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Abstract

In this work, we propose a novel centrality metric, referred to as star centrality,
which incorporates information from the closed neighborhood of a node, rather than
solely from the node itself, when calculating its topological importance. More specifi-
cally, we focus on degree centrality and show that in the complex protein-protein inter-
action networks it is a naive metric that can lead to misclassifying protein importance.
For our extension of degree centrality when considering stars, we derive its computa-
tional complexity, provide a mathematical formulation, and propose two approximation
algorithms that are shown to be efficient in practice. We portray the success of this
new metric in protein-protein interaction networks when predicting protein essentiality
in several organisms, including the well-studied Saccharomyces cerevisiae, Helicobac-
ter pylori, and Caenorhabditis elegans, where star centrality is shown to significantly
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outperform other nodal centrality metrics at detecting essential proteins. We also an-
alyze the average and worst case performance of the two approximation algorithms in
practice, and show that they are viable options for computing star centrality in very
large-scale protein-protein interaction networks, such as the human proteome, where
exact methodologies are bound to be time and memory intensive.

Keywords. centrality; protein-protein interaction networks; complex network analysis

1 Introduction

Protein-protein interaction networks are mathematical constructs where every protein is rep-
resented by a vertex, with two vertices connected by an edge whenever the corresponding
proteins interact. Typically, with every edge we associate a weight, that captures the strength
of the interaction. These constructs have enabled complex network analysis and graph theo-
retic tools in purely biological problems. For example, we now possess novel computational
tools to detect protein complexes [Li et al., 2010c, Mitra et al., 2013], predict protein roles
and essentiality [Typas and Sourjik, 2015, Ren et al., 2011, Li et al., 2010a], among others.
Another advancement that has led to an increasing interest in such biological problems
is the availability of large-scale biological data. Nowadays, there are multiple databases
containing information based on years of biological experimentation on protein interactions.
Indicatively, we mention the curated collections of proteomic data made readily available
by Franceschini et al. [2013], Szklarczyk et al. [2014], Pagel et al. [2005], and Salwinski
et al. [2004]. In essence, complex network theory and tools, coupled with an unprecedented
growth in the data available for analysis has led to significant scientific interest in this field
of computational biology focused on the study of protein-protein interaction networks.
The challenge we aim to tackle in this work can be summarized as follows: does there exist a
network topology metric that captures the importance of a single protein in the grand scheme
of the proteome? We use the term proteome to describe the complete universe of proteins
and their interactions in an organism. The challenge we are focusing on is not new, as it has
attracted numerous researchers and has led to the investigation of various metrics, ranging
from graph modularity [Narayanan et al., 2011] to centrality [Hahn and Kern, 2005]. Being
able to use such objective metrics for studying the proteome is of importance, as it can lead
us to the detection of informal groups in the interaction network [Pereira-Leal et al., 2004].
With the term “detection of informal groups” we mean the detection of sets or clusters
of proteins, based only on their interactions and the topological structure, and no other
externally available information. Such detection techniques would enable us with objective
methods of measuring protein importance in the proteome independently of other biological
experiments and could guide future experimentation. In general, topological importance
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(also broadly referred to as centrality) is a well-studied topic in complex networks, including
protein-protein interaction networks. In our work, though, we propose a novel centrality
metric for each protein in the network. This metric aims to capture both the individual
interactions of every protein, as well as the interactions of its open neighborhood, when
disregarding neighboring nodes that are connected to one another, hence forming an induced
star. We refer to this centrality as star centrality.

1.1 Outline

We first provide a review of protein essentiality, along with the definition of “party” and
“date” hubs. In the same part, we also discuss previous computational tools, both centrality-
based and others, in detecting essential proteins. In Section 2, we present the basic notation
we will be using throughout the paper, define the problem, and provide its computational
complexity. Then, Section 3 focuses on our mathematical programming framework; in the
same section, we propose greedy heuristic approaches for tackling the problem faster and
provide their approximation guarantees. Section 4 (supplemented by the Appendix of the pa-
per) presents our computational study on five protein-protein interaction networks, namely
Saccharomyces cerevisiae (yeast), Helicobacter pylori, Staphylococcus aureus, Salmonella en-
terica CT18, and Caenorhabditis elegans. The performance of the approximation algorithms
is also contrasted to the exact solution. We conclude this work with our observations and
our insights in Section 5.

