unknown. The model captures physical, operational, contractual, and on/off constraints

and includes models of regular pipelines, valves, short pipes, control valves, compressor

stations, and regulators. Its dual solutions can almost always be converted to high-quality

or optimal primal solutions. To the best of our knowledge, this combination of features

has not appeared in the literature. Our paper focuses on the cost of building the network

but can be generalized to include operational costs as well.

We now provide an in-depth review of the most relevant works in the area of natu-

ral gas expansion planning problems. One of the earliest papers that addresses natural

gas design problems is (Edgar et al. 1978). It focuses on the optimal design of gunbar-

rel and tree-shaped networks. Their objective minimizes the yearly cumulative operational

and investment costs. The optimization variables include pipeline diameters, compression

ratios, and the number of compressors. In their later work, Edgar et al. (2001b) present a

MINLP formulation for the optimal design of a gas transmission network where the num-

ber of compressor stations, the length and diameter of the pipeline sections, and the inlet

and outlet pressures at each stations are optimized. They solve a simplified version of the

problem in GAMS (GAMS Development Corporation 2008) for a small instance (Edgar

et al. 2001a).

Hansen et al. (1991) and Soliman and Murtagh (1982) propose a continuous relaxation

for the network design problem. While Hansen et al. (1991) apply a successive linear pro-

gramming method where a linear subproblem is solved to adjust the discrete choice of diam-

eters, Soliman and Murtagh (1982) apply the commercial NLP solver MINOS Murtagh

and Saunders (1998) to handle the relaxed subproblem. O’Neill et al. (1979) and Wil-

son et al. (1988) focus on a problem where integer variables are used for the operational

state of compressor stations and they also implement a method based on successive linear

programming to solve the problem.

De Wolf and Smeers (1996) address the optimal dimensioning of a known pipe network

topology with an objective that combines the cost of purchasing gas and the capital expen-

ditures for expansion. The authors formulate the problem as a continuous NLP that selects
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pipeline diameters and solves the problem by means of a local optimizer. Based on this

problem, Wolf (2004) derives conditions under which this problem is convex. Through the

use of variational inequality theory, they show convexity of the nonlinear gas flow system

under the assumption that the gas net inlet (pressure) is fixed at all supply and demand

nodes. Bakhouya and De Wolf (2008) also present a case study on the same problem

with separable transportation and gas objectives that leads to a two-stage problem for-

mulation. In addition to design variables for the optimal pipe diameters, the authors add

investment variables representing the maximal power of compressor stations to balance

the pipeline construction costs and capital expenditures for increasing power in the com-

pressor units. The authors find an initial solution by solving a convex problem where all

pressure constraints are relaxed. Then, the complete problem is locally solved by means of

the GAMS/CONOPT solver. In these works, numerical experiments are primarily focused

on the Belgian gas transmission network.

Andre et al. (2009) present a MINLP model to solve the investment cost minimization

problem for an existing gas system that includes pipelines and regulators and omits com-

pressor stations. The goal is to identify a set of pipeline sections to reinforce and to select

an optimal diameter size for these sections based on a discrete set of diameters. Under

the assumption that the network is radial (the head loss equations are convex when flows

are fixed), the authors propose a continuous relaxation of the pipe diameters (continuous

intervals). A branch-and-bound approach for a unique maximal demand scenario is applied

to a segment of the French high-pressure natural gas transmission system. A complete

review and extensions of these findings are provided in (André 2010).

Babonneau et al. (2009, 2012) focus on the design and operation of a natural gas trans-

mission system while minimizing investment, purchase, and transportation costs. The

authors propose an approach based on a minimum energy principle that transforms the

non-linear non-convex optimization problem into a convex problem. The underlying con-

vex, bi-objective formulation is an approximation of the investment cost function and the

cost of energy to transport the gas. Their continuous formulation is applied to non-divisible

constraints such as a limited number of available commercial pipe dimensions.
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Bonnans et al. (2011) presents several problems that include the minimization of com-

pressor ratios and the sum of operations and investment costs. The authors propose a

global optimization technique that is based on the combination of interval analysis with

constraint propagation.

Zheng et al. (2010) discusses different optimization models in the natural gas industry,

including the compressor station allocation problem, the least gas purchase problem and

optimal dimensioning of gas pipelines. The authors review solution techniques to solve

the underlying models which include a piecewise linear programming algorithm and a

branch-and-bound algorithm.

Elshiekh et al. (2013) presents a model to optimize the design and operation of the

Egyptian gas system, where continuous design variables for the length and diameter of

pipelines are considered along with a modified Panhandle equation (Coelho and Pinho

2007). The complete model is directly solved by means of the computer-aided optimization

software LINGO (LINDO Systems 1997).

Uster and Dilaveroglu (2014) address the cost minimization problem of designing a

new natural gas transmission system and expanding an existing gas system. The authors

propose a mathematical formulation to tackle the design/expansion network problem for

a given multi-period planning horizon. The underlying MINLP model is formulated in

AMPL and solved approximately with Bonmin (Bonami and Lee 2013).

Humpola and Fügenschuh (2014b) and Humpola et al. (2015a) present valid inequalities

for a MINLP model of a design problem in gas transmission systems. Different relaxations

are applied to the subproblems created after branching on the additive and design variables

for the active and passive components. The resulting passive transmission subproblems,

which are referred to as leaf problems, admit slack variables to independently relax the

pressure domains and the flow conservation constraints. The proposed cutting planes aim

at reducing the CPU time of a branch-and-cut-based outer approximation applied to the

full model where construction costs are defined by a global constant. Atamturk (2002)

and Poss (2011) also propose valid inequalities to reinforce the relaxation approach to the

network design structure.
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Humpola and Fügenschuh (2015) examines different (convex) relaxations for subprob-

lems created while applying a branch-and-bound technique to a nonlinear network design

problem. Cutting planes on the nonlinear potential loss constraints are used to strengthen

the relaxed subproblems.

