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Abstract

We present a perfect formulation for a single generator in the unit commitment problem, inspired by the

dynamic programming approach taken by Frangioni and Gentile. This generator can have characteristics

such as ramp up/down constraints, time-dependent start-up costs, and start-up/shut-down limits. To develop

this perfect formulation we extend the result of Balas on unions of polyhedra to present a framework allowing

for flexible combinations of polyhedra using indicator variables. We use this perfect formulation to create

a cut-generating linear program, similar in spirit to lift-and-project cuts, and demonstrate computational

efficacy of these cuts in a utility-scale unit commitment problem.
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1 Introduction

The unit commitment problem (UC) is that of scheduling generators to meet power demand, and has been one

of the great successes of mixed-integer programming models. The Midwest Independent Transmission System

Operator (MISO), recipient of the Edelman Award in 2011, reports annual savings of over $500 million by

using integer programming to optimize UC in place of Lagrangian relaxation (Carlson et al. 2012). Because of

the scales involved, a 1% savings in energy markets results in translates to a $10 billion annual savings (O’Neill

2007).

The unit commitment problem is nearly decomposable as generators are only linked through the demand

constraint. Therefore most improvements in unit commitment models are a result of studying the properties

of an individual generator’s feasible region. Frangioni and Gentile (2006) provide a dynamic programming

model for an individual generator with ramping constraints. Inspired by their dynamic programming model,

we construct a compact extended formulation for a single generator, which can be used to model generators

within a unit commitment MIP model. During the drafting of this paper, we learned that Frangioni and Gentile

independently discovered a similar perfect formulation for a single thermal generator (Frangioni and Gentile

2015a,b). The formulation developed can be used to model any properties of a generator that are polyhedrally

representable when the commitment status is fixed. We use this extended formulation to create a cut-generating

linear program that can be used to strengthen the linear programming (LP) relaxation for MIP formulations of

UC and/or as a callback in the MIP solver.

The rest of the paper is outlined as follows. In Section 2 we review the current state of the unit commitment

problem, including the typical 3-binary formulation used in state-of-the-art models, and introduce the extended

formulation. In Appendix A, we prove the integrality of this extended formulation by revisiting a classic result

of Balas (1979, 1998), and does so in more general terms than we strictly require. In Section 3 we use the results

of the preceding sections to develop a cut-generating linear program for a ramping-constrained generator, and

we present computational experiments based on a utility-scale unit commitment problem. Finally, in Section 4

we draw conclusions and discuss possible directions for future research.
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2 The Unit Commitment Problem

We begin by providing an overview of the unit commitment problem. For a set of generators G and T time

steps, we formulate the unit commitment problem as follows:

min
∑
g∈G

cg(pg) (1a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T ] (1b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T ] (1c)

pg, p̄g ∈ Πg ⊂ RT , ∀g ∈ G, (1d)

pg is the power output vector of generator g, cg(pg) is the cost of the vector pg, and p̄gt is the maximum power

available from generator g at time t. Lt is the electricity load at time t, while Rt is the spinning reserve

requirement at time t. For convenience let [T ] := {1, . . . , T}. Πg represents the often non-convex technical

constraints on production and commitment of generator g, such as minimum up/down times, ramping rates,

time-dependent start-up costs, etc. As mentioned above, most research in improving unit commitment models

has focused improving the modeling of individual generators, i.e., (1d) above. The justification for this line of

research is that tighter MIP formulations for Πg increase the linear programming bound for (1), which will in

turn decrease the enumeration necessary to solve UC.

Most of the literature modeling individual generators followed Garver’s (1962) general structure, using

three different types of binary variables to describe the status of a generator at a given time: one variable

indicating if the generator is on, another indicating if is turned on, and the last indicating if generator is turned

off. Models of this type are referred to as 3-binary models, or 3-bin models. An alternative 1-binary model

(e.g., see Carrion and Arroyo 2006), or 1-bin model, considers the variables indicating if the generator is turned

on/off as superfluous, rewriting each constraint using only variables that represent if the generator is on at a

given time period. The hope in this reduction is that fewer binary variables will lead to smaller branch-and-

bound trees and smaller computation times. However, moving to a smaller formulation comes with a cost of

weaker inequalities. A convex hull description for a simplified generator using the 1-bin formulation is given

by Lee et al. (2004), showing that the convex hull has exponentially many constraints. Yet, the same simplified

generator’s production region has a linearly-sized convex hull when using the 3-bin model (Malkin 2003, Rajan

and Takriti 2005).

The simplified generator considered by Rajan and Takriti (2005) only models on/off status, minimum/maximum
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power, and minimum up/down times. For this reason, several recent results have strengthened the 3-bin model

with additional generator characteristics. A common extension is to the case when ramping constraints are

considered. Ramping constraints represent the fact that generators, in general, cannot vary their power output

dramatically from one time period to the next. Polynomial classes of strengthening inequalities for the 3-bin

model with ramping are given by Ostrowski et al. (2012); Damcı-Kurt et al. (2015) build on this by providing

exponential classes of such strengthening inequalities along with a polynomial separation algorithm. Addi-

tionally, Damcı-Kurt et al. (2015) provide a convex hull description for the ramp-up and ramp-down polytopes

in two time periods. Pan and Guan (2016) extend this by intersecting these two polytopes into an integrated

ramping polytope for three time periods.

A convex hull description for the 3-bin model with the addition of start-up and shut-down power is proved

by Gentile et al. (2016). The same authors extend this in Morales-España et al. (2015) by separating power

from energy (often assumed to be the same since almost all UC models operate on a one-hour time interval).

This allows for the modeling of a generator’s output below economic minimum when starting up and shutting

down, while still maintaining integrality.

Our model moves away from the standard 3-bin polytope by considering on-off intervals. To demonstrate

the relationship between the proposed formulation and the classical formulations, we first review the standard

3-bin model typically used to represent Πg and cg(·). Then we turn our focus toward the dynamic programming

method for optimizing over a single generator laid out by Frangioni and Gentile (2006). Indeed using their dy-

namic programming procedure allows one to optimize a convex function over the unit commitment polytope

(with ramping constraints) in polynomial time. It should not be surprising then to find polynomial-sized ex-

tended formulations for Πg (although this is by no means guaranteed, see (Rothvoß 2014)). Additionally, the

formulation derived can be trivially extended to model other generator characteristics, provided the constraints

on the generator are represented with a polytope when the commitment status is fixed.

2.1 3-bin Formulation

We now describe the typical 3-bin formulation for the feasible region Πg with cost function cg(·). Consider the

binary vectors ug, vg, wg ∈ {0, 1}T , where ugt is the commitment status of the generator at time t, vgt indicates

if the generator was started up at time t, and wgt indicates if the generator was shut down at time t. Suppose UT

and DT are the minimum up and down time for the generator. We first consider the logical constraints (Garver

1962):

ugt − u
g
t−1 = vgt − w

g
t , ∀t ∈ [T ], (2)
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and the minimum up/down time constraints (Rajan and Takriti 2005):

t∑
i=t−UT+1

vgi ≤ ugt , ∀t ∈ [UT g, T ] (3)

t∑
i=t−DT+1

wgi ≤ 1− ugt , ∀t ∈ [DT g, T ]. (4)

Rajan and Takriti (2005) showed that (2 – 4) along with the variable bound constraints give a convex hull

description for the minimum up/down time polytope.

