
Submitted to INFORMS Journal on Computing
manuscript (Please, provide the manuscript number!)

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Bi-objective branch–and–cut algorithms based on LP
relaxation and bound sets

Sune Lauth Gadegaard
Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus University, Fuglesangs Allé

4, DK-8210 Aarhus V, Denmark. sgadegaard@econ.au.dk, ORCID: 0000-0001-8989-6015

Lars Relund Nielsen
Department of Economics and Business Economics, School of Business and Social Sciences, Aarhus University, Fuglesangs Allé

4, DK-8210 Aarhus V, Denmark. larsrn@econ.au.dk, ORCID: 0000-0002-4802-3071

Matthias Ehrgott
Department of Management Science, Lancaster University, Lancaster LA1 4YX, UK. m.ehrgott@lancaster.ac.uk, ORCID:

0000-0003-4648-4066

Most real–world optimization problems are multi–objective by nature, with conflicting and incomparable

objectives. Solving a multi–objective optimization problem requires a method which can generate all rational

compromises between the objectives. This paper proposes two distinct bound set based branch–and–cut

algorithms for general bi–objective combinatorial optimization problems, based on implicit and explicit lower

bound sets, respectively. The algorithm based on explicit lower bound sets computes, for each branching

node, a lower bound set and compares it to an upper bound set. The other fathoms branching nodes by

generating a single point on the lower bound set for each local nadir point. We outline several approaches for

fathoming branching nodes and we propose an updating scheme for the lower bound sets that prevents us

from solving the bi–objective LP–relaxation of each branching node. To strengthen the lower bound sets, we

propose a bi–objective cutting plane algorithm that adjusts the weights of the objective functions such that

different parts of the feasible set are strengthened by cutting planes. In addition, we suggest an extension of

the branching strategy “Pareto branching”. We prove the effectiveness of the algorithms through extensive

computational results.

Key words : bi–objective branch–and–cut, bi–objective optimization, combinatorial optimization,

branch–and–cut.

Subject classifications : Decision Analysis: Multiple criteria; Programming: Multiple criteria; Programming:

Integer: Algorithm: Branch–and–bound; Programming: Integer: Algorithm: Cutting plane

1

http://orcid.org/0000-0001-8989-6015
http://orcid.org/0000-0002-4802-3071
http://orcid.org/0000-0003-4648-4066
http://orcid.org/0000-0003-4648-4066

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

2 Article submitted to INFORMS Journal on Computing

1. Introduction

A general definition of a multi–objective decision problem with p objectives can be given as follows:

Given a set of possible or feasible decisions and a set of p objective functions quantifying these

decisions, find all solutions which constitute rational compromises between the objectives (the set

of Pareto optimal solutions).

When the set of decisions are implicitly given by a set of constraints, the problem belongs to the

class of multi–objective programming problems, and if the objective functions and the constraints

are all linear, the problem is denoted a multi–objective linear programming problem. In this paper,

we will limit the scope to problems where all variables are restricted to be either zero or one and for

which only two linear objective functions are present. Such a problem is usually named a bi–objective

combinatorial optimization (BOCO) problem.

In the following paragraphs we provide an overview of some of the most important contributions

to the development of branch–and–bound algorithms for general BOCO problems and mention

some extensions to mixed integer BOCO (some variables are allowed to be continuous). A schematic

overview is also given in Table 1. In the column headed “DMx” we have illustrated the domain

of the variables where we use the convention that B= {0,1}. Furthermore, when the problem is a

bi–objective mixed–integer linear programming (BOMILP) problems, we write MI(S) where (S) is

the discrete domain for the integer restricted variables. The “DMf” column shows the domain of

the objective functions, that is, “(R,Z)” means that the first objective maps to the real numbers

and the second is restricted to map into the integers. If all objective functions map to the same set

S, then we simply write Sp.

Surprisingly little research has been devoted to branch–and–bound algorithms for general BOCO

problems although many problems can be fitted into this framework, for example the bi-objective

knapsack problem (Ulungu and Teghem 1997), the bi–objective assignment problem (Przybylski

et al. 2008, Pedersen et al. 2008), bi–objective facility location problems (Fernandez and Puerto

2003), and the bi–objective TSP (Bérubé et al. 2009).

However, some effort has been put into the development of branch–and–bound algorithms for

BOCO problems. Klein and Hannan (1982) propose what is probably the first branch–and–bound

algorithm for BOCO problems. During the eighties and nineties, only very few researchers followed

up on this idea, as examples we mention Kiziltan and Yucaoğlu (1983), Ulungu and Teghem (1997),

Ramos et al. (1998) and Visée et al. (1998) (although the latter three are problem specific). Since

the turn of the millennium more attention has been brought to this solution approach and even

generalizations where both integer and continuous variables are allowed (BOMILP) were considered.

Mavrotas and Diakoulaki (1998) are among those who develop a branch–and–bound algorithm

for BOCO problems. They develop a depth first branch–and–bound algorithm capable of finding

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 3

Table 1 Overview of the multi–objective branch–and–bound algorithms proposed in the literature. All

approaches have been converted to the minimization case for better comparison. In all papers the incumbent set

have been used to obtain the upper bound.

Reference NS1 LB2 Cuts Branching3 DMx DMf Notes

Klein et al. (1982) — UP No VF N0 Zp p > 2. Propose to use post–optimality tech-
niques to solve a series of integer programs.

Kiziltan et al (1983) DF UP No VF B Rp p > 2. Probing on variables is applied in each
node of the branching tree.

Ulungu et al. (1997) DF UP No VF B Z2 Adapt the methods presented in Martello and
Toth (1990) to a multi–objective framework.

Ramos et al. (1998) DF UP No VF B R2 Pure branch–and–bound. Feasible solutions
are found as leaf nodes, no heuristics.

Visée et al. (1998) DF UP No VF B Z2 Use the two phase method and employ the
method of Ulungu and Teghem (1997) in the
resulting triangles.

Mavrotas et al. (1998) DF UP No VF MI(B) Rp p > 2. Allow continuous variables. Problematic,
as some dominated solutions might be consid-
ered non–dominated.

Mavrotas et al. (2005) DF UP No VF MI(B) Rp p > 2. Computationally improve the solution
of the LP–relaxation. Add a final dominance
test. Still problematic.

Sourd et al. (2008) DF HS No VF B R2 Propose to use hypersurfaces as lower bound
set.

Florios et al. (2010) DF UP No VF B R2 Application of the algorithm proposed in
Mavrotas and Diakoulaki (1998, 2005).

Jozefowiez et al. (2012) — UP4 Yes Parallel Z (R,Z) Generates utopian points for each possible inte-
ger value of the second objective. Thus, a lower
bound set is generated by an embedded ε–
constraint method.

Vincent et al. (2013) DF UP No VF MI(B) R2 Correct and improve the algorithm of Mavro-
tas and Diakoulaki (1998). Characterize the
non–dominated frontier of a mixed integer
BOCO problem.

Stidsen et al. (2014) — S–LP No VF, PB,
SL

MI(B) (Z,R) Introduce Pareto branching and slicing of the
outcome space. One objective must be integer
valued.

Parragh et al. (2015) BF BO-LP,
SP-IP

NO VF, ext.
PB

Z Z2 Propose an idea similar to extended Pareto
branching. Generate lower bound sets using
column generation.

This paper BB S–LP,
BO–LP

Yes VF, ext.
PB

B Z2 Introduces cutting plane algorithm. Proposes
updating of lower bound sets. Extends PB.

1: Node selection (DF: Depth first, BB: Best bound, BF: Breadth first, —: Not described), 2 Lower bound (HS: Hyper
surface, UP: Utopian or ideal point, S–LP: LP–relaxation of scalarized problem, BO–LP: Bi–Objective LP–relaxation, SP–IP:
Supported points of Bi–Objective IP), 3: Branching: (VF: Variable fixing, PB: Pareto branching, SL: Slicing) 4: Jozefowiez
et al. (2012) uses an utopian point for each integer value of the second objective.

all non–dominated outcome vectors of a mixed integer BOCO problem. Whenever a leaf node

is reached (that is, when all integer variables have been fixed), the resulting bi–objective linear

program is solved. A node is fathomed in the branching tree if it is infeasible or if the ideal point

of the node is dominated by a point in the set of yet non–dominated points. Later, Mavrotas and

Diakoulaki (2005) published a number of improvements. The algorithm was adapted to pure BOCO

problems (all variables are either zero or one) and was applied to multi–objective, multi–dimensional

knapsack problems in Florios et al. (2010).

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

4 Article submitted to INFORMS Journal on Computing

Unfortunately the algorithm proposed in the two papers by Mavrotas and Diakoulaki (1998,

2005) might return dominated solutions. The issue originates in the fact that not only the extreme

points of the non–dominated frontier found at the leaf nodes might be non–dominated. Also the

line segments joining these need to be considered. This issue is addressed in Vincent (2013) and

corrected for the bi–objective case by Vincent et al. (2013). In the latter paper a number of lower

bound sets are introduced and promising results are reported with up to 60 constraints and 60

variables, of which 30 are binary.