Pfetsch et al. (2012) focuses on the validation of nomination problem while considering

regular pipes and valves, control valves, compressors and regulators. The authors describe

a two-stage approach to solve the resulting MINLP problem and propose several modeling

techniques and approaches to account for, e.g., pressure losses. They also developed several

large test cases (GasLib 2014). These problems form the basis for many of the problems

we consider in this paper.

3. Problem Formulation

This section derives the problem formulation (as a disjunctive program) in stepwise refine-

ments. It starts by deriving a disjunctive formulation that is then refined by introducing

flux variables.

3.1. The Disjunctive Formultion

Gas dynamics along a pipe is described by a set of partial differential equation (PDE)

with both spatial and temporal dimensions (Osiadacz 1987, Thorley and Tiley 1987, Sar-

danashvili 2005):

∂tρ+ ∂x(ρv) = 0, (1)

∂t(ρv) + ∂x(ρv2) + ∂xp=− f

2D
ρv|v| − g sinαρ, (2)

p=ZRT ρ. (3)

Gas velocity v, pressure p, and density ρ are defined for every point x along the pipe and

evolve over time t. Z represents the gas compressibility factor, T the temperature, and R

the gas constant.

Equation (1) enforces mass conservation, Equation (2) describes momentum balance,

and Equation (3) defines the ideal gas thermodynamic relation. In Equation (2), the first
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term on the right-hand side represents the friction losses in a pipe of diameter D with

friction factor f . The second term accounts for the gain or loss of momentum due to

gravity g if the pipe is tilted by an angle α. In practice, frictional losses dominate the

gravitational term which is dropped. One can also safely assume that the temperature does

not fluctuate significantly along a pipe. If temperature gradients are significant, a spatial

decomposition, splitting the pipe into temperature stable segments, can be adopted.

Taking into account these assumptions, Equations (1),(2), and (3) are rewritten in terms

of pressure p and mass flux φ= ρv:

∂tp=−ZRT ∂xφ, (4)

∂xp
2 =−fZRT

2D
φ|φ|, (5)

In this work, we assume that the system has reached a steady state after its first com-

missioning and hence all time derivatives are set to zero. Given this assumption, a Graph

Transmission Network (GTN) is represented by a graph G = (N ,A) where N denotes the

set of nodes representing connection points and A denotes the set of arcs. An arc is a

triplet (a, i, j) consisting of a unique identifier a linking nodes i and j. For convenience,

such a triplet (a, i, j) will be denoted by aij in the following. Observe that parallel arcs

can link the same pair of nodes, e.g., we have arcs aij and a∗ij in a GTN where a and a∗

are the unique identifiers of these arcs.

By setting the time derivatives to zero, the total gas mass flux along a pipe aij becomes

constant, i.e., φi = φj = φa. Hence Equations (4) and (5) simplify to

p2i − p2j =waφa|φa|. (6)

where wa = ZRfaTa

2Da
.

Gas System Components The problem formulation considers pipes, compressors, short

pipes, resistors, and valves. Compressors, short pipes, and valves are modelled as lossless

pipelines, i.e., wa = 0. A compressor installed on arc aij can increase/decrease the pressure

ratio αa = pj/pi, within the bounds αl
a and αu

a, where αl
a = 1 and αu

a ≥ 1 is typical for

most compressors. A bi-directional compressor can perform compression based on the flux
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direction, i.e., it is able to invert the ratio to αa = pi/pj if the flux is going from j to i. A

standard valve features a binary on/off switch and a control valve has a continuous switch-

ing mechanism to adjust pressure. Thus a valve installed on arc aij can increase/decrease

the pressure ratio αa = pj/pi, within the bounds αl
a and αu

a, where αl
a > 0 and αu

a ≤ 1 is

typical for most control valves and αl
a =αu

a = 1 for all valves. Finally, a resistor is modelled

as a pipeline with a particular (small) loss coefficient (w).

Expansion Variables The set of arcs A = Ae ∪ An includes existing arcs Ae =

Pe ∪ Ce ∪ Ve, as well as new arcs An = Pn ∪ Cn. In this notation, Pe denotes the

set of installed pipelines, resistors, and short pipes. Ce and Ve denote the set of existing

compressors and valves (control and regular) respectively. Pn and Cn denote the set of

new pipelines and new compressors respectively. A binary variable zpa is assigned for each

new pipe aij in Pn to model the expansion decision, i.e., zpa = 1 if pipeline aij is installed

and zpa = 0 otherwise. Variables zcij ((i, j) ∈ Cn) have an equivalent interpretation for new

compressors. A binary variable va is used to control the switching actions of valves.

Disjunctive Formulation Since the pressure variables only appear in a square form, the

formulation uses the variable substitution βi = p2i (i∈N ). Equations (6) can be written as

βi−βj =waφa|φa| (aij ∈Pe) (7)

Figure 1 illustrates the curve of the function f(x, y) = y−wx|x| defined by the pressure

drop equation (7).

Since bi-directional compressor constraints depend on the flux direction, they can only

be modelled using on/off or disjunctive constraints (Hijazi et al. 2010, 2012). i.e.,{
βiα

l
a ≤ βj ≤ βiα

u
a, if φa ≥ 0

βjα
l
a ≤ βi ≤ βjα

u
a, if φa ≤ 0.

(8)

Given a set of injection (resp. demand) nodes I (resp. D)⊆N with mass flux injec-

tion/demand qi, the problem consists in finding an assignment of the expansion variables

zpa (aij ∈ Pn), node pressures pi (i ∈ N ), and edge flows φa (aij ∈ A), satisfying the Wey-

mouth equations (7), the compressor constraints (8), and the following node conservation

constraints: ∑
aij∈A

φa =
∑
aji∈A

φa + qi (i∈N )
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Figure 1 The Gas Flow Equation f(x, y) = y−wx|x|.

where qi = 0 for all i ∈N \ (I ∪ D). Note that, in the steady-state model, injections are

balanced, i.e.,
∑

i∈N qi = 0. The objective is to minimize the cost of expansion:

min
∑

aij∈Pn

caz
p
a +

∑
aij∈Cn

caz
c
a

where ca represents the cost of installing a new pipeline. The disjunctive formulation

of the problem incorporating these ideas is presented in Model 1, where βl
i = (αl

i)
2 and

βu
i = (αu

i )2.