Next we consider constraints on the generation limits. Let P and P represent the minimum and maximum

feasible power output when on, RD and RU represent the maximum ramp-down and ramp-up rates, and SD

and SU represent the maximum shut-down and start-up levels. First we note that when a generator is on it must

be operating within its specified limits

P gugt ≤ pgt ≤ p̄gt ≤ P
g
ugt , ∀t ∈ [T ]. (5)

We note if RU g, RDg ≥ (P
g − P g) and SU g, SDg ≥ P

g
, that is, there are no real ramping and start-up

shut-down constraints, then the formulation given by (2 – 5) is perfect for this simple generator. However, most

generators are not so simple, and have ramp-up constraints:

p̄gt − p
g
t−1 ≤ RU gugt−1 + SU gvgt , ∀t ∈ [T ], (6)

and ramp-down constraints:

p̄gt−1 − p
g
t ≤ RDgugt + SDgwgt , ∀t ∈ [T ]. (7)

For reference later, define:

Πg
3-bin := {(pg, p̄g, ug, vg, wg) ∈ R5T

+ | (2− 7); (ug, vg, wg) ∈ {0, 1}3T} (8)

and
RΠg

3-bin := {(pg, p̄g, ug, vg, wg) ∈ R5T
+ | (2− 7); (ug, vg, wg) ∈ [0, 1]3T}. (9)

That is, Πg
3-bin is the feasible set for the technical constraints for generator g, and RΠg

3-bin is its continuous

relaxation. We will colloquially refer to Πg
3-bin and RΠg

3-bin as being in “3-bin space”, dropping the g when it is

implied by context.

Now we consider the cost function cg(·). Typically cg(pg) = cgf (u
g) +

∑
t∈[T ] c

g
p(p

g
t ), where cgp(·) is convex

and either quadratic or piecewise linear in the power output, and cf (·) is the fixed commitment costs and start-

up/shut-down costs, and as such is a function of the indicator variables. First, we consider cgp(·). We assume that
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cgp(·) is convex and piecewise linear where 1P
g
, . . . , LP

g
represent the upper breakpoints for power available

at marginal costs 1cg, . . . , Lcg with 1cg < . . . < Lcg. Define 0P
g

= 0. We use the standard convex piecewise

formulation by introducing new variables lpgt , representing the power generator g produces at time t at marginal

cost lcg, along with the constraints

0 ≤ lpgt ≤ lP
g −l−1P

g
, ∀l ∈ [L],∀t ∈ [T ] (10a)

pgt =
L∑
l=1

lpgt , ∀t ∈ [T ]. (10b)

We can then represent cgp(·) linearly as
∑

t∈[T ]

∑
l∈[L]

lcg lpgt . Now consider cgf (·). Typically the start-up cost

is an increasing function of how long the generator has been off. For simplicity we will only consider two

start-up types, hot (H) and cold (C). A start-up is said to be hot if the generator has been off for less than DT gC

time periods. We formulate the start-up costs as in Morales-España et al. (2013); namely, let Hδgt , Cδ
g
t ∈ {0, 1}

represent a hot and cold start-up, respectively. Then we may write Hδgt ,
Cδgt in terms of the start-up and shut-

down variables vgt , w
g
t :

Hδgt ≤
DT g

C−1∑
i=DT

wgt−i, ∀t ∈ [DT gC , T ] (11a)

Hδgt + Cδgt = vgt , ∀t ∈ [T ]. (11b)

Thus, if Ucg is the fixed cost of running the generator, and Dcg is the cost of shutting down the generator, then

we can represent cgf (·) linearly as
∑

t∈[T ](
Ccg Cδgt + Hcg Hδgt + Ucgugt + Dcgwgt ).

If the ramping constraints (6) and (7) are irredundant, then it is well known that conv(Πg
3-bin) 6= RΠg

3-bin

(where conv(S) is the convex hull of the set S). Recently, Damcı-Kurt et al. (2015) characterized separately the

ramp-up and ramp-down polytopes for when T = 2, and Pan and Guan (2016) fully characterized conv(Πg
3-bin)

for T = 3. In the next section we will develop a new extended formulation for Πg, which can be used to

generate valid inequalities for conv(Πg
3-bin).

2.2 The Feasible Dispatch Polytope

The feasible dispatch polytope describes the possible generator outputs given that the generator’s on/off status

has been fixed. Let D[a,b] ⊂ R2T represent the set of all feasible production schedules assuming that the

generator is only (and continuously) on during the time interval [a, b]. For any (p[a,b], p̄[a,b]) ∈ D[a,b], p[a,b]
t

represents the power produced by the generator at time t (note that p[a,b]
t = 0 for all t not in the interval [a, b]),

and p̄[a,b]
t represents the maximum power available at time t. We can write D[a,b] as

D[a,b] = {(p[a,b], p̄[a,b]) ∈ R2T
+ |A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ b̄[a,b]} (12)
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for A[a,b], Ā[a,b] ∈ Rm×T and b̄[a,b] ∈ Rm. For our purposes, D[a,b] is defined by max/min power and ramping

constraints, and is obviously bounded. The methods described in this paper then can be used to extend D[a,b] to

accommodate any number of services so long as D[a,b] remains a bounded polyhedron.

To demonstrate, consider the most common description of D[a,b] found in the power systems literature,

which deals with the following types of constraints: minimum/maximum output, maximum ramping, and start-

up/shut-down levels. The constraints defining the polytope D[a,b]
typical are:

p
[a,b]
t ≤ 0 ∀t < a and t > b (13a)

p̄
[a,b]
t ≤ 0 ∀t < a and t > b (13b)

−p[a,b]
t ≤ −P ∀t ∈ [a, b] (13c)

p
[a,b]
t ≤ p̄

[a,b]
t ∀t ∈ [a, b] (13d)

p̄
[a,b]
t ≤ min(P , SU + (t− a)RU, SD + (b− t)RD) ∀t ∈ [a, b] (13e)

p̄
[a,b]
t − p[a,b]

t−1 ≤ min(RU, SD + (b− t)RD − P ) ∀t ∈ [a+ 1, b] (13f)

p̄
[a,b]
t−1 − p

[a,b]
t ≤ min(RD,SU + (t− a)RU − P ) ∀t ∈ [a+ 1, b]. (13g)

Constraints (13a) and (13b) specify that the generator does not output power nor provide reserves while off;

(13c) specifies the minimum level of power output when the generator is on. (13d) ensures the power available

is at least the power committed. Constraint (13e) enforces the upper bound on the power output at time t. This

ensures the generator does not produce more power than its maximum output P , the power level it could ramp

up to by time t (SU + (t− a)RU ), or ramp down from at time t (SD + (b− t)RD) to reach shut-down status.

The ramp up constraint (13f) ensures the power jump between times t − 1 and t is no more than RU or that

which we could ramp back down to in the remaining time (SU + (b− t)RD−P ). The ramp down constraints

(13g) work symmetrically.

We will let T be the set of all feasible continuous operating intervals for the generator. Recalling UT

and DT are the minimum up and down time for the generator, T contains all intervals [a, b] where 1 ≤ a ≤

a + UT ≤ b ≤ T . T also contains cases when the generator has been turned on prior to time one and cases

where the generator will be on past time T . To account for this, we let the interval [0, b] represent cases where

the generator was already on before the planning period and is turned off at time b. It is not necessary for b+ 1

to be larger than UT . Similarly, we let the interval [a, T +1] represent the case where the generator continues to

be on after the planning period, where the actual shut-down time is undetermined. Note all polytopes D[a,b]
typical

are nonempty for [a, b] ∈ T . Frangioni and Gentile (2006) develop a dynamic-programming approach for

scheduling a single generator in polynomial time by combining the polytopes D[a,b]
typical such that the intervals
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only overlap in feasible combinations. We will use the polytopes D[a,b]
typical in a similar fashion to develop an

extended formulation for the ramping polytope.

2.3 Packing Dispatch Polytopes

To develop the extended formulation, we construct an interval graph from T , where two intervals [a, b], [c, d]

are defined to overlap if [a, b + DT ] ∩ [c, d + DT ] 6= ∅. That is, G = (V,E) has V = T and edges between

two vertices if they overlap, is an interval graph by construction, and hence G is a line graph. We now consider

packing the vertices of G, that is, selecting a subset of VP ⊆ V such that for any u, v ∈ VP , (u, v) /∈ E. If we

use variables γ ∈ {0, 1}|T | to indicate whether a vertex (interval) is in the packing or not, then is it well known

(since G is a line graph) that the clique inequalities (along with non-negativity) give a convex hull description

of the vertex packing problem. That is, the vertices of

Γ =


∑
{[a,b]∈T | t∈[a,b+DT ]} γ[a,b] ≤ 1 t ∈ [T ]

γ[a,b] ≥ 0 ∀[a, b] ∈ T
(14)

are binary and represent all feasible vertex packings. Using the dispatch polytopes developed in Section 2.2,

we can write down an extended formulation for a ramping-constrained generator.

