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Abstract

This paper proposes an approximation algorithm for estimating the queue length (the number

of customers in the system) distributions of time-varying non-Markovian many-server queues

(e.g., Gt/Gt/nt queues), with large nt values. The algorithm uses phase-type distributions to

approximate inter-arrival/service times and apply fluid and diffusion approximations developed

for Markovian systems. We develop an alternative model in order to bypass the lingering problem

in the diffusion model. Numerical experiments demonstrate the effectiveness of the proposed

method.

1 Introduction

Real-world applications of large-scale queueing systems such as data centers and call centers show

time-varying behavior, and their arrival/service processes are not Markovian in general (Brown

et al. [7], Arfeen et al. [1], Nelson and Taaffe [23]). Many of the recent studies on large-scale non-

Markovian queues rely on the asymptotic approach utilizing fluid and diffusion limits as described

in Billingsley [4] and Whitt [30]. Research on non-Markovian systems has progressed to the point

of analyzing underloaded systems (a.k.a. the offered-load model, infinite-server queues) due to

their analytical or numerical tractability (Whitt [29], Glynn [11], Eick et al. [9], Nelson and Taaffe

[23, 22]). Studies on the delay model, e.g., Mt/Gt/nt, Gt/Mt/nt, Gt/Gt/nt queues, have been

conducted from the context of fluid queues or heavy traffic diffusion models in the Halfin-Whitt
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regime (Halfin and Whitt [12], Puhalskii and Reiman [28], Pang and Whitt [27], Whitt [31], Liu

and Whitt [16, 18, 17]).

This paper uses the uniform acceleration method which is coupled with the strong approximations

theory and accelerates parameters while keeping the traffic intensity constant (Kurtz [15], Mandel-

baum et al. [19, 20]). Kurtz [15] establishes strong approximation theorems for state-dependent

continuous time Markov chains (CTMCs) having differentiable rate functions. Extending Kurtz

[15], Mandelbaum et al. [19] consider time-varying parameters and non-differentiable rate func-

tions such as min(·, ·) that commonly occur in the analysis of queues. Mandelbaum et al. [20]

show that the result in Kurtz [15] can be directly applied when the fluid limit stays at the non-

differentiable points of rate functions for a measure-zero amount of time. Ko and Gautam [14]

propose a Gaussian-based approximation method that achieves better approximation quality when

the fluid limit lingers around the non-differentiable points. Massey and Pender [21] improve the

result of Ko and Gautam [14] by introducing a new Gaussian skewness approximation. Liu and

Whitt [16] propose a fluid limit for Gt/GI/st + GI queues and extend the work of Mandelbaum

et al. [19] in the sense that they consider non-Markovian inter-arrival, service and abandonment

times. In a follow-up paper, Liu and Whitt [17] assume a Gaussian process as a limit process and

provide a heavy-traffic diffusion limit for Gt/M/st + GI queues. As shown in Mandelbaum et al.

[20], Ko and Gautam [14], Liu and Whitt [17], it appears reasonable to approximate the queue

length process with a Gaussian process. However, estimating the parameters of a Gaussian process

depends on both fluid and diffusion limits.

Using phase-type distributions for approximating general distributions in queueing analysis is not

new. The matrix-geometric method (MGM) described in Neuts [24] is a well-known approach for

the analysis of non-Markovian queues. MGM, however, can only handle phase-type distributions

with a small number of phases due to state space explosion. Nelson and Taaffe [23] develop a method

based on the partial-moment differential equations (PMDEs) for the analysis of Pht/Pht/∞ queues

that accurately estimates the moments of the number of entities in the system. The number of

differential equations to evaluate the first two moments is mA+mS−1+mAmS(mS+1), where mA

and mS are the number of phases in the inter-arrival and service time distributions, respectively.

The result, however, is not applicable to the delay models, such as Pht/Pht/nt queues studied in

our paper. Creemers et al. [8] devise an accurate phase-type approximation algorithm for small-to-
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medium-sized Gt/Gt/st +Gt queues using two-moment matching procedures.