3.2. The Formulation Based on Flux Direction Variables

This section presents a second formulation using flux direction variables to account for

the disjunctive nature of the constraints. For every arc aij ∈ A, we introduce two binary

variables y+a and y−a ∈ {0,1} with the following semantics: y+a = 1 (resp. y−a = 1) if the flux

moves from i to j (resp. from j to i) and 0 otherwise. The mass flux direction is captured

by the following system of constraints:
(1− y+a )

∑
k∈I
qk ≤ φa ≤ (1− y−a )

∑
k∈I
qk,

(1− y+a )βl
i ≤ βi−βj ≤ (1− y−a )βu

i ,

y+a + y−a = 1.

The first constraint ensures that y+a = 1 (resp. y−a = 1) if and only if φa ≥ 0 (resp. φa ≤ 0).

Note that
∑
k∈I
qk is an upper bound to the mass flux in a pipe. The second constraint
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Model 1 The Disjunctive Formulation of the GTNEP.

variables:

βi ∈ [βl
i,β

u
i ] ∀i∈N - squared pressure level variables

φa ∈R ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1} ∀aij ∈Pn - binary expansion variables for pipes

zca ∈ {0,1} ∀aij ∈ Cn - binary expansion variables for compressors

va ∈ {0,1} ∀aij ∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑

aij∈Pn

caz
p
a +

∑
aij∈Cn

caz
c
a (9a)

subject to: ∑
aij∈A

φa =
∑
aji∈A

φa + qi, ∀i∈N (9b)

βi−βj =waφa|φa|, ∀aij ∈Pe (9c)

zpa(βi−βj) =waφa|φa|, ∀aij ∈Pn (9d)

βiα
l
a ≤ βj ≤ βiα

u
a, if φa ≥ 0, ∀aij ∈ Ce, (9e)

βjα
l
a ≤ βi ≤ βjα

u
a, if φa ≤ 0, ∀aij ∈ Ce, (9f)

βiα
l
a ≤ βj ≤ βiα

u
a, if φa ≥ 0 and zca = 1, ∀aij ∈ Cn, (9g)

βjα
l
a ≤ βi ≤ βjα

u
a, if φa ≤ 0 and zca = 1, ∀aij ∈ Cn, (9h)

φa = 0 if zca = 0, ∀aij ∈ Cn (9i)

βiα
l
a ≤ βj ≤ βiα

u
a, if φa ≥ 0 and vca = 1, ∀aij ∈ Ve, (9j)

βjα
l
a ≤ βi ≤ βjα

u
a, if φa ≤ 0 and vca = 1, ∀aij ∈ Ve, (9k)

φa = 0 if vca = 0, ∀aij ∈ Ce (9l)

enforces a similar condition for the pressure difference. Using the variables and constraints,
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the pressure drop equation can now be written without absolute value as

(
y+a − y−a

)
(βi−βj) =waφ

2
a

and the bi-directional compressor constraints are written as

βiα
l
a− (1− y+a )(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (1− y+a )(βu

j −βl
iα

u
a), ∀aij ∈ Ce (10)

βjα
l
a− (1− y−a )(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (1− y−a )(βu

i −βl
jα

u
a), ∀aij ∈ Ce (11)

βiα
l
a− (2− y+a − zca)(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (2− y+a − zca)(βu

j −βl
iα

u
a), ∀aij ∈ Cn (12)

βjα
l
a− (2− y−a − zca)(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (2− y−a − zca)(βu

i −βl
jα

u
a), ∀aij ∈ Cn (13)

− zca
∑
i∈I

≤ φa ≤ zca
∑
i∈I

, ∀aij ∈ Cn (14)

The bi-directional valve constraints are written as

βiα
l
a− (2− y+a − va)(βu

i α
l
a−βl

j)≤ βj ≤ βiα
u
a + (2− y+a − va)(βu

j −βl
iα

u
a), ∀aij ∈ Ve (15)

βjα
l
a− (2− y−a − va)(βu

j α
l
a−βl

i)≤ βi ≤ βjα
u
a + (2− y−a − va)(βu

i −βl
jα

u
a), ∀aij ∈ Ve (16)

− va
∑
i∈I

≤ φa ≤ va
∑
i∈I

, ∀aij ∈ Ve (17)

The complete Mixed-Integer NonLinear Programming (MINLP) formulation based on flux

direction variables is summarized in Model 2. The continuous relaxation of Model 2 is

non-convex due to Constraints (24c)-(24d).

4. A Convex Relaxation of the GPNEP

This section introduces a new mixed-integer second-order cone relaxation for Model 2.

4.1. The Variables

For every pipe aij ∈P, the relaxation introduces the auxiliary variable γa representing the

product in Equations (18c)-(18d), i.e.,

γa =
(
y+a − y−a

)
(βi−βj), ∀aij ∈P, (19)
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Model 2 The MINLP Formulation of the GTNEP.

variables:

βi ∈ [βl
i,β

u
i ] ∀i∈N - squared pressure level variables

φa ∈R ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1} ∀aij ∈Pn - binary expansion variables for pipes

y+a , y
−
a ∈ {0,1}, ∀aij ∈A - binary flux direction variables

zca ∈ {0,1} ∀aij ∈ Cn - binary expansion variables for compressors

va ∈ {0,1} ∀aij ∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑

aij∈Pn

caz
p
a +

∑
aij∈Cn

cijz
c
ij (18a)

subject to: ∑
aij∈A

φa =
∑
aji∈A

φa + qi, ∀i∈N (18b)(
y+a − y−a

)
(βi−βj) =waφ

2
a, ∀aij ∈Pe (18c)

zpa
(
y+a − y−a

)
(βi−βj) =waφ

2
a, ∀aij ∈Pn (18d)(

1− y+a
)∑

k∈I

qk ≤ φa ≤
(
1− y−a

)∑
k∈I

qk, ∀aij ∈A (18e)(
1− y+a

)
βl

i ≤ βi−βj ≤
(
1− y−a

)
βu

i , ∀aij ∈P (18f)