Theorem 1. The polytope

D :=



A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ γ[a,b]b̄
[a,b] ∀[a, b] ∈ T (15a)∑

[a,b]∈T

p[a,b] = p (15b)

∑
[a,b]∈T

p̄[a,b] = p̄ (15c)

(p[a,b], p̄[a,b]) ∈ R2T
+ ∀[a, b] ∈ T (15d)∑

{[a,b]∈T | t∈[a,b+DT ]}

γ[a,b] ≤ 1 t ∈ [T ] (15e)

γ[a,b] ≥ 0 ∀[a, b] ∈ T (15f)

is a compact (polynomial-sized in T ) formulation for a ramping-constrained generator, and the vertices of D

have integer γ.

Proof. Proof. See Appendix A.

Remark 1. Not dispatching the generator in time period [0, T + 1] corresponds to having γ[a,b] = 0 for all

[a, b] ∈ T .
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Linear generation costs c ∈ RT and fixed start-up (and shut-down) costs w ∈ R|T | can be modeled by

optimizing the linear function c>p+w>γ overD. This formulation does not concern itself with time-dependent

start-up costs. These can be easily added by considering additional indicator variables ζ[c,d] which represent the

generator being off from time c to d, and construct a set of feasible off intervals T ′ similar to the construction

of T . Recall Cc and Hc are the cost of a cold and hot start, respectively. When Hc ≥ Cc/2, we can replace (15e)

above with ∑
{[a,b]∈T | t∈[a,b+DT ]}

γ[a,b] +
∑

{[c,d]∈T ′ | t∈[c+DT,d]}

ζ[c,d] = 1 t ∈ [T ] (16a)

ζ[c,d] ≥ 0 ∀[c, d] ∈ T ′, (16b)

and the ζ[c,d] variables are in the objective function with the appropriate objective value.

However, when Hc < Cc/2, a formulation discovered by Frangioni and Gentile (2015a,b) must be consid-

ered. It uses the following shortest path formulation in place of the packing formulation in (15e) and (15f)

above ∑
{[c,d]∈T ′ | t=d+1}

ζ[c,d] =
∑

{[a,b]∈T | t=a}

γ[a,b] t ∈ [T ] (17a)

∑
{[a,b]∈T | t=b+1}

γ[a,b] =
∑

{[c,d]∈T ′ | t=c}

ζ[c,d] t ∈ [T ] (17b)

∑
{[a,b]∈T | a=0}

γ[a,b] +
∑

{[c,d]∈T ′ | c=0}

ζ[c,d] = 1 (17c)

∑
{[a,b]∈T | b=T+1}

γ[a,b] +
∑

{[c,d]∈T ′ | d=T+1}

ζ[c,d] = 1 (17d)

γ[a,b] ≥ 0, ∀[a, b] ∈ T , ζ[c,d] ≥ 0, ∀[c, d] ∈ T ′. (17e)

Call the resulting polytope D′, that is, equations (15a - 15d) with (17). We note that Frangioni and Gentile

(2015b) provide a proof of the integrality of D′, building it up one dispatch polytope at a time, which also

proves Theorem 1. It essentially relies on the fact that each of the combined polytopes are integer in their

respective variables, and share only one variable with the other polytopes. In a similar fashion the results

outlined in Appendix A prove the integrality of D′ in the γ, ζ variables. Both proofs rely on the underlying

integrality of the polytopes relating the indicator variables; the one presented in this paper also provides an

interesting geometric interpretation of the result, whereas that in Frangioni and Gentile (2015b) is a bit more

generalizable.

Both convex hull descriptions are large, and are unlikely to be computationally effective within the problem

(1). Preliminary computational experiments in Frangioni and Gentile (2015b) bear this out. As such, instead of
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using (15) directly to represent Πg in the unit commitment problem (1), we will use (15) to develop a procedure

for generating cuts based on the polytope D similar in spirit to lift-and-project cuts (Balas et al. 1993).

3 A Cutting-Plane Procedure for the 3-bin Formulation

The basic logic of the proposed approach is as follows. Let Dg be the feasible dispatch polytope for generator

g. The LP relaxation for (1) when the extended formulation is used to represent each generator is

LPx∗EF = min
∑
g∈G

cg(pg) (18a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T ] (18b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T ] (18c)

(pg, p̄g) ∈ Dg, ∀g ∈ G. (18d)

On the other hand, define the LP relaxation for (1) with the typical 3-bin formulation as

LPx∗3-bin = min
∑
g∈G

cg(pg) (19a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T ] (19b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T ] (19c)

(pg, p̄g) ∈ RΠg
3-bin, ∀g ∈ G. (19d)

Because the extended formulation is at least as tight as 3-bin, we have LPx∗EF ≥ LPx∗3-bin. However, as men-

tioned above, because representing Dg requires O(T 3) variables whereas RΠg
3-bin needs only O(T ) variables,

the problem (18) is likely to be much more computationally difficult than (19). In the MIP context, this not

only slows down the root-node solve time, but also subsequent node resolves in the branch-and-bound tree.

We propose a cutting-plane procedure attempts to ameliorate the computational issues of solving (18) while

still maintaining the strength of its LP bound. In particular, given a solution to (19), for each g ∈ G we can

lift generator schedules (pg∗, p̄g∗) ∈ RΠg
3-bin to the “Dg-space.” If (pg∗, p̄g∗) ∈ Dg, then we do nothing. On the

other hand, if (pg∗, p̄g∗) /∈ Dg, we can calculate a separating cut, project the cut back into 3-bin space, add it

to the problem (19), and then resolve. Repeating this process iteratively until (pg∗, p̄g∗) ∈ Dg for all g ∈ G

allows us to calculate LPx∗EF while decomposing the difficult constraints Dg into individual easier separation
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subproblems for each g ∈ G. Further, we can stop at any point and possibly obtain a better LP bound than
LPx∗3-bin. That is, for each g ∈ G let Cg be the feasible region for a (possibly empty) set of cuts generated from

Dg. Consider the following linear program:

LPx∗3-bin+C = min
∑
g∈G

cg(pg) (20a)

subject to
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T ] (20b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T ] (20c)

(pg, p̄g) ∈ RΠg
3-bin ∩ C

g, ∀g ∈ G. (20d)

Then we have LPx∗EF ≥ LPx∗3-bin+C ≥ LPx∗3-bin, where we achieve equality on the left if we add every possible

separating cut, and we have equality on the right if we add no cuts. As is well known, in practice is it often

not desirable to add every possible cut, so we add cuts heuristically (in this work, we do only one round of

cuts for a given LP relaxation). Finally, note that the discussion above not only applies to the root node of the

branch-and-bound tree, but also at any subsequent node subproblem.

3.1 From Dispatch Polytope Space to 3-bin Space

Recalling the typical 3-bin formulation described in Section 2.1 and the new extended formulation developed

in Sections 2.2 and 2.3, we see how these formulations can be “connected” through a linear transformation,

which will be the basis for our cut-generation routine.

Dropping the superscript g for a moment to focus on one generator, recall equation (15). Although it is clear

from the formulation of D how to project it on to the space of (p, p̄) variables, by using a linear transformation

we can project D into 3-bin space, that is, the space of the (p, p̄, u, v, w) variables from Section 2.1. Of course,

p and p̄ remain the same, and we can link γ and (u, v, w) as follows:∑
{[a,b]∈T | t∈[a,b]}

γ[a,b] = ut t ∈ [T ] (21a)

∑
{[a,b]∈T | t=a}

γ[a,b] = vt t ∈ [T ] (21b)

∑
{[a,b]∈T | t=b+1}

γ[a,b] = wt t ∈ [T ]. (21c)

Notice by adding the constraints (21) to the formulation ofD (15), for a given 3-bin solution (p∗, p̄∗, u∗, v∗, w∗) ∈
RΠ3-bin, either the system of equations defined by (15), (21), p = p∗, p̄ = p̄∗, u = u∗, v = v∗, and w = w∗, will
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be feasible, in which case this 3-bin solution is in the ramping polytope, or this system of equations will not

be feasible, in which case this 3-bin solution is not in the ramping polytope. In the latter case we can use the

Farkas certificate for the system of equations to generate a cut for the 3-bin space which cuts-off this infeasible

solution. Our cut-generating linear program picks, in some sense, the best such infeasibility certificate so as to

get the deepest cut.