1.2 Protein-protein interaction networks

Protein-protein interaction networks (PPINs) have become, mostly over the last decade, an
important point of discussion in our quest to better understand and analyze how and why
proteins interact with one another. As proteins are fundamental entities that control numer-
ous biological activities, information on how they bind and interact to perform said activities
is an important scientific endeavor that can bring to light insight into cell mechanisms.
Before proceeding to the main body of the related literature, we briefly discuss how and
where PPINs are made available. The first step towards creating a PPIN is to experimentally
discover and validate pairs of proteins that interact. Even though there exists a wide range of
genetic and biochemical tools to detect such interactions [Peng et al., 2016], two of the most
common systems are yeast two hybrid (Y2H) [Sardiu and Washburn, 2011] and coaffinity
purification and mass spectrometry (AP/MS) systems [Teng et al., 2014]. After further
analysis, a collection of the identified interactions comprises the overall network that can be
used. PPINs are now readily available from many different databases, such as the ones by
Xenarios et al. [2000], Zanzoni et al. [2002], Pagel et al. [2005], Franceschini et al. [2013],
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Chatr-Aryamontri et al. [2013], among others. However, it has been observed that such
networks are unfortunately not without errors [Legrain and Selig, 2000, Sprinzak et al.,
2003, Hart et al., 2006].
A fundamental question in the analysis of PPINs (as well as in general biological and other
networks) is whether there exist proteins (entities) that can significantly alter cell function-
ality (or, can even cause cell death). A protein is said to be essential or lethal when, if
absent, it causes the biological cell to die [Kamath et al., 2003] or prevents it from properly
reproducing. Such proteins are indispensable for growth and development and identifying
them is important for better understanding the minimal requirements for cell life [Acencio
and Lemke, 2009]. Moreover, essential proteins provide insight in human gene morbidity:
Wilson et al. [1977] showed that proteins encoded by essential genes evolve slower than their
non-essential counterparts, while Kondrashov et al. [2004] proved the existence of similar-
ities between human morbid genes and essentiality in Drosophila melanogaster (fruit fly).
The study of essential proteins was and still is typically performed experimentally; however,
those experiments tend to be expensive, both resource- and time-wise [Tang et al., 2014].
Examples of such experimental techniques include conditional gene knockout [Skarnes et al.,
2011] and RNA interference [Cullen and Arndt, 2005]. Nowadays, with the availability of
vast amounts of proteomic data, information on essentiality of proteins is also increasing:
for instance, we refer the reader to the curated Database of Essential Genes, or DEG [Zhang
et al., 2004, Zhang and Lin, 2009, Luo et al., 2013].
It has been observed that the study of protein essentiality can be targeted to only a select
number of proteins (or, equivalently, proteins can be discarded from contention) using quan-
titative techniques. In 2001, Jeong et al. [2001] introduced the centrality-lethality rule, where
lethality can be used as proxy for essentiality. This was the first work to make the observa-
tion that network topology (and specifically, centrality) can suggest essentiality; therein, the
authors focus on degree centrality and show that it is a good indicator of protein essentiality.
Hahn and Kern [2005] were able to show that there is a relationship between the position of
a protein in the network and its evolution rate. Seeing as essential genes do tend to evolve
slower [Wilson et al., 1977] and essential proteins are products of essential genes, proteins
that are centralized, regardless of degree, are more prone to being essential. The interested
reader is also referred to the work by Zotenko et al. [2008] which introduces a new expla-
nation on why hubs tend to be essential: their essentiality stems from their participation
in groups of highly connected proteins that are also enriched in essential proteins. A hub is
defined as a protein with many interactions. Seeing as this definition is very open-ended,
some researchers use different threshold values for the number of interactions. For instance,
in the work of Han et al. [2004], a hub is defined as a protein with more than 5 interactions.
The question of why hubs appear more prone to being essential is also investigated by He
and Zhang [2006].
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In general, degree centrality (or the number of interactions of a protein) has been investigated
in a series of works [Jeong et al., 2001, Han et al., 2004, Yu et al., 2004]. Other centrality
metrics that have been investigated over the years include betweenness centrality [Joy et al.,
2005], closeness centrality [Wuchty and Stadler, 2003], bipartivity [Estrada, 2006a]. In a
comprehensive computational study by Estrada [2006b], it was shown that selecting the top
ranked proteins according to different centrality metrics always results in a better predictor
of essentiality than the random selection.
On top of the above centrality-based approaches, a number of techniques have recently
been proposed that aim to incorporate different metrics and network characteristics. As an
example, “bottleneck” proteins and their relationship to essential proteins is investigated
by Yu et al. [2007]. In their contribution, Ren et al. [2011] predict essential proteins by
incorporating information from the subgraphs and protein complexes each protein belongs
to. In the spirit of weighing information from different sources and metrics, Chua et al.
[2008] propose an integrated, unified weighing scheme to detect protein essentiality. Other
weighing schemes that balance information from both centrality and other network topology
metrics are due to Li et al. [2010b], Li et al. [2014], Jiang et al. [2015]. Last, balancing
information from a variety of sources in order to cancel out the effects of erroneous data
present is proposed by Tang et al. [2014].
Han et al. [2004] also investigate another, very important protein characterization, one be-
tween proteins that interact with all their neighbors simultaneously and ones that interact
with their partners in different times and/or locations, also referred to informally as “party”
and “date” hubs, respectively. More formally stated, “party” hubs show high co-expression
with their partners, while “date” hubs exhibit the opposite. An example of how the defini-
tion of “party” and “date” hubs would look like in a toy network is shown in Figure 1. This
computational discovery has been met with scrutiny by the scientific community and has led
to a general debate on whether this classification of proteins actually helps us decode the
proteome [Mirzarezaee et al., 2010]. In general, though, this hypothesis has led to signifi-
cant interest in connecting graph theoretic notions to PPIN analysis (see, e.g., the works by
Agarwal et al. [2010] and Gursoy et al. [2008], among others).
A specific extension that is of interest to us has to do with group centrality. Recently, we
have seen more work that focuses on extending centrality notions to a group of nodes in
the network [Everett and Borgatti, 1999, 2005, Borgatti, 2006]. This extension enables us
with notions of endogenous and exogenous centrality [Everett and Borgatti, 2010], where
a network property is taken and measured after node/edge deletion, and also provides us
with a tool to consider clusters of nodes and figure out their topological importance. An
integer programming formulation for detecting informal, cohesive groups with high and low
centrality was presented by Vogiatzis et al. [2015].
Seeing as centrality has been a recurring theme in the study of biological networks, and more
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date hub

Figure 1: An example of how “party” and “date” hubs would appear as in a PPIN. The nodes
of blue, red, and green color represent three different structures/complexes in a generated
PPIN. The “party” hubs are marked with a square, while the “date” hub is annotated on
the Figure. Observe that the “date” hub possesses a smaller number of interactions (smaller
degree) than some of the “party” hubs in this example.

specifically, PPINs, we propose to investigate group centrality in this context. Centrality has
indeed proven an important characteristic of PPINs, despite the existing caveats with nodal
metrics. First, assigning importance to a single protein (resp. interaction), instead of a set
of proteins (resp. interactions) tends to favor those proteins that participate in large, dense
complexes. Secondly, the datasets of PPINs are still not error-free [Hart et al., 2006]; assum-
ing complete information can lead to significant misattributions of importance. Last, some
proteins that present low co-expression with their interacting partners would be disregarded
by such metrics even though they might have a significant role in coordinating different com-
plexes (e.g., “date” hubs). We will then contrast the performance of our proposed metric
to nodal centrality metrics (degree, betweenness, closeness, eigenvector), while at the same
time, showing that it alleviates all the above issues. We can now proceed to formally state
the notation and the definition of the problem in the next section.

2 Fundamentals

Let G(V,E) represent a simple, undirected graph with a vertex set V of size |V | = n
nodes and an edge set E ⊂ V × V of size |E| = m. We say that two nodes i, j ∈ V
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are connected by an edge if the adjacency matrix entry aij = 1; otherwise we have that
aij = 0. Seeing as the graphs considered here are undirected, the adjacency matrix is
symmetric. We further consider a positive weight parameter on the edges of the graph,
we : E 7→ R,∀e = (i, j) ∈ E. Furthermore, the open neighborhood of a node i ∈ V is defined
as N(i) = {j ∈ V : (i, j) ∈ E}; similarly, the closed neighborhood of a node i is defined
as N [i] = N(i) ∪ {i}. The definition can be extended to apply for sets of nodes S ⊆ V ,
as N(S) = {j ∈ V \ S : (i, j) ∈ E for some i ∈ S}. The notion of (open) neighborhood
is sometimes generalized to include nodes that are reachable within at most k hops. This
neighborhood is represented here by Nk(i): for example, the complete set of nodes reachable
by i ∈ V within at most 2 hops would be denoted as N2(i). Using the above definitions,
node degree centrality can be easily represented as

Cd(i) = |N(i)|.

We also define the subgraph induced by a set of nodes S, G[S] as the subgraph of G with
a vertex set V [G[S]] = S and an edge set E[G[S]] = {(i, j) ∈ E : i, j ∈ S}. We further say
that a set of nodes S forms an induced star if the induced subgraph of S has exactly one
node of degree |S| − 1 and |S| − 1 nodes of degree 1.

2.1 Problem definition

In this work, we define a centrality measure that incorporates information from the centrality
of the open neighborhood, instead of relying solely on the considered node. More specifically,
we focus on degree centrality:

Definition 1. The star degree centrality of a node i is the degree centrality of the induced
star S centered at i that produces the maximum open neighborhood size of S.

Formally, this can be expressed as in (1).

