
Submitted to INFORMS Journal on Computing
manuscript JOC-2016-08-OA-180.R1

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Disjunctive Programming for Multiobjective Discrete
Optimisation

Tolga Bektaş
Southampton Business School

Centre for Operational Research, Management Science and Information Systems (CORMSIS)

University of Southampton, Southampton, SO17 1BJ, United Kingdom
T.Bektas@soton.ac.uk

In this paper, I view and present the multiobjective discrete optimisation problem as a particular case of

disjunctive programming where one seeks to identify efficient solutions from within a disjunction formed by

a set of systems. The proposed approach lends itself to a simple yet effective iterative algorithm that is able

to yield the set of all nondominated points, both supported and nonsupported, for a multiobjective discrete

optimisation problem. Each iteration of the algorithm is a series of feasibility checks and requires only one

formulation to be solved to optimality that has the same number of integer variables as that of the single

objective formulation of the problem. The application of the algorithm show that it is particularly effective,

and superior to the state-of-the-art, when solving constrained multiobjective discrete optimisation problem

instances.

Key words : multiobjective optimisation; disjunctive programming; integer programming

Subject classifications : Programming: multiple objective integer programming.

Area of review : Optimization

1. Introduction

This paper is concerned with the solution a multiobjective discrete optimisation problem with |K|

objectives, for which a formulation can be given as follows:

(MOP) Minimise f(x) = (f1(x), f2(x), . . . f|K|(x))

x∈X,

where x is a vector of variables, K is the index set of the objectives, f(x) is a vector of conflicting

objectives, element k ∈ K of f(x) corresponds to the objective function fk(x), and X = {Ax ≤

b,x∈Z} is a nonempty set containing all feasible solutions. For a solution x∈X, the corresponding

1

Bektaş: Disjunctive Programming for Multiobjective Optimisation
2 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

objective vector f(x) is said to be a point in the objective space of the MOP. If there does not exist

any x′ ∈X such that fk(x
′)≤ fk(x) for all k ∈K then f(x) is said to be a strictly nondominated

point and x a strictly efficient solution. Similarly, if there does not exist any x′ ∈ X such that

fk(x
′)< fk(x) for all k ∈K, then f(x) is said to be a weakly nondominated point and x a weakly

efficient solution. If x is an optimal solution of MOPλ : Minimise
{∑K

k=1 λkfk(x) : x∈X
}

for a

given λ= (λ1, . . . , λ|K|) with at least one positive element, then it is a supported efficient solution,

otherwise it is said to be nonsupported.

Unlike single-objective integer programming, the solution of MOP is a set XE of efficient solu-

tions. I assume that MOP does not admit any feasible solution that minimises all objectives

simultaneously, and that the objectives are additive.

Exact algorithms to solve MOP in its general form were described as early as Bitran (1977)

for the special case where X = {Ax ≤ b,x ∈ B}. Of more relevance to my work is the sequential

algorithm proposed by Klein and Hannan (1982), and a variation thereof described by Sylva and

Crema (2004). More recent algorithms include that of Özlen and Azizoğlu (2009) that is based on

identifying objective efficiency ranges, a two-phase method described by Przybylski et al. (2000), an

improvement to the method of Sylva and Crema (2004) proposed by Lokman and Köksalan (2013),

an extension of the standard branch-and-cut to a multiobjective setting described by Jozefowiez

et al. (2012) where special lower and upper bounding mechanisms are introduced, and, finally, a

partitioning algorithm developed by Kirlik and Sayin (2014) that relies on searching the feasible

space over |K| − 1 dimensional rectangles. The algorithms just mentioned are general in the sense

that they can be used to solve MOP with any number of objectives and to generate the entire

set of nondominated points. Extensive computational results presented by Kirlik and Sayin (2014)

show that their algorithm is superior to the algorithms of Sylva and Crema (2004), Laumanns et

al. (2006), Özlen and Azizoğlu (2009). Furthermore, Kirlik and Sayin (2014) provide results for

MOP instances with up to five objectives, suggesting that their algorithm is state-of-the-art as far

as solving MOP is concerned, in terms of both its speed and ability to identify set XE.

Other algorithms have been described to only partially generate set XE. In particular, the

recursive algorithm proposed by Przybylski et al. (2010) generates all nondominated extreme points

of MOP, which corresponds to a subset of the set of supported efficient solutions. Similarly, the

exact algorithm of Özpeynirci and Köksalan (2013) finds all extreme supported nondominated

points of multiobjective mixed integer programs. There also exist algorithms that are designed for

the biobjective mixed integer programs, for example that of Stidsen et al. (2014) that is based

on branch-and-bound, and those that are specifically designed to solve multiobjective versions of

particular discrete optimisation problems, such as the knapsack and the assignment problem, which

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 3

I will not review here, but instead will refer the reader to Ehrgott and Gandibleux (2000) and

Ehrgott et al. (2016) for a review of the main properties, theoretical results and algorithms.