The contributions of this study can be summarized with the following points. First, we derive

fluid and diffusion limits for a Pht/Pht/nt queue (an approximation of a Gt/Gt/nt queue) using

the uniform acceleration technique. When we keep track of the number of customers being served

in each phase and the number of customers in the system separately, we encounter the lingering

issue; the fluid limit stays at the non-differentiable points during some intervals having positive

measure. This prevents us from deriving the diffusion limit. We propose an alternative formulation

that enables us to successfully obtain the diffusion limit. Second, we use phase-type distributions

to approximate the general distributions themselves, which may require many phases for accurate

approximation. The number of differential equations to obtain the fluid and diffusion limits is

O([mA + mS ]2) and it does not depend on the number of servers, nt. The number of phases used

for approximating inter-arrival and service time distributions is 8-10 and the numerical solution

is reached in less than a minute using a commercial solver (e.g., MATLAB) under a regular PC

environment. The proposed method is scalable in terms of the number of servers and the number

of phases compared with the results in Nelson and Taaffe [23] and Creemers et al. [8].

The remainder of this paper is organized as follows. Section 2 describes the Gt/Gt/nt queueing

system and the problem settings. Section 3 builds a mathematical model for describing the dy-

namics of the system from the Pht/Pht/nt queue. We explain the lingering problem and introduce

an alternative model for resolving it. Section 4 explains fluid and diffusion approximations. Sec-

tion 5 discusses the numerical examples used to validate the effectiveness of our proposed approach.

Section 6 concludes and offers suggestions for future research.

2 Problem description

We consider a Gt/Gt/nt queue, a time-varying version of a G/G/n queue, with a general time-

varying arrival process, a general time-varying service time distribution, and a time-varying number

of servers. The system has an infinite capacity of waiting space and customers in the waiting space

are served under the first-come, first-served discipline. Let X(t) denote the number of customers in

the system at time t and x̄(t) denote the corresponding fluid limit. We assume that the fluid limit

(x̄(t)) alternates between the underloaded (i.e., x̄(t) < nt) and overloaded (i.e.. x̄(t) > nt) phases
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and hits the critically loaded phase (i.e. x̄(t) = nt) at only the countably many time points. The

performance measures of interest are E[X(t)], Var[X(t)] and, if possible, the distribution of X(t)

for all time 0 ≤ t ≤ T and T <∞.

Specifically, we analyze a Pht/Pht/nt queue as an approximation of the Gt/Gt/nt queue since

phase-type distributions are dense in all positive-support distributions and the use of phase-type

distribution in queueing analysis does not lose generality significantly (Whitt [29] and Asmussen

et al. [3]). A phase-type distribution with m phases represents the time taken from an initial state

to an absorbing state of a continuous time Markov chain with the following infinitesimal generator

matrix:

Q =

 0 0

s S

 ,

where 0 is a 1×m zero vector, s = is an m×1 vector, and S is an m×m matrix. Note s = −Se where

e is an m× 1 vector of ones. The matrix S and the initial distribution α which is a 1×m vector

identify the phase-type distributions. Finding the best phase-type distribution for approximating

a general distribution is beyond our scope, and we refer to the reader to [5, 13, 32, 6, 10, 26, 3, 25].

We explain the fitting algorithm we use in Section 5.

We assume phase-type distributions with initial distributions, α and β, and infinitesimal generator

matrices, QA and QS, for the arrival process and service times respectively. The number of phases

in SA and SS is mA and mS respectively. The matrices, SA and SS, and the vectors, sA and sS

can be expressed as:

SA =


λ11 · · · λ1mA

...
...

...

λmA1 · · · λmAmA

 , sA = (λ10, . . . , λmA0)′ (1)

SS =


µ11 · · · µ1mS

...
...

...

µmS1 · · · µmSmS

 , sS = (µ10, . . . , µmS0)′, (2)

where λjk’s and µil’s accord with the definition of the infinitesimal generator matrices, QA and

QS. Note that the time-varying extension can be achieved by replacing λjk and µil with λjk(t) and
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µil(t).

3 Mathematical model

With the phase-type distributions described in Section 2, we build a mathematical model to describe

the dynamics of a Pht/Pht/nt queue. We assume that the system starts with no customers.

