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We study how to model and handle correlated travel times in two-stage
stochastic vehicle routing problems. We allow these travel times to be cor-
related in time and space, that is, the travel time on one link in one period
can be correlated to travel times on the same link in the next and previous
periods, as well as travel times on neighboring links (links sharing a node)
in both the same and the following periods. Hence, we are handling a very
high-dimensional dependent random vector. We shall discuss how such vehi-
cle routing problems should be modeled in time and space, how the random
vector can be represented, and how scenarios (discretizations) can meaning-
fully be generated to be used in a stochastic program. We assume that the
stochastic vehicle routing problem is being solved by a search heuristic, and
focus on the objective function evaluation for any given solution. Numerical
procedures are given and tested. As an example, our largest case has 142
nodes, 418 road links and 60 time periods, leading to 25,080 dependent ran-
dom variables. To achieve an objective-function evaluation stability of 1%,
we need only fifteen scenarios for problem instances with 64 customer nodes
and 9 vehicles.
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1. Introduction

Vehicle routing, in all its variants, is one of the most studied problems in logistics
(Fisher and Jaikumar 1981, Laporte 2009, Potvin 2009, Pillac et al. 2013, Campbell
and Wilson 2014, Lin et al. 2014, Prins et al. 2014, Cattaruzza et al. 2016). But for
historical as well as numerical reasons, the vast majority of papers are on deterministic
problems. Stochastic versions have started to occur, see for example the reviews Pillac
et al. (2013), Gendreau et al. (2016), Oyola et al. (2018), Ritzinger et al. (2016). The most
studied stochastic phenomenon is demand (Juan et al. 2013, Zhu et al. 2014, Goodson
2015), followed by travel time (speed) (Laporte et al. 1992, Tas et al. 2013, Han et al.
2014), service time (Lei et al. 2012, Errico et al. 2016) and finally, random occurrence
of customers (Bent and Van Hentenryck 2004).

Most vehicle routing problems (VRPs) are solved using search heuristics (Potvin 2009,
Vidal et al. 2013, Martinelli and Contardo 2015, Wang et al. 2015), and a natural part
of doing so is to evaluate the objective function for a given solution. If that was easy,
most existing heuristics for vehicle routing could fairly easily be adopted to the case
of correlated stochastic travel times (or speeds). After all, most search heuristics have
two parts, the search part and the objective function evaluation part. The focus of this
paper is only on the evaluation part. In order to demonstrate our approach, we shall
need both a test case within the family of VRPs and a search heuristic, but neither of
these represent contributions.

In the following we shall talk about speeds rather than travel times. The two are of
course equivalent, but we do this for two reasons. The first is that it seems more natural
to talk about speed changing from one period to the next when in fact the trip is not
completed within a given period. The second is that for scenario generation, it is best
to work on bounded random variables, and travel times are unbounded if speeds are
allowed to be zero (which makes sense over short time periods).

Our contributions are closely related to the many challenges set out in Gendreau et al.
(2016) on how to represent a high-dimensional dependent random vector of speeds, how
to generate scenarios for the underlying stochastic program, and how to perform function
evaluations in the case where speeds are stochastic and correlated in time and space.
By “correlated in time”, we mean that the speed on a link in one period is correlated
with the speed on the same link in nearby time periods. By “correlated in space”, we
mean that speeds on close by links are correlated, so that if there is a traffic jam on one
link, most likely—but not for sure—there is a traffic jam also on neighboring links. This
must be distinguished from VRP literature (stochastic as well as deterministic) covering
“time-dependent travel times” (or speeds) but where the time dependence only means
that speeds (or expected speeds in a few cases) are different in different time periods
(Tas et al. 2014, Soysal et al. 2015, Nejad et al. 2016). The time-dependent VRPs in the
literature have been investigated both on the map (Ehmke et al. 2016, Huang et al. 2017,
Ehmke et al. 2018) and on the network of customer nodes (Ichoua et al. 2003, Tas et al.
2014, Cimen and Soysal 2017). Interested readers can refer to the review paper by Ticha
et al. (2018) for more information. There will be an implicit time correlation in the speed
scenarios in such a context (Fu and Rilett 1998, Ehmke et al. 2018). The correlation



will take its sign from the direction in which the mean speed moves. Similarly, Huang
et al. (2017) consider implicitly spatial and temporal correlations by classifying the links
into three categories (i.e., expressways, arterials, and residential roads) and assuming the
travel speeds of links in each category are time-dependent. However, correlations in real-
world speeds represent more than that. They must represent such as the fact that free
flow of traffic usually lasts for a while, and slow traffic takes time to disappear. Therefore
the research cited above cannot cope with the challenges proposed by Gendreau et al.
(2016). Our approach covers correlations whatever their cause.