In this paper, I describe an iterative algorithm that is along similar lines of thought to that

of Klein and Hannan (1982) in that a sequence of integer programming formulations are used

to identify efficient solutions, and every efficient solution induces a set of systems to exclude the

previously identified solutions from the search. However, the algorithm described here breaks away

from all previous methods in that I model the sets in which efficient solutions exist (or otherwise)

using a disjunction of systems. This particular way of modelling itself lends itself to a decomposition

of the disjunction into its constituent systems. Each iteration of the algorithm is a series of feasibility

checks on these systems, as is further discussed below.

2. Disjunctive Programming for MOP

Given a solution x′ ∈X of MOP, I offer two questions that are of interest as far as solving MOP

is concerned:

Q1. Is x′ a (strictly) efficient solution of MOP? (If so, provide a certificate.)

Q2. If x′ is an efficient solution of MOP, then is it the only one? (If not, provide a certificate).

These questions can be answered using disjunctive programming. To see this, consider the fol-

lowing disjunction defined over an index set P ,

∨
p∈P

Ipx′ , (1)

where each element p ∈ P corresponds to a system Ipx′ = {fk(x)≤ fpk (x′),∀k ∈K}, and where the

subscript indicates that the system is induced by the solution x′. In a more general case, I will

simply drop the subscript, in which case the system corresponding to the element p∈ P of a given

disjunction will be shown as follows, where rpk is the right hand side coefficient of the system

corresponding to objective k ∈K.

Ip = {fk(x)≤ rpk,∀k ∈K}. (2)

Coming back to the disjunction in (1), the |P | systems therein are constructed in such a way that

each one includes at least one objective with a finite bound, i.e., ∃ k ∈K such that fpk (x)≤ fk(x′)−ε

for each p ∈ P , where ε > 0. Let F (x′) =

{
x∈X|

∨
p∈P

(fk(x)≤ fpk (x′),∀k ∈K)

}
, which denotes the

set of feasible solutions defined by the disjunction (1). Similarly, let F (Ipx′) denote the set of feasible

solutions of the set {x∈X|fk(x)≤ fpk (x′),∀k ∈K}.

I now return to the two questions above, with answers.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
4 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

A1. For the first question, it suffices to consider a special system Ip
∗

x′ = {fk(x)≤ fp
∗

k (x′)− ε, for

all k ∈K}. If the corresponding set F (Ip
∗

x′) of feasible solutions is empty, then x′ is a (strictly)

efficient solution. Similar special systems can be constructed to verify as to whether x′ is a weakly

efficient solution.

A2. As for the second question, if F (x′) = ∅, then this implies that F (Ipx′) = ∅ for all p ∈ P ,

meaning that there is no other solution x∈X that satisfies any of the systems Ipx′ , p∈ P , defining

the conditions for x to be an efficient solution. In this case, x′ is the only efficient solution. On

the other hand, if F (x′) 6= ∅, then there exists at least one other efficient solution x′′ ∈X, which

satisfies at least one of the systems Ipx′ , i.e., ∃p′ ∈ P such that x′′ ∈ F (Ip
′

x′).

I will use the following example to illustrate the development of the approach.

Example 1. The following is a 3×3 tri-objective assignment problem instance from Przybylski

et al. (2010), with the following cost matrices:

C1 =

 6 3 12
13 17 10
9 14 16

 C2 =

 10 18 15
19 7 12
11 16 14

 C3 =

 12 8 7
19 18 15
2 10 0

 .

Let x= {xij} be a solution vector, where the variable xij is equal to 1 if item i∈ {1,2,3} is assigned

to j ∈ {1,2,3}, and 0 otherwise. The set of feasible solutions to the assignment problem is denoted

by XA = (xij :
3∑
i=1

xij = 1 for j ∈ {1,2,3},
3∑
j=1

xij = 1 for i ∈ {1,2,3}, xij ∈ {0,1}). Consider now an

efficient solution x′ provided by Przybylski et al. (2000) with all entries equal to 0 except for

x′11 = x′23 = x′32 = 1, giving rise to the point f(x′) = (f1(x
′), f2(x

′), f3(x
′)) = (30,38,37). Using this

point, one can construct the following 23 − 1 = 7 systems, where ε = 1 as all three cost matrices

have integer entries, and M is a sufficiently large number so as to render the constraint in which

it is used as unbinding.

I1x′ =
{
f1(x)≤ 29

}
I2x′ =

{
f2(x)≤ 37

}
I3x′ =

{
f3(x)≤ 36

}
I4x′ =

{
f1(x)≤ 29
f2(x)≤ 37

}
I5x′ =

{
f2(x)≤ 37
f3(x)≤ 36

}
I6x′ =

{
f1(x)≤ 29
f3(x)≤ 36

}

I7x′ =

 f1(x)≤ 29
f2(x)≤ 37
f3(x)≤ 36

 .