Sourd and Spanjaard (2008) develop a branch–and–bound framework where the branching part

is identical to a single objective branch–and–bound algorithm. However, the bounding part is

performed via a set of points rather than the single ideal point. The current node can be discarded

if a hypersurface separates the set of feasible solutions in the subproblem from the incumbent set

(the set of non–dominated points). Sourd and Spanjaard use a rather sophisticated problem–specific

hypersurface and obtain promising experimental results for the bi–objective spanning tree problem.

In Jozefowiez et al. (2012) a branch–and–bound procedure is proposed which generates a lower

bound set of each node using an embedded ε–constraint method that generates an optimal solution

for the first objective given the second objective takes integer values. The procedure is used to solve

the multi–label traveling salesman problem.

More recently Stidsen et al. (2014) introduce the concept of Pareto branching where branching

is performed in outcome space. Also, they propose slicing the outcome space and thereby obtain

better upper bounds for fathoming nodes in the branching tree. Thus, effectively decision and

outcome space search strategies are combined. In Parragh and Tricoire (2015) a column generation

based algorithm is used to generate tight lower bound sets for the bi–objective team orienteering

problem with time windows and the combination of decision and search space search strategies is

further explored. Promising results are reported by both Stidsen et al. (2014) and Parragh and

Tricoire (2015).

Lastly we want to mention Przybylski and Gandibleux (2017) who review the state–of–the–art of

multi–objective branch and bound and give an overview of concepts and methodologies used within

this research field.

Although several novel and efficient approaches have been proposed in the past, none of these

take advantage of the lower bound set available from the bi–objective LP–relaxation. Furthermore,

none of the previously mentioned algorithms incorporates cutting planes in a bi–objective setting,

even though effective separation routines have resulted in a significant speedup for single objective

problems. Therefore, we propose two novel bound set based branch–and–cut algorithms for general

bi–objective linear combinatorial optimization problems. The algorithms rely on either explicitly or

implicitly given lower bound sets obtained from the bi–objective LP–relaxation. To summarize, the

main contributions of this paper are as follows

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 5

1. We propose the first algorithm that generalizes an LP–based branch–and–cut algorithm to

general linear combinatorial optimization problems with two objectives.

2. We propose a bi–objective cutting plane algorithm which dynamically changes weights of the

objectives in order to approximate the best possible lower bound set obtainable from the

LP–relaxation.

3. We develop a simple updating scheme for explicit lower bound sets that reduces the number of

bi–objective LPs that need to be solved.

4. We introduce a simple method for implicitly describing the lower bound set obtained from the

bi–objective LP–relaxation.

5. The Pareto branching strategy is strengthened to what we call extended Pareto branching.

6. In order to test the efficiency of the methodology we test a total of 8 different implementations

on the NP–hard bi–objective single–source capacitated facility location problem.

The remainder of this paper is organized as follows: Section 2 gives the basic definitions of

bi–objective optimization. Section 3 starts with a short theoretical description of a generic bi–

objective branch–and–cut algorithm for general BOCO problems and afterwards we describe the

main components of the branch–and–cut algorithm in detail. Finally, different implementations of

the algorithm developed in the paper are tested in Section 4.

2. Preliminaries

The focus of this section will be on a generic linear bi-objective combinatorial optimization (BOCO)

problem of the form

min{Cx : x∈X} (1)

where C = (c1, c2) is a 2×n dimensional matrix with all entries being integral and the feasible set is

defined by X = {x∈ x∈ {0,1}n : Ax5 b}. The set X of feasible solutions is also referred to as the

feasible set in decision space and the image of X under the linear mapping C is called the feasible

set in objective space and is here denoted Z. In the remainder of the paper it will be assumed that

X 6= ∅.
To compare vectors in R2 we adopt the notation from Ehrgott (2005). Let z1, z2 ∈R2, then

z1 5 z2⇔ z1
k ≤ z2

k, for k= 1,2,

z1 ≤ z2⇔ z1 5 z2 and z1 6= z2,

z1 < z2⇔ z1
k < z

2
k, for k= 1,2.

We define the set R2
= = {z ∈ R2 : z = 0} and analogously R2

≥ and R2
>. Furthermore, given a set

S ⊆ R2 let SN = {s ∈ S : ({s}−R2
=)∩ S = {s}}, where ({s}−R2

=) = {z ∈ R2 : z = s− r, r ∈ R2
=}.

The set SN is called the non–dominated set of S.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

6 Article submitted to INFORMS Journal on Computing

The problem (1) does not immediately reveal what an “optimal solution” should be. To clarify

this we use the concept of Pareto optimality or efficiency:

Definition 1. A feasible solution x̂∈X is called Pareto optimal or efficient if there does not

exist any x∈X such that Cx≤Cx̂. The image Cx̂ is then called non-dominated.

A feasible solution x̂ ∈ X is called weakly efficient if there does not exist any x ∈ X such that

Cx<Cx̂.

Let XE denote the set of all efficient solutions. Then the image of XE under the linear mapping C

is exactly ZN , that is, ZN =CXE. The set ZN is referred to as the set of non–dominated outcomes.

A subset X ∗ ⊆XE where CX ∗ =ZN and Cx 6=Cx′ for all x,x′ ∈X ∗ will be considered an optimal

solution to (1). Note that an optimal solution X ∗ is a set of efficient solutions.

The sets XE and ZN need to be further divided into two subsets. An efficient solution x̂∈XE is

said to be a supported efficient solution if there exists a weight λ∈ (0,1) such that λc1x̂+(1−λ)c2x̂≤

λc1x + (1 − λ)c2x for all x ∈ X . The set of supported efficient solutions is denoted XSE. The

elements in XnE =XE \XSE are called non–supported efficient solutions. Analogously, the set ZN is

partitioned into two subsets, namely ZSN =CXSE and ZnN =CXNE.

3. Bi–objective bound set based branch–and–cut

The branch–and–cut framework provides a very successful standard method for solving single

objective combinatorial optimization problems (see e.g. Nemhauser and Wolsey (1988) or Martin

(1999) for a detailed description). Here, the set of feasible solutions to the optimization problem is

partitioned into disjoint subproblems which can be displayed in a tree–structure where each node

represents a subproblem. We say that a branching node is fathomed if it has been proven that the

subproblem corresponding to that branching node cannot contain solutions improving the current

best solution or if the corresponding subproblem is infeasible. The algorithm keeps a set H of active

nodes, that have not been fathomed. A specific active branching node is denoted η. Let X (η) denote

the set of feasible solutions of the subproblem corresponding to branching node η. That is, the

solutions in X satisfying all branching constraints added on the unique path from the root node to

the branching node η. Furthermore, we let X̄ (X̄ (η)) denote the set X (X (η)) with all integrality

constraints removed.

For single objective optimization problems only a single optimal solution value exists, say z∗ ∈R.

Thus, upper and lower bounds on z∗ are given by numbers u, l ∈R satisfying l≤ z∗ ≤ u. To adapt

a branch–and–cut framework to BOCO problems we need to consider bounds on the set ZN of

non–dominated solution values, hence we naturally need to extend the concept of bounds to bound

sets. We use the definition of bound sets given in Ehrgott and Gandibleux (2007), stated for the

bi–objective case below.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 7

Definition 2 (Bound sets). Lower and upper bound sets are defined as follows:

1. A lower bound set on ZN is a subset L⊆R2 such that L is an R2
=–closed and R2

=–bounded set

with L=LN such that

ZN ⊆ (L+R2
=).

Given two lower bound sets L1 and L2 we say that L1 dominates L2 if L1 +R2
= ⊆L2 +R2

=. If

furthermore L1 +R2
= 6=L2 +R2

= we say that L1 strictly dominates L2.

2. An upper bound set on ZN is a subset U ⊆R2 such that U is an R2
=–closed and R2

=–bounded

set with U =UN such that

ZN ⊆ cl
(
R2 \ (U +R2

=)
)
,

where cl(S) denotes the closure of a set S ⊆R2.

The lower bound set L is called R2
=–convex if the set (L+R2

=) is convex. In this paper we will focus

on the R2
=–convex lower bound set available from the non–dominated frontier of the LP-relaxation

of the BOCO, that is

(CX̄)N = {z ∈R2 : z =Cx, Ax5 b, x∈ [0,1]n}N .

From Definition 2 it is also readily seen that any set of feasible solutions filtered by dominance gives

rise to an upper bound set. A R2
=–convex lower bound set and an upper bound set are illustrated in

Figure 1(a).

For single objective optimization problems an active node in the branching tree can be fathomed

if the subproblem corresponding to the branching node is infeasible or if the lower bound of

the subproblem is greater than or equal to the global upper bound. To extend this result to a

multi–objective branch–and–cut algorithm, we need the following definition.