3.2 A Cut-Generating Linear Program

For ease we will consider the dual form of the cut-generating LP, which is derived from (15) and (21) above.

Let e be the appropriately sized vector of 1’s and suppose z ∈ R+. Let (p∗, p̄∗, u∗, v∗, w∗) be a solution vector

in 3-bin space. Consider the following linear program:

z∗ = min z (22a)

subject to

π A[a,b]p[a,b] + Ā[a,b]p̄[a,b] ≤ γ[a,b]b̄
[a,b] + ze ∀[a, b] ∈ T (22b)

δ
∑

{[a,b]∈T | t∈[a,b+DT ]}

γ[a,b] ≤ 1 + z t ∈ [T ] (22c)

ε
∑

[a,b]∈T

p[a,b] = p∗ (22d)

µ
∑

[a,b]∈T

p̄[a,b] = p̄∗ (22e)

ξ
∑

{[a,b]∈T | t∈[a,b]}

γ[a,b] = u∗t t ∈ [T ] (22f)

α
∑

{[a,b]∈T | t=a}

γ[a,b] = v∗t t ∈ [T ] (22g)

σ
∑

{[a,b]∈T | t=b+1}

γ[a,b] = w∗t t ∈ [T ] (22h)

z ∈ R+; p[a,b], p̄[a,b] ∈ RT
+, γ[a,b] ∈ R+, ∀[a, b] ∈ T , (22i)

where π ∈ Rm|T |
− is the set of dual variables for constraints (22b), δ ∈ RT

− is the set of dual variables for (22c),

and ε, µ, ξ, α, σ ∈ RT are the sets of dual variables for constraints (22d - 22h), respectively. We observe if z∗

is 0, then (p∗, p̄∗) is a feasible solution to D, and if not, we can use the optimal dual vector to cut off the 3-bin

solution (p∗, p̄∗, u∗, v∗, w∗) ∈ RΠ3-bin. To demonstrate, suppose z∗ > 0 and we have an optimal dual vector

π∗, δ∗, ε∗, µ∗, ξ∗, α∗, σ∗. Then by strong duality z∗ = (δ∗)T e + (ε∗)Tp∗ + (µ∗)T p̄∗ + (ξ∗)Tu∗ + (α∗)Tv∗ +

(σ∗)Tw∗ > 0, and so the cut (δ∗)T e+ (ε∗)Tp+ (µ∗)T p̄+ (ξ∗)Tu+ (α∗)Tv + (σ∗)Tw ≤ 0 cuts off the solution

12



(p∗, p̄∗, u∗, v∗, w∗) in 3-bin space (that is, it is a valid separating hyperplane between (p∗, p̄∗, u∗, v∗, w∗) and

conv(Π3-bin)).

We maximize the depth of the cut by choosing the optimal such cut, with respect to the 1-norm normaliza-

tion, instead of any dual feasible solution to (22) (Balas et al. 1993). In particular, note in the dual of (22), the

constraint associated with z is −eT δ − eTπ ≤ 1. When the proposed solution (p∗, p̄∗, u∗, v∗, w∗) is infeasible

for RΠ3-bin, this limits the 1-norm of these otherwise unbounded rays.

3.3 Implementation

To test the efficacy of these cuts, we implement them as a callback for a utility-scale unit commitment problem

based on the set of FERC generators. These consist of two sets of generators, a “summer” and “winter” set of

generators, which are based on market data provided from the PJM Interconnection and other sources (Krall

et al. 2012). We use the standard 3-bin formulation for the master unit commitment MIP, as discussed in Section

2.1, that is:

min
∑
g∈G

∑
t∈[T ]

∑
l∈[L]

(lcg lpgt ) + Ccg Cδgt + Hcg Hδgt + Rcgugt + Dcgwgt

 (23a)

s.t.
∑
g∈G

pgt ≥ Lt, ∀t ∈ [T ] (23b)

∑
g∈G

p̄gt ≥ Lt +Rt, ∀t ∈ [T ] (23c)

(10), (11) ∀g ∈ G, (23d)

(pg, p̄g, ug, vg, wg) ∈ Πg
3bin, ∀g ∈ G. (23e)

We only consider cuts on a subset of the generators, namely for those that have irredundant ramping constraints

while operating and those that have a minimum run time of at least 2. That is, we consider cuts on GC := {g ∈

G | (P
g − P g) > min{RDg, RU g} and UT g ≥ 2}. We do this because the 3-bin formulation is tight for

generators with no ramping constraints and the problem (22) becomes impractically large for generators with

UT g = 1.

The cuts are implemented in a callback, namely, given the current LP relaxation for (23), for each generator

in GC with fractional status variables, we use (22) to determine if (p∗, p̄∗, u∗, v∗, w∗) ∈ conv(Π3-bin), and if not

we add the violated ramping inequality given by the optimal dual solution of (22). We generate the cuts using

the “bundling” approach of Balas et al. (1993), that is, at the current master LP relaxation we try to generate a

cut for each g ∈ GC and give these to the solver together. This is visualized in Figure 1, where we see for each
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Figure 1: Visualization of the cut-generation procedure

unit g ∈ GC the cut-generation LP (CGLP) is an independent problem. For a given LP relaxation to the UC

Master MIP (23), we separate the solution by generator g, and then check the feasibility of this relaxed solution

in Dg by solving the CGLP (22). If we find the relaxed solution infeasible, we pass the generated cut to the

UC Master MIP, along with the cuts generated for other units in GC . Though we do not do so for this paper, it

would be trivial to parallelize the cut-generation procedure.

Next, we discuss some computational enhancements to this general outline. First, to mitigate numerical

issues, we only add cuts for which the solution to (22), z∗, is greater than 10−2. Second, after the first round

of calls to the cut-generating LPs we use the existing basis information if and only if we did not generate a cut

from it in the previous pass. The intuition is that if we did not generate a cut from this generator previously

then the current 3-bin vector is probably close to the previous one. On the other hand, if we did generate a

cut, then (we hope) the current 3-bin vector is far away from the previous one, so we discard the previous

basis information. Third, we make an enhancement based on symmetry by observing that if g1, g2 ∈ GC have

identical parameters (including initial conditions), a cut generated for g1 is valid for g2, and vice versa. That

is, if we denote generators identical to g as orb(g), for every cut generated for g we add the associated cut for

every ĝ ∈ orb(g). Finally, we choose an aggressive branch-and-cut strategy, generating cuts at the root node,

for the first 50 nodes, and then every 100 nodes thereafter.
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Table 1: 3-bin UC Formulation Problem Size.
# cont. vars # binary vars # constraints # nonzeros

Winter System 102048 112220 288478 963303

Summer System 103584 117360 300108 983799

While this is heavy machinery for easy UC instances, we will see that for hard UC instances having this

machinery available results in a noticeable improvement.

3.4 Computational Experiments

All computational experiments were performed on a Dell PowerEdge T620 with 2 Intel Xeon E5-2670 pro-

cessors and 256GB of RAM running Ubuntu 14.04.2. Gurobi 6.5.0 was used as the MIP and LP solver for

all problems, and the callback routine was implemented using Gurobi’s Python interface. For all problems the

number of available threads was set to 1. For the MIP unit commitment problem, the parameter PreCrush was

set to 1 to facilitate adding cuts in callbacks along with a time limit of 1800 seconds. All other parameters were

preserved at default. A dummy callback was used for instances where cuts were not added.