Few previous VRP studies have considered space- and time-correlated travel times
although real-world speeds are correlated in both time and space. Lecluyse et al. (2013)
consider this type of correlated travel times in VRPs by using the concept of congestion
circles to represent traffic congestion in road networks. Following the same representa-
tion, Schilde et al. (2014) further consider similar spatio-temporal correlations between
travel speeds on different streets in a dynamic dial-a-ride problem. However, it is hard
to determine the congestion circles accurately over time.

Hence, our starting point is very general. We are concerned with the evaluation of
any solution (set of vehicle routes) to any VRP, by either declaring it to be infeasible
or calculating the objective function value, when speeds are stochastic and correlated
explicitly in time and space. For details, see towards the end of Section 2. The major
questions will be how we can represent the stochasticity, including how scenarios can be
generated (as discrete random variables will be needed), and how many scenarios are
needed. The number of random variables will easily be in the tens of thousands, and
care has to be taken in order to handle such big dimensions.

In other words, the setting is one where we have a stochastic VRP and a heuristic
that can be separated into a solution-generating and a solution-evaluating part. Our
contribution is then to perform the latter in a way that works for a large collection
of different VRPs where there is an underlying map. We do this by combining an
existing general scenario generation method (which fits the structure of VRPs well) with
a stability test for evaluating objective functions. For VRPs with time- and space-
correlated stochastic speeds, scenario generation is a major undertaking, which creates
discrete random variables from the background data (or from some modeling activity).
In fact, it is most likely the main bottleneck for solving such problems.

The paper is organized as follows: In Section 2 we discuss the modeling of VRPs with
correlated speeds. Section 3 presents our overall approach. Section 4 is dedicated to
scenario generation. Stability tests and an investigation into how many scenarios are
needed can be found in Section 5. The test case is outlined in Section 6, while numerical
results can be found in Section 7. We sum up in Section 8.

2. Modeling the Routes

The VRP is defined on a road network, represented by a directed graph G = (V, L),
where V = {0,1,...,V} is a set of vertices (nodes) and £ = {1,...,L} is a set of
directed (road) links connecting the nodes in V. Node 0 in V represents the depot at



which are based K vehicles with capacity Q. Let N' = {1,...,N} (N C V) denote
the set of customers, with specified demands, that need to be served. The VRP is the
problem of finding the optimal set of vehicle routes starting and ending at the depot,
such that each customer in N is served exactly once and the total demand of a route
does not exceed @), while optimizing a specified objective.

We shall split the planning horizon into P periods of equal length. In deterministic
models with P = 1, we can simply compute the shortest travel times between the
customer pairs and then proceed using the (much smaller) network of customers, instead
of the road network G. But if travel times (speeds) are random and depend on time, this
is not quite as easy when P > 1. Huang et al. (2017) discuss this issue in great detail.
They demonstrate that when speeds are time dependent, path selection between a pair
of customers will depend on the time of day. They call this path flexibility. If speeds are
also stochastic, the path will depend on both time of day and realizations of the random
speeds.

Let us add a few comments about dependence as that is the focus of this paper. First,
note that even if all road link speeds were independent, the pairwise customer speeds
would not, as long as some of the best paths between customers share a link. Hence,
assuming independence for customer-to-customer speeds would imply that no pairs ever
shared a road link on the map, which is impossible to achieve for larger cases. So if we
were to operate on the network of customer nodes, we would have to use stochastically
dependent speeds. However, this dependence would be hard to describe as it would
depend on path selection. And this relationship would be even more complicated if the
road link travel speeds were already dependent. We are not investigating this potential
approach for handling dependencies in this paper.

To be able to represent path flexibility as outlined by Huang et al. (2017), while also
handling path dependencies as just outlined, we find it necessary to operate on the map
and not on the network of customer nodes. Therefore, a scenario contains the speed on
each road link in each period, so it is of dimension L x P.