Cs(i) = max{|N(S)| : S ⊆ V forms an induced star centered at i ∈ V } (1)

We proceed to provide two examples for better problem representation. They are described
in Examples 1 and 2.

Example 1. As an example, let us return to the graph of Figure 1. Consider first the
portrayed date hub in the middle. There are eight possible induced star configurations with
the date hub at their center (including the configuration consisting of the center itself with no
other nodes as “leaves”). As an example, consider the configuration consisting of the center
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itself, the neighboring blue node, and the neighboring green node. The open neighborhood size
of this star configuration is equal to 6 (the four blue neighbors, the red neighboring node, and
the green neighbor). Doing this for all possible configurations reveals that the induced star
centered at the date hub, that produces the maximum open neighborhood size would be either
the set S consisting of the date hub, and the blue and red party hubs, or it could also include
the green node in the lower right connection of the date hub (both have an open neighborhood
size of 9). Hence, the star centrality of the date hub is equal to 9.
Now, consider the blue party hub, which originally has the biggest degree (along with the red
party hub). Their star centrality values can be found by considering the induced star centered
at the blue (red) party hub and the date hub itself (having a value of 6): adding any of the
other neighbors only serves to decrease that value. Last, let us consider the green party hub.
For that node, we can easily verify that its degree and star centrality match (and are both
equal to 3).

Figure 2: The PPIN of Figure 1 with the addition of an edge between the red and blue
“hub” nodes.

Example 2. Consider again Figure 1, however now assume that the red and blue “hub”
nodes are connected with an edge (see Figure 2 for a pictorial representation). Note that
for the date hub we can no longer include both the neighboring blue and red nodes, as this
does not lead to a feasible configuration. We also observe that this extra addition renders the
node in black unnecessary for the connection of the red and blue complexes, and this will also
become obvious when looking at the change in the star centrality metric. Seeing as now the
blue and red hub nodes cannot both belong to the induced star centered at the center node,
we will have to choose one or the other. This means that the star centrality metric for the
center node in black is now equal to 6 (compared to the earlier value of 9). The blue and red
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hub nodes now both have a star centrality of 8. Finally, the green party hub is unaffected by
the change.

From a biological perspective, we can use as an example the YHL011C protein from Saccha-
romyces cerevisiae. This is an essential protein used to synthesize PRPP, which is required
for a mutlitude of important cell activities, including the 5-phosphoribose 1-diphosphate syn-
thase necessary for tryptophan biosynthesis. This particular protein has a relatively small
degree of 92 neighbors, when only considering protein interactions with a threshold equal
to 60% or more. Its degree alone would be enough to discard it from consideration as an
essential protein, as it places it within the latter half of the degree ranking of all 6, 418
proteins. The same observation can be made for betweenness (equal to 0.00021) and its
eigenvector centrality (0.00528), with only closeness centrality being big enough to label it
“of importance” (its closeness is equal to 0.404). That said, its star centrality is equal to
2, 749, placing it in the top 10 of proteins when ranked for the size of the open neighborhood
of the induced stars centered at them.
A second example can be protein YDL098C, again from the Saccharomyces cerevisiae pro-
teome, which also happens to be essential. This protein, also referred to as SNU23 is an
important ingredient of the spliceosome: this would also be functionally predicted using
network-based approaches in the past by Li et al. [2010a]. Once more, though, when consid-
ering a PPIN generated by discarding all interactions below 60%, its degree would be among
the smallest in the proteome (it is equal to 31), ranking it in the bottom quarter. The same
is also true here for its betweenness (8.59 · 10−7), eigenvector (0.0008) centralities, while its
closeness centrality (0.305) places it in the bottom half of the rankings. On the contrary,
its star centrality is equal to 461, and this is enough to locate it in the top 1000 of most
important proteins as far as this ranking is concerned.

2.2 Complexity

2.3 Complexity

In this subsection, we provide the computational complexity of the problem of detecting the
node of maximum star degree centrality. We first give the decision version of the problem
at hand in Definition 2.

Definition 2 (Star Degree Centrality). Given a graph G(V,E) and an integer k, does
there exist an induced star S centered at any node i ∈ V such that |N(S)| ≥ k?

We proceed to derive the complexity of the problem using the well-known NP-complete
problem, Independent Set, whose decision version is provided in Definition 3.
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1 2 3 5

4

Figure 3: An example of the reduction for a graph G. This is the original graph G(V,E),
where nodes 2 and 5 form an Independent Set of size k = 2 (one of the possible solutions).

Definition 3 (Independent Set). Given a graph G(V,E) and an integer k, does there
exist a set S ⊆ V such that |S| ≥ k and for any two nodes i, j ∈ S, (i, j) /∈ E?

We are now ready to prove that the problem we are tackling cannot admit a polynomial-time
algorithm, under the assumption that P 6= NP . This is given in Theorem 1.

Theorem 1. Star Degree Centrality is NP-complete.

Proof. Proof. First of all, we verify that the problem is in NP . Given a set of nodes S ⊆ V ,
we can verify that S forms an induced star (one center with degree of |S| − 1 and no edges
between leaves), and that |N(S)| ≥ k in polynomial time.
Now, consider an instance of Independent Set < G, k >. We construct an instance of
Star Degree Centrality < Ĝ, ` > as follows. The vertex set and edge set of Ĝ are
defined as:

V [Ĝ] = V̂ = V ∪ {s} ∪
{
∪ni=1{∪nj=1s

(i)
j }
}
∪
{
∪n2

i=1s
(s)
i

}
E[Ĝ] = Ê = E ∪ {∪ni=1(s, i)} ∪ {∪ni=1{∪nj=1(i, s

(i)
j )}} ∪

{
∪n2

i=1(s, s
(s)
i )
}

The above imply that graph Ĝ contains all nodes and edges from G. It also includes a newly
added node s, that is connected by an edge to every node in V . Finally, Ĝ includes a total
of n = |V | nodes adjacent to every node i ∈ V (s

(i)
j , for j = 1, . . . , n), and a total of n2 nodes

(s
(s)
j , for j = 1, . . . , n2) that are only adjacent to s. Overall, the new graph has 2n2 + n+ 1

nodes and 2n2 +m+ n edges. Furthermore, let ` = n2 + k · n. An indicative, small example
of the reduction from Independent Set to Star Degree Centrality can be found in
Figures 3 and 4.
First, let S be an independent set of size k in G. Then, consider the set of nodes Ŝ = S∪{s}.
We proceed to show that Ŝ forms an induced star, such that |N(Ŝ)| ≥ `. This is true
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s

1 2 3 5

4

s
(1)
1

s
(1)
2

s
(1)
3

s
(1)
4

s
(1)
5

s
(2)
1 s

(2)
2 s

(2)
3 s

(2)
4 s

(2)
5 s

(3)
1 s

(3)
2 s

(3)
3 s

(3)
4 s

(3)
5

s
(4)
1 s

(4)
2 s

(4)
3 s

(4)
4 s

(4)
5

s
(5)
1

s
(5)
2

s
(5)
3

s
(5)
4

s
(5)
5

s
(s)
1 s

(s)
2

. . .