Definition 3 (Local nadir point). Let U = {z1, . . . , z|U |} ⊆ Z be an upper bound set of

feasible points ordered such that zu1 < z
u+1
1 , for all zu, zu+1 ∈U . Then the set of local nadir points is

given by

N (U) =

|U |−1⋃
u=1

{(zu+1
1 , zu2)}.

In a multi–objective branch–and–cut algorithm an active node η in the branching tree, can be

fathomed if the subproblem corresponding to the branching node is infeasible or if every solution in

the subproblem corresponding to η is dominated by at least one solution in the upper bound set U .

That is, the search area between the lower and upper bound sets must be empty.

The search area may be defined in different ways. As noted by Przybylski et al. (2010), given a

branching node η, its feasible points in objective space Z(η) :=CX (η), a lower bound set L(η) of

Z(η), and an upper bound set U we have

(Z(η)∩ZN)⊆
(
L(η) +R2

=

)
\
(
U +R2

>

)
=: S1. (2)

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

8 Article submitted to INFORMS Journal on Computing

c2x

c1x

L

L+R2
=

(a) Upper and lower bound sets. The hatched area is

L+R2
=.

c2x

c1xc1x

L

S1

(b) Search area S1 defined in (2) (hatched area).

c2x

c1x

zul

zlr

(c) Search area S2 defined in (3) (hatched and cross-

hatched area). Note that if the lexicographic minima are

not part of the upper bound set, then the cross-hatched

areas are missing.

c2x

c1x

zul

zlr

L(η2) L(η1)

(d) The node η1 can be fathomed, since no local nadir

point is positioned “above” the lower bound set. The

node η2 can not be fathomed.

Figure 1 Illustrations of the search area. Lower bound sets are illustrated with solid black lines, upper bound

sets with circles, and local nadir points with squares.

That is, the search area is defined as S1 (see Figure 1(b) for an illustration). This representation is,

however, not that useful in an algorithmic sense. By assuming that the lexicographic minima are

part of the upper bound set U , we get the inclusion

(Z(η)∩ZN)⊆
(
L(η) +R2

=

)
∩
(
N (U)−R2

=

)
=: S2. (3)

The search area S2 is illustrated in Figure 1(c) (hatched and cross-hatched area). Note that if the

lexicographic minima are not part of the upper bound set, then (3) does not hold (the cross-hatched

areas are missing). Given an upper bound set U including the lexicographic minima and a lower

bound set L(η) on Z(η), the search for non–dominated points can be restricted to the search area

S2 and a sufficient condition for fathoming a branching node η is(
L(η) +R2

=

)
∩
(
N (U)−R2

=

)
= ∅ (4)

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 9

Step 0 Initialize the upper bound set U and set H equal to the root node.
Step 1 If H = ∅, then return U =ZN and stop; otherwise select an active branching node η ∈H.
Step 2 Add cutting planes.
Step 3 Obtain a lower bound set L(η) of node η.
Step 4 Update the upper bound set U .
Step 5 If the node η can be fathomed, go to Step 1.
Step 6 Perform branching on η. Go to Step 1.

Algorithm 1: Generic multi–objective branch–and–cut algorithm based on bound sets.

Moreover, the result can be strengthened further.

Proposition 1. Given an active branching node η, a lower bound set L(η), and an upper bound

set U including the lexicographic minima, the branching node η can be fathomed if

(
L(η) +R2

=

)
∩N (U) = ∅. (5)

Proof: We show that (5) implies (4). Assume that (5) holds true and that z̄ ∈
(
L(η) +R2

=

)
∩(

N (U)−R2
=

)
6= ∅. Then z̄ ∈ (N (U) − R2

=) \ N (U) implying there exists a z̃ ∈ N (U) such that

z̃ ∈ {z̄}+R2
=. Since z̄ ∈L(η) +R2

= then so is z̃. This contradicts the starting assumption. �

An illustration of Proposition 1 is given in Figure 1(d). Here the branching node η1 can be fathomed

whereas node η2 cannot.

Based on the above results a general bi–objective branch–and–cut framework can now be described

as given in Algorithm 1. The algorithm is initialized by setting the upper bound set equal to the

lexicographic minima of both orders of objectives in Step 0 and an active node is chosen in Step 1.

At each node, cuts can be added (Step 2) in order to strengthen the lower bound set obtained in

Step 3. If a feasible solution can be obtained from the node it might be a non–dominated solution,

and the upper bound set is therefore updated in Step 4. After obtaining a lower bound set and

updating the upper bound set, Step 5 is used to test whether the branching node can be fathomed. If

not, the branching node is split into several new disjoint child nodes (Step 6). Note that Algorithm 1

implicitly enumerates all solutions to the BOCO problem 1 implying that when H = ∅, the set of

non–dominated outcomes has been found. Furthermore, as the number of solutions to the BOCO

problem is finite, Algorithm 1 terminates in finite time if the individual steps can be performed in

finite time. In the following subsections we elaborate on Steps 2 through 6.

3.1. Step 2 - Adding cutting planes

A major challenge when designing algorithms for BOCO problems is to find a way to efficiently

utilize the numerous methods and strategies available for the single objective versions of the BOCO

problems. In this section, we propose a way to utilize cutting planes to reduce the “gap” between

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

10 Article submitted to INFORMS Journal on Computing

Step 2.0 Choose weight λ∈ (0,1).
Step 2.1 Solve the weighted sum scalarization of the BOCO problem

min{(λc1 + (1−λ)c2)x : x∈ X̄},

and let x∗ be an optimal solution.
Step 2.2 If possible, separate x∗ using cutting planes and append the cutting planes to the

description of X̄ .
Step 2.3 If we should add further cuts (e.g. if new cuts were added in Step 2.2), go to Step 2.1.
Step 2.4 If we should apply a new search direction λ, go to Step 2.0; otherwise stop.

Algorithm 2: Step 2 of Algorithm 1.

the lower bound set provided by the bi–objective LP–relaxation and the set of non–dominated

outcomes to the BOCO problem (1).

In a single objective branch–and–cut algorithm, cutting planes can be identified before a branch–

and–bound algorithm is started, as a way to improve the lower bound. Or seen from another

perspective cuts are added to generate a tighter representation of the convex hull of integer solutions

in the direction of the objective function. In case of a BOCO problem there is not a single direction

of the objective function, and it is not obvious in which part of the polyhedron corresponding to

the LP-relaxation, cutting planes would be most beneficial.

Therefore, we solve the LP–relaxation of a weighted sum scalarization of the BOCO problem and

add cutting planes (in decision space) for different weights. The goal is to generate a relaxation of

the BOCO problem which provides a lower bound set as close to conv(ZN)N as possible. Note, that

the strongest R2
=–convex lower bound set is

conv(ZN)N = {z ∈R2 : z =Cx, x∈ conv(X)}N ,

as no convex lower bound set can strictly dominate it. From this description, we see that by

approximating conv(X) using cutting planes, we also approximate the strongest possible R2
=–convex

lower bound set without having to solve a series of integer programming problems. In contrast

to single objective optimization, it is important to note that an explicit description of conv(X)

does not reduce the problem to a bi–objective LP problem, as not all nondominated points lie on

conv(ZN)N ; notably all non–supported non–dominated points are in the interior of this set.

An overview of the cutting plane algorithm is given in Algorithm 2. The algorithm starts by

choosing a search direction (or weight) in Step 2.0. When the weight has been chosen, an ordinary

cutting plane algorithm is used to separate cutting planes in the part of the decision space identified

by the search direction λ (Step 2.1 and Step 2.2). In Step 2.3 a stopping criterion for the cutting

plane algorithm is checked, allowing for multiple rounds of cuts. Finally, in Step 2.4, we check if a

new search direction should be chosen or not. The algorithm described in Algorithm 2 distinguishes

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 11

itself from a single objective cutting plane algorithm only by the outer loop where different search

directions are used. This means that problem specific cutting planes can be used in Step 2.2, if

effective separation algorithms are known.

The algorithmic framework in Algorithm 2 leaves two obvious ways of choosing the search

direction in Step 2.0: An a priori and a dynamic approach. An example of an a priori approach

would be to pick the values for λ in the set { 1
k
, 2
k
, . . . , k−1

k
}, for some number k > 0, whereas a

dynamic strategy would be to chose λ based on the previous iteration of the algorithm. In this

paper we have implemented a dynamic updating scheme based on a modification of the so–called

Non–Inferior Set Estimation framework proposed by Cohon (1978), Aneja and Nair (1979), and

Dial (1979).

