
ar
X

iv
:1

51
1.

02
42

3v
3 

 [
m

at
h.

O
C

] 
 1

3 
Ju

l 2
01

8

Globally solving Non-Convex Quadratic Programs via Linear

Integer Programming techniques

Wei Xia∗1, Juan Vera†2 and Luis F. Zuluaga‡1

1Department of Industrial and Systems Engineering, Lehigh University
H.S. Mohler Laboratory, 200 West Packer Avenue, Bethlehem, PA 18015

2Department of Econometrics and Operations Research, Tilburg University
5000 LE, Tilburg, The Netherlands

July 17, 2018

Abstract

Quadratic programming (QP) is a well-studied fundamental NP-hard optimization problem which
optimizes a quadratic objective over a set of linear constraints. In this paper, we reformulate QPs as a
mixed-integer linear problem (MILP). This is done via the reformulation of QP as a linear complementary
problem, and the use of binary variables and big-M constraints, to model the complementary constraints.
To obtain such reformulation, we show how to impose bounds on the dual variables without eliminating
all the (globally) optimal primal solutions; using some fundamental results on the solution of perturbed
linear systems.

Reformulating non-convex QPs as MILPs provides an advantageous way to obtain global solutions as it
allows the use of current state-of-the-art MILP solvers. To illustrate this, we compare the performance of
our solution approach, labeled quadprogIP, with the current benchmark global QP solver quadprogBB, as
well as with BARON, one of the leading non-linear programming (NLP) solvers, and CPLEX’s non-convex QP
solver, on a large variety of QP test instances. In practice, quadprogIP is shown to typically outperform
by orders of magnitude quadprogBB, BARON, and CPLEX on standard QPs. For general QPs, quadprogIP
outperforms quadprogBB, outperforms BARON in most instances, while CPLEX performs the best on these
instances. For box-constrained QPs, quadprogIP has a comparable performance to quadprogBB and
BARON in small- to medium-scale instances, but is outperformed by these solvers on large-scale instances;
while CPLEX performs the best on box-constrained QP instances. Also, unlike quadprogBB, the solution
approach proposed here is able to solve QP instances whose dual feasible set is unbounded. The MATLAB

code, called quadprogIP, and the instances used to perform these numerical experiments are publicly
available at https://github.com/xiawei918/quadprogIP.

1 Introduction

Quadratic programmming (QP), is a fundamental optimization problem with a quadratic objective and
linear constraints. QP is NP-hard (see, e.g., Pardalos and Vavasis 1991, and the references therein),
however, when the objective is convex, QP can be globally solved (within a predetermined precision
ǫ > 0) in polynomial time via interior-point methods (see, e.g., Renegar 2001). Here, the focus is on
obtaining global solutions for non-convex QP. QP is arguably the most basic instance of a (non-convex),
non-linear program (NLP). At a fundamental level, the complexity of globally solving QP lies in the
fact that multiple of its local optimal solutions may not necessarily be global optimal solutions (see, e.g.
Bertsekas 1999).

QPs commonly arise in applications in engineering, pure and social sciences, finance, and eco-
nomics (see, e.g., Horst et al. 2000). As a result, there has been extensive work on studying how to
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obtain global solutions of QPs using both NLP techniques (see, Gould et al. 2003, Gao 2004, for surveys
in this area), and convex optimization techniques (consider, e.g., Nesterov 1998, Kim and Kojima 2001,
2003, Chen and Burer 2012, among many others).

In this paper, we reformulate QPs as a mixed-integer linear problem (MILP). This provides an
advantageous way to obtain global solutions as it allows the use of current state-of-the-art MILP solvers.
Moreover, the numerical experiments of Section 3 show that a basic implementation of the proposed
algorithm, which we refer to as quadprogIP, typically outperform by orders of magnitude quadprogBB,
BARON, and CPLEX on standard QPs. For general QPs, quadprogIP outperforms quadprogBB, outperforms
BARON in most instances, while CPLEX performs the best on these instances. For box-constrained QPs,
quadprogIP has a comparable performance to quadprogBB and BARON in small- to medium-scale instances,
but is outperformed by these solvers on large-scale instances; while CPLEX performs the best on box-
constrained QP instances.

Unlike quadprogBB, the solution approach proposed here is able to solve QP instances whose dual fea-
sible set is unbounded. The MATLAB code and the instances used to perform these numerical experiments
are available at https://github.com/xiawei918/quadprogIP.

To obtain the proposed MILP-reformulation (see Sec. 2.1), the QP’s KKT conditions are used to
reformulate the QP as a linear complementarity problem (LCP). In this reformulation, the complex-
ity of the problem is captured by the complementarity constraints. The KKT-branching approach
(Burer and Vandenbussche 2009), which consist on branching on this complementarity constraints, is
not useful on this reformulation of the problem, as the underlying linear relaxations at the root node
of the KKT-branching tree are (under mild assumptions) unbounded (Burer and Vandenbussche 2009,
Cor. 2.3). Another alternative, namely, reformulating the complementarity constraints using binary
variables and big M constraints, requires the knowledge of bounds on the problem’s KKT multipliers,
which in general are unbounded (cf., Hu et al. 2012, Sec. 6.1 and 6.2). To directly use MILP solvers for
the solution of the QP, we overcome this requirement by restricting our attention to a subset of optimal
KKT points. We show (Theorem 1) that it is possible to impose bounds on the dual variables without
eliminating all the (globally) optimal primal solutions. Our results are based on fundamental results
on the approximate solution of systems of linear equations (e.g., Güler et al. 1995, Mangasarian 1981).
One advantage of the proposed methodology is that unlike previous related work, the convergence of
the MILP-based approach to the QP’s global optimal solution in finite time follows in straightforward
fashion (see Sec. 3.1.1). Also, the methodology can be applied to QPs without the need for assumptions
on the relative interior of its feasible set (see Sec. 2.3 for details).

Before stating the results described above, we end this section with a short review of both NLP and
convex optimization techniques for the global solution of QP’s. Using NLP techniques, Vanderbei and Shanno
(1999) proposed an interior-point algorithm for NLPs (thus, applicable for QPs), which is an exten-
sion of the interior-point methods for linear and convex optimization problems (cf., Renegar 2001).
Floudas and Visweswaran (1990) proposed an algorithm which globally solves certain classes of NLPs
by decomposing the problem based on an appropriate partition of its decision variables. The work
of Belotti et al. (2009) and Tawarmalani and Sahinidis (2004) on the use of relaxation and lineariza-
tion techniques (cf., Sherali and Adams 1994), in combination with spatial branching techniques (cf.,
Tawarmalani and Sahinidis 2004), has lead to the development of the two well-known global solvers
Couenne (Belotti 2010) and BARON (Sahinidis 1996) for NLPs. Another solver that combines these
type of techniques, together with techniques to exploit the problems structure is GloMIQO, developed
by Misener and Floudas (2013) for the solution of more general quadratically constrained quadratic pro-
grams with integer variables. More recently, specialized solution approaches have been developed for
special classes of QP. In particular, Bonami et al. (2016b) develop a special branch-and-cut algorithm for
box constrained QPs based on using cuts derived from the boolean quadric polytope. Also, Bonami et al.
(2016a) develop new specialized cuts that are used within a spatial branch and bound algorithm to solve
standard QPs. For further review of numerical and theoretical results on the solution of QPs using NLP
techniques, we refer the reader to Gould et al. (2003) and Gao (2004).

Besides NLP techniques, convex optimization techniques (cf., Renegar 2001, Ben-Tal and Nemirovski
2001) have also been used to address the solution of QPs. For example, Nesterov (1998) and later
Kim and Kojima (2001, 2003), explored the use of semidefinite programming (SDP) as well as second-
order cone relaxations to approximately or globally solve a QP.