s
(s)
25

Figure 4: Here, we present an example of the gadget used to transform the instance of
Independent Set < G(V,E), k > for the graph of Figure 3 to an instance < Ĝ(V̂ , Ê), ` >
of Star Degree Centrality. In the graph of Figure 3, it is easy to see that nodes 2
and 5 form an Independent Set of size k = 2, as they are not connected by an edge.
In the graph below (Figure 4, which presents Ĝ), there exists an induced star S ⊆ V̂ such
that |N(S)| ≥ ` = n2 + k · n = 25 + 10 = 35. The star represents the newly added node,
the squares are the n nodes in Ĝ connecting to every node in V , while the diamonds the n2

nodes connected to the star node.
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because, by construction, the nodes in S are all adjacent to s; furthermore, no two nodes
in S are adjacent, as they form an independent set. Last, it is straightforward to see that
|N(Ŝ)| ≥ ` = n2 + k · n.
Now, assume that there exists no independent set of size k in G. For a contradiction, we
assume that there exists an induced star Ŝ ⊆ V̂ such that |N(Ŝ)| ≥ ` = k · n+ n2. First of
all, we note that s ∈ Ŝ: if not, then there can be no star using nodes from V̂ \ {s} with an
open neighborhood of size at least equal to n2. Further, there exist at least k nodes from V
in the star: once more, if that is not the case, then n2 ≤ |N(Ŝ)| < n2 + k · n. Last, observe
that Ŝ is centered in s: assume for a contradiction that the star is instead centered at a node
i ∈ V . Then, one of the two following cases has to hold:

(a) Ŝ contains s. This implies, by construction, that no other node j ∈ V can be in the
star, as (s, j) ∈ Ê;

(b) Ŝ contains at least k nodes in V . This implies that s cannot belong in Ŝ, for the same
reason as above.

In both cases, we observe that we reach a contradiction, hence Ŝ has to be an induced star
centered at s. Since Ŝ forms an induced star, there exists no edge connecting any two nodes
in Ŝ \{s}, rendering Ŝ \{s} an independent set in G. Finally, Ŝ contains k nodes in V , hence
|Ŝ \{s} | = k, which implies that an independent set of size k exists in G. This contradiction
finishes the proof.

2.4 Extensions

It can also be shown that the star centrality function is submodular.

Theorem 2. The function f(S) = {|N(S)| : S forms an induced star} is submodular.

Proof. Proof. Let S1, S2 be two induced stars such that S1 ⊆ S2. Also, consider a node
u ∈ V \ S2. Then, we have that:

f(S1 ∪ {u})− f(S1) = −1 + |N(u)| − |N(u) ∩N [S1]|
f(S2 ∪ {u})− f(S2) = −1 + |N(u)| − |N(u) ∩N [S2]|

It is clear that |N(u)∩N [S1] ≤ |N(u)∩N [S2]|, as N [S1] ⊆ N [S2], and hence, f(S1 ∪{u})−
f(S1) ≥ f(S2 ∪ {u})− f(S2).
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S

i

Figure 5: A counterexample of the monotonicity of the star centrality function. As can be
easily seen, the open neighborhood size of the star S is decreased by 1 when considering the
star S ∪ {i}.

Unfortunately, though, the star centrality function is not monotone; consider a node with
no neighbors other than to a designated center. Then, that particular node can be added
as a leaf to the star, however it would only serve to decrease its open neighborhood size by
1. For better exposition, a counterexample is presented in Figure 5. This implies that we
cannot easily use a simple greedy approach to approximate the optimal solution. We do
though provide a different greedy mechanism study in a subsequent section.

3 Mathematical Formulation and Approximation Al-

gorithms

In this section, we provide a mathematical formulation for our problem, followed by two
approximation algorithms. First, let us define the following decision variables:

xi =

{
1, if node i ∈ V is the center of the star
0, otherwise.

yi =

{
1, if node i ∈ V is in the star
0, otherwise.

zi =

{
1, if node i ∈ V is adjacent to a node in the star
0, otherwise.

13



3.1 Mathematical Formulation

The integer programming formulation for detecting the induced star of maximum degree
centrality is presented in (2)–(7).

IP: max
∑
i∈V

zi (2)

s.t. yi + zi ≤ 1, ∀i ∈ V (3)

zi ≤
∑
j∈N(i)

yj, ∀i ∈ V (4)

yi ≤
∑
j∈N [i]

xj, ∀i ∈ V (5)

yi + yj ≤ 1 + xi + xj, ∀(i, j) ∈ E (6)∑
i∈V

xi = 1, (7)

xi, yi, zi ∈ {0, 1}, ∀i ∈ V. (8)

Clearly, our objective is to maximize the size of the open neighborhood of the star, as shown
in (2). Then, (3) ensures that no node is allowed to be both in the star and in its open
neighborhood. Constraint families (4) and (5) are similar in nature and enforce which nodes
are adjacent to the star, and which nodes are adjacent to the center and, as such, can be
considered for addition to the star. Moreover, no two leafs are allowed to be connected, as
per constraint (6). Last, we are only looking for one star, enforced with (7), and all of our
decision variables are binary.
We can also consider the problem of detecting the star centrality of a given node u ∈ V , as
shown in (9)–(15).
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IP(u): max
∑
i∈V

zi (9)

s.t. yi + zi ≤ 1, ∀i ∈ V (10)

yi ≤ aiu, ∀i ∈ V \ {u} (11)

zi ≤
∑

j:(i,j)∈E

yi, ∀i ∈ V (12)

yi + yj ≤ 1, ∀(i, j) ∈ E : i 6= u, j 6= u (13)

yu = 1 (14)

yi, zi ∈ {0, 1}, ∀i ∈ V. (15)

The objective function, given at equation (9), as well as the constraint families in (10), (12)
and the variable restrictions in (15) are identical to the previous model. However, note that
we no longer need to consider a decision variable for the center of the star, as it is known to
be node u ∈ V . Hence, we can add constraints (11) that only consider the nodes that are
adjacent to u as candidates to be in the star, and modify constraint (13) to only consider the
connections that do not include the star center. As a reminder, aij is the adjacency matrix
entry that represents the connection between nodes i and j. Last, constraint (14) will force
node u (the center) to be part of the induced star.
This last integer program, as shown in (9)–(15), can be used to calculate the star centrality of
each and every one of the nodes in the network. In our numerical experiments (presented in
Section 4), the optimal objective function value of this integer program is the star centrality
that is then compared to other, nodal centrality metrics.

3.2 Greedy algorithms

As shown earlier, we cannot unfortunately claim monotonicity for the star centrality function.
Hence, deriving an approximation ratio from simply applying a greedy algorithm scheme is
not straightforward. However, we can still show that the greedy algorithm, presented in
Algorithm 1 has an approximation guarantee of O(∆), where ∆ is the maximum degree in
the network. First, let us introduce for simplicity a function f1(S, k) to capture the “gain”
of adding a node k to a star S, assuming of course that S ∪ {k} remains an induced star.

f1(S, k) = |N(S ∪ {k})| − |N(S)|.
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Algorithm 1: Simple Greedy.