For this instance, the set F (I7x′) of feasible solutions for system I7x′ is empty, which indicates that

x′ is a (strictly) efficient solution. In addition, if there is at least one p ∈ {1, . . . ,6} for which

F (Ipx′) 6= ∅, then x cannot be the only efficient solution. Indeed, consider another solution x′′ ∈XA

also provided by Przybylski et al. (2010) with all entries equal to 0 except for x′′11 = x′′22 = x′′33 = 1,

giving rise to the point f(x′′) = (f1(x
′′), f2(x

′′), f3(x
′′)) = (39,31,30) satisfying systems I2x′ , I

3
x′ and

I5x′ , indicating that F (x′) 6= ∅. �

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 5

One can continue in the fashion described above by considering more and more systems for

each arbitrarily chosen solution x ∈ X and search for nonempty subsets of feasible solutions to

obtain certificates as to whether x is efficient or whether there are others. This may be suitable

for a constraint programming approach. However, I will not pursue such an approach in this paper

due to two main drawbacks: (i) the lack of a method to identify a solution x ∈X to use at each

iteration, and, more severely, (ii) the exponentially increasing size of the disjunction given that

2|K|− 1 systems would have be added for each x ∈X. Instead, I describe an alternative approach

below that overcomes these two drawbacks.

2.1. Integer linear programming

Consider the following formulation that incorporates a disjunction defined with respect to an index

set P , where the |K| objectives have been combined into a single objective function.

MOP(P) Minimise
∑
k∈K

fk(x) subject to x∈X ∩

{⋃
p∈P

F (Ip)

}
.

MOP(P) is an augmented version of MOPλ, where λk = 1 for all k ∈K, by the disjunction
∨
p∈P

Ip

formed by the systems Ip, p ∈ P . It is well known that an optimal solution x∗ of MOP(∅) is a

supported efficient solution of one of the objectives for the weighted sum single-objective problem

(Przybylski et al. 2010). In other words, at least one of the objectives will attain its minimal value

at x∗. Formulation MOP(P) then suggests, in its crude form, an iterative algorithm where one

would start with MOP(∅), use a resulting optimal solution to construct a disjunction P , solve

MOP(P), a formulation that would effectively cut solution x∗ off, and which would either identify

another efficient solution or return as infeasible indicating that no other efficient solution exists.

This approach would address the first drawback described above.

In relation to the second drawback, I make the following observation. Each of the systems in

the disjunction (1) plays a dual role by partitioning the search space. In particular, each system

Ipx′ either (i) returns an efficient solution (which I call a certificate of efficiency), or (ii) returns an

infeasibility proving that that no efficient solution is contained in F (Ipx′) (which I name certificate of

infeasibility). For this reason, one simply cannot discard an infeasible system from a disjunction as

otherwise the certificate of infeasibility will be lost. However, one can take advantage of formulation

MOP(P) to discard some of the systems without loosing information on the certificate of efficiency

or infeasibility, as shown in the following proposition.

Proposition 1. Let P be an index set of systems defining a disjunction and let Ip and Iq be

two systems defined as (2) such that p, q ∈ P . If rqk ≤ r
p
k for all k ∈K, then Iq can be discarded.

First, I observe that F (Iq)⊆ F (Ip). There are two cases to consider:

Bektaş: Disjunctive Programming for Multiobjective Optimisation
6 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

1. If F (Ip) = ∅, then F (Iq) = ∅. In this case, one can remove the system Iq from the disjunction

without affecting the certificate of infeasibility.

2. If F (Ip) 6= ∅, then MOP(P) will yield the optimal point f(x) with a corresponding efficient

solution x. I now show that f(x) is also the optimal point of MOP(P \{q}) using the two sub-cases

below:

(a) F (Iq) = ∅, then F (Ip∨Iq) = F (Ip). Consequently, MOP(P) = MOP(P \ {q}), indicating

that f(x) is also optimal for MOP(P \ {q}).
(b) F (Iq) 6= ∅, then x ∈ F (Iq) ⊆ F (Ip). In this case, f(x) must be the optimal point of

MOP(P \ {q}) as otherwise there would have to be another point f(x̄) with x̄∈ F (Ip), x̄ 6= x with

at least one k ∈K such that fk(x̄)< fk(x), contradicting the optimality of point f(x). �

The result of Proposition 1 suggests that, under the minimising objective function of MOP(P),

it suffices to use |K| systems to construct a disjunction for a given efficient solution x, namely the

systems Ikx = {fk(x)≤ rkk}, ∀k ∈K.

The development presented above suggests a sequential procedure to generate all efficient points

for MOP, and is reminiscent of idea that has already been put forward, originally by Klein and

Hannan (1982) and subsequently by Sylva and Crema (2004). However, the implementation is

not straightforward. In Klein and Hannan (1982), the logical constraints (which correspond to

the disjunctions here) are built within a branch-and-bound algorithm. In the work of Sylva and

Crema (2004), an iterative procedure has been described where the disjunctions are modelled using

the standard “big-M” constraints, requiring the addition of |K| binary variables into MOPλ at

each iteration, one for each disjunction. The number of additional variables and constraints then

becomes prohibitively large and increases the difficulty of solving MOPλ to optimality, which was

also empirically observed by Lokman and Köksalan (2013).

It is at this point where I break away from the direction of research that the two references

above have pursued. In the following section, and in contrast to Sylva and Crema (2004), I will

show that it is possible to embed the disjunctive constraints into MOP(P) without the need to use

additional binary variables. I will then describe an iterative algorithm where MOP(P) will initially

be constructed using a disjunction defined by an index set P of systems, and P will be iteratively

expanded with each new efficient solution identified. This is achieved by using conjunctions of

disjunctions and decomposition of MOP(P), both of which are explained below.