𝑝𝑝1𝜆𝜆1
𝑝𝑝2𝜆𝜆2
𝑝𝑝3𝜆𝜆3

(1 − 𝑝𝑝1)𝜆𝜆1

(1-𝑝𝑝2)𝜆𝜆2
(1-𝑝𝑝3)𝜆𝜆3

𝜆𝜆4

𝑞𝑞1𝜇𝜇1 𝑞𝑞3𝜇𝜇3

(1 − 𝑞𝑞1)𝜇𝜇1

(1-𝑞𝑞2)𝜇𝜇2
(1-𝑞𝑞3)𝜇𝜇3

𝜇𝜇4

𝑃𝑃𝑃/𝑃𝑃𝑃/𝑛𝑛 queueA

B

C

Figure 1: Ph/Ph/n queue with Coxian distributions

Figure 1 illustrates an example of Ph/Ph/n queue with Coxian inter-arrival and service times. In

order to model the Pht/Pht/nt queue, we need to keep track of the phase in which the arriving

customer is (area A in Figure 1), the number of customers being served in each phase (area C), and

the number of customers in the waiting space (area B). We let Ui(t) be the number of customers

in phase i of the arrival process at time t, Xi(t) be the number of customers being served in

phase j of the service process, and Z(t) be the number of customers in the system. Note that

the number of customers in the waiting space is Z(t)−
∑mS

i=1Xi(t). Then, the state of the system
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V(t) = (U1(t), . . . , UmA , X1(t), . . . , XmS , Z(t))′ is the solution to the following integral equations:

Uj(t) =Uj(0) +

mA∑
k=1,k 6=j

Y A
kj

(∫ t

0
λkjUk(s)ds

)
−

mA∑
k=1,k 6=j

Y A
jk

(∫ t

0
λjkUj(s)ds

)
(3)

−
mA∑

k=1,k 6=j

mS∑
l=1

Y I
jkl

(∫ t

0
λj0αkβlUj(s)1{Z(s)≤n}ds

)

−
mA∑

k=1,k 6=j
Y Q
jk

(∫ t

0
λj0αkUj(s)1{Z(s)>n}ds

)

+

mA∑
k=1,k 6=j

mS∑
l=1

Y I
kjl

(∫ t

0
λk0αjβlUk(s)1{Z(s)≤n}ds

)

+

mA∑
k=1,k 6=j

Y Q
kj

(∫ t

0
λk0αjUk(s)1{Z(s)>n}ds

)
for 1 ≤ j ≤ mA,

Xi(t) =

mA∑
j=1

mA∑
k=1

Y I
jki

(∫ t

0
λj0αkβiUj(s)1{Z(s)≤n}ds

)
+

mS∑
l=1,l 6=i

Y S
li

(∫ t

0
µliXl(s)ds

)
(4)

−
mS∑

l=1,l 6=i
Y S
il

(∫ t

0
µilXi(s)ds

)
− Y D

i0

(∫ t

0
µi0Xi(s)1{Z(s)≤n}ds

)

−
mS∑

l=1,l 6=i
Y D
il

(∫ t

0
µi0Xi(s)1{Z(s)>n}βlds

)

+

mS∑
l=1,l 6=i

Y D
li

(∫ t

0
µl0Xl(s)1{Z(s)>n}βids

)
for 1 ≤ i ≤ mS ,

Z(t) =

mA∑
j=1

mA∑
k=1

mS∑
l=1

Y I
jkl

(∫ t

0
λj0αkβlUj(s)1{Z(s)≤n}ds

)
(5)

+

mA∑
j=1

mA∑
k=1

Y Q
jk

(∫ t

0
λj0αkUj(s)1{Z(s)>n}ds

)
−

mS∑
i=1

Y D
i0

(∫ t

0
µi0Xi(s)1{Z(s)≤n}ds

)

−
mS∑
i=1

mS∑
l=1

Y D
il

(∫ t

0
µi0Xi(s)1{Z(s)>n}βlds

)
.

For notational convenience, the equations (3)-(5) represent the dynamics of a Ph/Ph/n queue.

As mentioned in Section 2, we can obtain the time-varying extension by replacing λjk, µil and n

with λjk(t), µil(t), and n(t) respectively under mild conditions in Mandelbaum et al. [19]. Poisson

processes, Y A
kj(·)’s count the number of transitions from phase k to phase j of the arrival process.

When the waiting space is empty (Z(t) ≤ n), Poisson processes, Y I
jkl(·)’s, count the number of
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departures from phase j of the arrival process to phase l of the service process according to the initial

distribution β and the arrival process restarts from phase k according to the initial distribution α.