1 function SimpleGreedy (i);
Input : A node i ∈ V
Output: An induced star S centered at i

2 candidates← N(i);
3 S ← {i};
4 while candidates 6= ∅ do
5 for k ∈ candidates do
6 if f1(S, k) <= 0 then
7 candidates← candidates \ {k};
8 end

9 end
10 if candidates 6= ∅ then
11 j ← arg max

k
{f1(S, k) : k ∈ candidates};

12 S ← S ∪ {j};
13 candidates← candidates \ {N [j]}
14 end

15 end
16 return S

We note that for this function we have that f1(S, k) ≥ −1. This follows from the fact that
for any node k such that S ∪ {k} forms an induced star, we have that k ∈ N(S): hence, in
the worst case, adding k to S decreases its open neighborhood size by 1 (as k is no longer
adjacent to the star, but instead is now part of it). Figure 5 shows this worst case behavior,
as adding node i to star S only serves to decrease its open neighborhood size by 1.

f1(S, k) = |N(S ∪ {k})| − |N(S)|.

Theorem 3. Let i ∈ V , with a degree of δ, be the node whose star centrality we are interested
in finding. Then, the simple greedy algorithm has an an approximation ratio of O(δ).

Proof. At each iteration of the while loop, the greedy algorithm looks at the candidate nodes
(set {j ∈ N(i) \ S : (k, j) /∈ E,∀k ∈ S}), and selects to add the one that is adjacent to the
maximum number of not already covered nodes. In the worst case, the greedy algorithm
terminates after the first iteration, and that only happens when the greedily selected node
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Figure 6: An example of the worst-case behavior guarantee of the Simple Greedy approach.
In this case adding u to the star centered at i results in a star centrality of α+ δ − 1, while
adding every other neighbor of i to the star would result in (δ − 1) · (α− 1) + 1.

u ∈ N(i) which adds α = |N(u) \N [i]| is connected to every other node in N(i). Let OPT
be the optimal value and zgreedy the value obtained by applying the simple greedy approach.
Then, we have that

OPT ≤ (δ − 1) · (α− 1) + 1 ≤ (δ − 1) · α (16)

zgreedy ≥ α + δ − 1 ≥ α (17)

From (16) and (17), we obtain the approximation guarantee as

OPT

zgreedy
≤ (δ − 1) · α

α
= δ − 1 = O(δ). (18)

Figure 6 shows an example of the worst-case performance. Let us now propose a different
greedy-based heuristic algorithm and show its approximation ratio. Let Si be again an
induced star centered at i and define function f2(S

i, k) as:
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f2(S
i, k) =

∑
j:(i,j)∈E,(k,j)∈E

|
(
N(Si ∪ {j}

)
\N(Si)|.

This function captures the potential increase in the size of the open neighborhood that we
would be losing since nodes j and k cannot belong to the star simultaneously. Note here
that f2(S

i, k) = 0 implies either that node k is connected to no other potential leaf of the
star, or that all other candidates connected to k add no uncovered nodes to the star. Now,
consider the greedy approach shown in Algorithm 2. We show its approximation ratio in
Theorem 4; to do that, we first provide two lemmata.

Lemma 1. Let i ∈ V , with a degree of δ, be the node whose star centrality we are interested
in finding. Further, assume that for all nodes k ∈ N(i), we have that f2(S

i, k) = 0, that is
there exists no connection between any two of them. Then, greedily selecting the node with
maximum f1(S

i, k) has an approximation ratio of O(ln δ).

Proof. It can be seen that the above setup results in greedily solving a set cover problem
with δ sets. The universe of elements to be covered is all nodes reachable within 1 or 2 hops
from i, N2(i). Each set consists of the neighbors of i and their neighbors which belong to
N2(i), that is Cj = {j,N(j)∩N2(i)},∀j ∈ N(i). Since applying the greedy algorithm results
in an O(lnn) approximation for the set cover and we have at most δ candidate nodes/sets,
all of which can be selected at any point, as there exist no connections between them, the
greedy algorithm would result in an O(ln δ) approximation ratio, as far as the number of
nodes added to the star is concerned. Let OPTSC represent the optimal solution to the set
cover problem above and zSC the solution using the greedy algorithm. We then have that:

OPT = |N2(i)| −OPTSC (19)

zgreedy = |N2(i)| − zSC ≥ |N2(i)| − ln δ ·OPTSC (20)

Combining (19) and (20), we obtain that:

OPT

zgreedy
≥ |N2(i)| −OPTSC
|N2(i)| − ln δ ·OPTSC

≥ 1

ln δ
=⇒ zgreedy ≤ ln δ ·OPT. (21)

The last inequality proves the Lemma.
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Algorithm 2: Ratio-based Greedy.

1 function RatioGreedy (i);
Input : A node i ∈ V
Output: An induced star S centered at i

2 Si ← {i};
3 candidates1 ← {k ∈ N(i) : f2(S

i, k) = 0};
4 candidates2 ← N(i) \ candidates1;
5 while candidates1 6= ∅ or candidates2 6= ∅ do
6 if candidates1 6= ∅ then
7 j ← arg max

k
{f1(Si, k) : k ∈ candidates1, f1(Si, k) > 0};

8 Si ← Si ∪ {j};
9 candidates1 ← candidates1 \ {j};

10 else

11 j ← arg max
k
{f1(S

i,k)
f2(Si,k)

: k ∈ candidates2, f1(Si, k) > 0};
12 Si ← Si ∪ {j};
13 candidates2 ← candidates2 \N [j];

14 end
15 for k ∈ candidates2 do
16 if f2(S

i, k) = 0 then
17 candidates2 ← candidates2 \ {k};
18 candidates1 ← candidates1 ∪ {k};
19 end

20 end

21 end
22 return S
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Lemma 2. Let i ∈ V , with a degree of δ, be the node whose star centrality we are interested
in finding. Further, assume that for all nodes k ∈ N(i), we have that f2(S

i, k) > 0, that is
each node is connected to at least one other in N(i). Then, greedily selecting the node with

maximum f1(Si,k)
f2(Si,k)

has an approximation ratio of O(
√
δ).

Proof. Similarly to the case in Theorem 3, the worst case behavior is observed when the
algorithm terminates after adding only one node in the star. This can happen when the
selected node is indeed adjacent to all other nodes in N(i). Let βj be the nodes adjacent to
j that are not already in S or covered by S. Furthermore, let node u be connected to all
other candidate nodes. We then have that:

au =
f1(S, u)

f2(S, u)
=

βu∑
k∈N(i),k 6=u

βk
,

while, for the remaining nodes, j 6= u, we would have that:

aj ≤
βj
βu
.