Note that there are papers that use the assumption of independent customer-pair
travel times (Tas et al. 2013, Feng et al. 2017). This can of course be seen as an
approximation of real-world travel times. But overlooking dependence, caused by link
speeds being themselves dependent and paths sharing links, will result in too low variance
on route travel times, as disregarded correlations will mostly be positive. Models using
independent customer-pair speeds will therefore underestimate travel time variation.

For route selection within the VRP, as described in Section 3, our approach will allow
for any of the following principles.

e The route, given from the solution-generating part of the algorithm, is a complete
sequence of nodes (or links) from V), not just a sequence of customer nodes. In the
case that the route is a sequence of nodes, it can be allowed to look for quicker
detours (rather than the direct link).

e A route is a sequence of customer nodes, and the path between two consecutive
customer nodes is determined by the path with the shortest expected travel time,
given the point in time we leave the first node in the pair. An interpretation is



hence that when the vehicle is actually operating, it will need expected speeds
(given the time of day), but not actual speeds. This is partly in line with the
concept of path flexibility as outlined earlier (Huang et al. 2017), in which the
path between two consecutive customer nodes is selected from a set of candidate
paths consisting of distance-minimizing paths and time-minimizing paths for a
given departure time and average travel times in each time period.

e A route is a sequence of customer nodes, and the path between two consecutive
customer nodes is determined by the path with the shortest travel time, given
the speeds at the point in time when we leave the first node in the pair. In our
view this is a very reasonable choice if real-time data for speed is available when a
vehicle is actually operating.

e Technically, we can also handle the case when paths are picked based on the full
set of speeds in the scenario. But this makes little sense to us as it implies using
principally unavailable information about the future.

It is worth noting that many companies use available apps or other software to de-
termine paths when actually driving. But beware that this is very difficult (if not
impossible) to include in a model for a VRP, where finding routes is the issue. So even
though these services may indeed lead to very good paths on a route, they are not easy
to use to find the routes (i.e., which customers to assign to which vehicle, and in which
order they should be visited). Using present speeds to determine paths approximates
this approach.

We are operating in a two-stage setting. So our approach does not support a true multi-
stage setting where customers assigned to a given vehicle are determined on-route (which
makes sense for pickups and some deliveries) or where the customers are determined
beforehand, but the sequence is not. The approach can be used to approximate the
latter case, but no true dynamic optimality will be found.

Given a complete route of nodes (or links) in the graph, we need to calculate the
travel time (and certain costs) for a given vehicle and a given scenario. Our approach
can handle the following alternative situations, depending on what is the setup in the
VRP.

e No time windows.

e If there is an earliest arrival time at a customer, we can handle a requirement to
wait (hard constraint) and / or pay a penalty for being early (soft constraint).

e If there is a latest arrival time at a customer, we can handle a penalty for being
late (but still serve the customer, a soft constraint), simply skipping the customer
and pay a penalty (another type of soft constraint), or declare the route to be
infeasible (hard constraint).

In the test case in Section 6, we assume that a route is a sequence of customer nodes,
and that path selection is based on present speeds when a vehicle leaves a customer. In



all cases, we shall be careful to handle the stochastically dependent speeds consistently
when evaluating the objective function for a given route on a given scenario, as that is
the core of this paper. For example, even if the path between a pair of customers is
determined based on present speeds, the actual travel time will be valued based on the
realizations in the scenarios.

3. Evaluating the objective function

As mentioned in Section 1, search heuristics are usually used to find good solutions
to VRPs. These heuristics start with one or more initial candidate solutions and then
try to improve the candidate solutions iteratively via local moves. During iterations,
the performance of each candidate solution to the stochastic VRP is evaluated by the
function evaluation method outlined in this section.

Let us sum up the parts that are needed to solve stochastic VRPs:

(1) a search heuristic,

(2) an objective function evaluation approach, and

(3) scenario set consisting of |S| scenarios. Each scenario s € S has one speed for each
link in each period, so a complete scenario represents one possible realization of speeds
across time and space (e.g., all travel speeds on all road links in all periods).