To generate a diverse set of unit commitment test instances, real-time load, day-ahead reserves, and wind

generation for 2015 were obtained from PJM’s website (PJM 2016a,b). For each day in 2015 a 24-hour unit

commitment problem was formulated, with wind generation accounted for as negative demand in (23). For

ease, the daylight savings days of 08 Mar and 01 Nov were excluded. 31 Dec was excluded for lack of

available data. For the months of April – September the set of summer generators was used, and the winter

generators were considered for the remaining six months. Generators with missing cost curves were excluded,

and generators with missing up/down time data were given UT g = DT g = 1. Generators marked as wind

powered were dropped as wind generation is considered separately. In total then 935 generators were consid-

ered for the winter system and 978 generators were considered for the summer system. Given the selection

criteria above for GC , |GC | = 459 for the winter system and |GC | = 492 for the summer system. As no data

on start-up or shut-down ramp rates are provided, SU g = SDg = P g for all g ∈ G. Additionally, no data on

cool down is provided, so we assume all generators cool down in twice their minimum down time period, i.e.,

DT gC = 2DT g. We use the data provided on initial status and assume all generators currently on are available

to be turned off and operating at minimum power.

In Table 1 we specify the size of the base UC formulation (23) for both the winter and summer set of

generators, reporting the number of constraints, continuous variables, binary variables, and non-zero elements
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Table 2: Winter System: Cut Generation LP Sizes.
# variables # constraints # nonzeros

Mean 7382.1 12247.2 46819.3

Min 1177 2148 7788

Median 8674 14251 53971

Max 14701 22572 84701

Table 3: Summer System: Cut Generation LP Sizes.
# variables # constraints # nonzeros

Mean 7568.3 12537.3 47918.5

Min 1177 2148 7788

Median 8674 14778.5 56977

Max 14701 22572 84701

in the constraints matrix, respectively. These form the template for our test set, as we vary only the demand

and reserve data. As we can see, both generator sets yield MIPs of significant size.

In Table 2 we report some summary statistics for the 459 cut generation LPs for the winter system, and

similarly in Table 3 we report summary statistics for the 492 cut generation LPs for the summer system, based

on the formulation (22). As we can see, most of the LPs are of modest size, with the variation dependent on

the parameters UT g and DT g. Namely, the larger UT g and DT g are, the fewer valid time intervals in T for

generator g, so the smaller the formulation (22) is. As an example, many of the generators in the test sets are

large coal units with UT g = 15 and DT g = 9. These units only have 2059 variables in their cut generation

LPs. Some of the nuclear units in the test sets only have 1177 variables in their cut generation LPs because

once started (stopped) they must stay on (off) for the rest of the time horizon. Conversely, there are some small

gas units in both test sets which have UT g = DT g = 2. These small units have larger cut generation LPs with

14701 variables.

3.5 Initial Results

Of the 362 instances tested, 361 were feasible, and the summary statistics for these instances with and without

the cuts developed above are given in Table 4. As we can see, none of the problems in the test set devised are

particularly difficult for a modern MIP solver. Though there may be some slight benefit to adding the cuts,
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Table 4: Initial Computational Results.
No User Cuts Ramping Polytope Cuts

Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

Geometric Mean 172.52 44.01 163.39 44.08 97.16 10.50

Min 85.48 0 82.13 0 16 1.24

Median 168.97 0 153.82 0 99 11.83

Max 557.82 715 812.32 640 636 77.13

# inst. better 130 37 231 26

Table 5: High Wind Computational Summary, Solved Instances.
No User Cuts Ramping Polytope Cuts

Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

Geometric Mean 204.47 60.84 196.50 48.03 153.99 8.34

Min 58.40 0 54.78 0 2 0.19

Median 197.41 0 192.63 0 173 10.32

Max 1523.65 9875 1030.74 10976 804 58.50

# inst. better 138 57 218 73

most instances are solved at the root node, and no instance takes more than about 15 minutes or 1000 nodes. It

is worth noting for these instances that Gurobi needs quite a bit of time (usually 60-120 seconds) to solve the

root relaxation, and then spends quite a bit of time at the root node generating cuts and applying heuristics. In

the last row we report the number of instances for which that method is strictly better. Here we see the cuts

usually result in a better time, though just slightly, and in most cases (n = 298) both methods need the same

number of nodes to prove optimality to the default tolerance of 0.01% (as most are solved at the root).

3.6 High Wind Instances

To create more difficult test instances, we again used the 2015 data from PJM, but considered increased wind

penetration. In 2015, wind energy accounted for approximately 2% of energy demanded. A recent study

conducted for PJM suggested that the interconnection could handle renewable penetration as high as 30%,

which may be coming online as soon as 2026 (GE Energy 2014). Therefore, to create high-wind penetration

instances, we multiplied the 2015 wind data by a factor of 15 to get to 30% wind energy. Note that our model
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Table 6: High Wind, Harder Instances.
No User Cuts Ramping Polytope Cuts

Date Time (s) Nodes Time (s) Nodes Cuts Added Cut Time (s)

04 Jan 601.93 2841 543.98 1935 208 7.58

15 Mar 988.85 4129 751.59 1533 222 8.77

01 Apr 704.16 554 458.90 216 525 21.18

03 Apr 644.06 689 540.69 544 367 13.84

12 Apr 742.06 1310 435.95 556 125 13.45

15 Apr 1523.65 627 615.81 374 742 26.00

25 Apr 1152.09 1440 1030.74 1220 413 15.89

24 May 988.10 686 377.98 162 505 14.19

23 Jun 723.91 583 447.34 575 298 40.49

02 Oct 620.03 5030 911.74 10976 108 7.65

24 Oct 556.26 934 608.30 772 21 7.49

28 Oct 411.65 1134 701.46 3764 133 6.59

21 Nov 1193.51 4125 940.53 3130 187 9.30

25 Nov 567.15 2648 810.62 3910 288 13.08

16 Dec 993.68 5946 758.29 3214 192 8.54

23 Dec 793.52 9875 570.36 3688 94 6.47

Geometric Mean 780.74 1742.70 629.51 1255.49 210.66 11.88

implicitly allows for the possibility of curtailment (as we consider wind as negative load); further, if the wind

is greater than load at a given hour it may also provide reserves. Given the greater swings in the net-load curve

that the extra wind generation causes, we would expect these instances to be much harder than the base-case

instances, and indeed, we find this to be true.

Of the 362 instances tested, 6 timed out for both methods, and 356 solved for both methods (all instances

were feasible). The summary statistics for the instances which did not time out are reported in Table 5. As

we can see, there are modest reductions in geometric mean solve time and geometric mean nodes. To see

the impact on more interesting instances, those for which either method took more than 10 minutes to solve

(but did not time out) are detailed in Table 6. For these harder instances we can see that for the most part the

cuts are effective at reducing the enumeration necessary to arrive at and prove an optimal solution. We have

a geometric mean reduction in run time of about 150 seconds, such that the typical hard instance went from
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Table 7: High Wind, Timed Out Instances.
No User Cuts Ramping Polytope Cuts

Date MIP Gap Nodes MIP Gap Nodes Cuts Added Cut Time (s)

27 Oct 0.0102% 10202 0.0116% 8024 400 15.69

12 Nov 0.1287% 2613 0.0871% 3470 447 13.50

14 Nov 0.0111% 10202 0.0104% 8939 561 17.88

17 Nov 0.1015% 2242 0.1144% 1917 729 13.29

26 Nov 0.2110% 4778 0.2128% 4498 225 9.83

20 Dec 0.0232% 10202 0.0188% 9955 243 12.49

taking approximately 13 minutes to 10.5 minutes to solve. As these problems are usually solved in a 10 or 15

minute time window, this is a significant improvement. Additionally, there is a 28% reduction in geometric

mean nodes for these instances, suggesting that strengthening the feasible region for the ramping-constrained

generators with cuts from the ramping polytope eliminates some enumeration. Lastly in Table 7 we summarize

the 6 instances which timed out, reporting the final MIP gap in place of computational time. There do not seem

to be any conclusions that can be safely drawn from these 6 instances.