3.2. Step 3 - Obtaining a lower bound set

In this section, we describe how we derive lower bound sets of the current branching node η in Step

3 of Algorithm 1. Consider an active branching node η and let

LC(η) = (CX̄ (η))N

denote the lower bound set equal to the set of non–dominated outcome vectors of the bi–objective

LP–relaxation of the current node. One approach to obtaining lower bound sets would then be to

solve the bi–objective LP–relaxation in each branching node and use Proposition 1 to test if the

node can be fathomed. However, it may be computationally expensive to solve a bi–objective LP

and to check condition (5) in Proposition 1 at every branching node. Therefore, we only want to

solve the bi–objective LP at branching nodes where there is a possibility that condition (5) holds

(the search area S2 defined in (2) is empty). Given λ∈ (0,1), let

Λλ(η) = min{(λc1 + (1−λ)c2)x : x∈ X̄ (η)} (6)

denote the optimal solution value of the λ–scalarized LP–relaxation of the node η and

xλ(η)∈ arg min{(λc1 + (1−λ)c2)x : x∈ X̄ (η)},

an optimal solution to (6). The following proposition gives sufficient conditions to ensure that S2 is

non-empty.

Proposition 2. Consider upper bound set U and lower bound set L(η) = LC(η) and assume

that the solution xλ(η) satisfies

Cxλ(η)≤ zn

for some zn ∈N (U). Then (
L(η) +R2

=

)
∩N (U) 6= ∅.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

12 Article submitted to INFORMS Journal on Computing

Proof: Suppose there exists a local nadir point zn ∈N (U) such that Cxλ(η)≤ zn. Since Cxλ(η)∈

L(η), we have that zn ∈L(η) +R2
= implying

(
L(η) +R2

=

)
∩N (U) 6= ∅. �

Proposition 2 suggests to always solve a λ–scalarized LP before solving the bi–objective LP

relaxation. If Proposition 2 holds, then there is no reason to solve the bi–objective LP, since the

branching node η cannot be fathomed. Furthermore, solving the λ–scalarized LP provides us with a

lower bound set

Lλ(η) = {z ∈R2 : λz1 + (1−λ)z2 = Λλ(η)},

which may be used to find a lower bound set L(η) at branching node η as described in Proposition 3.

Proposition 3. Given an active branching node η and parent node η0 with lower bound set

L(η0), the set

L(η) =
((
L(η0) +R2

=

)
∩
(
Lλ(η) +R2

=

))
N
,

is a lower bound set of branching node η dominating both L(η0) and Lλ(η).

Proof: Obviously, Lλ(η) is a lower bound set for η, and by relaxation so is L(η0). The rest

follows from Proposition 2 in Ehrgott and Gandibleux (2007). �

Determining the set L(η) defined in Proposition 3 is straightforward. Assume that for branching

node η0 the lower bound set L(η0) is represented by an ordered list of extreme points, {z1, . . . , zL},

with zl1 < z
l+1
1 . The updating is then simply done by first finding two pairs of points (zl1 , zl1+1) and

(zl2 , zl2+1) satisfying

λzl11 + (1−λ)zl12 ≥Λλ(η)>λzl1+1 + (1−λ)zl1+1
2

and

λzl21 + (1−λ)zl22 <Λλ(η)≤ λzl2+1 + (1−λ)zl2+1
2 ,

as illustrated in Figure 2. Having determined these two pairs of points, we simply calculate the

intersection point between the straight line defined by the two points zl1 and zl1+1 (respectively zl2

and zl2+1) and the line defined by the lower bound set Lλ(η). The two intersection points, say zI1

and zI2 , are inserted in the list and we obtain the new lower bound set L(η) defined by

L(η) = conv({z1, . . . , zl1 , zI1 , zI2 , zl2+1, . . . , zL})N .

Step 3 can now be specified in Algorithm 3. We are interested in solving the bi–objective LP–

relaxation as few times as possible as long as the updated lower bound set is of sufficient quality.

We use the heuristic rule that if the branching performed at the parent node was done in objective

space (see Section 3.5), the bi–objective LP–relaxation is resolved since we want new lower bound

sets for different regions in the objective space (Step 3.0). Otherwise we solve the λ–scalarized LP

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 13

c2x

c1x

zl1

zl1+1

zl2
zl2+1

zI1

zI2

Figure 2 Updating the lower bound set using Proposition 3.

Step 3.0 If the branching at the parent node η0 has been performed in objective space, solve
the LP–relaxation and return LC(η). Otherwise go to Step 3.1.

Step 3.1 Solve the λ–scalarized LP and find L(η) defined in Proposition 3.
Step 3.2 If L(η) strictly dominates L(η0), then solve the LP–relaxation and return LC(η);

otherwise return L(η).

Algorithm 3: Step 3 of Algorithm 1.

Step 5.0 If the subproblem corresponding to node η is infeasible, fathom η and go to Step 1.
Step 5.1 If Proposition 2 holds, go to Step 6.
Step 5.2 If Proposition 1 holds, go to Step 1.

Algorithm 4: Step 5 of Algorithm 1.

(Step 3.1) and if the lower bound set of the parent node is strictly dominated by L(η) found in

Proposition 3 (all the extreme points of L(η0) lie below Lλ(η)), then we resolve the bi–objective

LP–relaxation.

3.3. Step 4 - Update the upper bound set

Throughout the branch–and–bound process an upper bound set, U , of feasible points in objective

space filtered by dominance is maintained and ordered such that zu1 < z
u+1
1 for all zu, zu+1 ∈U . In

Step 0 of Algorithm 1 U is initialized with the two lexicographic minima. Whenever a feasible

solution is found, the outcome vector of the solution is inserted into the upper bound set U and the

augmented set is filtered by dominance. In this way, the set U is constantly improving and will at

any time form an upper bound set. Note that solutions can be obtained using heuristics from all

active branching nodes even though the node is not a leaf node.

3.4. Step 5 - Bound fathoming

Algorithm 4 checks if an active node η in the branching tree, can be fathomed. If the subproblem

corresponding to the branching node is infeasible, we fathom η and pick a new active node (Step

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

14 Article submitted to INFORMS Journal on Computing

5.0); otherwise Proposition 2 is used as a preliminary check for not fathoming the node (Step 5.1).

Finally, Proposition 1 is checked in Step 5.2. Proposition 1 can be checked using both an explicit

and an implicitly given lower bound set L(η). Below we describe three ways of testing Proposition 1.

3.4.1. Bound fathoming using an explicit lower bound set and LP Assume that a

lower bound set L(η) is stored as an explicit set using the extreme points {z1, . . . , zL} of L(η). Note

that when L(η) is R2
=–convex, the set L(η) +R2

= forms an unbounded convex polygonal domain in

R2, and the verification of the condition in Proposition 1 amounts to verifying if any of the points

in N (U) lie in this convex polyhedron. A simple, and straightforward way of performing this bound

fathoming check is to solve the linear program

Z(zn) = min s1 + s2

s.t.:
L∑
l=1

zl1µl− s1 ≤ zn1

L∑
l=1

zl2µl− s2 ≤ zn2

L∑
l=1

µl = 1

µl, s1, s2 ≥ 0, ∀l= 1, . . . ,L

(7)

for all zn ∈N (U). If Z(zn)> 0 for all zn ∈N (U), the node η can be fathomed based on bounding.

Note that the linear programs (7) only have three constraints, leading to linear programs which

can be solved very quickly. Furthermore, for two different local nadir points zn and zn
′
, the linear

programs (7) differ in the right hand sides only. This means that very few dual simplex iterations

are usually needed in order to resolve these linear programs.

3.4.2. Bound fathoming using an explicit lower bound set and a point–in–polygon

algorithm Let {
¯
z1, . . . ,

¯
zL} denote the extreme points of L(η) and note that

ZN ⊆
(
{(zlr1 , zul2)}−R2

=

)
,

where zul = lexmin{(c1x, c2x) : x ∈ X} and zlr = lexmin{(c2x, c1x) : x ∈ X} are the two lexico-

graphic minima. Hence Proposition 1 does not hold if a local nadir point is in the polygon given

by

conv({(
¯
z1

1 , z
ul
2),

¯
z1, . . . ,

¯
zL, (zlr1 ,¯

zL2), (zlr1 , z
ul
2)}). (8)

This means that the condition in Proposition 1 can be tested by calling, for each local nadir point,

a point–in–polytope algorithm which tests for inclusion in the polygon (8). As soon as the algorithm

declares that a local nadir point is within the polygon, we know the branching node cannot be

fathomed. Fortunately, much research has gone into point–in–polytope (PIP) algorithms and we

refer the interested reader to the computational study by Schirra (2008) of the reliability and speed

of a number of different algorithmic approaches for the PIP problem.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 15

3.4.3. Bound fathoming using an implicit lower bound set and LP The bound fath-

oming can also be done without explicitly maintaining a lower bound set. Note that the condition

in Proposition 1 asks if any point on the lower bound set dominates a local nadir point and that

the lower bound set of the branching node η we are using is (CX (η))N . Deciding if there exists

a point
¯
z ∈ (CX̄ (η))N which (strictly) dominates a local Nadir point zn ∈N (U) is equivalent to

having Z̃(zn) = 0 where
Z̃(zn) = min s1 + s2

s.t.: c1x− s1 ≤ zn1

c2x− s2 ≤ zn2

x∈ X̄ (η)

s1, s2 ≥ 0.