When the waiting space is not empty (Z(t) > n), Poisson processes, Y Q
jk (·)’s, count the number of

departures from phase j of the arrival process to the waiting space and a new arrival process begins

in phase k. Poisson processes, Y S
li (·)’s, count the internal transitions from phase l to phase j of the

service process. When the waiting space is empty, Poisson processes, Y D
i0 (·)’s, count the number

of departures from phase i of the service process. When the waiting space is not empty, Poisson

processes, Y D
il (·)’s, count the number of departures from phase i and a new customer enters phase

l from the the waiting space. Note that the Poisson processes explained above have rate 1 (with

random time changes) and are mutually independent.

We can easily figure out that the rate functions in equations (3)-(5) (the integrands in Poisson

processes) are not differentiable with respect to the elements of the state space vector, V(t). Thus,

before applying the uniform acceleration, we conduct a quick check to find whether the time during

which the fluid limit stays at the non-differentiable points has measure zero or not.

Let v̄(t) = (ū1(t), . . . , ūmA(t), x̄1(t), . . . , x̄mS (t), z̄(t))′ be the fluid limit of V(t). We check the

Poisson process, Y D
il (·) in equation (4). The fluid limit for Y D

il (·) is µi0x̄i(t)1{z̄(t)>n}. When z̄(t)

hits n, the non-differentiable point,
∑mS

i=1 x̄(t) = n. However, during the overloaded time {t : z̄(t) >

n} which can have strictly positive measure in our setting,
∑mS

i=1 x̄(t) remains unchanged (i.e.,∑mS
i=1 x̄(t) = n). This implies that the subvector (x̄1(t), . . . , x̄mS (t))′ stays at the non-differential

point during the overloaded period and we cannot obtain the diffusion limit from the result of Kurtz

[15] and Mandelbaum et al. [20]. When we try to apply fluid and diffusion limits with equations

(3)-(5) just ignoring the issue, we observe a huge gap between simulation and the numerical solution.

The issue occurs because
∑mS

i=1 x̄(t) = n during the overloaded period. The alternative formulation

avoids this situation but requires an additional assumption that the phase-type distribution for

service times has a unique initial state. Such distributions include the Erlang distribution and the

Coxian distribution. According to Asmussen et al. [3], the Coxian distribution provides almost

the same quality of fit as the general phase-type distribution with the same number of phases.

The additional assumption, therefore, may not be quite restrictive. Without loss of generality, we

assume the unique initial state is phase 1. The main idea is to maintain the waiting space inside

phase 1 and control transition rates from phase 1 so that the system serves at most n customers.
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We have the same state space except for Z(t) because X1(t) accounts for customers in the waiting

space. We write the formulation as follows:

Uj(t) =Uj(0) +

mA∑
k=1,k 6=j

Y A
kj

(∫ t

0
λkjUk(s)ds

)
−

mA∑
k=1,k 6=j

Y A
jk

(∫ t

0
λjkUj(s)ds

)
(6)

−
mA∑

k=1,k 6=j
Y I
jk

(∫ t

0
λj0αkUj(s)ds

)
+

mA∑
k=1,k 6=j

Y I
kj

(∫ t

0
λk0αjUk(s)ds

)
for 1 ≤ j ≤ mA,

X1(t) =

mA∑
j=1

mA∑
k=1

Y I
jk

(∫ t

0
λj0αkUj(s)ds

)
+

mS∑
l=1,l 6=1

Y S
l1

(∫ t

0
µl1Xl(s)ds

)
(7)

−
mS∑

l=1,l 6=1

Y S
1l

(∫ t

0
µ1l

[
1{

∑mS
r=1Xr(s)≤n}X1(s) + 1{

∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)

− Y D
1

(∫ t

0
µ10

[
1{

∑mS
r=1Xr(s)≤n}X1(s) + 1{

∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)
.

Xi(t) =Y S
1i

(∫ t

0
µ1i

[
1{

∑mS
r=1Xr(s)≤n}X1(s) + 1{

∑mS
r=1Xr(s)>n}

(
n−

mS∑
r=2

Xr(s)
)+
]
ds

)
(8)

+

mS∑
l=2,l 6=i

Y S
li

(∫ t

0
µliXl(s)ds

)
−

mS∑
l=1,l 6=i

Y S
il

(∫ t

0
µilXi(s)ds

)
− Y D

i

(∫ t

0
µi0Xi(s)ds

)
for 2 ≤ i ≤ mS .