3.7 Observed Cuts

To better understand the cuts generated from (22), we examined the generated cuts for a subset of the high-wind

test instances. The vast majority of the cuts were variable upper-bound inequalities. Specifically, those of the

form

p̄gt ≤
∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (24)

for some t ∈ [T ], where the coefficients ξgi , αgi , and σgi are the normalized optimal dual values from (22) (so

that the coefficient on p̄gt is 1).

In a similar fashion two-period ramping inequalities were observed, i.e.

p̄gt − p
g
t−j ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (25)

p̄gt−j − p
g
t ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (26)

where j was most often 1, but sometimes 2, and on one occasion 3 for the ramp-up inequality (25). Three-period
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ramping inequalities were also common

−pgt−j + p̄gt − p
g
t+k ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (27)

p̄gt−j − p
g
t + p̄gt+k ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (28)

with (28) occurring much more often than (27), and both usually having j = k = 1. A few inequalities of the

form (28) were observed with j = 1, k = 2 and j = 2, k = 1, and at least one instance with j = 1, k = 3.

Occasionally more exotic inequalities would be generated. The four-period ramping inequalities

−pgt−j + p̄gt − p
g
t+k + p̄gt+l ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (29)

p̄gt−j − p
g
t + p̄gt+k − p

g
t+l ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (30)

with consecutive time periods (j = 1, k = 1, l = 2) were most common, but four-period inequalities with

j = 2, k = 1, and l = 2 were observed as well. The five-period ramping inequality

p̄gt−2 − p
g
t−1 + p̄gt − p

g
t+1 + p̄gt+2 ≤

∑
i∈[T ]

(ξgi u
g
i + αgi v

g
i + σgiw

g
i ) , (31)

was also generated on several occasions. In a similar vain, a seven-, nine-, and ten-period ramping inequalities

were observed once.

In all cases the generated inequalities had varying degrees of sparsity in the generator’s status variables (ug,

vg, wg). Some cuts were generated with only two non-zeros on the right-hand side, these were always involving

the end of the time horizon. Several inequalities only had a few non-zeros in the right-hand side. Many more

however spanned the generator’s production horizon (i.e., when the ug variables are non-zero), though in most

cases these inequalities had about one-third to one-half non-zeros on the right-hand side. This is because with

fractional status variables, the cut generated usually spans several of the polytopes D[a,b].

3.8 Reflections

First, we note that it is somewhat surprising that we were able to separate so many cuts in a reasonable amount

of time. However, with T = 24 we see from Tables 2 and 3 that many of the LPs are of a manageable size,

and most can be solved quickly with a modern commercial LP solver. Further, after the first cut pass the

most of the generators have the same solution in the UC LP relaxation, so there’s nothing for Gurobi to do in

the LP separation problem. (As mentioned above, we leave the LP separation problems loaded in memory.)
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Additionally, across all the test instances, 33% of the cuts we add are additional valid cuts added by symmetry.

(Recall that if we compute a cut for a generator we also add that cut for all generators in its orbit.)

Even though in practice we were able to solve the cut-generating problem for T = 24, obviously the

problem (22) increases super-linearly in T . One way to improve the performance could be to more carefully

screen which generators we generate cuts on. It may only make sense with longer time horizons to generate

cuts on those “large” generators (with large UT g and DT g) for which the super-linear explosion in formulation

size is more manageable. Additionally, it is clear from the formulation of (22) that most of the columns and

rows (specifically those from (22b)) probably never enter the basis, and could perhaps be generated on the fly,

with an initial basis constructed based on the 3-bin solution. However, the implementation of such a method

would be non-trivial. Another possibility to improve the performance on longer time horizons would be to

solve a “rolling” separation problem, where for each time period t we solve a small (e.g. 7-period) version of

(22) centered around time t. That being said, the density of the cuts observed suggests that such a procedure

may be less effective at generating quality cuts. Alternatively, problem (22) could be generated on the fly based

on the LP relaxation values for ug. Notice (22) decomposes when u∗t = 0 for some t, and though adding

time-dependent start-up costs complicates this picture, such a decomposition could be done heuristically.

Finally, it is worth taking a moment to bridge the gap between the computation results presented in this

section and those reported on 2 and 3-period ramping inequalities recently, namely Damcı-Kurt et al. (2015)

and Pan and Guan (2016). We note that the cuts given by (22) are a superset of those presented in these two

papers. The “slow-start” generators in Damcı-Kurt et al. (2015) take an average of 4 time periods to ramp from

SU to P , and the “fast-start” generators need an average of 3 time periods. Similarly, for the instances used in

Pan and Guan (2016), every generator in the test set needs 4 time periods to ramp up to P . This test set also

contains large amounts of symmetry, which for unit commitment is not perfectly encoded in the formulation

symmetry, and hence cannot be exploited by the MIP solver (Ostrowski et al. 2015). In the systems we test

here, for both the winter and summer generator sets, the generators in GC take an average of just 2 time periods

to ramp from SU to P , and half (which we do not generate inequalities for) do not have ramping constraints at

all. As far as the authors are aware this is the first paper to test any ramping inequalities based on real-world

generator data. The computational results presented here demonstrate that valid inequalities from the ramping

polytope are beneficial for difficult unit commitment instances, and do not detract from unit commitment

instances which are easy to solve.
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4 Conclusion

We have presented a compact extended formulation for a ramping-constrained generator and a cut-generating

linear program based upon the extended formulation. We demonstrated that the these cuts are computational

beneficial for high-wind unit commitment instances based on the FERC generator set and data from PJM.

Finally, the slight generalization of Balas’s result (Balas 1979, 1998) presented in Appendix A may be of use

in developing new extended formulations.
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Damcı-Kurt P, Küçükyavuz S, Rajan D, Atamtürk A (2015) A polyhedral study of production ramping. Mathematical

Programming 1–31.

Faenza Y, Oriolo G, Stauffer G (2010) The hidden matching structure of the composition of strips: a polyhedral perspec-

tive. 14th Aussois Workshop on Combinatorial Optimization, Aussois (January 2010).

Frangioni A, Gentile C (2006) Solving nonlinear single-unit commitment problems with ramping constraints. Operations

Research 54(4):767–775.

Frangioni A, Gentile C (2015a) An extended MIP formulation for the single-unit commitment problem with ramping

constraints. 17th British-French-German conference on Optimization (London).

Frangioni A, Gentile C (2015b) New MIP formulations for the single-unit commitment problems with ramping con-

straints. IASI Research Report 15-06.

Garver LL (1962) Power generation scheduling by integer programming-development of theory. Power Apparatus and

Systems, Part III. Transactions of the American Institute of Electrical Engineers 81(3):730–734.

GE Energy (2014) PJM renewable integration study. PJM Interconnection.

Gentile C, Morales-Espana G, Ramos A (2016) A tight mip formulation of the unit commitment problem with start-up

and shut-down constraints. EURO Journal on Computational Optimization 1–25.
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A Constrained Minkowski Sums of Polyhedra

We will prove Theorem 1 by extending the classical result of Balas on disjunctive programs. The success of

disjunctive programming as initially laid out by Balas (1979, 1998) toward the practical solvability of problems

involving indicator constraints is clear; see (Bonami et al. 2015) for a recent overview. We consider an exten-

sion of Balas’s classical result (Theorem 2), a weaker version of which is given as a lemma by Faenza et al.

(2010), and show it can be used to model constrained Minkowski sums of polyhedra. Generalizing the con-

vexity constraint is an approach that has been taken before, namely for the shortest path polytope (Pochet and

Wolsey 1993) and the tree packing polytope (Magnanti and Wolsey 1995), which would be sufficient to prove

Theorem 1. However, we show that any integer polytope could be used in place of the convexity constraint,

allowing for a great deal of modeling flexibility. Note that this result is stronger than we need, but we provide

it here for completeness.