(9)

Note that an optimal solution (x∗, s∗) to the linear program (9) either has Z̃(zn) = 0 implying

Cx∗ ≤ zn (that is, there is a solution to the LP-relaxation which dominates zn) or we have

Z̃(zn) = s∗1 + s∗2 > 0. This leads to Proposition 4.

Proposition 4. The branching node η can be fathomed if the optimal solution value Z̃(zn) of

the program (9) is strictly positive for all zn ∈N (U).

This implicit approach eliminates the need for generating the entire efficient frontier of the

LP-relaxation and only one linear program needs to be solved for each local nadir point. The

approach might then have its merits for problems with few non–dominated outcomes compared

to the number of extreme points of [(CX̄ (η))N +R2
=], but this is not a trivial matter to decide a

priori. A possible drawback compared to generating the complete set (CX̄ (η))N is that the updating

scheme described in Proposition 3 no longer applies, implying that additional linear programming

problems need to be solved at each branching node. Furthermore, the program (9) might be large

and solving it may consequently be rather time consuming. As the program (9) must potentially be

solved for several local nadir points, this might lead to prohibitive computation times.

3.5. Step 6 - Performing branching

As the set of feasible solutions does not differ compared to a single objective combinatorial

optimization problem, the branching rules devised for these problems can be applied. However, much

information can be gained by utilizing the definition of an efficient solution and its non–dominated

outcome vector. As mentioned in Section 3.2, the bi–objective LP–relaxation is not solved at each

branching node. However, the weighted sum scalarization

min{(λc1 + (1−λ)c2)x : x∈ X̄ (η)} (10)

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

16 Article submitted to INFORMS Journal on Computing

is solved. Let
¯
x(η) be an optimal solution to problem (10), and let

¯
z(η) =C

¯
x(η) be the corresponding

outcome vector. First, we outline the very effective branching strategy proposed in Stidsen et al.

(2014) called Pareto branching (PB). PB is based on the observation that if z 5
¯
z(η) for all z in the

ordered sublist {z̄u1 , . . . , z̄uK} ⊆U of the current upper bound set, then the branching node η can

be split by the disjunction

c1x≤ z̄u11 − 1 ∨ c2x≤ zuK2 − 1.

We note, that in our implementation we update the upper bound set U before branching. This

means, that if a node results in an integer feasible solution, the outcome vector of this solution is

part of the upper bound set when branching is performed. Therefore, if a branching node results in

an integer feasible solution, Pareto branching can always be performed and there is no need to add

the weaker so–called no–good inequalities∑
i:

¯
x(η)i=0

xi +
∑

i:
¯
x(η)i=1

(1−xi)≥ 1,

used in ranking based two–phase methods.

The idea of PB can be expanded to extended Pareto branching (EPB). From the definition of the

search area S2, given in (3), it is evident that non–dominated outcomes can only exist in the set⋃
zn∈(L(η)+R2)∩N (U)

(
zn−R2

=

)
.

Before making a branching decision, we already check whether local nadir points exist in the set(
L(η) +R2

=

)
(see Proposition 1 and Proposition 4),and therefore we can simply create a child node

for each local nadir point found. Note that this split of the branching node η might not separate

the current LP–solution as we may have that

Cx(η)∈
⋃

z∈(L(η)+R2)∩N (U)

(
z−R2

=

)
.

Therefore, we only perform extended Pareto branching when in fact there exists a z̄ ∈U such that

z̄ ≤
¯
z(η). This guarantees separation of the branching node.

Note that the EPB requires that all local nadir points are checked. If the EPB rule is not applied,

finding a single local nadir point dominated by the lower bound set leads to the conclusion that

branching node η cannot be fathomed. This implies a tradeoff between stronger branching rules

and faster treatment of branching nodes that cannot be fathomed.

If we cannot perform either extended Pareto branching or Pareto branching (note that this

means, that x(η) 6∈ {0,1}n), the branching node is simply separated by a variable dichotomy. The

branching variable is chosen based on pseudo–cost information provided by the solver (see for

example Achterberg et al. (2005) for a discussion of variable selection strategies in single objective

combinatorial optimization).

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 17

Table 2 Different implementations of the bi–objective branch–and–cut algorithm.

Abbreviation1 E-PB-PIP E-PB-LP E-EPB-PIP I-PB-LP I-EPB-LP

Node selection Best first Best first Best first Best first Best first

Cuts At root node At root node At root node At root note At root node

Lower bound set Explicit Explicit Explicit Implicit Implicit

Fathoming nodes PIP LP PIP LP LP

Pareto Branching Yes Yes Yes Yes Yes

Extended PB No No Yes No Yes

1: A–B–C. A: Lower bound set (E: explicit, I: implicit). B: Branching strategy (PB: Pareto branching, EPB: extended Preto
branching). C: Method for testing the condition in Proposition 1 (LP: linear programming, PIP: point–in–polytope).

4. Computational results

In this section we report on the computational experiments conducted with the bi–objective

branch–and–cut algorithms. We have chosen to test the algorithms on the bi–objective single–source

capacitated facilitity problem (BO–SSCFLP) as this problem exhibits many of the substructures

and features that arise in general combinatorial optimization problems; it has equality constraints

defining SOS1 structures, knapsack substructures, indicator constraints and fixed costs (see the

online supplement). The purpose of the computational study is to answer the following questions

(i) Which implementations based on explicit or implicit lower bound sets perform the best?

(ii) Given an explicit lower bound set, does node fathoming based on linear programming or

point–in–polytope algorithms perform the best?

(iii) Is it worth performing extended Pareto branching?

(iv) Is adding cutting planes effective in improving the running time?

(v) Does the lower bound updating scheme given in Proposition 3 improve the performance?

(vi) Is the bound set based branch–and–cut algorithm competitive with state–of–the art algorithms?

To answer the first three questions above, we have implemented different versions of Algorithm 1.

An overview is given in Table 2. The algorithms prefixed with an E are all based on explicitly

generated lower bound sets while algorithms prefixed with an I rely on implicit lower bound

sets (see Section 3.4). The branching strategy is indicated using the abbreviations PB for Pareto

branching and EPB for extended Pareto branching (see Section 3.5). For the explicit lower bounds,

we proposed two ways of fathoming nodes; one based on linear programming (LP) (see Section 3.4.1)

and one based on the point–in–polytope (PIP) algorithm (see Section 3.4.2). For the algorithms

with implicitly given lower bound sets, nodes can only be fathomed using linear programming (see

Section 3.4.3). Note that all implementations use a best first search, where the node having the

smallest value of Λλ(η) is chosen as the next node to be processed. Since computational experience

for single objective optimization problems shows that cutting planes have a larger effect at the

root note compared to nodes deeper in the tree, we call Algorithm 2 only at the root node. We

use general lifted cover inequalities and Fenchel inequalities as cutting planes for the knapsack

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

18 Article submitted to INFORMS Journal on Computing

structures arising from the capacity constraints of the BO–SSCFLP as they have been shown to

be effective for the SSCFLP (see e.g. Gadegaard et al. (2017)). Furthermore, Stidsen et al. (2014)

established that Pareto branching in bi–objective branch–and–bound gives a significant speed up

compared to only branching on variables. We therefore include Pareto branching in all algorithms.

After testing the five implementations specified in Table 2, we address the remaining three

questions as follows:

• We answer Question (iv) by comparing the best explicit and implicit implementations with

and without cutting planes added.

• We answer Question (v) by comparing the explicit lower bound set based algorithm with and

without the updating strategy.

• We finally answer Question (vi) by comparing the overall best implementation of Algorithm 1

with two different implementations of the two–phase method.

4.1. Implementation details and test instances

All implementations have been coded in C and C++ and compiled using gcc and g++ with

optimization option O3 and C++11 features enabled. They are all publicly available (see Gadegaard

et al. (2016a)). All implementations use CPLEX 12.6 with callbacks as solver. The ParallelMode

switch is set to deterministic such that different runs can be compared, the Reduce switch is set such

that neither primal nor dual reduction is performed, and all internal cuts of CPLEX are turned off.

For all instances a fixed time limit of 3600 CPU seconds (one hour of computation time) is set after

which the search is aborted. As CPLEX 12.6 with callbacks is limited to creating at most two child

nodes when branching, we only perform extended Pareto branching when there are one or two local

nadir points in the set (L(η) +R2
=). If there are more local nadir points in (L(η) +R2

=), we resort to

Pareto branching as explained above. For E-PB-PIP and E-EPB-PIP the point–in–polytope problem

is solved using the PNPOLY algorithm developed by Franklin (2006) while all implementations using

linear programming for node fathoming are solved by CPLEX using its dual simplex algorithm.