In the worst case, the remaining nodes can all be part of the same star (i.e., there exist no
connections between them). Hence, to select node u using the ratio-based greedy approach
we must have au ≥ aj, for all j, and assuming v is the nodes with maximum ratio when
excluding u, we have that au ≥ av. This implies:

au ≥ av =⇒ βu∑
k∈N(i),k 6=u

βk
≥ βv
βu

=⇒ βu
(δ − 1) · βv

≥ βv
βu

=⇒ β2
u ≥ (δ − 1) · β2

v =⇒ βv ≤
βu√
δ − 1

. (22)

Hence, in the worst case, the greedy algorithm results in a solution of βu + δ − 1, while the
optimal solution can be as big as (δ − 1) · βu√

δ−1 + 1. We finally get:

OPT

zgreedy
≤

(δ − 1) · βu√
δ−1 + 1

βu + δ − 1
≤
√
δ − 1 · βu
βu

= O(
√
δ). (23)

Theorem 4. Let i ∈ V , with a degree of δ, be the node whose star centrality we are interested
in finding. Then, the ratio-based greedy algorithm has an approximation ratio of O(

√
δ).
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Proof. The algorithm is divided into two phases: in the first phase, the node with the
maximum ratio is selected, while in the latter one, we choose the node with the maximum
number of uncovered neighbors.
Let OPT1 and OPT2 represent the optimal solutions obtained from each phase. Then,
OPT ≤ OPT1 + OPT2. Similarly, let z1 and z2 be the solutions obtained from each phase
of the greedy algorithm; it is easy to see that zgreedy = z1 + z2. From the previous lemmata,
we have that:

OPT1 ≤ O(
√
δ) · z1 (24)

OPT2 ≤ O(ln δ) · z2. (25)

Combining, we get that

OPT

zgreedy
≤ OPT1 +OPT2

zgreedy
≤ O(

√
δ) · z1 +O(ln δ) · z2

z1 + z2
≤

≤ O(
√
δ) · (z1 + z2)

z1 + z2
= O(

√
δ). (26)

4 Computational results

In this section, we present our experimental setup, the data used, and analyze and interpret
the results obtained. Our goal is to portray how star centrality behaves and performs when
put to the test against other popular centrality metrics in PPIN analysis.

4.1 Experimental setup

All numerical experiments were performed on a quad-core Intel i7 at 2.8 GHz with 16 GB
of RAM. The codes were written in Python and C++ and, where needed, the Gurobi 6.50
solver [Gurobi Optimization, 2015] was used to solve the optimization problems. Data on
protein interactions for different organisms was obtained by STRING v. 10.0 [Szklarczyk
et al., 2014]. More specifically, we used the datasets of Saccharomyces cerevisiae (yeast),
Helicobacter pylori, and Staphylococcus aureus (presented in this section), and Salmonella
enterica CT18, Caenorhabditis elegans (presented in the Appendix). Essentiality for proteins
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was found using the databases for the above organisms as curated in DEG 10 [Luo et al.,
2013].
We performed two experiments. In the first one, which is presented in subsection 4.2, the
PPINs were created as follows. For each protein in the database, a node was created and was
connected to all other proteins-nodes that they shared an interaction. Then, all interactions-
edges with an interaction score that was below a threshold were removed. Seeing as the
maximum interaction score was 1000, the threshold scores selected for presentation in this
study were 600 (60% interaction score), 700 (70% interaction score), and 800 (80% interaction
score). In this fashion, we were able to create three networks per organism where all known
centrality metrics can be captured given the computational power. The networks were further
broken down into their connected components with each component being independently
analyzed, without loss of generality.
For the second experiment, discussed in subsection 4.3, twenty different networks were cre-
ated for three of the previous organisms. Each network was generated by randomly adding
every protein-protein interaction present in the datasets with a probability equal to the
interaction score divided by the maximum interaction present (1000). As an example, a
protein-protein interaction with a score of 550 in the database would appear in the gener-
ated network with a probability of 0.55. The goal of this second experiment is to measure
how many times a protein appears among the top ranked (per a specific metric) in the
generated networks.
All nodal metrics of centrality (degree, closeness, betweenness, eigenvector) were computed
with a Python implementation, using NetworkX 1.9 [Hagberg et al., 2008]. On the other
hand, star centrality calculations were performed on the same networks with a C++ imple-
mentation. For all networks an exact solution was found for every node; however, we also
obtained an approximate solution using the greedy techniques proposed (as described in the
previous section).
Finally, in subsection 4.4, we contrast the performance of the approximation algorithms to
the exact solution, both as far as time and solution quality are concerned. For this analysis
we employ the same networks that were used for the first experiment.

4.2 Analysis of top ranked proteins per metric

After obtaining all the metrics for the PPIN in consideration, we calculated the ratio of
essential proteins found in the top k and the bottom k proteins (as ranked by each centrality
metric). The bounds for each analysis are shown in Table 1 and were based on the total
number of essential proteins present in the PPIN for each organism. As an example, for
Helicobacter pylori, the number of essential proteins found in the PPIN was 435, and hence
the top 500 proteins were investigated. Observe that the closer a metric gets to 100%, the
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Table 1: Details of the PPINs and the bounds selected for each organism analysis.
|E| Essential

Organism |V | 600 700 800 Proteins Top k Bottom k
Saccharomyces cerevisiae 6,418 179,317 137,304 99,705 1,221 1,000 5,00
Helicobacter pylori 1,570 17,792 12,822 7,859 431 500 500
Staphylococcus aureus 2,853 16,857 11,996 8,530 314 400 400
Salmonella enterica CT18 4,529 40,165 27,649 18,547 543 500 500
Caenorhabditis elegans 15,830 322,294 202,834 129,250 492 500 500

more accurately it detects essential proteins.
For each organism then, we provide three Figures: one representing the performance over the
top k proteins, a second one over the bottom k proteins, along with a Receiver Operating
Characteristic curve (ROC curve). Note that for the first representation, the higher the
ratio is then the better that metric is said to perform. The opposite is true for the second
representation as a metric is said to perform better if the ratio is smaller. Last, for the third
representation, the higher the area under the curve (AUC), the better the metric is said to
perform. In this section, we only provide the figures corresponding to the Saccharomyces
cerevisiae, Helicobacter pylori, and Staphylococcus aureus organisms and the first of the
three thresholds selected (60%): the other two thresholds (70% and 80%) and all remaining
organisms are given in the Appendix.
First, let us consider Figures 7 and 8 that show our results for Saccharomyces cerevisiae: the
star centrality metric is outperforming every other considered nodal centrality metric with
a final performance of having 50.1% of all essential proteins within the top 1000. Note that
the maximum that could be achieved here would be 81.9%, making the effective detection
rate equal to 61.17%. On the contrary, the other centrality metrics are almost indistinguish-
able and achieve a final performance of 22.11%, 22.03%, 22.52%, and 23.01% for degree,
closeness, betweenness, and eigenvector centrality, respectively. In the bottom 500 proteins,
star centrality is still performing better, albeit less so than earlier, achieving a final score
of 9.17%, as compared to the final scores of 10.4%, 10.24%, 9.91%, and 9.91% for the other
centrality metrics. We see a similar behavior in the ROC curve, shown in Figure 13 (left),
where the area under the curve for star centrality is 0.766 (compared to 0.672 for degree,
0.548 for betweenness, 0.669 for closeness, and 0.682 for eigenvector).
In the case of the Helicobacter pylori organism, shown in Figures 9 and 10, and Figure 13
(center), the situation is similar. Star centrality achieves a final score of detecting 55.65%
within the top 500 proteins, as opposed to 38.6% for degree centrality, 47.63% for closeness
centrality, 34.09% for betweenness centrality, and 40.63% for eigenvector centrality. Consid-
ering the performance over the least well ranked proteins, it is easier to see that star centrality
is best at not ranking highly non-essential proteins, achieving a final score of 19.49%, while
the scores for the other centrality metrics are significantly higher at 37.82%, 32.51%, 41.31%,
and 32.51%. The area under the ROC curve ends up being 0.753, outperforming every other
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Figure 7: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 60% was used.
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Figure 8: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 60% was used.