More recently, Burer and Vandenbussche (2009) proposed a SDP-based branch and bound approach
to globally solve box-constrained QPs; they reformulate a QP by adding the QP’s corresponding Karush-
Kuhn-Tucker (KKT) conditions as redundant constraints. Let us refer to this quadratically constrained
quadratic program (QCQP) as QPKKT. To solve QPKKT, Burer and Vandenbussche (2009) construct a
finite KKT-branching tree by branching on the resulting problem’s complementarity constraints. SDP
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relaxations of QPKKT are used to obtain lower bounds at each node of the KKT-branching tree. On the
other hand, to obtain upper bounds a (local) QP-solver based on NLP techniques is used. Chen and Burer
(2012) improved the solution methodology of Burer and Vandenbussche (2009) by obtaining tighter lower
bounds at each node of the KKT-branching tree. For that purpose, the double non-negative (DNN)
relaxation of the completely positive reformulation (Burer 2009) of QPKKT at each node of the KKT-
branching tree is used. Chen and Burer (2012) provide a MATLAB implementation of their approach called
quadprogBB. In this implementation, the MATLAB (local) QP solver quadprog is used to obtain the upper
bounds while the algorithm proposed by Burer (2010) is used to obtain lower bounds, at each node of the
KKT-branching tree. Chen and Burer (2012) show that this solution approach typically outperforms the
solver Couenne and the approach proposed by Burer and Vandenbussche (2009) on a test bed of publicly
available QP instances. This makes the solver quadprogBB a current benchmark for the global solution
of QP problems.

The rest of the paper is organized as follows. In Section 2, we formally introduce the QP problem
and present the theoretical results that serve as the foundation for the proposed solution approach. In
Section 3, we illustrate the effectiveness of this approach by presenting relevant numerical results on test
instances of the QP problem. To conclude, in Section 4, we provide conclusions and directions for future
work.

2 Solution Approach for non-convex QPs

We consider the following quadratic programming problem

QP : min 1

2
x⊺Hx+ f⊺x

s. t. Ax = b

x ≥ 0,
(1)

where f ∈ R
n, A ∈ R

m×n, b ∈ R
m, and H ∈ R

n×n is a symmetric matrix. Note that there is no assump-
tion on the matrix H being positive semidefinite; that is, QP is in general a non-convex optimization
problem (cf., Bertsekas 1999).

Similar to Burer and Vandenbussche (2009) and Chen and Burer (2012), we assume that the feasible
set of QP is nonempty and bounded. However, in what follows, no further assumption is made about
the feasible set of QP.

2.1 Mixed-integer linear programming reformulation

After introducing the Lagrange multipliers µ ∈ R
m for its equality constraints and λ ∈ R

n for its
non-negativity constraints, the KKT conditions for QP are given by

Hx+ f + A
⊺
µ− λ = 0 (2a)

x
⊺
λ = 0

Ax = b (2b)

x ≥ 0, λ ≥ 0. (2c)

In what follows, we will refer to the set

ΛKKT = {(x, µ, λ) ∈ R
2n+m : (x,µ, λ) satisfy (2a)− (2c)} (3)

as the KKT points of QP.
Note that because the feasible set of QP (1) is a polyhedron, the KKT conditions (2) are first order

necessary conditions for the optimal solutions of QP (see, e.g. Eustaquio et al. 2008, Thm. 3.3). Thus,
one can add these KKT conditions as redundant constraints in QP to obtain the following equivalent
formulation of QP,

min 1

2
x⊺Hx+ f⊺x

s. t. Hx+ f + A⊺µ− λ = 0
x⊺λ = 0
Ax = b

x ≥ 0, λ ≥ 0.

(4)
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As shown by Giannessi and Tomasin (1973, Thm. 2.4), one can use the KKT conditions (2a)–(2b) to
linearize the objective of (4). Namely, for any feasible solution x ∈ R

n of (4), we have

1

2
x
⊺
Hx+ f

⊺
x =

1

2
(f⊺

x− x
⊺
A

⊺
µ+ x

⊺
λ) =

1

2
(f⊺

x− b
⊺
µ).

As a result, problem (4) is equivalent to the following problem with a linear (instead of quadratic)
objective.

1

2
min f⊺x− b⊺µ

s. t. Hx+ f +A⊺µ− λ = 0
x⊺λ = 0
Ax = b

x ≥ 0, λ ≥ 0.

(5)

Notice that in (5), the complexity of QP is captured in the complementary constraints x⊺λ = 0. Next,
we address the complementary constraints in (5) by using Big-M constraints. For that purpose, in
Section 2.2, we derive upper bounds U, V ∈ R

n on the decision variables x, λ ∈ R
n of (5) such that there

are (globally) optimal KKT points (x, µ, λ) ∈ R
2n+m of QP satisfying x ≤ U , λ ≤ V . Using these upper

bounds, one can show (see, Theorem 1) that a global optimal solution of QP can be obtained by solving
the following MILP

IQP : 1

2
min f⊺x− b⊺µ

s. t. Hx+ f +A⊺µ− λ = 0
Ax = b

0 ≤ xj ≤ zjUj j = 1, . . . ,m
0 ≤ λj ≤ (1− zj)Vj j = 1, . . . ,m
zj ∈ {0, 1} j = 1, . . . ,m.

(6)

Specifically, problem IQP is a MILP with the same optimal value as QP whose optimal solutions are
optimal solutions of QP.

2.2 Bounding the primal and dual variables

As mentioned earlier, the first step in obtaining problem IQP is to derive explicit upper bounds U, V ∈ R
n

such that there are optimal KKT points (x,µ, λ) ∈ R
2n+m of QP satisfying x ≤ U , λ ≤ V .

Similar to Chen and Burer (2012), using the assumption that the feasible set of QP is non-empty and
bounded, one can compute the upper bounds U ∈ R

n
+ on the primal variables x ∈ R

n by setting:

Uj := max{xj : Ax = b, x ≥ 0}, (7)

for every j = 1, . . . , n.
Using assumptions stronger than ours, Chen and Burer (2012) show that ΛKKT , the set of KKT

points, is bounded. As the following example illustrates, under our weaker assumptions, the set ΛKKT

could be unbounded.

Example 1. Consider the instance of QP defined by setting

H =





2 0 0
0 −1 0
0 0 1



 f =





2
4
3



 A =

[

2 1 1
1 1 1

]

b =

[

1
1

]

.

Note that in this case the feasible region of QP is {[0, 1 − t, t]⊺ : 0 ≤ t ≤ 1}, which is bounded and
non-empty. However, the set of KKT points ΛKKT (3) is unbounded. Specifically, notice that for any
v ≥ 1 the following is a KKT point for QP :

x =





0
1
0



 µ =

[

v

−3− v

]

λ =





−1 + v

0
0



.

Thus, to handle the complementarity contrains in (5) using Big-M constraints, we do not try to obtain
a bound for the value of the entries of λ ∈ R

m for all KKT points. Instead, in Theorem 1, we prove that
there exist a bound that we can impose in the dual variables, without discarding all (globally) optimal
KKT points of QP. For this purpose, we make use of fundamental results on the approximate solution
of systems of linear equations (e.g., Güler et al. 1995, Mangasarian 1981).

Let us first define a particular instance of the well-known Hoffman bound (Hoffman 2003), closely
following the notation in Güler et al. (1995).
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Definition 1. Fix the norm ‖ · ‖α on R
n and the norm ‖ · ‖β on R

m. Given A ∈ R
m×n and b ∈ R

m, let
F := {x ∈ R

n
+ : Ax = b}. Let HA,b ∈ R be the smallest constant satisfying:

For all y ∈ R
n such that Ay = b, there is x ∈ F such that ‖x− y‖α ≤ HA,b‖y

−‖β . (8)

Above, for any y ∈ R
n, y− ∈ R

n is the vector difined by y−
i = max{0,−yi}, i = 1, . . . , n. That

is, Definition 1 corresponds to the Hoffman bound obtained when looking at perturbations of only the
non-negative constraints of the polyhedron F := {x ∈ R

n
+ : Ax = b}.

In what follows we will use the following notation to denote the dual norm associated to a given norm.