2.2. Intermingling disjunctions and conjunctions

Let x′ and x′′ 6= x′ be two efficient solutions of MOP. There exists another efficient solution x such

that x 6= x′ and x 6= x′′ if and only if x∈ F (x′) and x∈ F (x′′), or, alternatively, the following set is

nonempty, {
x∈X|

⋃
p∈P1

F (Ipx′)

}⋂{
x∈X|

⋃
p∈P2

F (Ipx′′)

}
, (3)

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 7

where P1 and P2 are the index sets on which the two disjunctions are constructed using solutions

x′ and x′′, respectively. The set (3) of solutions correspond to the following conjunction,

Conj(Ipx′ , I
p
x′′) =

{ ∨
p∈P1

(
fk(x)≤ fpk (x′),∀k ∈K

)}∧{ ∨
p∈P2

(
fk(x)≤ fpk (x′′),∀k ∈K

)}
, (4)

which, by using the well-known distributivity operator on disjunctions A ∧ (B ∨ C) = (A ∧B) ∨
(A∧C), can be expressed in terms of the following expanded disjunction defined on an augmented

index set P of systems,{∨
p∈P

(
(fk(x)≤ fpk (x′))∧ (fk(x)≤ fpk (x′′)),∀k ∈K

)}
, (5)

where P = P1 ∪P2. It is easy to see that a pair of inequalities fk(x)≤ fp1k (x′) and fk(x)≤ fp2k (x′′),

for a given p1 ∈ P1, p2 ∈ P2 and k ∈K, under an “and” operator can be expressed as fk(x)≤ rpk =

min{fpk (x′), fpk (x′′)}, which can be used to rewrite (4) as follows:

Conj(Ipx′ , I
p
x′′) =

{
x∈X|

∨
p∈P

(
fk(x)≤ rpk,∀k ∈K

)}
. (6)

Example 2. For the tri-objective assignment problem described in Example 1, consider the two

efficient points x′ = (30,38,37) and x′′ = (39,31,30), each of which gives rise to the three sets of

inequalities shown below.

I1x′ =
{
f1(x)≤ 29

}
I2x′ =

{
f2(x)≤ 37

}
I3x′ =

{
f3(x)≤ 36

}
I1x′′ =

{
f1(x)≤ 38

}
I2x′′ =

{
f2(x)≤ 30

}
I3x′′ =

{
f3(x)≤ 29

}
The disjunction associated with solution x′ is

3∨
p=1

Ipx′ . Similarly, the disjunction associated with

solution x′′ is
3∨
p=1

Ipx′′ . The conjunction of I1x′ with I1x′′ results in I1x′ , whereas the conjunction of I1x′

with I2x′′ results in a new disjunction p with rp1 = 29, rp1 = 30 and rp3 =M . Continuing in a similar

way, the right hand side coefficients rpk of the complete set of systems arising from the conjunction

of the two disjunctions are obtained as below.

(rpk) p= 1 p= 2 p= 3 p= 4 p= 5 p= 6 p= 7 p= 8 p= 9
k= 1 29 29 29 38 38
k= 2 30 37 30 37 30
k= 3 29 29 36 36 29

By invoking the dominance criterion described in Proposition 1, one can reduce the nine systems

shown above to the four below.

(rpk) p= 1 p= 2 p= 3 p= 4
k= 1 29 38 38
k= 2 37 30
k= 3 36

Bektaş: Disjunctive Programming for Multiobjective Optimisation
8 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

Indeed, the two remaining nondominated points reported by Przybylski et al. (2010) for this par-

ticular instance, (22,41,25) and (38,33,27) are feasible with respect to the four-system disjunction

above, where the first satisfies either p= 1 or p= 4, and the second satisfies p= 2 or p= 4. In fact,

this particular MOP instance can be solved using a total of nine systems in total to identify the

four nondominated points, as opposed to the 34 = 81 systems which would otherwise have been

needed in the absence of Proposition 1. �

As the example above illustrates, even though the size of the disjunction increases exponentially

by a factor of |K| at each iteration, one can check the resulting set of systems in polynomial time

by performing pairwise comparisons, to identify and subsequently discard any dominated system.

I denote this procedure by Dom(I) as applied to a given set I of systems.

2.3. Formulating disjunctive programs

The way in which I formulate a disjunction defined over a set of systems indexed by P as described

above is of similar line of thought to the convex hull reformulation of Balas (1998), giving rise to

the following reformulation C(P) of model MOP(P) that uses |P | additional binary variables:

Minimise
∑
k∈K

∑
p∈P

fk(xp)

subject to ∑
p∈P

xp = x∑
p∈P

yp = 1

fk(xp)≤ rpkyp ∀k ∈K,p∈ P

Axp ≤ byp ∀p∈ P

xp ∈Z, yp ∈ {0,1}|P | ∀p∈ P. (7)

Here, I note that C(∅) is the same as MOP(∅). According to a result given by Balas (1998), an

optimal solution of the formulation above, if exists, will always identify a p∗ ∈ P such that yp∗ = 1

and yp = 0 for all p ∈ P \ {p∗}, even when the integrality restrictions on the y variables in (7) are

relaxed as y ∈ [0,1]. Preliminary computational tests have suggested that even the relaxed version

of C(P) with a reduced number of systems can be challenging to solve with modern optimisers.