centrality metric in this study.
Continuing with the results in the Staphylococcus aureus organism, presented in Figures 11,
12, and 13 (right), the same pattern is again seen. Star centrality consistently outperforms
the other nodal metrics, and its accuracy is much higher at any given step in the analysis.
Overall, the final star centrality score is 65.61%, which easily outperforms the final scores of
the other centrality metrics, 40.21%, 38.14%, 39.18%, and 34.02%, respectively. Similarly,
when considering the bottom 400 proteins, we obtain a final score of 7.96% for star central-
ity, as compared to the very high 38.14%, 45.36%, 37.11%, and 29.90% for the remaining
centrality metrics. The area under the curve is as big as 0.867 with the eigenvector centrality
behaving well with an area of 0.788.

4.3 Sensitivity analysis per metric

In the second experiment we focus on three of the organisms studied earlier, namely the Sac-
charomyces cerevisiae, Helicobacter pylori, and Staphylococcus aureus proteomic instances.
After generating networks using the threshold as the probability of edge existence, all nodal
centrality metrics, along with star centrality, were calculated. Then, the rank of each pro-
tein for each metric at every network was calculated in order to find its mean ranking and
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Figure 9: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Helicobac-
ter pylori organism when a threshold of
60% was used.
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Figure 10: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Heli-
cobacter pylori organism when a thresh-
old of 60% was used.
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Figure 11: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Staphylo-
coccus aureus organism when a threshold
of 60% was used.

100 200 300 400

0.1

0.2

0.3

0.4

Ranked proteins

Ratio of essential proteins

Star
Degree
Closeness
Betweenness
Eigenvector

Figure 12: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Staphylo-
coccus aureus organism when a threshold
of 60% was used.
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Figure 13: The Receiver Operating Characteristic curves for each metric for the Saccha-
romyces cerevisiae (yeast), the Helicobacter pylori, and the Staphylococcus aureus organisms.
All three ROC curves are obtained for a threshold of 60%.

its standard deviation. For example, let us assume that only 10 instances were randomly
generated and a protein was ranked first in 5 of them, second in 3 of the instances, fourth in
1 of the instances, and fifth in the last one. Such a protein would have an average ranking
of (5 · 1 + 3 · 2 + 1 · 4 + 1 · 5)/10 = 20/10 = 2. This enables us to calculate a coefficient of
variation (CV) for each of the proteins in each of the random instances, which can be used
to quantify the variability in each of the metrics.
Finally, to show that star centrality is stable under this random edge existence, we created a
box-and-whisker plot (box plot) for each of the three organisms. The results are summarized
in Figure 14.

4.4 Greedy Algorithm Analysis

In this subsection, we compare the performance of the two approximation algorithms in
practice, using the same PPINs as in subsection 4.2. The results are summarized in Tables
2 and 3. We make the following observations. First, Algorithm 2 provides a better solution
for every protein in every PPIN when compared to Algorithm 1. On average though, as can
be seen in Table 2, both algorithms perform similarly well, finding the optimal solution in
the majority of proteins.
More specifically, we note that in all organisms, Ratio-based Greedy always found a solution
that was at least half as good as the optimal. On the other hand, we note that there are
occasions where the Simple Greedy fails to get a high quality solution and behaves close to its
approximation guarantee. However, we can also observe that both approximation algorithms
are able to find solutions that are very close to the optimal. In all organisms the solution
obtained by either algorithm was on average as good as 96.3% of the optimal solution. This
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Figure 14: The box-and-whisker plots for each of the Saccharomyces cerevisiae (yeast),
Helicobacter pylori, and Staphylococcus aureus organisms, when randomly generating 20
instances of each. We observe that star centrality consistently showcases a lower coefficient
of variation, whereas betweenness centrality is the most volatile. In the case of Helicobacter
pylori, all nodal centrality metrics were shown to be similarly unstable in the case of random
edge additions/deletions. In the other two organisms, degree centrality was also stable when
compared to the rest of the metrics. Let it also be noted that the three plots are not having
the same axis limits, and hence are not used to draw any conclusions or comparisons for the
proteomes themselves.

Table 2: Approximation ratio analysis for both Algorithms 1 and 2 for different PPINs. The
last columns show the ratio of optimal solutions found.

Average Approximation Minimum Approximation Optimal Found
Organism Simple Ratio-based Simple Ratio-based Simple Ratio-based
Saccharomyces cerevisiae 0.87 0.88 0.02 0.64 0.76 0.78
Helicobacter pylori 0.92 0.95 0.43 0.54 0.61 0.65
Staphylococcus aureus 0.93 0.98 0.20 0.57 0.66 0.75
Salmonella enterica CT18 0.97 0.97 0.24 0.69 0.63 0.66
Caenorhabditis elegans 0.95 0.99 0.051 0.60 0.78 0.79

27



means that, even though in some cases the exact optimal is not found, the optimality gap is
very small.

Table 3: Average and maximum computational times (in seconds) observed for the approx-
imation algorithms and the Gurobi solver for different PPINs.

Average Time Maximum Time
Organism Simple Ratio-based Solver Simple Ratio-based Solver
Saccharomyces cerevisiae 0.05 0.11 0.15 15.33 102.25 361.22
Helicobacter pylori 0.03 0.05 0.05 0.50 1.88 3.71
Staphylococcus aureus 0.03 0.05 0.07 1.29 2.45 3.02
Salmonella enterica CT18 0.04 0.16 0.56 3.62 9.14 21.93
Caenorhabditis elegans 0.09 0.34 1.13 18.15 189.32 1865.10

As far as our time study, shown in Table 3, is concerned, the main result is that, as expected,
Simple Greedy outperforms both the more refined Ratio-based Greedy and the Gurobi solver.
This performance extends to both the average and the worst-case behavior of the three
approaches.