We take the search heuristic from the literature. Assume we have a feasible solution
to the VRP (a set of routes) using K vehicles. Each route is a sequence of customer
nodes plus a starting time from the depot. The search heuristic operates just as in the
deterministic case, as it moves from one solution to the next. Given a solution, the road
network graph G, and the scenarios, we now need to compute the expected objective
value corresponding to the solution. Take a VRP of minimizing the total cost f as an
example. Whenever a solution needs to be valued, the objective function evaluation
approach proceeds as follows:

For each scenario s € S do
For each route r in the solution do
Set t(s,r) equal to time leaving depot
Set f(s,r) to zero
For each pair (i, j) of customers (including depot) do (* in sequence on route *)
Take speeds from scenario s at time ¢(s, )
Find the best path from customer ¢ to customer j using these speeds, based
on the objective to be optimized
Update t(s,r) based on speeds in scenario s, handling time and possible
waits at the customer to know when leaving customer j
Update f(s,r) to reflect the costs incurred from customer i to customer j
End
End
End

We now have travel times and costs on each scenario for each route, and can calculate
values of travel times and costs as required by the VRP being analyzed.



We see that both the heuristics for finding routes and the best path calculations
can be done with existing deterministic methodology. Thus, what is missing are the
scenarios. We shall take a scenario generation method from the literature that takes
marginal speed distributions, a limited set of correlations and the requested number of
scenarios as input and produces scenarios as output. This procedure is purely technical,
and will be presented in Section 4. To see if it actually delivers in our context, we check
how many scenarios are needed to create results with acceptable accuracy and numerical
feasibility by a stability test. Also this test follows known procedures from the literature,
and will be presented in Section 5. So the contribution of this paper is to show how all
these pieces can be put together in the right way so as to produce a numerically feasible
approach for the space- and time-correlated stochastic VRP.

If two consecutive customers ¢ and j on vehicle k’s route are not directly connected
by a link in G, we find, using Dijkstra’s algorithm, or one of its variants, the best path
(e.g., with the shortest travel time) between customers ¢ and j using speeds on the links
in scenario s for the period in which the vehicle leaves node i. The logic is that when
the vehicle leaves node i, in reality, only speeds for that period are known, and they will
be used to decide on where to travel. Hence, this path might not be best ex-post, i.e.,
after reaching node j, if that happens in a later period. Of course, other ways to find the
best path between customers ¢ and j can be used, without any changes in the function
evaluation approach. We refer to Casey et al. (2014) for a more detailed overview over
time-dependent shortest path algorithms.

With the setup above we start at the depot. We use present speeds (or possibly
expected speeds as discussed in Section 2) in the Dijkstra algorithm to find the best
path to the first customer. The setup then follows the method of Ichoua et al. (2003);
we follow a link either to the next node (as we are still in the same period) or we follow
the link until the period ends, using the speed of that period, and then continue on the
same link with the speed of the following period. When we arrive at the customer, we
check potential time windows, and add possible earliness or tardiness penalty costs, if
any, wait or declare an infeasibility, depending on the VRP at hand. Then we move to
the next customer using exactly the same setup, until we are back to the depot. We
then register total travel time plus potential penalties along the route.

Our approach, as outlined above, can handle many variants:

e A route is a sequence of nodes from the map rather than sequence of customers.
In that case the best path calculations can be skipped.

e The best path calculation can be skipped if two customer are neighbors on the
map in case one wants to model that drivers never make detours for direct links.

e The best paths are based on average speeds rather than present speeds to represent
that real-time speeds will not be available during operations.

e Hard and soft time windows.



Numerical tests on variants of the VRP can be found at the end of Section 7.1 and
in the Appendix. This will show that the approach is fairly flexible, and that the core
question is how to find the right set of scenarios.

4. Multi-Dimensional Distributions and Scenario Generation

Stochastic programs need discrete random variables. As pointed out earlier, some papers
build on the assumption that customer-to-customer speeds are independent, despite the
fact that this cannot be the case in real-world road networks with sufficient traffic flow.
Apart from this, we see that Tas et al. (2013, 2014), Feng et al. (2017) use distribution
functions (so not scenarios) that can be added along paths, and these approaches are
distinctly using stochastic independence. In Huang et al. (2017) and Han et al. (2014),
the scenarios of travel speeds are assumed given, whereas the scenarios are sampled from
a truncated normal distribution in Lee et al. (2012). In Cimen and Soysal (2017), we find
assumptions of independent normal distributions that are subjected to a discretization
scheme to fit into an approximate dynamic programming framework.