However, I will not necessarily rely on this result in the development of the ensuing algorithm.

Furthermore, when only the right hand side values of the constraints change in each disjunct,

it is possible to obtain C(P) in compact form, without the need for the disaggregated variables

(Trespalacios and Grossmann 2015, Vielma 2015). This is achieved by resorting to a so-called

Big-M reformulation, which also uses a constraint that chooses exactly one term p∗ ∈ P in the

disjunction. Both reformulations, although not used within the algorithm described below, give

way to the same decomposition on which the algorithm is based.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 9

2.4. An iterative algorithm

Following the arguments above, I decompose formulation C(P) into a series of smaller subproblems,

where each subproblem Cp∗ corresponds to a particular p∗ ∈ P , where yp∗ = 1 and yp = 0 for all

p ∈ P \ {p∗}. Consequently, one can project the yp variables out from each subproblem, yielding

the following form of Cp that uses the original x variables:

Minimise
∑
k∈K

fk(x)

subject to

fk(x)≤ rpk ∀k ∈K (8)

x∈X.

The iterative algorithm I propose starts with identifying an efficient solution by solving Cp with

P = ∅, which I denote by C0, and which is identical to Cp without constraints (8). The efficient

solution is then used to construct a disjunction to populate C(P), which, when decomposed into

a series of subproblems Cp, each subproblem will either provide a certificate of infeasibility, or

return an efficient solution. The algorithm will iterate in this manner. There are three techniques

I describe here to reduce the computational effort spent at each iteration:

1. For a given disjunction with P 6= ∅, one need not solve Cp for all p ∈ P ; in fact it suffices to

stop as soon as an efficient solution is identified (i.e., stop after the first feasible Cp).

2. The conjunction of two systems Ip and Iq in a given iteration does not necessarily produce a

new system. Assume without loss of generality that Conj(Ip, Iq) = Ip. The previous iteration will

already have solved Cp and identified whether there exists a feasible solution or not. By building

a memory feature to retain such information, spending additional computational time to test the

feasibility of Cp in later iterations can be avoided.

3. Let bk = Minimise{fk(x) : x∈X}. If at any iteration, there exists a system p ∈ P for which

rpk < bk for any k ∈K, then the corresponding system p can be marked as being infeasible without

requiring a further feasibility check. The calculation of bk for all k ∈K is done only once, and prior

to the start of the algorithm.

A pseudocode of the proposed algorithm is given in Algorithm 1.

The algorithm starts by initialising empty sets, in particular a set I of systems, a set P of indices,

one for each system defining a disjunction, and a set XE of efficient solutions. The algorithm then

enters a loop between lines 3 and 19 to solve subproblems Cp, and exits the loop as soon as a

feasible Cp is found which yields an efficient solution x′. Any ordering of elements in set P can

be used for this purpose. The system Ikx′ induced by this solution is then added to the set I.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
10 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

Algorithm 1 An iterative algorithm to solve MOP

1: I←∅, XE←∅, P ←{0},

2: Label(p) ← feasible, for all p∈ P

3: repeat

4: Choose an unexamined element p∈ P

5: if Label(p) 6= infeasible then

6: Solve Cp

7: if Cp is infeasible then

8: Label(p) ← infeasible

9: end if

10: if Cp is feasible then

11: Let x′ be an optimal solution of Cp

12: XE←XE ∪{x′}

13: I ′←Conj(I,
∨
k∈K

Ikx′)

14: I←Dom(I ′)

15: Update the index set P of the disjunction defined by set I

16: Label(p) ← feasible, for all newly formed p∈ P

17: end if

18: end if

19: until Label(p) = infeasible for all p∈ P

20: Stop. XE is the set of efficient solutions.

The algorithm maintains only a single disjunction at each iteration, comprising a set of systems,

and one which is gradually enlarged in Steps 13 and 14. In particular, a conjunction operator is

applied to the existing set of systems I and the new system Ikx′ in Step 13. In Step 14, the set I ′ is

checked to discard any dominated sets of inequalities. As explained above, Dom(I ′) is the operator

that performs pairwise checks for all systems using the dominance criterion in Proposition 1. The

algorithm continues in this manner until the loop 3–19 fails to identify any feasible subproblem. It

is at this point that the algorithm stops, indicating that there are no other efficient solutions and

returns XE as the set of efficient solutions.

3. Computational Experiments

In this section, I present some computational experience with Algorithm 1 and comparison results.

The algorithm is compared with that of Kirlik and Sayin (2014), available for public use at http:

//home.ku.edu.tr/~gkirlik/research.html, for the very reason that it is shown to outperform

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 11

three other general purpose algorithms for MOP described by Sylva and Crema (2004), Laumanns

et al. (2006), Özlen and Azizoğlu (2009). A common time limit is imposed for both algorithms,

which is one hour for MOAP and MOKP instances, and three hours for the MOTSP.