Definition 2. Given a norm ‖ · ‖ on R
n, its associated dual norm on R

n, denoted ‖ · ‖∗ is defined as:

‖x‖∗ = sup{x⊺
z : z ∈ R

n
, ‖z‖ ≤ 1}.

In particular, for any x ∈ R
n, ‖x‖∗∞ = ‖x‖1.

Using Definition 1, we provide in Theorem 1 below, the desired bound to be used on the dual variables
of QP in the IQP formulation (6).

Theorem 1. Let A ∈ R
m×n and b ∈ R

m be such that the set F := {x ∈ R
n
+ : Ax = b} is non-empty

and bounded. Let HA,b be defined by (8), and M > (κ + ‖f‖∗α)HA,b‖e‖β , where κ := max{‖Hx‖∗α :
Ax = b, x ≥ 0}. Then, there exists an optimal KKT point (x∗, µ∗, λ∗) for QP such that e⊺λ∗ ≤ M , and
µ∗ ∈ R

m.

Proof. Proof. Consider the following perturbed version of QP:

min 1

2
x⊺Hx+ f⊺x+Mt

s. t. Ax = b

x ≥ −te

0 ≤ t ≤ δ,

(9)

where e is the vector of all ones, and δ > 0. Notice that the feasible set of (9) is a closed subset of
{x ∈ R

n : Ax = b, x ≥ −δe} × [0, δ] which is non-empty and bounded as F is non-empty, bounded, and
the recession cone of {x ∈ R

n : Ax = b, x ≥ −δe} is equal to the recession cone of F . Thus, the optimal
value of (9) exists and it is attained.

Let (x∗, t∗) be an optimal solution of (9). Then, there exists (µ∗, λ∗, ρ∗, ω∗) ∈ R
n+m+2 such that

(x∗, t∗, µ∗, λ∗, ρ∗, ω∗) satisfies the KKT conditions associated with problem (9)

Hx∗ + f + A⊺µ∗ − λ∗ = 0
M − e⊺λ∗ − ρ∗ + ω∗ = 0

(x∗ − t∗e)⊺λ∗ = 0
t∗ρ∗ = 0

(δ − t∗)ω∗ = 0
Ax∗ = b

x∗ + t∗e ≥ 0
0 ≤ t∗ ≤ δ

λ∗, ρ∗, ω∗ ≥ 0,

(10)

where µ∗ ∈ R
m, λ∗ ∈ R

n, ρ∗ ∈ R, ω∗ ∈ R, are respectively the Lagrangian multipliers of problem (9)
associated with the linear constraints, lower bounds in the decision variables x ∈ R

n, and lower and
upper bounds on the decision variable t ∈ R.

Now we claim that t∗ = 0. In that case, notice that the complementarity constraint (δ − t∗)ω∗ = 0
in (10) implies ω∗ = 0 and thus, from the equation M − e⊺λ∗ − ρ∗ + ω∗ = 0 in (10) and the fact that
ρ∗ ≥ 0, it follows that (x∗, µ∗, λ∗) satisfies the statement of the theorem.

To show that t∗ = 0, note that from Definition 1, it follows that there exists x′ ∈ F such that

‖x′ − x
∗‖α ≤ HA,bt

∗‖e‖β . (11)

In problem (9), (x′, 0) is a feasible solution and thus the objective value of (x′, 0) is no smaller than the
objective value of (x∗, t∗). That is,

1

2
x
∗⊺
Hx

∗ + f
⊺
x
∗ +Mt

∗ ≤
1

2
x
′⊺
Hx

′ + f
⊺
x
′
.

5



Therefore,

Mt
∗ ≤

1

2
(x′⊺

Hx
′ − x

∗⊺
Hx

∗) + f
⊺(x′ − x

∗)

=
1

2
(x′ + x

∗)⊺H(x′ − x
∗) + f

⊺(x′ − x
∗)

≤
1

2
‖H(x′ + x

∗)‖∗α‖x
′ − x

∗‖α + ‖f‖∗α‖x
′ − x

∗‖α

≤

(

1

2
(‖Hx

′‖∗α + ‖Hx
∗‖∗α) + ‖f‖∗α

)

‖x′ − x
∗‖α.

Thus, using (11) we have

Mt
∗ ≤

(

1

2
(κ+ κδ) + ‖f‖∗α

)

HA,b‖e‖βt
∗ (12)

where κδ := max{‖Hx‖∗α : Ax = b, x ≥ −δe, x ∈ R
n}.

As M > (κ+ ‖f‖∗α)HA,b‖e‖β , and κδ ↓ κ when δ ↓ 0, taking δ > 0 small enough we have that
M >

(

1

2
(κ+ κδ) + ‖f‖∗α

)

HA,b‖e‖β . Thus, (12) implies that t∗ = 0.

2.3 Computation of the dual bounds

Theorem 1 provides the bounds needed for the reformulation of QP as IQP (6) in terms of the Hoffman
constant HA,b introduced in Definition 1. Next, we discuss how this constant can be obtained in closed-
form for important special classes of QP, as well as how it can be computed for general classes of QP.

2.3.1 Standard Quadratic Programming.

Consider the standard quadratic program (SQP):

SQP : max
x∈∆

1

2
x⊺Hx+ f⊺x (13)

where ∆ =
{

x ∈ R
n :

∑n

i=1
xi = 1, x ≥ 0

}

, is the standard simplex. The SQP problem is fundamental in
optimization and arises in many applications (see, e.g., Bomze 1998). Next, we show that in this case,
the Hoffman bound HA,b introduced in Definition 1 can be computed in closed-form for suitable choices
of the norm ‖ · ‖α on R

n and the norm ‖ · ‖β on R
m.

Proposition 1. Consider the norm ‖ · ‖α = ‖ · ‖1 on R
n and the norm ‖ · ‖β = ‖ · ‖1 on R

m. Let A = e⊺

and b = 1. Then HA,b = 2.

Proof. Proof. Let y ∈ R
n such that e⊺y = 1 be given. Let I = {i ∈ {1, . . . , n} : yi ≥ 0} and

Ic = {1, . . . , n} \ I , and consider the case Ic 6= ∅ (otherwise, the statement follows by letting x = y in
Definition 1). Note that e⊺y = 1 implies I 6= ∅ and that

∑

i∈I
yi = 1 −

∑

i∈Ic
yi = 1 + ‖y−‖1. Let

x ∈ R
n be defined by setting xi = 0 for all i ∈ Ic, and xi = 1

1+‖y−‖1
yi for all i ∈ I . Clearly, x ∈ ∆.

Furthermore, for any i ∈ Ic, |xi − yi| = −yi. Also for any i ∈ I , we have |xi − yi| = ‖y−‖1
1+‖y−‖1

yi.

Thus, ‖x − y‖1 = −
∑

i∈Ic
yi +

‖y−‖1
1+‖y−‖1

∑

i∈I
yi = 2‖y−‖1. That is, HA,b ≤ 2. To show HA,b ≥ 2,

consider y = (n,−1, . . . ,−1). For any x ∈ ∆, it follows that ‖x − y‖1 = |x1 − n| +
∑n

i=2
|xi + 1| =

2n− 1− x1 +
∑n

i=2
xi = 2(n− x1) ≥ 2(n− 1) = 2‖y−‖1.

Thus, (13) can be reformulated as IQP by letting:

U = e and V > Me, (14)

with
M = 2n (‖H‖∞,∞ + ‖f‖∞) , (15)

where we have used that

κ = max{‖Hx‖∞ : e⊺x = 1, x ∈ R
n
+} ≤ max

i,j∈{1,...,n}
|Hij | =: ‖H‖∞,∞.

Remark 1. It is worth mentioning that a proof similar to the one given in Proposition 1 shows that
if ‖ · ‖1 is replaced with ‖ · ‖∞ in Proposition 1, the corresponding Hoffman constant would be equal to
n− 1. However, this leads to a weaker bound V than the one given in (14).
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2.3.2 Quadratic Programming with Box Constraints.