Since CPLEX does not allow for changes in the objective function in the callbacks, we use a fixed

value of λ= 0.5 during the branch–and–cut process.

For the computational study we have generated a number of instances of the BO-SSCFLP. These

instances were generated in the same way as was done by Stidsen et al. (2014) for the uncapacitated

version of the BO–SSCFLP. The demands were generated from the set {5, . . . ,10} and the capacities

from the set {10, . . . ,20}, both according to a uniform distribution. The ratio between the total

capacity and total demand is then scaled to equal r ∈R, where r is uniformly generated from the

interval [1.5,4]. For each instance size, defined by |I|× |J |, we have generated 10 instances. The

instance generator as well as the instances are all publicly available (see Gadegaard et al. (2016c)).

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 19

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

E-PB-PIP

E-PB-LP

E-EPB-PIP

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000
0

20

40

60

80

100

Number of binary variables

S
u

cc
es

s
ra

ti
o

E-PB-PIP

E-PB-LP

E-EPB-PIP

(b) Instances solved within the time limit (one hour).

Figure 3 Performance of implementations based on explicit lower bound sets.

The number of facilities is |I| ∈ {5,10,15, . . . ,60} and the number of customers is set to |J |= 2|I|.

This leads to 120 instances of the SSCFLP ranging in sizes from 5× 10 to 60× 120, implying the

number of binary variables ranges from 55 to 7,260.

4.2. Questions (i)-(iii) - Comparison of implementations

Figure 3 shows a comparison of the implementations based on explicitly given lower bound sets.

From Figure 3(a) we see that all implementations based on explicit lower bounds perform equally

well. The time in CPU seconds is an average over all instances which could be solved within an

hour. All algorithms are able to solve most of the instances with up to 6,000 variables within an

hour. However, when the instances grow beyond this size, the success ratio begins to decrease, but

as shown in Figure 3(b), 50% of the instances having more than 7,000 variables were still solvable

within an hour. Note that E-PB-PIP and E-PB-LP both fail to solve a single instance having 1,275

variables and E-PB-LP also fails to solve one instance having 1,830 binary variables. The algorithm

E-EPB-PIP does, however, solve all these instances within an hour.

Considering the results obtained for implementations using explicitly given bound sets there is no

clear winner, but as E-EPB-PIP solves slightly more instances within an hour compared to E-PB-PIP

and E-PB-LP, it therefore seems to be more robust.

Now consider the two implementations based on implicit lower bounds. As is shown in Figure 4(a)

the two implementations are comparable for relatively small problem instances, but as the number of

binary variables increases, I-EPB-LP becomes more time consuming than I-PB-LP. From Figure 4(b)

we see that I-EPB-LP was able to solve instances of up to 1,830 binary variables only, while I–PB–LP

performed better by solving instances of up to 5,000 binary variables. The reason is that I-EPB-LP

has to solve one LP for each local nadir point whereas I-PB-LP only has to find one local nadir

point for which the linear program (9) has a strictly positive solution value.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

20 Article submitted to INFORMS Journal on Computing

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

I-PB-LP

I-EBP-LP

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000

0

20

40

60

80

100

Number of binary variables

S
u

cc
es

s
ra

ti
o

I-PB-LP

I-EBP-LP

(b) Instances solved within the time limit (one hour).

Figure 4 Performance of implementations based on implicit lower bound sets.

When we compare the results against the implementations based on explicit lower bound sets,

we see that only significantly smaller instances could be solved using implicit lower bound sets. The

computational study of the E–implementations showed that in approximately half of the branching

nodes the lower bound set is updated using Proposition 3 (see Section 4.4 for a computational

study of the effect of Proposition 3), whereas the I–implementations need to solve the rather large

LPs in (9) several times for each branching node. Especially the I-EPB-LP suffers from this problem

as more LPs need to be solved in order to perform the extended Pareto branching.

The above tests clearly show, that the best explicit and implicit implementations are E-EPB-PIP

and I-PB-LP.

The overall best implementation seems to be E-EPB-PIP which is based on explicit lower bound

sets, extended Pareto branching, and a PIP algorithm to solve the fathoming test. It outperforms

the best implementation using implicit lower bound sets, the I-PB-LP. The use of extended Pareto

branching seems to make the algorithm more robust compared to the other implementations with

explicit lower bound sets. Hence in the following, we will only perform further tests with the best

implementations under explicit and implicit lower bound sets (E-EPB-PIP and I-PB-LP). In the

remainder of the paper we denote these two implementations E* and I*, respectively.

4.3. Question (iv) - Is adding cuts worth the effort?

To test whether adding cuts at the root node as explained in Section 3.1 contributes positively

to the solution time, we compare the performance of E* and I* with implementations where the

cutting plane algorithm is turned off. We denote these two new variants E*-NC and I*-NC, where NC

is an abbreviation for “No Cuts”. Instead we let CPLEX generate cutting planes at the root node.

Figure 5 clearly shows that we get a positive effect by adding cuts to the bi-objective LP. The

addition of cuts at the root node has a high positive impact on the solution time and solvability of

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 21

0 2,000 4,000 6,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

E*

E*-NC

I*

I*-NC

(a) Average CPU time in seconds.

0 2,000 4,000 6,000

0

20

40

60

80

100

Number of binary variables

S
u
cc

es
ra

ti
o

E*

E*-NC

I*

I*-NC

(b) Instances solved within the time

limit (one hour).

0 200 400 600 800

0

1

2

·105

Number of binary variables

N
u

m
b

er
of

n
o
d
es

en
u
m

er
at

ed E*

E*-NC

I*

I*-NC

(c) Number of nodes enumerated.

Figure 5 The effect of cutting planes.

the instances within the one hour limit. It seems that that strong cutting planes are necessary in

order to use the bound set branch–and–cut algorithm.

In Figure 5(c) we see that the versions without the initial cutting plane algorithm experience

a substantially faster growth in the number of nodes that the algorithms need to enumerate. A

peculiar phenomenon is that I*-NC enumerates more branching nodes than E*-NC, even though E*-NC

updates the lower bound set. This basically means that the lower bound sets used in E*-NC are

not as strong as those used in I*-NC. The explanation seems to be that the solver chooses different

search paths for the two algorithms and that the search paths used for E*-NC lead to better feasible

solutions faster, increasing the fathoming potential. Overall, however, the addition of cuts at the

root node has a high impact on the solution times and the instance sizes solvable, and we dare

conclude, that cutting planes are necessary in order to solve these instances.

4.4. Question (v) - Effect of using Proposition 3

To check if the lower bound updating strategy of Proposition 3 contributes positively to the running

times, we modified E* such that the bi–objective LP–relaxation is solved in all branching nodes.

That is, we obtain the R2
=–convex lower bound set available form the bi–objective LP–relaxation

and may fathom nodes faster. This may, however, come at the expense of a higher CPU time needed

to solve the bi-objective LP. We name this implementation E*-NU where NU is an abbreviation for

“No Updating”.

In Figure 6(c) it is seen that the E* algorithm produces an order of magnitude more branching

nodes compared to E*-NU. This was expected as the lower bound sets generated by the updating

strategy are weaker than those produced by LC(η). Figure 6(a) shows that the updating strategy

has a positive effect as the instances grow in size. Furthermore, using the updating strategy makes

the procedure more robust as can be seen in Figure 6(b). When we solve a bi–objective LP at each

node, some instances become very time consuming, even for smaller sizes. The reason is that solving

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

22 Article submitted to INFORMS Journal on Computing

0 2,000 4,000 6,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

E*

E*-NU

(a) Average CPU time in seconds.

0 2,000 4,000 6,000

0

20

40

60

80

100

Number of binary variables

S
u
cc

es
ra

ti
o

E*

E*-NU

(b) Instances solved within the time

limit (one hour).

0 2,000 4,000 6,000

0

0.2

0.4

0.6

0.8

1

·105

Number of binary variables

N
u
m

b
er

o
f

b
ra

n
ch

in
g

n
o
d

es

E*

E*-NU

(c) Number of nodes enumerated.

Figure 6 Effect of Proposition 3.

0 2,000 4,000 6,000 8,000

0

1,000

2,000

3,000

Number of binary variables

T
im

e
in

se
co

n
d

s

E*

TwoP-R

TwoP-PSM

(a) Average CPU time in seconds.

0 2,000 4,000 6,000 8,000

0

20

40

60

80

100

Number of binary variables

S
u

cc
es

s
ra

ti
o

E*

TwoP-R

TwoP-PSM

(b) Instances solved within the time

limit (one hour).

100 200 300 400 500

0

0.5

1

·104

Number of binary variables

N
o
d
es

en
u
m

er
a
te

d

E*

TwoP-R

TwoP-PSM

(c) Number of nodes enumerated by

the algorithms (only instances solved

by two–phase method).