Both algorithms are run on a laptop computer running on an 2.2 GHz Intel Core i7 with

16GB memory. Algorithm 1 has been coded in C. All subproblems within the two algorithms

have been solved using CPLEX 12.6 through the use of the callable libraries. For Algorithm 1,

I do not use the default parameter settings that come with CPLEX. In particular, the switch

that controls the trade-offs between speed, feasibility, optimality, and moving bounds in solv-

ing mixed-integer programming formulations has been set to place emphasis on moving best

bound (CPX PARAM MIPEMPHASIS set to 3). Furthermore, the presolve feature has been switched

off by setting CPX PARAM MIPEMPHASIS to 0, and all automatic cuts are disabled by setting

CPX PARAM CUTSFACTOR to 0, as I have found these features to slow down the detection of infeasibil-

ity in the subproblems. All other parameters remain at their default setting. The results presented

here are summaries for three different types of MOP, namely the multiobjective assignment prob-

lem (MOAP), the multiobjective knapsack problem (MOKP) and the multiobjective travelling

salesman problem (MOTSP), in the following sections. Detailed computational results are provided

in the Online Supplement.

3.1. Results on the MOAP

The MOAP instances tested here are those described in Kirlik and Sayin (2014) and are available at

http://home.ku.edu.tr/~gkirlik/research.html. The size n of the instances range from five

to 15, where the number |K| of objectives is either three or four. The objective function coefficients

of these instances have been randomly drawn from the interval [1, 20]. Table 1 presents the results,

where the figures shown on each line are averaged over 10 instances. For the two algorithms,

the column titled “Time” shows the total time needed, in seconds, to identify the entire set of

nondominated points. The results under the heading “Disjunctive Programming” pertain to those

obtained by Algorithm 1, where the column titled “No. Sol.” shows the average number of efficient

solutions, and column titled “No. Disj.” presents the total number of systems generated.

Table 1 A summary of comparison results for the MOAP instances

Kirlik and Sayin (2014) Disjunctive Programming

|K| n Time (s) No. Sol. No. Disj. Time (s)

3 10 7.44 176.80 268.50 8.18
3 15 64.44 674.90 967.60 55.99

4 5 0.53 34.00 123.70 1.57
4 10 199.95 895.20 2928.20 382.87

Bektaş: Disjunctive Programming for Multiobjective Optimisation
12 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

Table 1 shows that the disjunctive programming algorithm is competitive with the algorithm of

Kirlik and Sayin (2014) for |K|= 3 in terms of the total time required, but is slower for |K|= 4.

The main reason behind this is the number of efficient solutions that grows significantly as the size

of the problem increases, which, in turn, requires the disjunctive programming algorithm to iterate

for as many times as the number of efficient solutions of the instance.

3.2. Results on the MOKP

I now present results on MOKP instances, the sizes of which range from 20 to 40 items, and with

three, four and five objectives. The instances for |K|= 3 or |K|= 4 are the same as those used in

Kirlik and Sayin (2014), whereas those with |K|= 5 are generated in the same way in the latter

reference as they are not made available. In particular, the weight and the profits of each item are

randomly drawn integers from the interval [1, 1000], and the capacity of the knapsack is calculated

as half of the total weight of all the items, rounded up where appropriate. The results are presented

in a similar fashion as in Table 2. For sets that contain instances that could not be solved within

the time limit, the average computational time has been calculated with respect to those instances

for which the entire set of nondominated points has been found by both algorithms. These sets are

(|K|= 4, n= 40), (|K|= 5, n= 20) and (|K|= 5, n= 25). In cases where the time limit is exceeded,

the number of solutions and the number of systems reported are those obtained at the time of

premature termination.

Table 2 A summary of comparison results for the MOKP instances

Kirlik and Sayin (2014) Disjunctive Programming

|K| n Time (s) No. Sol. No. Disj. Time (s)

3 30 3.70 115.80 231.90 8.83
3 40 16.05 311.40 617.80 47.45
3 50 27.93 444.20 876.00 84.15

4 20 23.60 136.80 659.30 17.89
4 30 441.52 397.60 1988.80 168.31
4 40 1085.50† 676.25 3407.75 513.63

5 15 58.85 57.70 551.10 9.12
5 20 522.37‡ 104.14 983.29 23.97
5 25 948.56§ 137.50 1373.50 36.41
†Solved four instances out of 10.
‡Solved seven instances out of 10.
§Solved two instances out of 10.

The results in Table 2 show that the proposed algorithm is dominated by that of Kirlik and Sayin

(2014) in terms of total solution time for instances with |K|= 3. However, the situation is quite the

opposite for when the number of objectives increases. In particular, the disjunctive programming

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 13

algorithm shows a significant decrease in the time required to generate the set of efficient solutions

for |K|= 4 and |K|= 5, and is able to solve more instances than Kirlik and Sayin (2014).

The results presented in this section for the MOKP suggest that the effectiveness of the disjunc-

tive programming algorithm increases with the number of objectives, and when the size of the set

of nondominated points is not so large. The stark contrast between the results reported for the

MOKP and the MOAP suggest that the algorithm works much better on constrained problems. I

will provide further evidence on this in the following section.