Most of the general literature on scenario generation is about how to generate scenar-
ios from a distribution of some sort, see for example Dupacova et al. (2000), Lee et al.
(2012) and Chapter 4 of King and Wallace (2012) for reviews. But most of these ap-
proaches will not work numerically in the kind of dimensions we face in many real-world
VRPs. For example, our largest case with 418 road links and 60 time periods results in
25,080 random variables and more than 310 million distinct correlations (more details in
Section 6), and this is not even a very large setting from an applied perspective. So even
if we had data, and could calculate marginal distributions and a correlation matrix (in
their own rights not very difficult), it would be quite a challenge to use them for finding
scenarios using any of the existing methods. It seems to us that the only way would be
to sample from the empirical distribution if we had one. If so, the issue would be how
many scenarios would be needed in order to achieve a good set of scenarios representing
the distribution well in these high dimensions. We expect the number to be very large,
in line with the expectations expressed in Gendreau et al. (2016).

It is common in the optimization literature, when the issue is testing of algorithms and
we do not have data, to simply invent a reasonable data set. In our case, “reasonable”
mostly refers to the resulting correlations that, even if not real, should make sense —
they should describe a potentially real situation. Either one sets up scenarios directly,
or one guesses on a distribution and then uses that distribution to find scenarios, be that
by sampling or some other methodology, for example using one of the many methods
outlined in Chapter 4 of King and Wallace (2012). However, notice that there are some
major issues here. We believe that simply guessing a limited set of scenarios in these
dimensions makes little sense. The distribution we would then, in fact, be using, would
easily be pure noise. So the alternative would be to guess a distribution. We would then
suffer from the same dimensionality problem as we just mentioned for the case when
we had data. For our largest case we would need more than 310 million correlations.
But the fact is, guessing on a 25,080 by 25,080 matrix and ending up with a positive



semi-definite matrix (so that it would potentially be a correlation matrix) is close to
impossible, except for the uncorrelated case, which is not what we discuss in this paper.

4.1. Updating a Guess of a Correlation Matrix

If we have a matrix that we “like”, i.e., a matrix that to the best of our understanding
shows how the dependencies are, but which does not lead to positive semi-definiteness,
we can, in principle, proceed by finding some matrix that is close to the one we have, but
which is positive semi-definite, and hence could be used as a correlation matrix. This
approach is outlined in Lurie and Goldberg (1998), where they minimize the root-mean-
square error of the positive semi-definite matrix relative to the starting matrix. Be aware,
though, that non-zero correlations may show up at the most peculiar places representing
strange dependencies. These strange correlations may affect the optimal routes directly,
for example by utilizing a fake negative correlation to hedge against variation in route
travel times. It is normally possible, ex post, to check if strange correlations ended up
effecting the optimal solution. We shall discuss this in more detail in Section 5 where we
discuss stability. Updating a guessed matrix in the dimensions we are facing will in any
case be quite a numerical challenge, as a Cholesky decomposition and a Gauss-Newton
method are involved, so also this argues against trying to guess a correlation matrix.
The updated matrix will normally be singular, and that is also a challenge for some
scenario generation methods!.

Let us point out that it is up to the user to accept if a positive semi-definite matrix
is reasonable or not as a correlation matrix. This is not a mathematical question,
but a question of modeling or problem understanding. The matrix will most certainly
have unexpected non-zero elements, representing unexpected correlations (even negative
ones), but may still be acceptable for our problem.

4.2. Practical Consideration

Let us see where we stand. We could guess a set of scenarios and use them. Most likely
that would result in a distribution with totally arbitrary properties. We could estimate
(if we had data) or guess a correlation matrix, but as we have pointed out, guessing is
very difficult — close to impossible. In any case, we would be facing serious numerical
challenges due to the size of the matrix. So, in our view, we need an alternative approach
that is numerically feasible, and would work whether or not we had data. It will amount
to a heuristic, but we shall see that we can control the quality of the approach.