Now, consider the box-constrained QP (BoxQP)

BoxQP : max 1

2
x⊺Hx+ f⊺x

s. t. l ≤ x ≤ u,
(16)

where l, u ∈ R
n are given bounds on the primal variables of BoxQP satisfying (w.l.o.g.) l < u (component-

wise). Problem BoxQP is equivalent to the following QP problem:

max 1

2
x⊺Hx+ (Hl + f)⊺x

s. t. x+ s = u− l

x ≥ 0, s ≥ 0.
(17)

Next, we show that in this case, the Hoffman bound HA,b introduced in Definition 1 can be computed
in closed-form for a suitable choice of the norm ‖ · ‖α on R

n and the norm ‖ · ‖β on R
m.

Proposition 2. Consider the norm ‖ · ‖α = ‖ · ‖∞ on R
n and the norm ‖ · ‖β = ‖ · ‖∞ on R

m. Let I
denote the identity matrix in R

n×n, b ∈ R
n
+, and A = [I, I ]. Then HA,b = 1.

Proof. Proof. Let (y, z) ∈ R
2n such that y + z = b be given. Define x = y+ − z− and s = z+ − y−.

We claim (x, s) ∈ F = {(x, s) ∈ R
2n
+ : x + s = b}. To show this notice first that x + s = y+ −

z− + z+ − y− = y + z = b. Now let i ∈ {1, . . . , n}. If z−i = 0 then xi = y+
i ≥ 0. Thus assume

z−i > 0. Then z+i = 0 and xi = bi − si = bi + y−
i ≥ 0. Thus x ≥ 0. Similarly s ≥ 0. To finish,

notice that ‖(y, z) − (x, s)‖∞ = ‖(−y− + z−,−z− + y−)‖∞ = ‖(y−, z−)‖∞ = ‖(y, z)−‖∞. This shows
that HA,b ≤ 1. To show HA,b ≥ 1, let y = −e and z = b + e. For any (x, s) ∈ F , it follows that
‖(x, s)− (y, z)‖∞ ≥ |x1 + 1| ≥ 1 = ‖(y, z)−‖∞.

Using Proposition 2, we obtain that (17) can be reformulated as IQP by letting:

U =

[

u− l

u− l

]

and V > Me, (18)

with
M = min(n‖H‖∞,∞‖u− l‖1, ‖H‖1,1‖u− l‖∞) + ‖f +Hl‖1, (19)

where we have used that

κ = max{‖Hx‖1 : x+ s = u− l, x, s ∈ R
n
+} ≤ min(n‖H‖∞,∞‖u− l‖1, ‖H‖1,1‖u− l‖∞),

where ‖H‖1,1 :=
∑

i6=j∈{1,...,n} |Hij |.

2.3.3 General Quadratic Programming.

Note that to compute an appropriate M value in Theorem 1, it is enough to let M > (κ+ ‖f‖∗α)HA‖e‖β
for some constant HA ≥ HA,b. As shown bellow, HA can be computed in general using Güler et al.
(1995, Theorem 3.2).

Proposition 3. Fix the norm ‖ · ‖α on R
n and the norm ‖ · ‖β on R

m. Let A ∈ R
m×n and b ∈ R

m be
such that the set F := {x ∈ R

n
+ : Ax = b} 6= ∅. Also, let

σ̄(A) =
{

(µ+
, µ

−
, λ) ∈ R

m+n : ‖A⊺(µ+ − µ
−)− λ‖∗α ≤ 1, µ+

, µ
− ∈ R

m
+ , λ ∈ R

n
+

}

,

and
HA = max{‖(µ+

, µ
−
, λ)‖∗β : (µ+

, µ
−
, λ) is an extreme point of σ̄(A)}. (20)

Then, HA ≥ HA,b.

Proof. Proof. First notice that for all y ∈ R
n,

min
x∈F

‖x− y‖α = min{‖x− y‖α : A′
x ≤ b

′
, x ∈ R

n}

where

A
′ =





A

−A

−I



 , b
′ =





b

−b

0



 .

7



Thus, it follows from Güler et al. (1995, Theorem 3.2) that

min
x∈F

‖x− y‖α ≤ HA

∥

∥

∥

∥

∥

∥





(Ay − b)+

(Ay − b)−

y−





∥

∥

∥

∥

∥

∥

β

, (21)

after identifying HA = Kαβ(A
′), σ̄α(A) = σα(A

′) (see, Güler et al. 1995, Theorem 3.2).
From (21), it follows that for any y ∈ R

n such that Ay = b, then

min
x∈F

‖x− y‖α ≤ HA

∥

∥

∥

∥

∥

∥





0
0
y−





∥

∥

∥

∥

∥

∥

β

= HA

∥

∥y
−
∥

∥

β
. (22)

Also, from (22), HA ≥ HA,b follows from Definition 1, as HA,b is the smallest constant satisfying (22).

In order to use Proposition 3 to reformulate QP (1) as IQP (6), one can first, similar to Chen and Burer
(2012), normalize the primal variables of QP to be between 0 and 1. Namely, under the boundedness
assumption considered here, on has that QP is equivalent to:

min 1

2
x⊺H̃x+ f̃⊺x

s. t. Ãx = b

x ≥ 0,

where Ãij := AijUiUj , f̃i := fiUi, and Ãij := AijUj for all i, j ∈ {1, . . . , n}, and U ∈ R
n
+ is given by (7).

Now, using Proposition 3, and choosing the norm ‖ · ‖α = ‖ · ‖∞ on R
n and the norm ‖ · ‖β = ‖ · ‖∞ on

R
m, we obtain that QP (1) can be reformulated as IQP (6) by letting H = H̃, f = f̃ , A = Ã,

U = e, and V > Me,

with
M =

(

‖H̃‖1,1 + ‖f̃‖1
)

HA, (23)

where we have used that κ = max{‖H̃x‖1 : x ≤ e, x ∈ R
n
+} ≤ ‖H̃‖1,1.

In the case that one chooses the norm ‖ · ‖α = ‖ · ‖1 on R
n and the norm ‖ · ‖β = ‖ · ‖1 on R

m, then
M = n(n‖H̃‖∞,∞ + ‖f̃‖∞)HA. However, empirical results on test instances shows that this latter M is
weaker than the bound obtained using (23).

Obtaining an efficient way to compute the constant HA in (20) is however still an open question (see,
e.g., Zheng and Ng 2004, Güler et al. 1995, Peña et al. 2017). For illustrative purposes, in Section 2.3.4,
we show the results of using an algorithm recently proposed in Peña et al. (2017) to compute HA, and
the corresponding bound M in (23).

An alternative and efficient way to compute bounds on the dual variables of a general instance of QP,
is to use the bounds on the dual variables proposed by Chen and Burer (2012, Proposition 3.1) which are
valid for QP instances having a strictly non-negative feasible solution (i.e., a feasible solution satisfying
x > 0), and can be computed by solving a LP (cf., Chen and Burer 2012, eq. (19)). Specifically, notice
that after obtaining the primal bounds U ∈ R

n using (7), problem QP is equivalent to

min 1

2
x⊺Hx+ f⊺x

s. t. Ax = b

0 ≤ x ≤ U.

(24)

Following the notation used thus far and letting ρ ∈ R
n be the dual variables associated with the upper

bound constraints on the variables x ∈ R
n in (24), it follows from the KKT conditions of (24) that any

of its optimal solutions must satisfy:

Hx+ f + A
⊺
µ− λ+ ρ = 0 (25a)

x
⊺
λ = 0, (U − x)⊺ρ = 0 (25b)

Ax = b (25c)

x ≥ 0, λ ≥ 0, ρ ≥ 0.