3.3. Results on the MOTSP

The choice of this particular multiobjective problem is deliberate, as it is a constrained version of

MOAP, and where the aim is to see the effect of further constraining the set of feasible solutions

and therefore the set of nondominated points on the performance of the algorithm. Consequently,

the model used to solve the MOTSP is a restricted version of the MOAP, in that it is an assignment

based formulation augmented with a set of subtour breaking constraints in the spirit of Gavish

and Graves (1978). The MOTSP instances tested here have three objectives, with sizes ranging

from 10 to 20, for which the costs have been generated in the same way as the MOAP instances.

Whilst the sizes of the instances tested may seem small, they are comparable with those tested by

Özpeynirci and Köksalan (2013), particularly as the authors describe an algorithm that identifies

only a subset of the set of efficient solutions. The results are presented in Table 3.

Table 3 A summary of comparison results for the MOTSP instances

Kirlik and Sayin (2014) Disjunctive Programming

|K| n Time (s) No. Sol. No. Disj. Time (s)

3 10 56.08 126.00 205.00 14.46
3 15 1162.49 567.20 836.20 161.38
3 20 4125.90 1292.60 1805.10 900.20

The results shown in Table 3 show a clear-cut superiority of the disjunctive programming algo-

rithm in terms of the computational time required. The reduction in the average number of solutions

from MOAP to MOTSP is evident when the results are compared with those presented in Table

1, which is a factor that contributes to the efficiency of the proposed algorithm. In addition to

the three-objective instances, I have also solved 10 instances of a four-objective TSP with n= 10.

For these instances, the average computational time required by the algorithm of Kirlik and Sayin

(2014) was 995.16 seconds, whereas the same figure for Algorithm 1 was 309.80 seconds. Both

algorithms solved all 10 instances. The average number of efficient solutions was 636.70.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
14 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

4. Identifying a Well-Dispersed Subset of Non-Dominated Solutions

A relevant question for multiobjective discrete optimisation, particularly when the size of the

nondominated set of points is undesirably large, is to find a well-dispersed subset of such points.

The first phase of the two phase method, to a certain extent, addresses this question, but it is not

straightforward to extend this method to problems with three or more objectives (Przybylski et

al. 2000). In this section, I show that this can be done in a relatively simple way using disjunctive

programming, through a judicious selection of the systems contained within a disjunction during

the course of the iterative algorithm.

For a given MOP, let P be a nonempty set of indices of systems forming a disjunction and XE

a set of efficient solutions already identified. The question of finding a well-dispersed subset can

be rephrased as finding a system p ∈ P such that x∗ ∈ F (Ip) maximises a given distance metric

between x∗ and all other x′ ∈XE. For the purposes of this paper, I will use the following metric:

D(x∗, x′) =
∑
k∈K

(fk(x
∗)− fk(x′))

2
. (9)

The above question is now tantamount to finding a x∗ ∈ X = arg max
x∈F (Ip),p∈P

∑
x′∈XE

D(x,x′). In this

section, I will additionally assume that fk(x) ≥ 0 for any x ∈X for all k ∈K. Consider, now, a

x ∈ F (Ip) for a given p ∈ P , for which the total distance from all other solutions in XE, by using

the definition (9), can be calculated as follows:

∑
x′∈XE

D(x,x′) =
∑
x′∈XE

(∑
k∈K

(fk(x)− fk(x′))
2
)

≤
∑
x′∈XE

∑
k∈K

(fk(x))2 +
∑
x′∈XE

∑
k∈K

(fk(x
′))2

≤
∑
x′∈XE

∑
k∈K

(rpk)
2 +

∑
x′∈XE

∑
k∈K

(fk(x
′))2. (10)

As the last component of (10) is a constant for a given set XE, an upper bound on the maximum

distance is given by the first component, which implies that choosing a system p∗ ∈ P satisfying

the following condition,

p∗ = arg max
p∈P

∑
k∈K

rpk, (11)

is the one most likely to yield a solution x∗ that has the largest cumulative distance from all other

solutions x′ ∈X. This observation requires searching through all the systems in P to identify the

one satisfying the condition (11), which is not impossible. However, a more practical approach

would be to limit the search from within the set of systems to those having the least amount of

finite bounds imposed across the |K| objective functions. For a three-objective MOP, for example,

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 15

50
100

150 50

100

15050

100

150

Entire set
Well-dispersed

Figure 1 Well-dispersed subset of nondominated points for the tri-objective 15-node TSP instance

50
100

150 50

100

15050

100

150

Entire set
Truncated

Figure 2 Truncated subset of nondominated points for the tri-objective 15-node TSP instance

one can discard all systems with two or more finite bounds on the individual objective function

components.

To illustrate the outcome of the proposed strategy, I consider two tri-objective TSP instances,

one with 15 nodes for which the results are shown in Figures 1 and 2, and the other with 20 nodes

for which the results are presented in Figures 3 and 4.