We shall use the scenario-generation method from Kaut (2014) that allows for speci-

Lurie and Goldberg (1998) write ”We applied the procedure to replace this indefinite matrix with a
“nearby” positive semi-definite matrix. All of the eigenvalues changed as a result of this procedure. In
particular, the single negative eigenvalue was replaced with the value of zero, resulting in an adjusted
correlation matrix that was positive semi-definite (but not positive-definite). This result occurred
because the procedure attempts to minimize the distance between the adjusted and unadjusted
correlation matrices. Any larger adjustment, yielding a strictly positive eigenvalue, would have
increased the value of the distance measure.”



fying marginal distributions plus a subset of correlations®. This method fixes values for
all variables upfront and assigns those values to scenarios, trying to match the specified
“correlations”. Randomness appears only as a tie-breaker in the heuristic used for the
assignment. As a result, the method has a high probability of producing exactly the
same scenarios on two consecutive runs. The method allows any subset of correlations,
and we shall make a specific choice, consistent with the structure of solutions to VRPs
— routes. Numerical testing will show that it is a good choice. Moreover, the scenario
generation method has the property that the means in the scenario set are always equal
to the means in the underlying distribution. So even though other aspects of the distri-
bution might be off (it is an approximation, after all), the mean of travel times on each
link and hence the mean on each route are correct.

Let Y denote the number of neighboring link pairs (pairs of links meeting in a node) in
a road network. We shall specify the correlations for each such link pair in each period.
This leads to Y x P correlations. Furthermore, in period p (1 < p < P), the travel speed
on link [ is correlated with the speeds on the same link and its neighboring links in the
next period, which leads to (Y + L) x (P — 1) correlations within P periods. Other
correlations are not specified as they are not used in the scenario generation method.
That is, given P and L, the number of correlations among links in the network, used in
our scenario generation method, is Y x P+ (Y + L) x (P — 1), which is much less than
the total number of correlations. Since Y is linear in L, the total number of correlations
is linear in the number of random variables, L x P. In our largest case with Y = 2015,
L=418 and P =60, we need to define 2015x 60+ (2015+418) x 59 = 264, 447 correlations,
much less than the total number of over 310 million.

The question is then whether or not using such a limited set of correlations causes
major problems in the overall setup of Section 3. If we have data, we would calculate
these correlations from the data set, then knowing that there really is at least one true
correlation matrix containing the correlations we used. If we do not have data, we would
use problem understanding or intelligent guesses to find them. This could lead to a set
of “correlations” that in fact are not part of any actual correlation matrix, and we would
not know if this had happened. For this reason, any scenario generation method that
needs consistent data could be in trouble, since the scenario generation could be based
on a non-existing distribution. Our setup does not suffer from this problem directly, as
the scenario generation method we use looks for scenarios that in some sense are close
to what was specified. But that means that we are facing two sources of noise if we have
guessed on the data; The fact that only a limited set of correlations was used, and that
possibly, the scenarios were generated based on inconsistent specifications. With real
data, only the first source of noise is present. The stability tests in the next section will
help us see whether or not this noise caused serious errors. We shall see that despite
these potential problems, the approach does indeed produce high quality results.

2 Actually, the method works by matching bivariate copulas for all specified variable pairs, but since we
use normal copulas that have correlations as their only parameter, we will use the term ‘correlations’
in the rest of the paper.
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5. Stability

Gendreau et al. (2016) point out that “the number of scenarios required to realistically
describe all of the possible realizations of the parameters will likely be quite large, thus
creating tractability issues”. But how large is that? Unless the scenarios put into the
stochastic program is the full description — and that is hardly the case in vehicle routing
— there is a need to be assured that the scenario set represents the underlying data or
distributions well. The classical problem here is a trade-off between a solvable problem
but where the results are just noise due to a bad representation, and a numerically
unsolvable problem (due to size) but where the representation is good. This is a central
question for any attempt to solve stochastic VRPs, and the answer will depend on what
method is used to generate the scenario set.

Since we assume that the VRP is solved with a search heuristic, evaluating the objec-
tive function for a given feasible solution will be linear in the number of scenarios. So
with |S| scenarios, the objective function evaluation will take |S| times longer for the
stochastic case than for the deterministic case (which corresponds to one scenario). It is
therefore crucial to keep the number of scenarios low, while at the same time knowing
the quality of the evaluation for the given scenario set. Our point in this paper is to
show that with a careful choice of scenario generation method, |S| can be kept rather
low.

There are several ways to assess the quality of a set of scenarios, either in terms of
the set itself or the solution it provides. An overview can be found in Chapter 4 of King
and Wallace (2012). What we shall use is a heuristic test, inspired by Kaut and Wallace
(2007). The goal is to provide confidence that we have enough scenarios to obtain quality
solution evaluations.