(10− 17) (18g)

y+a + y−a = 1, ∀aij ∈A (18h)

This product is then linearlized by a standard relaxation introduced by McCormick (1976)

for bilinear functions, i.e.,

γa ≥ βj −βi +
(
βl

i−βu
j

)
(y+a − y−a + 1) (20)

γa ≥ βi−βj +
(
βu

i −βl
j

)
(y+a − y−a − 1) (21)

γa ≤ βj −βi +
(
βu

i −βl
j

)
(y+a − y−a + 1) (22)
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γa ≤ βi−βj +
(
βl

i−βu
j

)
(y+a − y−a − 1) (23)

This linearization is exact, since (y+a − y−a ) take only discrete values.

4.2. The Constraints

The non-convex constraints (18c) can now be relaxed into

γa ≥waφ
2
a (aij ∈Pe).

The on/off constraints (18d) represent another challenge for convexifying Model 2. These

constraints can be written as

γa =waφ
2
a if zpa = 1 (aij ∈Pn)

with a disjunctive second-order cone relaxation defined as

γa ≥waφ
2
a, if zpa = 1 (aij ∈Pn).

Perspective formulations introduced by Hijazi et al. (2012) can be used to formulate the

convex hull of such on/off constraints, giving the following rotated second-order cone con-

straint:

zpaγa ≥waφ
2
a, ∀aij ∈Pn.

The complete Mixed-Integer Second-Order Cone Programming (MISOCP) relaxation is

presented in Model 3.

4.3. The Integer Cuts

The MINLP and MISOCP formulations presented in Models 2 and 3 can be strenghtened

by introducing the following valid integer cuts:

∑
aij∈A

y+a +
∑
aji∈A

y−a ≥ 1, ∀i∈ I (25)

∑
aji∈A

y+a +
∑
aij∈A

y−a ≥ 1, ∀i∈D (26)
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Model 3 The MISOCP Relaxation for the GPNEP.

variables:

βi ∈ [βl
i,β

u
i ] ∀i∈N - squared pressure level variables

φa ∈R ∀aij ∈A - mass flux on pipe (i,j)

zpa ∈ {0,1} ∀aij ∈Pn - binary expansion variables for pipes

y+a , y
−
a ∈ {0,1}, ∀aij ∈A - binary flux direction variables

γa ∈R+ ∀aij ∈P - auxiliary variables for bilinear terms

zca ∈ {0,1} ∀aij ∈ Cn - binary expansion variables for compressors

va ∈ {0,1} ∀aij ∈ CV e ∪Ve - binary switch variables for valves

objective:

min
∑

aij∈Pn

caz
p
a +

∑
aij∈Cn

cijz
c
ij (24a)

subject to:

(20− 23)∑
aij∈A

φa =
∑
aji∈A

φa + qi, ∀i∈N (24b)

γa ≥waφ
2
a, ∀aij ∈Pe (24c)

zpaγa ≥waφ
2
a, ∀aij ∈Pn (24d)

−
(
1− y+a

)∑
i∈I

qi ≤ φa ≤
(
1− y−a

)∑
i∈I

qi, ∀aij ∈A (24e)(
1− y+a

)
βl

i ≤ βi−βj ≤
(
1− y−a

)
βu

i , ∀aij ∈P (24f)

(10− 17) (24g)

y+a + y−a = 1, ∀aij ∈A (24h)

Constraints (25) are generated for each injection node i ∈ I: They state that at least one

connected arc has an outgoing flow, taking the orientation of the arc into account to select

the proper variables (y+a for arcs leaving i and y−a for arcs coming to i). Constraints (26)

follow the same reasoning for demand nodes i∈D.
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For a node i with degree two and no injection/demand (qi = 0), the following integer

cut is valid 
y+a = y+a∗ if aji, a

∗
ik ∈A

y+a = y−a∗ if aji, a
∗
ki ∈A

y−a = y+a∗ if aij, a
∗
ik ∈A

y−a = y−a∗ if aij, a
∗
ki ∈A

(27)

It can be easily derived using the flux conservation constraints (24b) stating that, for a

node with degree two and zero injection/demand, the flux direction of the incoming arc

determines the flux direction of the outgoing arc.

Finally, we can derive integer cuts for parallel pipelines:

y+a∗ = y+a , ∀aij, a∗ij ∈A. (28)

Equations (28) state that parallel pipelines share the same flow direction. The validity of

this cut follows from the pressure drop equations (18c) and the fact that parallel pipelines

share the same pair of pressure variables.

4.4. Converting the Convex Relaxation in a Feasible Solution to the GPNEP

The solution to the relaxed Model 3 is not always feasible for Model 2. To obtain a feasible

solution, we fix all the binary variables and use a nonlinear optimization solver to find a

(locally) optimal solution to the resulting problem. When the local solver does not converge

to a feasible solution, we consider primal solutions obtained when solving Model 3 and

repeat the process.

5. Computational Experiments

This section studies the performance of the proposed MINLP and MISOCP models and

compares them with a model using a piecewise linear approximation. Section 5.1 describes

the benchmarks and Section 5.2 the experimental setting and the various algorithms used.