Figure 7 Comparison with the two–phase method.

a degenerate bi–objective LP requires the solution of several degenerate single objective LPs. The

updating strategy circumvents this issue by updating the lower bound set via the solution of a

single objective degenerate LP.

In summary, the updating scheme significantly improves the running time and robustness of

the E* algorithm, and we conclude that the updating scheme is necessary for the branch–and–cut

algorithm when solving larger instances.

4.5. Question (vi) - Comparing against the two–phase method

To test the effectiveness of the overall best branch–and–cut approach, we compare E* with two

implementations of the two–phase method. Both implementations are publicly available (see

Gadegaard et al. (2016b)).

The first two–phase method is implemented as indicated in Stidsen et al. (2014), namely with a

second phase based on ranking. We use the abbreviation TwoP-R to denote this two-phase ranking

method. The results obtained with the two–phase algorithm seem to be consistent with the

results obtained in Stidsen et al. (2014) where facility location problems having up to 20 binary

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 23

variables could be solved within 300 CPU seconds. Here, we can solve instances of up to 500 binary

variables within ten times the computation time. To meet the potential critique that TwoP-R is badly

implemented, we here mention that between 99.3% and 100.0% of the running time was spent by

CPLEX solving the subproblems. Furthermore, we have implemented TwoP-R such that CPLEX

reoptimizes the MIPs arising in the subproblems after adding branching constraints. This gives a

significant speedup compared to solving each MIP from scratch.

Figure 7 shows the performance of TwoP-R (dashed line) compared to that of E* (solid line). It is

clear from Figure 7(a) and Figure 7(b) that the ranking based two–phase method is very inferior to

the branch–and–bound algorithm E*. Figure 7(c) gives an explanation of why TwoP-R performs badly

compared to E*; When we look at the instances actually solved by TwoP-R, we see a much faster

increase in the number of branching nodes to be enumerated in order for the algorithm to solve the

instances compared to E*. As TwoP-R ranks the solutions between the supported non–dominated

solutions found in the first phase, it generates many equivalent solutions leading to a large number

of MIPs solved redundantly. Furthermore, even though TwoP-R is implemented such that the MIPs

are reoptimized after adding no–good constraints, a new root node has to be solved in each MIP

leading to excessive computation times. We do expect that if an efficient ranking algorithm is known

for the problem at hand, a customized two–phase method could outperform the branch–and–cut

algorithms developed here. However, the scope of this study is to develop a generic framework and

therefore we have not tested such customized algorithms.

As the results obtained with this standard ranking based two–phase method were rather disap-

pointing in terms of computation times, we also implemented a two–phase method where the second

phase is based on the perpendicular search method (PSM) proposed by Chalmet et al. (1986). We

denote the two–phase method based on PSM, TwoP-PSM. The PSM is basically a branch–and–bound

algorithm where a MIP is solved in each node, and where all branching is performed in objective

space. The branching strategy in PSM is equivalent to single solution Pareto branching. This

implies, that no equivalent solutions are generated, and we thereby circumvent this obvious issue

with TwoP-R.

Figure 7(a) shows that TwoP-PSM (dotted line) performs much better than TwoP-R and that it

even outperforms E* for smaller instances. Although TwoP-PSM is faster for the smaller instances,

it becomes unstable in the sense that some instances become unsolvable within an hour whereas

others can be solved within a few minutes. This can be seen in Figure 7(b) where the success ratio

for the TwoP-PSM drops much earlier than for the E* algorithm. One of the main reasons why the

TwoP-PSM is faster for small instances is that the preprocessing done by CPLEX reduces the instances

considerably. Also, CPLEX finds strong upper bounds very quickly which means that the probing

techniques implemented in the solver is able to fix many variables at an early stage of the search.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

24 Article submitted to INFORMS Journal on Computing

But as the instances grow larger, the preprocessing and the internal heuristics seem to perform

worse and more branching nodes need to be enumerated. Both two-phase methods are also slowed

down by the scaling of the objective functions performed when searching the triangles created by the

first phase; even though the weights used are integers, the difference in the coefficients becomes very

large and the instances suffer from bad scaling which increases the computation times considerably.

In sum, both two-phase methods in our implementation are outperformed by E* on large instances.

In particular, the ranking based TwoP-R performs very poorly on all instances, whereas the TwoP-PSM

algorithm has its merits in case of smaller instances.

5. Conclusions

In this paper we have developed a novel bound set based branch–and–cut algorithm for solving

general bi–objective combinatorial optimization problems. The algorithm was tested using both an

explicit and implicit representation of lower bound sets, and we have shown that the best algorithm

based on explicit lower bound sets outperforms the best algorithm based on implicit lower bound

sets. We proposed an updating scheme that prevented the algorithm from solving a bi–objective LP

at each node. Computational results have shown that the cost of weaker lower bound sets was by

far outweighed by the improvement in speed when a branching node is processed. The paper also

suggests a simple bi–objective cutting plane algorithm that significantly improves the performance

of both the explicit and the implicit lower bound based algorithms. Furthermore, we proposed an

extension of the Pareto branching strategy suggested in the literature and showed that it makes

the explicit lower bound set based algorithm more stable. Finally, we proved the effectiveness of

the branch–and–cut algorithm by comparing it to two different implementations of the two–phase

method. Especially for larger instances, did the new branch–and–cut algorithm outperform the

two–phase methods. An interesting area for future research would be to investigate extensions of

the algorithms to multi–objective problems with more than two objectives. Using a generalization

of the local nadir points to higher dimensions and the LP based fathoming approaches, both the

explicit and implicit lower bound based algorithms could be extended to three or more criteria.

Another fruitful area could be to extend the reduction and preprocessing techniques developed for

single objective combinatorial optimization to the multi-objective case. Last, a computational study

with problems having a totally unimodular constraint matrix is interesting as feasible solutions can

be “harvested” when solving the bi–objective LPs arising in the branching nodes.

Acknowledgments

The authors would like to thank Professor Kim Allan Andersen for insightful comments and literature

suggestions. This work was partially supported by a grant from Købmand Ferdinand Sallings Mindefond.

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 25

References
Achterberg T, Koch T, Martin A (2005) Branching rules revisited. Operations Research Letters 33(1):42 – 54, URL

http://dx.doi.org/10.1016/j.orl.2004.04.002.

Aneja YP, Nair KPK (1979) Bicriteria transportation problem. Management Science 25(1):73–78, URL http:

//dx.doi.org/10.1287/mnsc.25.1.73.

Bérubé JF, Gendreau M, Potvin JY (2009) An exact ε-constraint method for bi-objective combinatorial optimization

problems: Application to the traveling salesman problem with profits. European Journal of Operational Research

194(1):39–50, URL http://dx.doi.org/10.1016/j.ejor.2007.12.014.

Chalmet LG, Lemonidis L, Elzinga DJ (1986) An algorithm for the bi-criterion integer programming problem. European

Journal of Operational Research 25(2):292 – 300, URL http://dx.doi.org/10.1016/0377-2217(86)90093-7.

Cohon JL (1978) Multiobjective Programming and Planning (Academic Presse, London).

Dial RB (1979) A model and algorithm for multicriteria route-mode choice. Transportation Research Part B: Method-

ological 13(4):311–316, URL http://dx.doi.org/10.1016/0191-2615(79)90024-9.

Ehrgott M (2005) Multicriteria Optimization (Springer Berlin, Heidelberg), 2nd edition.

Ehrgott M, Gandibleux X (2007) Bound sets for biobjective combinatorial optimization problems. Computers &

Operations Research 34(9):2674–2694, URL http://dx.doi.org/10.1016/j.cor.2005.10.003.

Fernandez E, Puerto J (2003) Multiobjective solution of the uncapacitated plant location problem. European Journal

of Operational Research 145(3):509–529, URL http://dx.doi.org/10.1016/S0377-2217(02)00223-0.

Florios K, Mavrotas G, Diakoulaki D (2010) Solving multiobjective, multiconstraint knapsack problems using

mathematical programming and evolutionary algorithms. European Journal of Operational Research 203(1):14 –

21, URL http://dx.doi.org/https://doi.org/.

Franklin WR (2006) PNPOLY - point inclusion in polygon test. Webpage, URL http://www.ecse.rpi.edu/~wrf/

Research/Short_Notes/pnpoly.html, source code.

Gadegaard SL, Klose A, Nielsen LR (2017) An improved cut-and-solve algorithm for the single-source capacitated

facility location problem. EURO Journal on Computational Optimization URL http://dx.doi.org/10.1007/

s13675-017-0084-4.

Gadegaard SL, Nielsen LR, Ehrgott M (2016a) A branch and cut algorithm for bi–objective combinatorial optimization

problems. GitHub, URL https://github.com/SuneGadegaard/BiObjectiveBranchAndCut, source code (v1.0.0).