The goal of this section is to arrive at a polyhedral representation of constrained Minkowski sums of poly-

hedra using indicator variables. First we must dispense with some definitions. Scalar multiples and Minkowski

24



sums for sets in Rn are defined in their usual way as

λC := {λx | x ∈ C}, (32)

C1 + C2 := {x1 + x2 | x1 ∈ C1, x2 ∈ C2}. (33)

For a set S ⊂ Rn, conv(S) is the convex hull of S and cone(S) is the conic hull of S. The orthogonal projection

of S ⊂ Rn × Rp onto Rn is denoted projx(S) := {x ∈ Rn | ∃y ∈ Rp s.t. (x, y) ∈ S}. A system of linear

inequalities Ax ≤ b is said to be a perfect formulation of a set S ⊂ Rn if conv(S) = {x ∈ Rn | Ax ≤ b}.

For a polyhedron P ⊂ Rn we say that a polyhedron Q ⊂ Rn × Rp is an extended formulation of P if

projx(Q) = P . Such an extended formulation is said to be compact when only a polynomial number of

variables and constraints in the size of the input are needed to describe Q. For convenience we (again) use the

notation [m] = {1, . . . ,m} and subscripts to indicate the components of a vector.

Naturally our tools are those of convex analysis (Rockafellar 1970, Stoer and Witzgall 1970, Grünbaum

2003), with the Minkowski-Weyl theorem for polyhedra (Weyl 1950) playing a lead role. To motivate the

framework developed in this section, consider convex combinations of polyhedra. Suppose we have a collec-

tion P 1, . . . , Pm of nonempty polyhedra, and notice conv
(
∪i∈[m]P

i
)

=
⋃
{
∑m

i=1 γiP
i |
∑m

i=1 γi = 1, γ ≥ 0}.

An interesting question is when is such a set closed and polyhedral. Indeed Theorem 9.8 and subsequent corol-

laries in Rockafellar (1970) give sufficient conditions for closedness. Balas (1979, 1998) provides sufficient

conditions for polyhedreality along with an extended formulation for such a set. We restate Balas’s result.

Theorem 2. Consider m polyhedra P i = {x ∈ Rn | Aix ≤ bi} and their polyhedral recession cones Ri =

{x ∈ Rn | Aix ≤ 0} and let Qi be a (bounded) polytope such that P i = Qi + Ri. Define the set S =

conv
(
∪i∈[m]P

i
)

and polyhedron P = conv(∪i∈[m]Q
i) + cone(∪i∈[m]R

i). Then the polyhedron

Y =



Aixi ≤ γib
i, i ∈ [m]∑

i∈[m] x
i = x∑

i∈[m] γi = 1

γi ≥ 0, i ∈ [m]

(34)

provides an extended formulation of P . If each P i, i ∈ [m], is nonempty then cl(S) = P . Additionally, the

vertices of Y have binary γi.

In the context of Theorem 2 we also have the following result from Jeroslow (1987) and Corollary 9.8.1 in

Rockafellar (1970):
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Theorem 3. If P 1, . . . , Pm are all nonempty and have identical recession cones then S = P and so Y provides

a polyhedral extended formulation for S.

We would like to generalize the above theorems to allow for different combinations of polyhedra. To be

precise, suppose Γ is a polyhedron in Rm, and consider the set
⋃
{
∑m

i=1 γiP
i | γ ∈ Γ}. A natural question is

this: can we derive results similar in spirit to those of the preceding theorems? We answer this question in the

affirmative, with a few restrictions on Γ.

To see what some of these restrictions must be, consider the challenges of using indicator variables as in

(34). Suppose we have a polyhedron P with a representation Ax ≤ b. Clearly γP = {x | Ax ≤ γb} for all

γ > 0. The first issue is for γ < 0, γP = {x | Ax ≥ γb}. This shows that allowing the sign to switch on γ

will not allow the easy modeling of inequalities, and therefore we will, without loss of generality, only consider

nonnegative indicator variables. Another issue dealing with the discontinuity of γP when γ is near 0 is that

by definition 0P = {0} whereas {x | Ax ≤ 0b} = {x | Ax ≤ 0}, which is the polyhedral recession cone of

P . This demonstrates that in a formulation like (34), while the indicator variables γ allow for “control” over

the finite part of P , the recession directions of P are always included. Similarly, if P is empty, the polyhedral

recession cone {x | Ax ≤ 0} is not, and will be included in a formulation like (34). For ease of exposition we

will restrict ourselves to the case when each polyhedron is nonempty, but note that with some extra notation

we could extend the results of Section A.1 to include possibly empty polyhedra.

A.1 The Extended Formulation

Now consider the set S :=
⋃
γ∈Γ (

∑m
i=1 γiP

i), where P i, i ∈ [m], are nonempty polyhedra in Rn and Γ ⊆ Rm
+ is

a nonempty, nonnegative polyhedron. The goal is to arrive at a polyhedral representation for S. The exposition

here follows that found in Conforti et al. 2014, Section 4.9.

Theorem 4. Consider m nonempty polyhedra P i = {x ∈ Rn | Aix ≤ bi}, i ∈ [m], and for each i ∈ [m] let Qi

be a (bounded) polytope in Rn and Ri be a (closed convex) cone in Rn such that P i = Qi + Ri. Let Γ ⊆ Rm
+

be a nonempty polyhedron. Consider the set P :=
⋃
γ∈Γ (

∑m
i=1 γiQ

i +
∑m

i=1R
i) and consider the polyhedron

Y ⊆ Rn+nm+m defined by

Y :=


Aixi ≤ γib

i, i ∈ [m]∑m
i=1 x

i = x

(γ1, . . . , γm) = γ ∈ Γ.

(35)
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Then P = projx(Y ) := {x ∈ Rn | ∃(x1, . . . , xm, γ) ∈ Rnm+m s.t. (x, x1, . . . , xm, γ) ∈ Y }. In particular, P is

a polyhedron.

Proof. Let x ∈ P (P is nonempty as the union of the sum of nonempty sets). There exists points qi ∈ Qi,

ri ∈ Ri and γ ∈ Γ such that x =
∑m

i=1 γiq
i +
∑m

i=1 r
i. Define xi = γiq

i + ri for i ∈ [m]. Now by construction

x =
∑m

i=1 x
i andAixi = Ai(γiq

i+ri) = γiA
iqi+Airi ≤ γib

i+0 for all i ∈ [m]. Hence (x, x1, . . . , xm, γ) ∈ Y ,

so P ⊆ projx(Y ).

Conversely, let (x, x1, . . . , xm, γ) ∈ Y . Consider I+ := {i | γi > 0} and I0 := {i | γi = 0}. For

i ∈ I+, Aixi ≤ γib
i and so xi ∈ γiQ

i + Ri. For i ∈ I0, Aixi ≤ 0 and so xi ∈ Ri = γiQ
i + Ri. Since

x =
∑m

i=1 x
i ∈
∑m

i=1(γiQ
i +Ri) and γ ∈ Γ, this shows x ∈ P , and hence projx(Y ) ⊆ P .

As the projection of a polyhedron, P is itself a polyhedron.

Remark 2. For all Γ ⊆ Rm
+ , Y provides a polynomial-size (in dim(P i) and dim(Γ)) polyhedral representation

of P . Further, if for all i ∈ [m], P i is bounded (i.e., Ri = {0}), then P = S and Y provides a compact

formulation for S.

Remark 3. If Γ ⊆ Rm
++ (the open, strictly positive orthant), then γiP

i = γiQ
i + Ri ∀(γ1, . . . , γm) ∈ Γ.

Therefore P = S and so Y provides a compact formulation for S.

The next theorem demonstrates that cl(S) = P with a restriction on Γ.

Theorem 5. Let Γ ⊆ Rm
+ and P 1, . . . , Pm ⊆ Rn be nonempty polyhedra. Suppose there exists γ̂ ∈ Γ such that

γ̂i > 0 ∀i ∈ [m]. Then for P and S defined as above, cl(S) = P .

Proof. First consider cl(S) ⊆ P . Since P as a polyhedron is closed, it suffices to show S ⊆ P . Hence let

x ∈ S. Then ∃γ ∈ Γ, pi ∈ P i for i ∈ [m] such that x =
∑m

i=1 γip
i. As above for each i ∈ [m], consider

P i = Qi+Ri, so for each i ∈ [m] we have pi = qi+ri for qi ∈ Qi and ri ∈ Ri. Thus x =
∑m

i=1 γiq
i+
∑m

i=1 γir
i,

and since γiqi ∈ γiQi and γiri ∈ Ri (as Ri is a closed convex cone, γi ≥ 0), we have x ∈ P .