Poisson processes, Y A
kj(·)’s and Y S

li (·)’s, are the same as those in equations (3) and (4). Poisson

processes, Y I
jkl(·)’s in equation (3) are now replaced by Y I

jk(·)’s because the initial state of the

service process is phase 1. Poisson processes, Y D
i (·)’s count departures from phase i of the service

process. Note that the Poisson processes explained above have rate 1 (with random time changes)

and are mutually independent. We can verify that the issue is not incurred in equations (6)-(8). In

the following section we explain the fluid and diffusion approximations.
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4 Fluid and diffusion approximations

First, we provide some definitions for notational convenience.

V(t) = (U1(t), . . . , UmA(t), X1(t), . . . , XmS (t))′.

v = (u1, . . . , umA , x1, . . . , xmS )′.

dAjk : (mA +mS)× 1 vector, jth element is -1, kth element is is 1, and other elements are 0.

dIjk : (mA +mS)× 1 vector, jth element is -1, kth element is is 1, and other elements are 0.

dSil : (mA +mS)× 1 vector, ith element is -1, lth element is is 1, and other elements are 0.

dDi : (mA +mS)× 1 vector, ith element is -1, and other elements are 0.

fAjk(t,v) : rate function (integrand) in Y A
jk(·).

f Ijk(t,v) : rate function (integrand) in Y I
jk(·).

fSil (t,v) : rate function (integrand) in Y S
il (·).

fDi (t,v) : rate function (integrand) in Y D
i (·).

WA
jk(t),W

I
jk(t),W

S
il (t),W

D
i (t) : mutually independent standard Brownian motions.

F(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjkf
A
jk(t,v) +

mA∑
j=1

mA∑
k=1

dIjkf
I
jk(t,v) +

mS∑
i=1

mS∑
l=1,l 6=i

dSilf
S
il (t,v) +

mS∑
i=1

dDi f
D
i (t,v).

H(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjk

√
fAjk(t,v)dWA

jk(t) +

mA∑
j=1

mA∑
k=1

dIjk

√
f Ijk(t,v)dW I

jk(t)

+

mS∑
i=1

mS∑
l=1,l 6=i

dSil

√
fSil (t,v)dWS

il (t) +

mS∑
i=1

dDi

√
fDi (t,v)dWD

i (t).

G(t,v) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjkd
A
jk
′
fAjk(t,v) +

mA∑
j=1

mA∑
k=1

dIjkd
I
jk
′
f Ijk(t,v) +

mS∑
i=1

mS∑
l=1,l 6=i

dSild
S
il
′
fSil (t,v)

+

mS∑
i=1

dDi dDi
′
fDi (t,v).
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With the definitions above, we rewrite equations (6)-(8) in a vector form as follows:

V(t) =V(0) +

mA∑
j=1

mA∑
k=1,k 6=j

dAjkY
A
jk

(∫ t

0
fAjk(s,V(s))ds

)
+

mA∑
j=1

mA∑
k=1

dIjkY
I
jk

(∫ t

0
f Ijk(s,V(s))ds

)

+

mS∑
i=1

mS∑
l=1,l 6=i

dSilY
S
il

(∫ t

0
fSil (s,V(s))ds

)
+

mS∑
i=1

dDi Y
D
i

(∫ t

0
fDi (s,V(s))ds

)
.

Following the procedure of the uniform acceleration in Mandelbaum et al. [19] and Kurtz [15], we

define a sequence of processes {Vη(t), η ≥ 1, t ≥ 0}, where

Vη(t) =Vη(0) +

mA∑
j=1

mA∑
k=1,k 6=j

dAjkY
A
jk

(
η

∫ t

0
fAjk(s,V

η(s)/η)ds

)

+

mA∑
j=1

mA∑
k=1

dIjkY
I
jk

(
η

∫ t

0
f Ijk(s,V

η(s)/η)ds

)
+

mS∑
i=1

mS∑
l=1,l 6=i

dSilY
S
il

(
η

∫ t

0
fSil (s,V

η(s)/η)ds

)

+

mS∑
i=1

dDi Y
D
i

(
η

∫ t

0
fDi (s,Vη(s)/η)ds

)
.