Also, after multiplying (25a) by a feasible solution x ∈ R
n of (24) and using (25b), (25c), it follows that

any optimal solution of (24) also satisfies:

x
⊺
Hx+ f

⊺
x+ b

⊺
µ+ U

⊺
ρ = 0.
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Then, if QP has a feasible solution x ∈ R
n satisfying xi > 0, i = 1, . . . ,m, it follows from Chen and Burer

(2012, Proposition 3.1) that bounds on the dual variables V ∈ R
n required for the MILP reformulation

IQP of QP can be computed by solving the following LP:

Vj = max















λj :

Hx+ f + A⊺µ− λ+ ρ = 0
H •X + f⊺x+ b⊺µ+ U⊺ρ = 0
0 ≤ Xij ≤ UiUj , i, j = 1, . . . , n
0 ≤ x ≤ U, λ ≥ 0, ρ ≥ 0, X ∈ Sn















, (26)

where H •X indicates the trace of the matrix HX, the matrix X ∈ Sn represents the linearization of
the matrix xx⊺ ∈ Sn, and Sn is the set of n× n real symmetric matrices.

Remark 2. In Chen and Burer (2012), eq. (18) is used to refine the dual variable bounds after scaling
the problem so that its variables are between zero and one. However, this refinement of the bounds is
not necessary to obtain their result in Proposition 3.1. The refined version of these bounds is however
the one implemented in quadprogIP, the implementation of our solution approach for general instances
of QP.

Remark 3. From Theorem 1, the constraint e⊺λ ≤ M could be added in the IQP formulation of QP (6).
Adding this constraint however has not led to improved solution times of IQP. Thus, this constraint is
not used in the implementation of our proposed solution approach for QP.

2.3.4 Bound comparison

In light of the bounds on the dual variables discussed here and the dual bounds proposed by Chen and Burer
(2012, eq. (19)), it is natural to compare their values and computing times for different instances of QP.
Before doing so, however, it is important to emphasize that the dual bounds proposed here can be
imposed on QP, even if the dual feasible set of QP is unbounded.

Example 2 (Example 1 revisited). Recall the problem discussed in Example 1, and consider the norm
‖ · ‖α = ‖ · ‖∞ on R

n and the norm ‖ · ‖β = ‖ · ‖∞ on R
m. It is not difficult to see that in this case

HA,b ≤ 1, and κ = 1. Since ‖f‖1 = 9, and ‖e‖∞ = 1, it follows that M = (κ+ ‖f‖1)HA,b ≤ 10. Thus,
for this problem we can bound the dual variables with the constraint

[λ1, λ2, λ3]
⊺ ≤ 11[1, 1, 1]⊺. (27)

In fact, notice that the following optimal solution of the problem

x
∗ =





0
1
0



 µ
∗ =

[

0
−3

]

λ
∗ =





0
0
0



,

satisfies the dual bounds (27). On the other hand, from Example 1, it follows that

max{λ1 : (x, µ, λ) ∈ ΛKKT } = ∞.

Thus, dual bounds for this problem cannot be computed using Chen and Burer (2012, eq. (19)).

In Table 1, we compare the bounds obtained in Section 2.3.1 with the bounds obtained using Chen and Burer
(2012, eq. (19)) for a number of randomly selected SQP instances. From Table 1, it is clear that the
bounds obtained using Theorem 1, and specifically, eq. (15) are tighter than the ones obtained us-
ing Chen and Burer (2012, eq. (19)) (and labeled “RLT bounds” in Table 1 for the reformulation
linearization techniques (RLT) used to derive them) on a random sample of SPQ instances. In fact, this
is the case for all the SQP instances considered in Section 3.

Similarly, in Table 2, we compare the bounds obtained in Section 2.3.2 with the bounds obtained
using Chen and Burer (2012, eq. (19)) for a number of randomly selected SQP instances. From Table 2,
it is clear that the bounds obtained using Theorem 1, and specifically, eq. (19) are tighter than the ones
obtained using Chen and Burer (2012, eq. (19)) on a random sample of BoxPQ instances. In fact, this
is the case for all the BoxQP instances considered in Section 3. Both in Table 1 and Table 2 the time
differences are a result of the bounds resulting from Theorem 1 being computed from the closed-form
formulas (15), (19), while the RLP bounds are obtained by solving a linear program (Chen and Burer
2012, eq. (19)).
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Thm. 1 bound RLT bound
SQP Instance Value Time (s) Value Time (s)

spar030-060-1.mat: 5,520 0.0000 10,628 0.4952
spar030-070-3.mat: 5,880 0.0000 16,448 0.4694
spar050-040-1.mat: 9,200 0.0000 18,925 1.4016
spar050-050-3.mat: 9,800 0.0000 29,719 1.8674
spar060-020-1.mat: 11,040 0.0000 13,255 1.8344
spar070-075-1.mat: 13,440 0.0000 90,316 17.0129
spar080-025-2.mat: 15,680 0.0001 31,792 13.8083
spar080-025-3.mat: 15,040 0.0001 38,115 13.8468
spar090-025-2.mat: 17,640 0.0001 44,646 22.8278
spar090-025-3.mat: 16,920 0.0001 49,459 23.3063
spar090-050-3.mat: 17,460 0.0001 95,726 37.7146
spar090-075-1.mat: 17,280 0.0001 148,416 49.4807
spar100-050-2.mat: 19,600 0.0001 115,192 67.8767
spar100-050-3.mat: 19,400 0.0001 119,634 67.6607

Table 1: Comparison of bounds on e
⊺
λ obtained using (15) ( “Thm. 1 bound” columns) vs. using

Chen and Burer (2012, eq. (19)) (“RLT bound” columns), together with corresponding computation times
for a random sample of SQP instances.

Thm. 1 bound RLT bound
BoxQP Instance Value Time (s) Value Time (s)

spar020-100-3.mat: 9,708 0.0001 73,497 0.2955
spar030-060-1.mat: 13,097 0.0001 152,505 0.5289
spar030-070-1.mat: 14,887 0.0002 172,151 0.5001
spar030-070-2.mat: 15,909 0.0001 176,093 0.5362
spar030-070-3.mat: 16,827 0.0001 184,397 0.4815
spar030-080-1.mat: 18,259 0.0001 219,338 0.4578
spar030-080-2.mat: 18,532 0.0001 205,091 0.4539
spar030-080-3.mat: 18,585 0.0001 202,502 0.5233
spar040-060-3.mat: 25,889 0.0001 388,914 0.7893
spar040-080-1.mat: 31,929 0.0001 524,796 0.9596
spar040-090-2.mat: 37,109 0.0001 589,155 1.1884
spar070-025-1.mat: 30,162 0.0182 819,461 7.1339

Table 2: Comparison of bounds on e
⊺
λ obtained using (19) (“Thm. 1 bound” columns) vs. us-

ing Chen and Burer (2012, eq. (19)) (“RLT bound” columns), together with corresponding computation
times for a random sample of BoxQP instances.

In Table 3, we compare the bounds obtained in Section 2.3.3 with the bounds obtained using Chen and Burer
(2012, eq. (19)) for a number of randomly selected general QP instances. From Table 3, it is clear that
the bounds obtained using Theorem 1, and specifically, eq. (23) are weaker than the ones obtained us-
ing Chen and Burer (2012, eq. (19)) on a random sample of general QP instances. In fact, this is the case
for all the general QP instances considered in Section 3. In Table 3 the time differences are a result of the
bounds resulting from Theorem 1 being computed using an algorithm whose complexity is exponential on
the size of the constraint matrix of the problem (Peña et al. 2017), while the RLP bounds are obtained
by solving a linear program (Chen and Burer 2012, eq. (19)).

From the results in Table 1, Table 2, and Table 3, it is clear that using the bound of Theorem 1 can
lead to tighter bounds on the QP dual variables λ ∈ R

n
+ than the ones obtained using Chen and Burer

(2012, eq. (19)) when a tight bound on the Hoffman constant HA,b used in Theorem 1 can be computed
efficiently.