Section 5.3 and 5.4 report the computational results on the Belgian network and larger

networks respectively, while Section 5.5 reports on the importance of the integer cuts.
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Network configuration

Base New
Ref |N | |I| |D| |Pe| |Ce| |Pn| |Cn|
A 20 6 9 24 3 0 0
A1 22 6 9 24 3 4 2
A2 25 6 9 24 3 7 4
A3 29 6 9 24 3 12 5
B1 20 6 9 0 0 135 12
B2 20 6 9 0 0 135 12
B3 20 6 9 0 0 135 12
B4 20 6 9 0 0 135 12

Table 1 Test Instances Based on the Belgian Network.

5.1. The Benchmarks

5.1.1. The Belgian Network Table 1 shows the list of test instances based on the

Belgian network depicted in Figure 2. The table shows, for each benchmark, the number of

nodes, sources, terminals, base pipelines, and compressor stations, as well as the number of

new components (pipelines and compressors) that can potentially be added to the network

topology. Note that benchmark A in Table 1 is the real Belgium gas transmission network

and Table 3 shows the node characteristics for this 20-node, 24-pipeline, 3-compressor

network. The reader is referred to the appendix of (De Wolf and Smeers 2000) for further

details on this network. Instances A1−A3 captures various possible expansions to this base

network. Figure 3 and Tables 5 and 6 depict the location of the potential expansion plans

and their associated data. The network expansion plans were designed for the Belgian gas

network in order to capture events such as increase of the number of nominations and

forecasting demand at the city gates, as well as excessive stress of the available supplies at

the sources.

Instances B1 − B4 are based on the “optimization from scratch” benchmarks from

(De Wolf and Smeers 2000) and (Babonneau et al. 2012) (α= 1,1.6,5, and6, respectively).

In these papers, the authors use the Belgian gas network for a variation of the GTNEP

problem which considers integrated functions of the gas merchant and transportation pro-

cess. These benchmarks specify minimum and maximum production levels (see Table 4).

Since the GTNEP assumes known gas nomination and production profiles, we computed
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Figure 2 The Belgian Gas Network Base Configuration (case A).

load and compression profiles based on optimal pressures provided in (Babonneau et al.

2012). Our instances also employ the same cost function as in (Babonneau et al. 2012) to

compute the associated costs for building new pipelines, i.e.,

Lij

(
1.04081−6D2.5

ij + 11.2155
)

where Dij and Lij are the diameter and length of pipeline (i, j) respectively. (Babonneau

et al. 2012) assumed continuous diameter choices. However, we used a discrete diameter

values corresponding to the solution of (De Wolf and Smeers 2000) and Table 4 of (Babon-

neau et al. 2012). For completeness, the diameter choices are described in Table 2. Note

that the exclusive-set constraint is slightly different for these cases due to the existence of

pre-defined parallel pipes. Within in each row of Table 2, the solution must contain one

and only diameter choice, and each set of parallel pipes must choose diameters from the

same column of Table 2.
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Pipe D1 D2 D3 D4 D5

(1,2) A 890.0 650.3 610.8 524.7 512.1
(1,2) B 890.0 650.3 610.8 524.7 512.1
(2,3) A 890.0 834.7 784.0 673.5 657.3
(2,3) B 890.0 834.7 784.0 673.5 657.3
(3,4) 890.0 998.9 938.3 806.0 786.7
(5,6) 590.1 604.3 567.6 487.6 475.9
(6,7) 590.1 0 X X X
(7,4) 590.1 671.7 630.9 542.0 529.0
(4,14) 890.0 829.9 779.5 669.7 653.6

(8,9) A 890.0 902.8 848.0 728.4 711.0
(8,9) B 395.5 902.8 848.0 728.4 711.0
(9,10) A 890.0 902.8 848.0 728.4 710.9
(9,10) B 395.5 902.8 848.0 728.4 711.0
(10.11) A 890.0 787.6 739.8 635.5 620.1
(10.11) B 395.5 787.6 739.8 635.5 620.4
(11,12) 890.0 979.8 920.3 790.6 771.6
(12,13) 890.0 915.1 859.6 738.4 720.7
(13,14) 890.0 952.6 894.7 768.6 750.1
(14,15) 890.0 1201.0 1128.0 969.0 945.8
(15,16) 890.0 1038.4 975.3 837.9 817.7
(11,17) 395.5 469.0 440.5 378.4 369.3
(17,18) 315.5 469.0 440.5 378.4 369.3
(18,19) 315.5 469.0 440.5 378.4 369.3
(19,20) 315.5 448.9 421.7 362.2 353.5

Table 2 Pipe diameter choices from Table 4 of (Babonneau et al. 2012)

5.1.2. Larger Networks Table 7 describes the main data points for the larger bench-

marks. Instance D is a real-life network case whose data is restricted for confidentiality

reasons and we are not allowed to disclose its map or load profile. Instances E,F and G

are part of a German network whose data, including the network configuration, maps, and

load profiles, can be found in (Pfetsch et al. 2012).

5.2. The Algorithms and the Experimental Setting

This section reports computational results for three approaches:

1. The MINLP formulation of the GTNEP as shown in Model 2;

2. The MISOCP relaxation of the GTNEP as shown in Model 3 followed by the conver-

sion presented in Section 4.4;
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(Loads) (Pressure)
Node (Loc.) Type(∗) L L L P P

1 (Zeebrugge) I 8.87 11.594 10.911288 0 77
2 (Dudzele) I 0 8.4 8.4 0 77
3 (Brugge) D −∞ -3.918 -3.918 30 80
4 (Zomergem) 0 0 0 0 80
5 (Loenhout) I 0 4.8 2.814712 0 77
6 (Antwerp) D -∞ -4.034 -4.034 30 80
7 (Ghent) D -∞ -5.256 -5.256 30 80
8 (Voeren) I 20.34 22.01 22.012 50 66.2
9 (Berneau) 0 0 0 0 66.2†

10 (Liège) D -∞ -6.365 -6.365 30 66.2
11 (Warnand) 0 0 0 0 66.2
12 (Namur) D -∞ -2.12 -2.12 0 66.2
13 (Anderlues) I 0 1.2 1.2 0 66.2
14 (Péronnes) I 0 0.96 0.96 0 66.2
15 (Mons) D -∞ -6.848 -6.848 0 66.2
16 (Blaregnies) D -∞ -15.616 -15.616 50 66.2
17 (Wanze) 0 0 0 0 66.2
18 (Sinsin) 0 0 0 0 63
19 (Arlon) D -∞ -0.222 -0.222 0 66.2
20 (Pétange) D -∞ -1.919 -1.919 25 66.2

Table 3 The Belgian Gas Network Data from (De Wolf and Smeers 2000). This data is used for the

A Problems. †- On Problems A1, A2, and A3,the pressure bounds are [0,59.851968], [0,59], and [0,59.85]

respectively.