In order to determine the necessary number of scenarios, we proceed as follows. We
take a number of instances of our problem. The instances will vary in terms of the
number of customers and vehicles, but will be for a given graph G. We then ask, given
our scenario generation method and our test case (details in Section 6), how many
scenarios do we need so that we know that the objective function evaluations are good
enough if that scenario generation method is used?

Many standard scenario-generation methods, such as sampling, will produce quite dif-
ferent results if they are rerun with the same input data. We can therefore generate a
number of scenario sets of the same size and measure stability on them. This research
uses the scenario-generation method from Kaut (2014). As mentioned in Section 4.2, this
method works differently and has a high probability of producing exactly the same sce-
nario set on two consecutive runs, so the ‘standard’ stability tests would overestimate its
quality. Instead, we use a workaround suggested in Kaut and Wallace (2007) and replace
N scenario sets of size |S| with 2m+1 sets of sizes |S|—m, |S|—-m+1,...,|S],...,|S|+m,
for some chosen m.

The stability test is then as follows: for each instance, generate a set of feasible
solutions; the first is the optimal (or a good) solution to the deterministic version of
the problem (as that is available by assumption), the others some permutations of this
solution (more details in Section 7.1). For each of these solutions, calculate the objective

11



function value according to the method described in Section 3 using each of the 2m + 1
scenario sets. Then find the largest (F™) and smallest (F'~) objective function values
and calculate the relative difference (F'™ — F~)/F*. We define the stability level of |S|
for that instance and that value of m to be the largest such difference over all the tested
solutions. Then pick the smallest |S| having the required stability level, say 1% or 2%.
We study how the stability varies across instances to come to overall views on the choice
of |S]. We make sure that we only apply this test when F'* and F~ have the same sign.
In our cases, they are always positive. We also test the dependence on m.

Doing stability testing this way has an added positive feature relative to the more
common in- and out-of-sample stability used in Kaut and Wallace (2007). When a
stochastic VRP is solved with a heuristic, there will be two sources of noise: the search
heuristic and the scenario generation method. When fixing a set of solutions, as we do,
all the noise in the measures come from the scenarios, helping in deciding the necessary
number of scenarios. After all, the choice of search heuristic is not the point of this
paper; the point is to evaluate feasible solutions. This problem of scenario generation
and search heuristic is also part of the setup in Hui et al. (2014).

As already outlined, we are using a scenario generation method that is in itself a
heuristic, sometimes not even based on a genuine multi-dimensional random vector. In
particular, the method will most likely lead to some spurious correlations in the scenario
set. In Section 4.1, we discussed how a matrix that had been guessed, based on our
best understanding of a problem, could be updated to become a proper correlation
matrix, if the guess did not lead to a positive semi-definite matrix. We pointed out that,
apart from major difficulties of dimensions, this is in own right straightforward. But
we warned against the method as it would result in spurious correlations, also negative
— here and there. But our scenario generation method above also results in spurious
correlations. So is there any difference? The answer is yes; we make sure that the
most important correlations — those along routes — are correct, while the spurious ones
(though still potentially troublesome) are away from routes. When updating a matrix
as in Section 4.1, the spurious correlations can (and will) show up anywhere, including
along routes, and hence have more severe effects on function evaluations. But even so,
how can we know that our approach did not lead to some real problems in terms of
function evaluations, even though the spurious correlations are off the routes? Stability
testing helps us here. If our approach to scenario generation led to strange correlations
(somewhere), and this again affected the objective function values, we shall be unable
to obtain stability because it is extremely unlikely that the spurious correlations would
be the same in all the generated scenario sets, given how we created sets of different
sizes. Hence, when we in this paper report stability — which we will — that does not only
show that we have enough scenarios, but also that the scenarios (though they have some
peculiar correlations here and there) did not disturb the objective function evaluation
(too much).
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two-way street
one-way street

Figure 1: Simplified Beijing road network with 142 nodes and 418 road links.

6. Test Case

As a general observation, stochastic speeds are only of major importance when there
is an asymmetry between the effects of being early and being late. In particular, just
minimizing expected travel times with no special constraints such as time windows (hard
or soft) will hardly make it worthwhile to study stochastics. Hence, time windows (where
the effects of being early or late are very different) or penalties for particularly long
working days, are cases where stochastics is likely to matter.