As illustrated in Example 2, the dual QP bounds obtained from Theorem 1 can be used even if the
dual feasible set of QP is unbounded. In such case, it is not possible to use the quadprogBB solution
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Thm. 1 bound RLT bound
General QP Instance Value Time (s) Value Time (s)

st e26.mat 49,200 0.0575 8,828 0.0742
st fp4.mat 830,297 1.6961 594 0.1380
st fp5.mat 47,263,557 125.8385 792 0.2807
st glmp kky.mat 83,410 22.4100 339 0.1013
st glmp ss1.mat 33,757 6.5787 429 0.1067
st m1.mat 556,912,094 0.0655 19,060,333 0.3594
st pan2.mat 6,017 0.0544 1,494 0.0939
st jcbpaf2.mat: - - 96,969 0.2757
st ph10.mat 1,320 0.5757 27 0.0679
st ph2.mat 69,951 0.0601 8,043 0.1132
st qpc m0.mat 372 0.0573 35 0.0501
qp20 10 2 1.mat 69,846 0.0671 2,500 0.5206
qp30 15 1 4.mat 44,451 0.0621 1,661 0.7943
qp30 15 2 4.mat 41,625 0.0602 1,122 0.9512
qp40 20 1 4.mat 85,008 0.0548 8,700 1.3852
qp40 20 4 1.mat 523,052 0.0606 16,371 3.3573
qp50 25 1 2.mat 149,684 0.0668 12,476 2.4781
qp50 25 1 4.mat 169,868 0.0676 17,623 2.1617

Table 3: Comparison of bounds on e
⊺
λ obtained using (23) (“Thm. 1 bound” columns) vs. us-

ing Chen and Burer (2012, eq. (19)) (“RLT bound” columns), together with corresponding computation
times for a random sample of (general) QP instances. Dash “-” indicates that the time limit of 1800 sec has
been reached without computing the bound.

methodology proposed by Chen and Burer (2012) to solve the problem, as the methodology requires
(through a condition on the primal QP problem) the dual feasible set of QP to be bounded. To illustrate
this (see Table 4), we modify some general QP test instances in a simple way to make their dual feasible
set unbounded. The modification we use is to pick the first variable x1 of the instance and add the
constraint x1 = x∗

1, where x∗
1 is the value of x1 in an optimal solution of the problem (i.e., this results

in a problem that likely violates the interior condition required by Chen and Burer (see, 2012, preceding
Prop. 3.1)). As shown in Table 4, these modified instances can be correctly solved using the approach
proposed here with the bounds (23), while quadprogBB of Chen and Burer (2012) is unable to solve
them due to the unboundedness of some of the dual variables of the modified version of the problem.
Specifically, Table 4 provides the name of the original instance (1st column), its optimal value (2nd
column), the constraint that is added to the problem to make its dual feasible set unbounded while
leaving its optimal value unchanged (3rd column), the value of the M bound (23) computed as a bound
for the dual variables while still retaining at least an optimal solution (4th column), the optimal solution
for the modified version of the instance obtained with quadprogIP (5th column), and the number of the
dual variable of the modified version of the instance that quadprogBB detects to be unbounded which
results in quadprogBB not being able to solve the modified version of the problem.

3 Computational results

In this section, we provide a detailed description of the implementation of the solution approach for QP
problems described in the previous sections. Also, we illustrate the performance of the solution approach
by presenting the results of numerical experiments on a diverse set of QP test problems.

3.1 Problem instances

To test the performance of the proposed solution approach for QP, we use the set of BoxQP (16), Globallib
(http://www.gamsworld.org/global/Globallib.htm), CUTEr (Gould et al. 2003), and RandQP test
problems used in (Chen and Burer 2012, Section 4.2 and Table 1). In addition to these test problems,
we consider the following QP test instances:
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quadprogIP quadprogBB

Original Fixed M bound Modified instance detected
QP instance Optimal Value Variable (23) Optimal Value unbounded dual

qp20 10 1 1.mat -13.189 x1=0.4660 2.07E+04 -13.189 43-th
qp20 10 1 2.mat 11.6662 x1=1.0000 1.89E+04 11.6662 66-th
qp20 10 1 4.mat -18.3137 x1=0.0000 1.29E+04 -18.3137 45-th
qp20 10 2 1.mat -3.2442 x1=0.0000 6.98E+04 -3.2442 45-th
qp20 10 2 2.mat 8.5919 x1=0.0000 1.27E+04 8.5919 45-th
qp20 10 2 4.mat 6.5794 x1=0.0000 9.54E+03 6.5794 45-th
qp20 10 3 1.mat -30.179 x1=0.0000 7.10E+04 -30.179 45-th
qp20 10 3 2.mat -15.0508 x1=0.0000 4.70E+04 -15.0508 45-th
qp20 10 3 4.mat -12.665 x1=0.0000 1.49E+04 -12.665 45-th
qp30 15 1 1.mat 32.9577 x1=0.0000 1.96E+05 32.9577 67-th
qp30 15 1 3.mat 0.525 x1=0.0000 3.91E+04 0.525 67-th
qp30 15 1 4.mat 9.2296 x1=0.0000 4.45E+04 9.2296 67-th
qp30 15 2 3.mat -2.0693 x1=1.0000 3.18E+04 -2.0693 98-th
qp30 15 2 4.mat 1.2862 x1=0.0000 4.16E+04 1.2862 67-th
qp40 20 1 3.mat -2.7293 x1=0.0000 8.30E+04 -2.7293 89-th
qp50 25 1 4.mat 13.8442 x1=0.0000 1.70E+05 13.8442 111-th
qp50 25 2 4.mat -6.8577 x1=0.0000 2.80E+05 -6.8577 111-th
qp50 25 3 2.mat 35.9871 x1=0.0000 2.15E+05 35.9871 111-th

Table 4: Solution of QP test instances modified to have an unbounded dual feasible set using quadprogIP.

• SQP. Standard quadratic programming instances (13) are created by replacing the constraints of
each of the BoxQPs considered in (Chen and Burer 2012, Section 4.2 and Table 1) by the constraint
that the decision variables belong to the standard simplex of appropriate dimension.

• SQP30, SQP50 (see, http://or.dei.unibo.it/library/msc). A set of 300 SQP instances used for
test purposes in Bonami et al. (2016b).

• StableQP. These instances are particular SQPs resulting from the problem of computing the stability
number of a graph (see, e.g., Motzkin and Straus 1965). We use instances of this type arising from a
class of graphs that have been used for testing purposes in the literature (see, e.g., Dobre and Vera
2015, Section 4.2.2). A more detailed description of these instances is presented in Section 3.1.1.

• Scozzari/Tardella (see, http://or.dei.unibo.it/library/msc). A set of 14 SQP instances used
for test purposes in Scozzari and Tardella (2008), Bonami et al. (2016b).

• QPLIB2014 (see, http://www.lamsade.dauphine.fr/QPlib2014/doku.php). Nine nonconvex quadratic
instances are selected from this test set. Four of the instances which are SQP instances are added
to the SQP test set, and the other five instances are BoxQP instances, which are added to the
BoxQP test set.

Similar to Chen and Burer (2012), Table 5 provides a summary of the basic information of all the
test instances. In Table 5, n denotes the range of the number of decision variables required to formulate
the corresponding problem instance using mineq inequality constraints, and meq equality constraints.
Also, density denotes the corresponding density range for the matrix defining the quadratic problem’s
objective.

3.1.1 StableQP instances

For any graph G, the inverse of α(G), the stability number of G, can be computed by solving the following
SQP (see, e.g., Motzkin and Straus 1965).

1

α(G)
= min

x∈∆
x
⊺(A+ I)x, (28)

where A ∈ Sn is the adjacency matrix of the undirected graph G(V, E) with number of vertices
‖V ‖ = n, and set of edges E ∈ V × V . Also I is the identity matrix of appropriate dimensions.
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Type # Instances n mineq +meq density

StableQP 8 [5, 26] [0,1] [0.30, 0.60]
SQP 90 [20, 100] [0, 90] [0.19, 0.99]
BoxQP 90 [20, 100] [0, 0] [0.19, 0.99]
Globallib 83 [2, 100] [1,52] [0.01, 1]
CUTEr 6 [4, 12] [0, 13] [0.08, 1]
RandQP 64 [20, 50] [14, 35] [0.23, 1]
SQP30 150 [30, 30] [0,1] [1, 1]
SQP50 150 [50, 50] [0,1] [1, 1]
Scozzari/Tardella 14 [30, 1000] [0,1] [0.25, 1]

Table 5: Statistics of the test QP instances.