3. A MIP formulation based on a Piecewise Linear Approximation (PLA-MIP) of the

quadratic functions; The PLA-MIP formulation follows the derivation in (Correa-Posada

and Sánchez-Mart́ın 2014, De Wolf and Smeers 2000) and uses 60 segments.

All the experiments weere conducted on a computer with two Intel Xeon CPU X5670

processors (2.93GHz) with 6 cores each. The computer has 64 GB DIMM 1333MHz RAM

and runs the Ubuntu 14.04 LTS operating system. The MINLP formulation is solved using

SCIP 3.1.1 (Achterberg 2009) compiled with Ipopt 3.12.3 and Cplex 12.6. The PLA-MIP

formulation is solved using CPLEX 12.6 (ILOG CPLEX Optimization Studio 2013). The

MISCOP formulation is solved with CPLEX 12.6 and the conversion is performed by

IPOPT 3.12.3 (Wchter and Biegler 2006).
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Load (L) profiles (MMscf)
Node B1 B2 B3 B4

1 9.5883 9.8225 9.8218 9.7205
2 8.1833 8.3447 8.1340 8.3628
3 -3.9180 -3.9180 -3.9180 -3.9180
4 0.0000 0.0000 0.0000 0.0000
5 4.0315 4.0432 4.0383 4.0364
6 -4.0315 -4.0432 -4.0383 -4.0364
7 -5.2413 -5.2644 -5.2562 -5.2644
8 22.012 22.0120 22.0120 22.0120
9 0.0000 0.0000 0.0000 0.0000
10 -6.4744 -6.4951 -6.3970 -6.3816
11 0.0000 0.0000 0.0000 0.0000
12 -2.1929 -2.1191 -2.1162 -2.0984
13 1.2162 1.3225 1.0802 1.1591
14 0.9840 0.6164 1.0776 1.0235
15 -6.4056 -6.5885 -6.8366 -6.8857
16 -15.6119 -15.5904 -15.4616 -15.5899
17 0.0000 0.0000 0.0000 0.0000
18 0.0000 0.0000 0.0000 0.0000
19 -0.2059 -0.2312 -0.2269 -0.2164
20 -1.9337 -1.9112 -1.9131 -1.9236

Table 4 The Load Profiles Computed from Optimal Pressures Provided in (Babonneau et al. 2012).

All compression ratios were derived as 1.0.

Figure 3 The Belgian Gas Network Expansion Plans (Instances A1–A3).
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Node Town Lat. Long. P (∗) P
(∗)

Instance A1

21 Bois 50.400676 5.855991 14 66
22 Koninklijke 50.806672 4.481877 14 66

Instance A2

21 Heist 51.095651 4.744616 20 70
22 Zoutleeuw 50.858734 5.115404 20 70
23 Beaufays 50.552195 5.670182 20 70
24 Gouvy 50.231757 5.966813 20 70
25 Ettelbruck 49.861370 6.073930 20 70

Instance A3

21 Jabbeke 51.204699 3.086440 14 66
22 Torhout 51.072867 3.118026 14 66
23 Kortrijk 50.790711 3.230636 14 66
24 Bois-de-Barry 50.580151 3.521773 14 66
25 Lobbes 50.353208 4.263261 20 70
26 Senzeille 50.124840 4.433550 20 70
27 Gedinne 49.980230 4.851030 20 70
28 Chiny 49.806832 5.274004 20 70
29 Pigneule 49.735878 5.471758 20 70

Table 5 Locations of Nodes of the Expansion Plans for the Belgian Gas Network. These nodes do not

have injections.

5.3. Results on the Belgian Network

Table 8 shows the sizes of the underlying models in terms of the number of binary and

continuous variables and the number of linear and quadratic constraints for each instance.

Table 9 presents the computational results and reports the CPU time in seconds and

the upgrade cost in $× 103 for each approach. The computational results show that the

MISOCP approach outperforms both the MINLP and the PLA-MIP and that the solution

to the MISOCP always converts to a feasible and optimal solution. The PLA-MIP approach

has both computational and accuracy issues, as it significantly underestimates the optimal

objective value and is rather slow.

The results for problems B1–B4 are interesting as the expansion costs are considerably

lower than reported by Babonneau et al. (2012) for the same operating conditions. In

Table 4 of their paper, Babonneau et al. (2012) report expansion costs of 15669, 14252,

11610, and 11274 for B1–B4. Their solutions are feasible and have the same operating

cost as our model. Of course, it is important to note than their solutions were obtained
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Node Node w c

Instance A1

9 21 0.929 67.19
21 18 0.808 77.26
6 22 0.785 79.50
22 14 0.766 81.44

Instance A2

5 21 1.052 59.29
21 21∗ Compressor 1500.0
22 11 0.967 64.52
8 23 1.933 32.28
23 24 0.876 71.18
24 24∗ Compressor 1500.0
25 19 1.339 46.59
21∗ 22 0.980 63.65
24∗ 25 0.866 72.08

Instance A3

1 21 2.257 27.65
2 21 4.546 13.73
21 21∗ Compressor 1500.0
22 23 1.121 55.66
23 23∗ Compressor 1500.0
24 15 1.073 58.14
15 25 1.483 42.09
25 26 1.289 48.40
26 26∗ Compressor 1500.0
27 28 1.010 61.79
28 29 2.232 27.96
29 19 1.423 42.09
21∗ 22 2.448 25.50
23∗ 24 1.165 53.56
26∗ 27 1.071 58.28

Table 6 Locations of Pipes of the Expansion Plans for the Belgian Gas Network. * denotes

introduced dummy node for 0 length compressor arcs.

through a model that minimizes operating and expansion costs, which could make it harder

to determine the best design for particular operating conditions. Still, this comparison

highlights the strengths of the formulation proposed in this paper.