5 Conclusions

In this work, we propose a new centrality metric, called star centrality, which aims to consider
the connections of the “best” induced star centered at a node i. The problem was shown
to be NP-hard, however two approximation algorithms that perform efficiently, both as far
as execution time and solution quality are concerned, were devised and implemented. The
metric was then compared to traditional nodal centrality metrics in real-life protein-protein
interaction networks, outperforming them in all instances; often significantly.
The implications from our work are two-fold. From a biological aspect, this metric provides
researchers with a new and improved scoring scheme for ranking proteins and their interac-
tions based on not only the proteins themselves, but also after considering their interacting
partners. While our study is focusing on a specific type of clusters (induced stars), un-
derstanding how the new score works can prove valuable for developing other, group-based
scoring/ranking schemes. Another important aspect of our contribution is that we were able
to show that by considering groups of proteins we mitigate known problems with current
large-scale proteome databases, improving the quality and robustness of the obtained scores.
We finally observe that the proposed metric does indeed take care of the three caveats
mentioned earlier. First, this extension does not favor proteins that participate in a large
number of interactions; instead it merely favors proteins that are located in “strategic”, as
far as the network topology is concerned, locations in the proteome. Secondly, if an error
exists and an interaction is missing (or present, when it should not be), the effect it has
in the metric is alleviated as a set of proteins is considered, instead of singleton proteins.
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Lastly, proteins with low co-expression that however serve to connect otherwise disconnected
protein complexes will have a higher star centrality metric, helping in their identification,
contrary to other centrality metrics in use for PPINs.
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APPENDIX

In this appendix, we present the results for the Helicobacter pylori and Caenorhabditis elegans
for the 60% threshold (the experiment in Section 4.2), as well as all other thresholds used
(70% and 80%). All results are presented in the same format: first, the Figures showing the
accuracy of prediction in the top and bottom ranked proteins are given, followed by their
receiver operation characteristic curves.
We first discuss the results obtained on Salmonella enterica subspecies CT 18 organism (with
a threshold of 60%) where the star centrality metric performs almost twice as well than any
other centrality metric, with a final score of 42.09%, as can be seen in Figure 15. As a
comparison, the score that is closest is the one of degree centrality (22.84%), while closeness,
betweenness, and eigenvector centrality are at 15.65%, 20.63%, and 17.5%, respectively.
When considering the bottom 500 proteins in Figure 16, once more star centrality with a
score of 9.18% misclassifies less essential proteins than the other centrality metrics at 17.68%,
16.43%, 18.78%, and 19.71%. Last, Figure 19 (left) reveals that star centrality (with an area
under the curve of 0.858), eigenvector centrality (area under the curve equal to 0.788), and
betweenness centrality (area under the curve of 0.759) all perform well.
As mentioned in the introduction, the C. Elegans organism is of particular interest as it
shares common or homologue proteome to humans. Interestingly, for both organisms, star
centrality and closeness centrality perform similarly. First, let us focus on Figures 17 and 18.
As can be seen, star centrality barely outperforms closeness centrality (behaving similarly)
with a final score of 47.29% compared to 41.58%. The other three metrics are far behind with
scores of 32.19%, 30.98%, and 19.10% for degree, betweenness, and eigenvector centrality.
As far as the bottom 500 ranked proteins are concerned, the corresponding scores are low
and we note that a similarly low score is observed for the human proteome too. The scores
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Figure 15: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Salmonella
enterica CT18 organism when a thresh-
old of 60% was used.
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Figure 16: The ratio of essential pro-
teins detected in the ranked bottom k pro-
teins according to each metric for the
Salmonella enterica CT18 organism when
a threshold of 60% was used.

are 3.38%, 5.40%, 4.35%, 4.89%, and 5.28% for the centrality metrics in the order presented
in the Figure legends. For the ROC curve, shown in Figure 19 (right), the area under the
curve is 0.854 when considering star centrality, with closeness centrality a close second (with
an area of 0.784).
The remainder of the Appendix presents all other experimental configurations between all
five organisms and the remaining thresholds. The results are shown in Figures 20-39 (for the
top and bottom k proteins analysis), followed by the receiver operation characteristic curves
in Figures 40-43.
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Figure 17: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the C. Elegans
organism when a threshold of 60% was
used.
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Figure 18: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the C. Ele-
gans organism when a threshold of 60%
was used.
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Figure 19: The Receiver Operating Characteristic curves for each metric for the Salmonella
enterica CT18 (yeast) and the Caenorhabditis elegans organisms. Both ROC curves are
obtained for a threshold of 60%.
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Figure 20: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 70% was used.
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Figure 21: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 70% was used.
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Figure 22: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Helicobac-
ter pylori organism when a threshold of
70% was used.
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Figure 23: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Heli-
cobacter pylori organism when a thresh-
old of 70% was used.
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Figure 24: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Staphylo-
coccus aureus organism when a threshold
of 70% was used.
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Figure 25: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Staphylo-
coccus aureus organism when a threshold
of 70% was used.
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Figure 26: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Salmonella
enterica CT17 organism when a thresh-
old of 70% was used.
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Figure 27: The ratio of essential pro-
teins detected in the ranked bottom k pro-
teins according to each metric for the
Salmonella enterica CT17 organism when
a threshold of 70% was used.
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Figure 28: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the C. Elegans
organism when a threshold of 70% was
used.
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Figure 29: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the C. Ele-
gans organism when a threshold of 70%
was used.
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Figure 30: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 80% was used.
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Figure 31: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Saccha-
romyces cerevisiae organism (yeast) when
a threshold of 80% was used.

34



100 200 300 400 500

0.2

0.4

0.6

Ranked proteins

Ratio of essential proteins

Star
Degree
Closeness
Betweenness
Eigenvector

Figure 32: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Helicobac-
ter pylori organism when a threshold of
80% was used.
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Figure 33: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Heli-
cobacter pylori organism when a thresh-
old of 80% was used.
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Figure 34: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Staphylo-
coccus aureus organism when a threshold
of 80% was used.
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Figure 35: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the Staphylo-
coccus aureus organism when a threshold
of 80% was used.
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Figure 36: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the Salmonella
enterica CT18 organism when a thresh-
old of 80% was used.
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Figure 37: The ratio of essential pro-
teins detected in the ranked bottom k pro-
teins according to each metric for the
Salmonella enterica CT18 organism when
a threshold of 80% was used.
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Figure 38: The ratio of essential proteins
detected in the ranked top k proteins ac-
cording to each metric for the C. Elegans
organism when a threshold of 80% was
used.
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Figure 39: The ratio of essential proteins
detected in the ranked bottom k proteins
according to each metric for the C. Ele-
gans organism when a threshold of 80%
was used.
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Figure 40: The Receiver Operating Characteristic curves for each metric for the Saccha-
romyces cerevisiae (yeast), the Helicobacter pylori, and the Staphylococcus aureus organisms
with a threshold of 70%.
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Figure 41: The Receiver Operating Characteristic curves for each metric for the Salmonella
enterica CT18 (yeast) and the Caenorhabditis elegans organisms with a threshold of 70%.
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Figure 42: The Receiver Operating Characteristic curves for each metric for the Saccha-
romyces cerevisiae (yeast), the Helicobacter pylori, and the Staphylococcus aureus organisms
with a threshold of 80%.
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Figure 43: The Receiver Operating Characteristic curves for each metric for the Salmonella
enterica CT18 (yeast) and the Caenorhabditis elegans organisms with a threshold of 80%.
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