The StableQP instances are obtained by solving (28) for a class of graphs Gk, k = 1, . . . introduced in
Dobre and Vera (2015) that have proven to be hard instances for approximation methods for α(G) pro-
posed in Bomze et al. (2010), Bundfuss and Dür (2009), Dong and Anstreicher (2013), Dobre and Vera
(2015).

3.2 Implementation details

The solution approach for QP proposed here is implemented as follows. First, explicit upper and lower
bounds for the instance’s decision variables are obtained. Then, the problem instance is reformulated
as QP by linearly shifting its decision variables, and adding slack variables to the problem as neces-
sary (e.g., (17)). The upper bounds on the added slack variables are computed using (7) to obtain
the primal variable upper bounds U ∈ R

n. Upper bounds V ∈ R
n on the dual variable are calcu-

lated using the methods described in Section 2.3 (see (14), (18) and (26)). Finally, CPLEX 12.5.1 (cf.,
http://www-eio.upc.edu/lceio/manuals/CPLEX-11/html/) is used to solve IQP. The following param-
eter settings are used for CPLEX MILP solver:

• Max time: This is the user specified maximum running time of the algorithm and is set to 104

seconds. Any problem taking longer than this value to be solved will be deemed as “out of time”.

• Tol: The solver will stop when

|bestnode− bestinteger|

1−10 + |bestinteger|
≤ 10−6

.

For the interested reader, the definition of the parameters bestnode and bestinteger can be found
in CPLEX (2010). Here, it suffices to say that this criteria is consistent with quadprogBB stopping
criteria (cf., Chen and Burer 2012), which is

Greatest upper bound− current lower bound

max{1, |Greatest upper bound|}
≤ 10−6

.

• Other parameters of the CPLEX MILP solver such as TolXInteger, Max iter, BranchStrategy,
Nodeselect, are set to their default values.

We refer to the procedure described in this section to solve QP as quadprogIP, which is coded using
Matlab R2014a, and is publicly available at https://github.com/xiawei918/quadprogIP .

3.3 Numerical performance

In order to test the performance of the quadprogIP methodology proposed in Section 3.2, the QP
test instances discussed in Section 3.1 are solved using quadprogIP, the quadprogBB solver introduced
by Chen and Burer (2012), the NLP solver BARON 17.8.9 of Sahinidis (1996), and the CPLEX 12.7.0.0

QP solver. All tests are done using Matlab R2014b (8.4.0.150421), together with CPLEX 12.7.0.0.,
on a AMD Opteron 2.0 GHz machine with 32GB memory and 16 cores (each core is a 2.0 GHz. 64 bit
architecture), from the COR@L laboratory (cf., http://coral.ise.lehigh.edu/).
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Similar to Chen and Burer (2012), to compare the performance between quadprogIP and quadprogBB,
quadprogIP and BARON, and quadprogIP and CPLEX, we plot the solution time it takes to solve a par-
ticular QP instance with two of the solvers as a square in a 2D plane, where the y-axis denotes either
quadprogBB’s, BARON’s, or CPLEX’s solution time and the x-axis denotes quadprogIP ’s solution time. The
dashed line in the plots indicates the y = x line in the plane, that represents equal colution solution
times. Thus, a square that is above the diagonal line indicates an instance for which it takes the solver
represented on y-axis more solution time to solve than quadprogIP. Furthermore, the size of the square
illustrates the size (number of decision variables) of the instance. That is, smaller squares represent
“smaller” size instances while bigger squares represent “bigger” size instances. In the figures below, only
instances in which at least one of the methodologies solves the problem within the maximum time allowed
are displayed.

3.3.1 Results on SQP instances.

The results for the SQP test instances are shown in Figure 1. Note that a different scale is used in the
axes of Figures 1a, 1b, and 1c.
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Figure 1: Solution time in seconds of SQP instances. Size of squares illustrates size of the instance. A square
at the maximum value of an axis represents an instances for which the solver in that axis reached maximum
running time without solving it.

Figure 1a shows that quadprogIP clearly outperforms quadprogBB by solving all SQP instances in a
time that is one to two orders of magnitude faster than quadprogBB and specially in the larger instances.
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Similarly, Figure 1b shows that quadprogIP clearly outperforms BARON by solving all SQP instances in
a time that is one to two orders of magnitude faster than BARON, and specially in the larger instances.
Although CPLEX solves two small-scale instances faster than quadprogIP, again, in general quadprogIP
outperforms CPLEX by orders of magnitude in terms of solution time (see, Figure 1c). As Figures 1a, 1b,
and 1c illustrate, the performance of quadprogIP against the other solvers improves as the SQP instance
becomes larger. The performance profile in Figure 1d summarizes the clear advantages of solving the
very important class of SQP instances with the proposed quadprogIP solution approach.

3.3.2 Results on SQP30 and SQP50 instances.

As Figure 2 shows, the results on the SQP instances SQP30 and SQP50 from Bonami et al. (2016b) is
very similar to the ones presented in Section 3.3.1. As with the set of SQP instances, only CPLEX is able
to solve a few instances faster than quadprogIP; however, in general quadprogIP outperforms the other
solvers by orders of magnitude in terms of solution time.
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(d) Performance profile for SQP30 and SQP50 instances.

Figure 2: Solution time in seconds of SQP30 and SQP50 instances. Size of squares illustrates size of the
instance. A square at the maximum value of an axis represents an instances for which the solver in that axis
reached maximum running time without solving it.
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3.3.3 Results on StableQP instances.

In line with the performance of quadprogIP on SQP, SQP30, and SQP50 instances, it is interesting
to see in Table 6 that quadprogIP clearly outperforms quadprogBB, BARON, and CPLEX in the StableQP
instances (see, Section 3.1). In fact, while quadprogIP solves each of the instances in less than a second,
quadprogBB, and CPLEX are unable to solve the instances beyond k ≥ 4 within the maximum allowed
solution time of 104 seconds, while BARON is unable to solve the instances beyond k ≥ 3 within the
maximum allowed solution time.

Solution Time (s.)
k quadprogIP quadprogBB ⁀BARON ⁀CPLEX

1 0.34 3.67 8.93 0.39
2 0.25 6.28 2573.77 8.75
3 0.34 12.56 - 685.70
4 0.43 - - -
5 0.49 - - -
6 0.51 - - -
7 0.46 - - -
8 0.49 - - -

Table 6: Solution time in seconds for StableQP instances. Dash “-” indicates that the solver was unable to
solve the instance within the maximum allowed time.

3.3.4 Results on Scozzari/Tardella instances.

The Scozzari/Tardella from Scozzari and Tardella (2008) are composed of much larger-scale instances of
SQP than the ones considered so far. Table 7, as with the previously discussed groups of standard QP
instances, clearly shows that quadprogIP is able to solve these instances faster than the other solvers,
and is able to solve more large-scale instances than the other solvers.

Solution Time (s.)
Scozzari/Tardella instance quadprogIP quadprogBB ⁀BARON ⁀CPLEX

Problem 30x30 0.75.mps.mat: 0.51 5.27 39.32 5.56
Problem 50x50 0.75.mps.mat: 11.78 48.29 - 2,162.13
Problem 100x100 0-1.mps.mat: 1.54 1,412.16 223.54 154.71
Problem 100x100 0.5.mps.mat: 6.71 319.82 - -
Problem 100x100 0.75.mps.mat: 36.76 1,519.61 - -
Problem 200x200 0-1.mps.mat: 36.86 - - 9,995.67
Problem 200x200 0.5.mps.mat: 175.15 - - -
Problem 500x500 0-1.mps.mat: 240.09 - - -
Problem 500x500 0.25.mps.mat: 2,092.48 - - -
Problem 1000x1000 0.25.mps.mat: - - - -
Problem Q30.mps.mat: 0.54 4.27 - -
Problem Q50.mps.bar.mat: 2.45 8,476.70 - -
Problem Q100.mps.bar.mat: 4.71 - - -
Problem Q150.mps.mat: 20.89 - - -

Table 7: Solution time in seconds for Scozzari/Tardella instances. Dash “-” indicates that the solver was
unable to solve the instance within the maximum allowed time.