5.4. Scalability Results

We now study whether the results on the Belgian networks continue to hold on larger

instances. To assess scalability and robustness, we stress the networks by gradually increas-
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Network configuration

Base New
Ref. |N | |I| |D| |Pe| |Ce| |Pn|
D 60 2 24 55 4 55
E 40 3 29 39 6 39
F 135 6 99 141 29 141
G 582 31 129 609 5 278

Table 7 Larger Instances of Gas Networks.

MINLP PLA-MIP MISOCP

Bench. BV CV LC QC BV CV LC QC BV CV LC QC
A 54 49 254 96 1494 1837 3931 0 54 73 398 24
A1 70 59 320 112 1750 2151 4605 0 66 91 488 28
A2 85 69 389 124 1945 2391 5120 0 78 107 575 31
A3 103 80 463 144 2263 2776 5954 0 91 128 679 36

B1,2,3,4 354 1154 464 357 7314 8737 19067 0 238 373 1850 116

Table 8 The Sizes of the Mathematical models for Belgian Network Instances. (BV: Binary variables,

CV: Continuous variables, LC: Linear constraints, QC: Quadratic constraints).

MINLP PLA-MIP MISOCP
Bench. CPU Obj CPU Obj CPU Obj
A 0.02 0.0 0.6 0.0 0.03 0.0
A1 0.06 144 0.7 144 0.05 144
A2 0.06 1687 1.4 187 0.1 1687
A3 0.06 1780 1.9 280 0.06 1780
B1 1.89 11181 1089 10353 0.3 11181
B2 3.17 11181 1781 10361 0.6 11181
B3 3.53 11181 1538 10352 0.6 11181
B4 3.82 11181 1570 10352 0.3 11181

Table 9 Computational Results on the Belgian Network Instances: The Objective Value is in $ and

the CPU Time in Seconds.

ing the production and consumption levels from 5% up to 300% while considering solely

the addition of a parallel pipe for each existing pipeline in the base configuration of the

gas systems (i.e., |Cn|= 0). Table 8 presents the sizes of the mathematical models. In all

of these results, we denote whether or not the MISOCP and MINLP solutions are exact,
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lower bounds, or upper bounds on the MINLP solutions. Lower bounds for the MINLP

are also derived by subtracting the optimality gap from any primal feasible solution.

Table 11 presents the computational results on instance D which is based on proprietary

natural gas network in the United States. Observe that the PLA-MIP model systematically

underestimates the objective function and returns infeasible solutions. As we will see, this

is systematic on all larger benchmarks. The MISOP approach returns optimal solutions

for all but one case. Both the MINLP and MISOCP prove infeasibility of the most stressed

network.

Table 12 presents the computational results on instance E which is based on gaslib-40

(GasLib 2014). The MISOP approach returns optimal solutions, or proves infeasibilities in

all cases. The MISOP model is one order of magnitude faster than the MINLP model.

Table 13 presents the computational results on instance F, which is based on gaslib-

135 (GasLib 2014) and is particularly challenging. The MINLP approach finds optimal

solutions up to the 25% case and spends considerable time doing so. It finds an upper

bound to the 50% case but does not return any information on the 75% and 100% cases.

In contrast, the MISOCP approach finds optimal solutions to the 0%, 5%, 25%, and 50%

cases, all below 10 seconds, It finds lower bounds on the 75% and 100% cases reasonably

fast. Both the MINLP and the MISOCP prove infeasibility of the three most stressed

instances.

Table 14 presents very interesting results for instance G, which is based on gaslib-582

(GasLib 2014). The MINLP approach cannot find feasible solutions on any of the cases

but the 300% case which is shown infeasible. Both the MINLP and PLA-MIP approaches

have numerical issues with these problems. The MISOP approach finds optimal solutions

up to the 50% case and for the 150% case and proves infeasibilities for the 200% and 300%

cases. For the 75%–125% cases, the MISCOP times out but returns upper bounds to the

optimal solution with duality gaps ranging from 7.65% to 51.3%.

Overall, these results demonstrate the benefits of the MISOCP approach. The MISOCP

approach almost always finds optimal solutions much faster than the MINLP when both

return optimal solutions. It also finds optimal solutions or proves infeasibility in many case

for the larger benchmarks, while the MINLP approach does not return feasible solutions.
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MINLP PLA-MIP MISOCP)

Ref. BV CV LC QC BV CV LC QC BV CV LC QC
D 283 174 1093 440 6883 8330 18018 0 228 339 1753 110
E 207 124 792 312 4887 5920 12796 0 168 241 1260 78
F 763 446 2886 1128 17683 21430 46304 0 622 869 4578 282
G 2101 1469 8058 2256 35941 44433 92848 0 1823 2311 11442 564

Table 10 Size of the Mathematical Models: BV: Binary variables, CV: Continuous variables, LC:

Linear constraints, QC: Quadratic constraints.

Stresss MINLP PLA-MIP MISOCP
level CPU Obj CPU Obj CPU Obj

0% 0.1 0.00F 3.0 0.00 0.1 0.00F

5% 0.5 3.50F 1.8 0.00 0.6 3.50F

10% 1.6 23.83F 12.2 23.22 0.5 23.83F

25% 2.1 92.24F 14.0 83.99 0.6 92.24F

50% 1.5 145.58F 14.8 136.2 0.5 145.58F

75% 0.6 191.80F 11.0 184.0 0.6 191.8F

100% 3.0 287.00F 12.5 209.03 0.7 281.994
125% 0.2 † 1.6 † 0.2 †

Table 11 Computational Results on Instance D. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.

Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 1.6 0.00F 0.0 10.2 0.00 0.0 0.2 0.00F 0.0
5% 6.3 11.92F 0.0 23.5 0.00 0.0 0.7 11.92F 0.0

10% 6.8 32.83F 0.0 20.6 0.00 0.0 0.4 32.83F 0.0
25% 5.6 41.08F 0.0 30.9 32.8 0.0 0.6 41.08F 0.0
50% 8.1 156.06F 0.0 11.5 32.8 0.0 0.9 156.06F 0.0
75% 12.0 333.01F 0.0 21.8 121.1 0.0 0.7 333.00F 0.0

100% 12.1 551.64F 0.0 17.5 122.37 0.0 0.8 551.64F 0.0
125% 2.2 † – 33.0 256.22 0.0 0.4 † –
150% 0.8 † – 27.6 † – 0.3 † –

Table 12 Computational Results on Instance E. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.
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Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 0.85 0.0F 0.0 136.3 0.0 0.0 1.3 0.0F 0.0
5% 101.8 0.0F 0.0 120.0 0.0 0.0 1.0 0.0F 0.0

10% 36707.3 15.04F 0.0 125.8 0.0 0.0 2.4 0.04 0.0
25% 457.9 60.4F 0.0 124.4 0.0 0.0 4.4 60.4F 0.0
50% 86962.9 182.75 91.7 166.7 60.4 0.0 7.6 95.3F 0.0
75% 86933.9 ‡ – 119.8 60.4 0.0 40.5 451.54 0.0

100% 87334.2 ‡ – 119.5 149.6 0.0 104.6 1234.24 0.0
125% 6.8 † – 125.7 149.6 0.0 1.8 † 0.0
150% 3.4 † – 206.7 486.0 0.0 1.1 † 0.0
200% 0.4 † – 11.6 † – 0.4 † 0.0

Table 13 Computational Results on Instance F. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.

Stress MINLP PLA-MIP MISOCP
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 86400.0 ‡ – 62012.9 6.87 0.0 2.7 0.00F 0.0
5% 86400.0 ‡ – 29655.1 2.78 0.0 4.4 0.00F 0.0

10% 86400.0 ‡ – 86400.0 4.65 40.22 21.1 0.00F 0.0
25% 86400.0 ‡ – 2153.2 8.65 0.0 40.9 0.00F 0.0
50% 86400.0 ‡ – 3670.2 † – 164.0 14.93F 0.0
75% 86400.0 ‡ – 0.21 † – 86402.1 111.995 51.3

100% 86400.0 ‡ – 5.31 † – 86401.6 332.535 7.65
125% 86400.0 ‡ – 5.31 † – 86402.4 524.825 11.74
150% 86400.0 ‡ – 5.29 † – 53321.3 590.84F 0.0
200% 86400.0 ‡ – 5.02 † – 16.7 † –
300% 4.4 † – 0.12 † – 0.9 † –

Table 14 Computational Results on Instance G. Obj: $× 106, CPU time: in seconds, Solution status:

F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † = Infeasible; ‡ = Unknown.

5.5. The Importance of Integer Cuts

Table 15 describes the performance of the MISCOP on instances E, F, and G when the

integer cuts are not used. As can be seen, the integer cuts, which were used both in the

MINLP and MISOCP models, are critical to obtain an efficient MISOCP implementation.

6. Concluding Remarks

This paper considered the expansion of natural gas networks, a critical process involving

substantial capital expenditures with complex decision-support requirements. It proposed
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Stress Instance E Instance F Instance G
level CPU Obj Gap CPU Obj Gap CPU Obj Gap

0% 0.9 0.00F 0.0 3310.9 0.00F 0.0 242.2 0.00F 0.0
5% 1.8 11.92F 0.0 83.5 0.00F 0.0 14.2 0.00F 0.0

10% 2.7 32.83F 0.0 120.7 0.004 0.0 301.5 0.00F 0.0
25% 3.2 41.08F 0.0 86419.5 60.445 75.1 86400.3 ‡ –
50% 8.5 156.06F 0.0 17693.1 95.32F 0.0 8271.05 14.93F 0.0
75% 6.7 333.01F 0.0 86409.9 451.59 59.2 86404.4 111.995 79.4

100% 3.8 551.64F 0.0 86404.5 1234.23 44.2 87193.1 332.325 87.9
125% 1.8 † – 90.9 † – 86401.8 524.825 16.1
150% 1.0 † – 7.5 † – 86408.9 245.804 58.5
200% 0.7 † – 2.0 † – 13318.6 † –
300% 0.0 † – 0.0 † – 3.0 † –

Table 15 Computational Results on Instances E, F, and G without the Integer Cuts. Obj: $× 106,

CPU time: in seconds, Solution status: F = Proven optimal; 4 = Lower bound; 5 = Upper bound; † =

Infeasible; ‡ = Unknown

a convex mixed-integer second-order cone relaxation for the gas expansion planning prob-

lem under steady-state conditions in order to address the fact that state-of-the-art global

optimisation solvers are unable to scale up to real-world size instances. The resulting MIS-

OCP model offers tight lower bounds with high computational efficiency. In addition, the

optimal solution of the relaxation can often be used to derive high-quality solutions to the

original problem, leading to provably tight optimality gaps and, in some cases, global opti-

mal solutions. The convex relaxation is based on a few key ideas, including the introduction

of flux direction variables, exact McCormick relaxations, on/off constraints, and integer

cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well

as other real larger networks. The computational results demonstrate that the MISOCP

model is faster than the originating MINLP model by one or two orders of magnitude

on the Belgian network instances. They also show that the MISOCP model scales well to

large and stressed instances.
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