Gadegaard SL, Nielsen LR, Ehrgott M (2016b) A general two–phase method for bi–objective combinatorial optimization.

GitHub, URL https://github.com/SuneGadegaard/TwoPhaseMethod, source code (v1.0.0).

Gadegaard SL, Nielsen LR, Ehrgott M (2016c) An instance generator for the capacitated facility location problem.

GitHub, URL https://github.com/SuneGadegaard/SSCFLPgenerator, source code (v1.0.0).

Jozefowiez N, Laporte G, Semet F (2012) A generic branch-and-cut algorithm for multiobjective optimization problems:

Application to the multilabel traveling salesman problem. INFORMS Journal on Computing 24(4):554–564,

URL http://dx.doi.org/10.1287/ijoc.1110.0476.

Kiziltan G, Yucaoğlu E (1983) An algorithm for multiobjective zero-one linear programming. Management Science

29(12):1444–1453, URL http://dx.doi.org/10.1287/mnsc.29.12.1444.

http://dx.doi.org/10.1016/j.orl.2004.04.002
http://dx.doi.org/10.1287/mnsc.25.1.73
http://dx.doi.org/10.1287/mnsc.25.1.73
http://dx.doi.org/10.1016/j.ejor.2007.12.014
http://dx.doi.org/10.1016/0377-2217(86)90093-7
http://dx.doi.org/10.1016/0191-2615(79)90024-9
http://dx.doi.org/10.1016/j.cor.2005.10.003
http://dx.doi.org/10.1016/S0377-2217(02)00223-0
http://dx.doi.org/https://doi.org/
http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
http://www.ecse.rpi.edu/~wrf/Research/Short_Notes/pnpoly.html
http://dx.doi.org/10.1007/s13675-017-0084-4
http://dx.doi.org/10.1007/s13675-017-0084-4
https://github.com/SuneGadegaard/BiObjectiveBranchAndCut
https://github.com/SuneGadegaard/TwoPhaseMethod
https://github.com/SuneGadegaard/SSCFLPgenerator
http://dx.doi.org/10.1287/ijoc.1110.0476
http://dx.doi.org/10.1287/mnsc.29.12.1444

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

26 Article submitted to INFORMS Journal on Computing

Klein D, Hannan E (1982) An algorithm for the multiple objective integer linear programming problem. European

Journal of Operational Research 9(4):378 – 385, URL http://dx.doi.org/10.1016/0377-2217(82)90182-5.

Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations (John Wiley & Sons, New

York).

Martin RK (1999) Large scale linear and integer optimization: A unified approach (Kluwer Academic Publishers, The

Netherlands).

Mavrotas G, Diakoulaki D (1998) A branch and bound algorithm for mixed zero-one multiple objective linear

programming. European Journal of Operational Research 107(3):530–541, URL http://dx.doi.org/10.1016/

S0377-2217(97)00077-5.

Mavrotas G, Diakoulaki D (2005) Multi-criteria branch and bound: A vector maximization algorithm for mixed

0-1 multiple objective linear programming. Applied Mathematics and Computation 171(1):53–71, URL http:

//dx.doi.org/10.1016/j.amc.2005.01.038.

Nemhauser GL, Wolsey LA (1988) Integer and Combinatorial Optimization (John Wiley & Sons, New York).

Parragh S, Tricoire F (2015) Branch-and-bound for bi-objective integer programming. http://www.

optimization-online.org/DB_HTML/2014/07/4444.html, Preprint.

Pedersen CR, Nielsen LR, Andersen KA (2008) The bicriterion multimodal assignment problem: Introduction, analysis,

and experimental results. INFORMS Journal on Computing 20(3):400–411, URL http://dx.doi.org/10.1287/

ijoc.1070.0253.

Przybylski A, Gandibleux X (2017) Multi-objective branch and bound. European Journal of Operational Research

260(3):856 – 872, URL http://dx.doi.org/10.1016/j.ejor.2017.01.032.

Przybylski A, Gandibleux X, Ehrgott M (2008) Two phase algorithms for the bi-objective assignment problem. European

Journal of Operational Research 185(2):509 – 533, URL http://dx.doi.org/10.1016/j.ejor.2006.12.054.

Przybylski A, Gandibleux X, Ehrgott M (2010) A two phase method for multi-objective integer programming and

its application to the assignment problem with three objectives. Discrete Optimization 7(3):149 – 165, URL

http://dx.doi.org/10.1016/j.disopt.2010.03.005.

Ramos RM, Alonso S, Sicilia J, Gonzlez C (1998) The problem of the optimal biobjective spanning tree. European

Journal of Operational Research 111(3):617 – 628, URL http://dx.doi.org/10.1016/S0377-2217(97)00391-3.

Schirra S (2008) How reliable are practical point-in-polygon strategies? Halperin D, Mehlhorn K, eds., Algorithms

- ESA 2008, volume 5193 of Lecture Notes in Computer Science, 744–755 (Springer Berlin Heidelberg), URL

http://dx.doi.org/10.1007/978-3-540-87744-8_62.

Sourd F, Spanjaard O (2008) A multiobjective branch-and-bound framework: Application to the biobjective spanning

tree problem. INFORMS Journal on Computing 20(3):472–484, URL http://dx.doi.org/10.1287/ijoc.1070.

0260.

Stidsen T, Andersen KA, Dammann B (2014) A branch and bound algorithm for a class of biobjective mixed integer

programs. Management Science 60(4):1009–1032, URL http://dx.doi.org/10.1287/mnsc.2013.1802.

Ulungu EL, Teghem J (1997) Solving multi-objective knapsack problem by a branch-and-bound procedure. J

C, ed., Multicriteria Analysis, 269–278 (Springer Berlin Heidelberg), URL http://dx.doi.org/10.1007/

978-3-642-60667-0_26.

http://dx.doi.org/10.1016/0377-2217(82)90182-5
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/S0377-2217(97)00077-5
http://dx.doi.org/10.1016/j.amc.2005.01.038
http://dx.doi.org/10.1016/j.amc.2005.01.038
http://www.optimization-online.org/DB_HTML/2014/07/4444.html
http://www.optimization-online.org/DB_HTML/2014/07/4444.html
http://dx.doi.org/10.1287/ijoc.1070.0253
http://dx.doi.org/10.1287/ijoc.1070.0253
http://dx.doi.org/10.1016/j.ejor.2017.01.032
http://dx.doi.org/10.1016/j.ejor.2006.12.054
http://dx.doi.org/10.1016/j.disopt.2010.03.005
http://dx.doi.org/10.1016/S0377-2217(97)00391-3
http://dx.doi.org/10.1007/978-3-540-87744-8_62
http://dx.doi.org/10.1287/ijoc.1070.0260
http://dx.doi.org/10.1287/ijoc.1070.0260
http://dx.doi.org/10.1287/mnsc.2013.1802
http://dx.doi.org/10.1007/978-3-642-60667-0_26
http://dx.doi.org/10.1007/978-3-642-60667-0_26

Gadegaard, Nielsen and Ehrgott: Bi-objective branch and bound

Article submitted to INFORMS Journal on Computing 27

Vincent T (2013) Caractérisation des solutions efficaces et algorithmes d’énumération exacts pour l’optimisation

multiobjectif en variables mixtes binaires. Ph.D. thesis, LINA, Université de Nantes, France, URL http:

//www.theses.fr/2013NANT2065.

Vincent T, Seipp F, Ruzika S, Przybylski A, Gandibleux X (2013) Multiple objective branch and bound for mixed 0-1

linear programming: Corrections and improvements for the biobjective case. Computers & Operations Research

40(1):498–509, URL http://dx.doi.org/10.1016/j.cor.2012.08.003.

Visée M, Teghem J, Pirlot M, Ulungu EL (1998) Two-phases method and branch and bound procedures to solve the

bi–objective knapsack problem. Journal of Global Optimization 12(2):139–155, URL http://dx.doi.org/10.

1023/A:1008258310679.

http://www.theses.fr/2013NANT2065
http://www.theses.fr/2013NANT2065
http://dx.doi.org/10.1016/j.cor.2012.08.003
http://dx.doi.org/10.1023/A:1008258310679
http://dx.doi.org/10.1023/A:1008258310679

	Introduction
	Preliminaries
	Bi–objective bound set based branch–and–cut
	Step 2 - Adding cutting planes
	Step 3 - Obtaining a lower bound set
	Step 4 - Update the upper bound set
	Step 5 - Bound fathoming
	Bound fathoming using an explicit lower bound set and LP
	Bound fathoming using an explicit lower bound set and a point–in–polygon algorithm
	Bound fathoming using an implicit lower bound set and LP

	Step 6 - Performing branching

	Computational results
	Implementation details and test instances
	Questions (i)-(iii) - Comparison of implementations
	Question (iv) - Is adding cuts worth the effort?
	Question (v) - Effect of using Proposition 3
	Question (vi) - Comparing against the two–phase method

	Conclusions