Conversely, let x ∈ P . Then there exists γ ∈ Γ, qi ∈ Qi, and ri ∈ Ri such that x =
∑m

i=1 γiq
i +
∑m

i=1 r
i.

By assumption ∃γ̂ ∈ Γ that is strictly positive. By convexity, (1 − ε)γ + εγ̂ ∈ Γ ∀ε ∈ (0, 1); further

(1− ε)γ + εγ̂ > 0 ∀ε ∈ (0, 1). Define xε :=
∑m

i=1[(1− ε)γi + εγ̂i]q
i +
∑m

i=1 r
i. Clearly limε→0+ x

ε = x, and

we see that xε =
∑m

i=1[(1 − ε)γi + εγ̂i](q
i + ri/[(1 − ε)γi + εγ̂i]). Since qi + ri/[(1 − ε)γi + εγ̂i] ∈ P i for

i ∈ [m], ε ∈ (0, 1) and (1− ε)γ + εγ̂ ∈ Γ ∀ε ∈ (0, 1), we have that xε ∈ S ∀ε ∈ (0, 1). Hence x ∈ cl(S).

The requirement that Γ have a strictly positive element should not be seen as overly restrictive. If for some

i, γi = 0 ∀γ ∈ Γ, then we should probably discard this particular P i since it never contributes to the sum.
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Remark 4. If there exists γ̂ ∈ Γ such that γ̂ > 0 and P 1, . . . , Pm are all nonempty, then Theorems 4 and 5

together imply that cl(S) = projx(Y ).

Theorem 6. Suppose P 1, . . . , Pm are nonempty polyhedra with identical recession cones, and Γ ⊂ Rm
+ is a

polyhedron such that 0 /∈ Γ. Then S =
⋃
γ∈Γ (

∑m
i=1 γiP

i) is a polyhedron and S = projx(Y ).

Proof. Let x ∈ P . Then there exists qi ∈ Qi, ri ∈ Ri and γ ∈ Γ such that x =
∑m

i=1 γiq
i +

∑m
i=1 r

i.

By assumption there exist j ∈ [m] such that γj > 0. As the P i’s have identical recession cones, we have∑m
i=1 r

i ∈ γjP j . Define pj = qj +
∑m

i=1 r
i/γj and pi = qi for i 6= j, and it follows that x =

∑m
i=1 γip

i. Hence

x ∈ S. The result then follows from Theorem 4.

Remark 5. To see the necessity of 0 /∈ Γ, consider the sets S and P when γ = 0. If P 1, . . . , Pm have the same

recession cone R, we see that P
∣∣
γ=0

=
∑m

i=1 0Qi +
∑m

i=1R
i = R, whereas S

∣∣
γ=0

=
∑m

i=1 0P i = {0}, and

R = {0} if and only if all the P i’s are bounded. Hence we can do away with the assumption 0 /∈ Γ in Theorem

6 if all the P i’s are bounded.

It may be that Γ is the continuous relaxation of some integer set which determines the polyhedra P i simul-

taneously allowed in the sum. The next theorem shows that vertices and extreme rays of Y have γ components

which are vertices and extreme rays of Γ, hence if Γ is a perfect formulation for some integer set, vertices of Y

will have integer γ. Further, even if Γ is not a perfect formulation, this shows that to find solutions with integer

γ one need only consider cuts on Γ and not the entire polyhedron Y . For ease of notation, for y ∈ Y define yΓ

to be the components of y in Γ. Finally, we note that a version of Theorem 7 appears as Lemma 5 in Faenza

et al. (2010), although it is restricted to the pure integer case, and the proof is merely sketched. We provide a

complete proof and drop any assumption of integrality.

Theorem 7. Y = conv(V ) + cone(R), for finite sets V and R, where for each vertex v ∈ V , vΓ is a vertex of

Γ and for each extreme ray r ∈ R, rΓ is an extreme ray of Γ. That is, projγ(Y ) = Γ.

Proof. Let y ∈ Y such that y = (x, x1, . . . , xm, γ1, . . . , γm) and define γ := yΓ. Since Γ is a polyhedron, by

the Minkowski-Weyl theorem there exist vectors v1, . . . , vp, r1, . . . , rq ∈ Rm and λ ∈ Rp
+, µ ∈ Rq

+ such that

γ =
∑p

k=1 λkv
k +

∑q
l=1 µlr

l and
∑p

k=1 λk = 1. In particular, we have

γi =

p∑
k=1

λkv
k
i +

q∑
l=1

µlr
l
i, with

p∑
k=1

λk = 1, ∀i ∈ [m] (36)
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Let I+ = {i | γi > 0} and I0 = {i | γi = 0}. Define

xki :=


xiv

k
i /γi if i ∈ I+

xi if i ∈ I0 and λk > 0

x̂ki ∈ vki P i if i ∈ I0 and λk = 0

∀k ∈ [p], (37)

xli :=


xir

l
i/γi if i ∈ I+

0 if i ∈ I0 and µl > 0

x̂li ∈ rliP i if i ∈ I0 and µl = 0

∀l ∈ [q], (38)

and xk =
∑m

i=1 x
k
i for k ∈ [p] and xl =

∑m
i=1 x

l
i for l ∈ [q]. For k ∈ [p] define yk := (xk, xk1, . . . , x

k
m, v

k
1 , . . . , v

k
m)

and for l ∈ [q] define yl := (xl, xl1, . . . , x
l
m, r

l
1, . . . , r

l
m).

We first check the feasibility of the points constructed above. So for each k ∈ [p], consider yk. By

construction ykΓ ∈ Γ and xk =
∑m

i=1 x
k
i , so for feasibility we need verify that Aixki ≤ vki b

i. Suppose i ∈ I+,

then Aixi ≤ γib
i, and multiplying both sides by vki and dividing by γi shows xki is feasible. Now suppose

i ∈ I0 and so Aixi ≤ 0. If λk > 0, then we must have vki = 0, so xki is feasible. If λk = 0, xki is feasible

by construction (since each P i is nonempty we can always find such a point x̂ki ). The feasibility of yl for each

l ∈ [q] is similar.

Now we need show y =
∑p

k=1 λky
k +

∑q
l=1 µly

l to complete the proof. So first suppose i ∈ I+, then∑p
k=1 λkx

k
i +
∑q

l=1 µlx
l
i =

∑p
k=1 λkxiv

k
i /γi+

∑q
l=1 µlxir

l
i/γi = xi

γi
(
∑p

k=1 λkv
k
i +
∑q

l=1 µlr
l
i) = xi. Conversely,

suppose i ∈ I0, then
∑p

k=1 λkx
k
i +
∑q

l=1 µlx
l
i =

∑
k:λk>0 λkxi +

∑
k:λk=0 λkx̂

k
i +
∑

l:µl>0 µl0 +
∑

l:µl=0 µlx̂
l
i =∑

k:λk>0 λkxi+0+0+0 = xi
∑

k:λk>0 λk = xi. It then follows,
∑p

k=1 λkx
k+
∑q

l=1 µlx
l =
∑p

k=1 λk
∑m

i=1 x
k
i +∑q

l=1 µl
∑m

i=1 x
l
i =

∑m
i=1(
∑p

k=1 λkx
k
i +
∑q

l=1 µlx
l
i) =

∑m
i=1 xi = x. Hence, we have shown y =

∑p
k=1 λky

k+∑q
l=1 µly

l with λ, µ ≥ 0 and
∑p

k=1 λk = 1, proving the theorem.

As mentioned, Theorem 7 demonstrates that if Γ is a perfect formulation of some integer set and the

variables xi are continuous, then Y (under the given assumptions) provides a perfect formulation for S
∣∣
Z+

=⋃
γ∈Γ∩Z+

{
∑m

i=1 γiP
i}. Noting that the polyhedron of Theorem 1 is exactly of this form, we see that the vertices

of the polytope D must have integer γ.
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