Then, we have the following proposition for the fluid limit:

Proposition 1 (Fluid limit, Mandelbaum et al. [19], Kurtz [15]). Suppose Vη(0) = V(0). Then,

lim
η→∞

Vη(t)

η
= v̄(t) almost surely,

where v̄(t) is the solution to the following ordinary differential equations:

d

dt
v̄(t) =

mA∑
j=1

mA∑
k=1,k 6=j

dAjkf
A
jk(t, v̄(t)) +

mA∑
j=1

mA∑
k=1,k 6=j

dIjkf
I
jk(t, v̄(t)) (9)

+

mS∑
i=1

mS∑
l=1,l 6=i

dSilf
S
il (t, v̄(t)) +

mS∑
i=1

dDi f
D
i (t, v̄(t)).

Now that we have the fluid limit, v̄(t), we derive the diffusion limit as follows:

Proposition 2 (Diffusion limit, Mandelbaum et al. [19] and Kurtz [15]). Let Dη(t) =
√
η(V(t)/η−

v̄(t)). Then,

lim
η→∞

Dη(t) = D(t) in distribution,
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where D(t) is the solution to

dD(t) = H(t, v̄(t)) + ∂F(t, v̄(t))D(t)dt,

and ∂F(t,v) is the gradient matrix of F(t,v) with respect to v. If D(0) is a constant or normally

distributed, {D(t), t ≥ 0} is a Gaussian process (Arnold [2]).

Therefore, for a large η,

Vη(t) ≈ ηv̄(t) +
√
ηD(t).

Note that increasing η indeed means increasing the number of servers along with other parameters

(Mandelbaum et al. [20]). Therefore, if the number of servers is sufficiently large in the original

setting (i.e., η = 1), we can approximate V(t) as follows:

V(t) ≈ v̄(t) + D(t).

Since {D(t), t ≥ 0} is a Gaussian process, {V(t), t ≥ 0} is approximately a Gaussian process. If we

have the mean vector and the covariance matrix of D(t), we can approximately identify the queue

length distributions as follows:

Proposition 3 (Mean and covariance matrix of D(t), Arnold [2]). Let M(t) = E[D(t)] and Σ(t) =

Cov[D(t),D(t)]. Then, M(t) and Σ(t) are the unique solution to the following ordinary equations:

d

dt
M(t) = ∂F(t, v̄(t))M(t), (10)

d

dt
Σ(t) = ∂F(t, v̄(t))Σ(t) + Σ(t)∂F(t, v̄(t))′ + G(t, v̄(t)). (11)

If M(0) = 0, M(t) = 0 for all t ≥ 0.

Recall that we start with the empty queue, which means we do not have to solve equation (10),

i.e., M(t) = 0 for all t ≥ 0.

By solving differential equations (9) and (11), we can approximate E[V(t)] and Cov[V(t),V(t)] as
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follows:

E[V(t)] ≈ v̄(t),

Cov[V(t),V(t)] ≈ Σ(t).

Let X(t) be the number of customers in the system at time t. Then,

X(t) =

mS∑
i=1

Xi(t).

Note that {X(t), t ≥ 0} is a Gaussian process and we can obtain the mean and variance of X(t) as

follows:

E[X(t)] =

mS∑
i=1

E[Xi(t)],

Var[X(t)] =

mS∑
i=1

Var[Xi(t)] + 2

mS−1∑
i=1

mS∑
l=i+1

Cov[Xi(t), Xl(t)].

5 Numerical results

In this section, we provide some numerical results comparing the proposed method with the sim-

ulation results. Figure 2 shows the overall flow of the numerical study and Table 1 explains the

settings of the experiments.

Referring to the flow chart in Figure 2, we choose Coxian distributions to approximate Weibull

and lognormal distributions in Table 1. Coxian distributions have a unique initial state that the

proposed method requires and the overall fitting quality is known to be good (Asmussen et al. [3]).

We use the EM algorithm developed by Asmussen et al. [3], although other phase-type distributions

and fitting algorithms can also be used. Since we want to approximate the distribution itself, we use

8-10 phases to fit the target distributions accurately. Figure 3 illustrates a density and distribution

fitting with a Coxian distribution. In this example, we use 10 phases to approximate the Weibull

distribution. We derive the ordinary differential equations (ODEs) from equations (9) and (11),

and solve them using MATLAB. We write the simulation code in C++. In order to generate a

general time-varying arrival process, we implement the algorithm based on the standard equilibrium
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Figure 2: Overall flow of the numerical study

renewal process (SERP) explained in the longer version of Liu and Whitt [16]. We use Weibull

distributions with mean 1 (see Table 1) to generate time-varying arrival times. We run 5,000

independent instances for each setting and estimate the mean and the variance of the number of

customers in the system over time.