3.3.5 Results on BoxQP instances.

In Figure 3, we compare the performance of quadprogIP on the BoxQP instances against the other three
selected solvers. It is clear from Figure 3a that while quadprogIP outperforms quadprogBB in the smaller
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BoxQP instances (ranging between 20–60 decision variables), quadprogBB outperforms quadprogIP for
larger BoxQP instances (ranging between 60–100 decision variables), where quadprogIP is typically
unable to solve the instance within the 104 maximum solution time.
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(d) Performance profile for BoxQP instances.

Figure 3: Solution time in seconds of BoxQP instances. Size of squares illustrates size of the instance. A
square at the maximum value of an axis represents an instances for which the solver in that axis reached
maximum running time without solving it.

Figure 3b shows the performance of quadprogIP and BARON on the BoxQP test set. It is clear
that BARON outperforms quadprogIP in most BoxQP instances. Although for instances with less than 40
decision variables the solution time of quadprogIP is not significantly longer than that of BARON. Figure 3c
shows that CPLEX performs much better than quadprogIP on all BoxQP instances. Figure 3d summarizes
these results, where it is clear that CPLEX and BARON are the best solvers for these BoxQP instances.

It is worth mentioning that the performance of quadprogIP on BoxQP instances can be improved by
adding appropriate valid constraints to the IQP (6) formulation of the BoxQP. This valid constraints
can be derived from Hansen et al. (1993, Prop. 1). Specifically, notice that the IQP (6) corresponding
to (17) can be written as:
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1

2
min (Hl+ f)⊺x− (u− l)⊺µ

s. t.

[

H 0
0 0

] [

x

s

]

+

[

f +Hl

0

]

+

[

I

I

]

µ−

[

λx

λs

]

= 0

x+ s = u− l

0 ≤ xi ≤ zxi (ui − li) i = 1, . . . , n
0 ≤ si ≤ zsi (ui − li) i = 1, . . . , n
0 ≤ λx

i ≤ (1− zxi )Vi i = 1, . . . , n
0 ≤ λs

i ≤ (1− zsi )Vi i = 1, . . . , n
zxi , z

s
i ∈ {0, 1} i = 1, . . . , n.

(29)

Then, from Hansen et al. (1993, Prop. 1), and Proposition 4 below, it follows that the constraints

z
x
i + z

s
i = 1, for all i ∈ {1, . . . , n} such that Hii < 0, (30)

are valid constraints for the optimal solutions of (29). When added to (29), the valid constraints (30)
improve the solution time of the approach proposed here to globally solve BoxQP problems.

Proposition 4. Let (x, s, µ, λx, λs) ∈ R
n
+ × R

n
+ × R

2n × R
n
+ × R

n
+ be a KKT point of (17). Then

e⊺λx + e⊺λs ≤ M , where M is given by (18). That is, every KKT point of (17) satisfies the bounds given
by (18).

Proof. Proof. Let (x, s, µ, λx, λs) satisfy the KKT conditions of (17). Then

[

H 0
0 0

] [

x

s

]

+

[

f +Hl

0

]

+

[

I

I

]

µ−

[

λx

λs

]

= 0 (31)

x
⊺
λ
x = 0, s⊺λs = 0, x+ s = U (32)

x ≥ 0, λx ≥ 0, λs ≥ 0.

where µ ∈ R
n, λx ∈ R

n
+, λ

x ∈ R
n
+ are respectively the dual multipliers for the x + s = u− l, x ≥ 0, and

s ≥ 0 constraints in (17). Equation (31) implies that

λ
x − λ

s = Hx+ f +Hl. (33)

Thus, using (32), (33), and the results in Section 2.3.2

e
⊺
λ
x + e

⊺
λ
s = e

⊺|λx − λ
s| = ‖Hx+ f +Hl‖1 ≤ ‖Hx‖1 + ‖f +Hl‖1 ≤ M

Although the quadprogIP code does not include the strengthening constraints (30) for BoxQPs, the
results illustrated on Figure 4 show how adding the valid constraints (30) improves the solution time
on a set of spar BoxQP instances ranging on size between 20-40 variables with density between 30-
100. In particular, with the addition of these constraints, quadprogIP outperforms quadprogBB on these
instances.

Results on CUTEr, Globallib, and RandQP instances.

In Figures 5, we compare the performance of quadprogIP on the CUTEr, Globallib, and RandQP in-
stances against the other solvers. As Figure 5a illustrates, except for a few instances, quadprogIP has
shorter solution times than quadprogBB on the more general CUTEr, Globallib, and RandQP instances
of QP. Moreover, quadprogIP typically solves these problems about 10 times faster than quadprogBB.
For these CUTEr, Globallib, and RandQP we find nine (9) instances that are successfully solved by
quadprogIP but not by quadprogBB within the maximum allowed solution time of 104 seconds.

As for BARON, it can be seen from Figures 5b that quadprogIP is faster on most of the CUTEr,
Globallib, and RandQP instances, with quadprogIP being able to solve a fair number of instances that
BARON is not able to solve within the maximum allowed time of 104 seconds. On the other hand, CPLEX
is able to solve most of the CUTEr, Globallib, and RandQP instances faster than quadprogIP; however,
still a number of instances are solved faster than CPLEX, and most instances are solved by quadprogIP in
a time no larger than 10 times the solution time of CPLEX. Figure 5d summarizes these results.
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Figure 4: Performance profile for spar BoxQP instances anging on size between 20-40 variables with density
between 30-100. Extra constraints refer to adding constraints (30) in the quadprogIP solver.

4 Conclusion

In this paper, we present a new simple and effective approach for the global solution of (non-convex)
linearly constrained quadratic problems (QP) by combining the use of the problem’s necessary KKT
conditions together with state-of-the-art integer programming solvers. This is done via a reformulation
of the QP as a mixed-integer linear program (MILP). We show that in general, this MILP reformulation
can be obtained for QPs with a bounded primal feasible set via fundamental results related to the solution
of perturbed linear systems of equations (see, e.g., Güler et al. 1995). In practice, quadprogIP is shown to
typically outperform by orders of magnitude quadprogBB, BARON, and CPLEX on standard QPs. For general
QPs, quadprogIP outperforms quadprogBB, outperforms BARON in most instances, while CPLEX performs
the best on these instances. For box-constrained QPs, quadprogIP has a comparable performance to
quadprogBB and BARON in small- to medium-scale instances, but is outperformed by these solvers on
large-scale instances, while CPLEX performs the best on box-constrained QP instances. Also, unlike
quadprogBB, the solution approach proposed here is able to solve QP instances whose dual feasible set
is unbounded. The performance of this methodology on standard QP problems allows for the potential
use of this solution approach as a basis for the solution of copositive programs (cf., Dür 2010). Which is
an interesting direction of future research work.

The proposed IP formulation of general QPs requires the computation of certain type of Hoffman
bound (see, e.g., Hoffman 2003) on the system of linear equations defining the problem’s feasible set.
Thus, obtaining general and effectively computable bounds of this type is an interesting open question.

We finish by mentioning that a basic implementation of the proposed solution approach referred as
quadprogIP is publicly available at https://github.com/xiawei918/quadprogIP, together with pointers
to the test instances used in the article for the numerical experiments, and the raw data of all the solution
times used to construct the figures throughout the article in the PDF file raw data.pdf.
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