Figure 1 shows a well-dispersed subset of 40 nondominated points identified through the strat-

egy proposed above, against the entire set of 335 nondominated points of the 15-node MOTSP

instance. Similarly, Figure 3 shows a well-dispersed subset of 53 nondominated points obtained

with the proposed strategy for the 20-node instance, against the entire set of 1013 nondominated

points. These points are contrasted with those obtained using a truncated version of Algorithm 1,

terminated after finding the first 40 nondominated points for the 15-node instance, and the first

53 points for the 20-node instance, which are shown in Figures 2 and 4. There is clear indica-

Bektaş: Disjunctive Programming for Multiobjective Optimisation
16 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

50
100 150 200 250

100

200

100

200

Entire set
Well-dispersed

Figure 3 Well-dispersed subset of nondominated points for the tri-objective 20-node TSP instance

50
100 150 200 250

100

200

100

200

Entire set
Truncated

Figure 4 Truncated subset of nondominated points for the tri-objective 20-node TSP instance

tion from these figures to suggest that the simple strategy described above suffices to generate a

representative sample of the set of nondominated points for these instances.

5. Conclusions

The iterative algorithm described in this paper can be applied to any multiobjective discrete

optimisation problem, with any number of objectives, to generate the entire set of nondominated

points, provided that the underlying subproblems can either be solved, or checked for infeasibility,

using an optimiser. The algorithm is particularly effective in finding nondominated points when the

size of the set of efficient solutions is relatively small. It does not seem to suffer from the increase in

the number of objectives in the way as some of the other state-of-the-art methods do, such as the

two-phase method. In the case that a limited subset of a possibly large set of efficient solutions is

sought, the algorithm can also provide a well-dispersed subset of nondominated points by looking

at a specially selected subset of systems defining a disjunction.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1 17

Acknowledgments

I thank Gokhan Kirlik for helpful discussions and for providing guidance on the use of his code and Nicolas

Jozefowiez for raising a question that resulted in the exposition given under Section 4. Thanks are also due

to an anonymous reviewer and the Editor-in-Chief for their comments on the paper.

References

Balas, E. 1998. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Applied

Mathematics, 89, 3–44.

Bitran, E. 1977. Linear multiple objective programs with zero-one variables. Mathematical Programming,

13, 121–139.

Ehrgott, M. and Gandibleux, X. 2000. A survey and annotated bibliography of multiobjective combinatorial

optimization. OR Spektrum 22, 425–450.

Ehrgott, M., Gandibleux, X. and Przybylski, A. 2016. Exact methods for multi-objective combinatorial

optimisation. In: Multiple criteria decision analysis (Greco, S., Ehrgott, M., Figueira, J.R., eds.), Inter-

national Series in Operations Research & Management Science, Volume 233. Springer, US, pp. 817–850.

Gavish, B. and Graves, S.C. The traveling salesman problem and related problems. Working Paper OR-078-78,

Operations Research Center, MIT, Cambridge, MA .

Jozefowiez, N., Laporte, G., and Semet, F. 2012. A generic branch-and-cut algorithm for multiobjective

optimization problems: Application to the multilabel traveling salesman problem. INFORMS Journal

on Computing 24, 554–564.

Kirlik, G. and Sayin, S. 2014. A new algorithm for generating all nondominated solutions of multiobjective

discrete optimization problems. European Journal of Operational Research 232, 479–488.

Klein, D. and Hannan, E. 1982. An algorithm for the multiple objective integer linear programming problem.

European Journal of Operational Research 9, 378–385.

Laumanns, M, Thiele, L. and Zitzler, E. 2006. An efficient, adaptive parameter variation scheme for gener-

ating all non-dominated solutions. European Journal of Operational Research 199, 25–35.

Lokman, B. and Köksalan, M. 2013. Finding all nondominated points of multi-objective integer programs.

Journal of Global Optimization 57, 347–365.

Özlen, M. and Azizoğlu, M. 2009. Multi-objective integer programming: A general approach for generating

all non-dominated solutions. European Journal of Operational Research 199, 25–35.

Özpeynirci, Ö. and Köksalan, M. 2013. An exact algorithm for finding extreme supported nondominated

points of multiobjective mixed integer programs. Management Science 56, 2302–2315.

Przybylski, A., Gandibleux, X. and Ehrgott, M. 2000. A two phase method for multi-objective integer

programming. Discrete Optimization 7, 149–165.

Bektaş: Disjunctive Programming for Multiobjective Optimisation
18 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2016-08-OA-180.R1

Przybylski, A., Gandibleux, X. and Ehrgott, M. 2010. A recursive algorithm for finding all nondominated

extreme points in the outcome set of a multiobjective integer programme. INFORMS Journal on Com-

puting 22, 371–386.

Stidsen, T., Andersen, K. A. and Dammann, B. 2014. A branch and bound algorithm for a class of biobjective

mixed integer programs. Management Science 60, 1009–1032.

Sylva, J. and Crema, A. 2004. A method for finding the set of non-dominated vectors for multiple objective

integer linear programs. European Journal of Operational Research 158, 46–55.

Trespalacios, F. and Grossmann, I.E. 2015. Improved Big-M reformulation for generalized disjunctive pro-

grams. Computers & Chemical Engineering, 76, 98-103.

Vielma, J.P. 2015. Mixed integer linear programming formulation techniques. SIAM Review, 57, 3–57.