As in Table 1, we choose two Weibull distributions for the arrival processes: the squared coefficient

of variation (SCoV) of Weibull(0.79,0.7) is 2.1387 which is greater than one, and the SCoV of

Weibull(1.1271,2.5) is 0.1831 which is less than one. We do not consider the case when the SCoV is

Table 1: Settings for the numerical study

Setting Description

# of servers 50/200

# of iterations 5,000

Time-varying rate 45 + 30 sin(2πt/10)/180 + 120 sin(2πt/10)

Inter-arrival time Weibull(0.79, 0.7),SCoV = 2.1387/Weibull(1.1271, 2.5),SCoV = 0.1831

Service time Lognormal(−0.5, 1), SCoV = 1.7183/Lognormal(−0.2027, 0.6368),SCoV = 0.5
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Figure 3: Weibull(1.1271, 2.5) and corresponding Coxian distributions
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Figure 4: Density of the number of customers at time 10 and 20
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Figure 5: Weibull(0.79,0.7)(SCoV=2.1387) and Lognormal(-0.5,1)(SCoV=1.7183)

1 since it is an exponential distribution and has been studied extensively in the literature. For the

service times, we choose two lognormal distributions with the different SCoV values. Increasing the

number of servers makes us expect more accurate estimations since the fluid and diffusion limits

are asymptotically exact. Therefore, we compare the cases when the number of servers is 50 and

200. The corresponding time-varying rates to the number of servers are 45 + 30 sin(2πt/10) and

180 + 120 sin(2πt/10) respectively. Then, we have 8 combinations of experimental settings: two

distributions for arrivals, two distributions for services, two values of the number of servers.

We mention that the queue length distributions are approximately Gaussian in Section 4. Figure 4

compares the empirical density and the density from the diffusion limit at time 10 and 20. Although

we observe some skewness in the empirical density, the Gaussian approximation seems to work well.

Figures 5-8 plot the mean and the variance of the number of customers over time comparing the

proposed method and the simulation results for the cases of 50 and 200 servers. Each figure
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Figure 6: Weibull(0.79,0.7)(SCoV=2.1387) and Lognormal(-0.2027,0.6368)(SCoV=0.5)

represents a different combination of distributions for arrival processes and service times. Overall

we observe that the proposed method provides accurate estimations of the mean and the variance

of the number of customers in the system. Comparing Figures 5 (a) and (c), we observe that

increasing the number of servers results in more accurate estimations of the mean as expected. We

observe the same result for the variance (see Figures 5 (b) and (d)). The same results hold across

different distribution settings (Figures 6-8). The distributions in Figure 5 have the largest SCoV

values and those in Figure 8 have the smallest SCoV values. In Figures 5 and 8, we observe that

the proposed method works better when the SCoV values are small.

6 Conclusion

This paper describes a computational method to approximate the queue length distributions of

large-scale Gt/Gt/nt queues. Instead of analyzing a Gt/Gt/nt directly, we study a Pht/Pht/nt
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Figure 7: Weibull(1.1271,2.5)(SCoV=0.1831) and Lognormal(-0.5,1)(SCoV=1.7183)

queue since phase-type distributions can approximate positive-valued distributions in any level of

accuracy. Applying the uniform acceleration method to Pht/Pht/nt queues to obtain fluid and

diffusion limits, we encounter the lingering problem in our formulation and cannot obtain the

diffusion limit. To resolve the issue, we propose a new formulation with an additional condition

that is not quite restrictive. The new formulation works well and we successfully derive the fluid

and diffusion limits. We find that the queue length process is approximately a Gaussian process

and we derive ordinary differential equations to obtain the mean and variance of the queue length

over time.

From the numerical study, we observe that the proposed method works better when the distributions

for arrival processes and service times have smaller SCoVs. Since the uniform acceleration method

increases the number of servers to infinity, the estimations should become more accurate as the

number of servers increases. We exactly observe this phenomenon as expected.
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Figure 8: Weibull(1.1271,2.5)(SCoV=0.1831) and Lognormal(-0.2027,0.6368)(SCoV=0.5)

We suggest two directions for future research. For example, in order to obtain the diffusion limit, we

put an additional condition (a unique initial state for phase-type distributions). Although it does

not seem to be critical, the method will be improved if the restriction can be removed. Extending

the proposed method to queueing networks is another possible research direction.
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