As an example, we consider a two-stage stochastic VRP where there are penalties for
late arrivals of vehicles back to the depot, but no gains for early arrivals. An example
would be over-time pay for drivers. The instances are defined on a simplified map
of Beijing with V' = 141 (142 nodes in total), L = 418 (road links) and Y = 2015
(neighboring-link pairs); see Figure 1. On this map, we define instances specified by
triplets (IV, K, P). As defined in Section 2, the N customer nodes are nodes 1, 2, ...,
N in V. For each N, the numbers for K, vehicle capacity () and customer demands
are based mainly on the values of corresponding instances in set A of NEO capacitated
VRP instances?, to ensure that they make sense. We shall not have time windows in the
examples. Note that all the instances have L x P = 418 x P random variables, which
leads to (L x P — 1) x (L x P)/2 correlations. For the largest case with L = 418 and
P = 60, the corresponding number of correlations is 314,490,660. The objective is to
minimize expected overtime pay.

3See http://neo.lcc.uma.es/vrp/vrp-instances/capacitated-vrp-instances/
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The details of the relevant experimental data for these instances and other experiments
in the following sections are available in the online supplement of this paper. In this
paper, travel speeds are described by bounded beta distributions, denoted by (cvup, Bip,
vl’;m, v{;“”). Here vl’;m and vj,** denote the minimal and the maximal travel speeds
on link / in period p. oy, and 3, are two parameters which control the shape of the
distribution. Setting oy, = 3, > 1 leads to a symmetric unimodal distribution. In period
p, for a given edge [, we set: (1) oy, = B = 7Yip, Where 7y, is a constant associating
with link ! and period p; (2) vZZi” equal to the average speed in the current period
minus 15; and (3) UZ;” equal to the average speed in the current period plus 15. To
ensure vy, > 1, we set v, = ("™ x vy, x 1.01) / (¢ x U{;’in), where ("% denotes the
maximal link length in the road network, ¢; the length of link I, v;, the average speed
of link [ in period p, and vggm the minimal average speed of link [ in all periods. These
parameters can certainly be set at other reasonable values. The correlations we need
are set as follows. The correlations for travel speeds on each neighboring link pair (pair
of links meeting in a node) in the same period and in two neighboring periods are set
to 0.7 and 0.42 respectively. The correlations for travel speeds on the same link in two
neighboring periods are set to 0.6. Given the approach we use to create scenarios, no
other correlations are needed.

To solve the stochastic VRP, the first stage (decided by the search heuristic) is to
pick K routes, in terms of sequences of customer nodes and starting times from the
depot, and the second stage decision (done by us) is, for each scenario, to travel these
routes, picking paths between pairs of customer nodes to minimize expected costs. We
mentioned in Section 3 that our approach could handle variants of the overall setup. In
this test we shall use one of these. We assume that if two customers are neighbors on the
map, i.e., there is a direct link between them, we shall follow this link, and not look for
potential shorter detours. This is a modeling assumption on how drivers behave when
visiting two customers that are directly connected by a road link. Looking for detours,
the general setup, would of course also work.

6.1. Chosen Search Heuristic

In order to demonstrate our approach we need to apply a search heuristic to our problem.
However, our approach does in no way depend on this choice, and we do not claim that
this is the best approach for our test case; that is not the point of this paper.

For the stochastic VRP, the objective value of each candidate solution is evaluated by
the method described in Section 3. We use the active-guided evolution strategy (AGES)
proposed by Mester and Braysy (2007) to find good solutions to our test cases. The
AGES involves two phases. The first phase creates a starting solution by generating
a set of solutions first with a hybrid cheapest insertion heuristic and then choosing
the best solution found as the starting solution. The second phase is to improve the
starting solution with a two-stage procedure by using the well-known guided local search
metaheuristic (Voudouris and Tsang 1998) and the 141 evolution strategy metaheuristic
(Beyer and Schwefel 2002). It has been demonstrated that the AGES had a better
performance than several well-known benchmarking methods (Vidal et al. 2014).
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Table 1: Out-of-sample performance comparison for SP and DP solutions for some triplets
(N, K, P).
(18,3,3) (32,5,3) (48,7,3) (48,7, 30) (48,7, 60)

Dp Sp  diff. bDp Sp diff. DpP SP diff. DP SP diff. DP SP  diff.
0.87 0.85 -2.3% 226 198 -124% 6.07 546 -10.0% 848 7.66 -9.67% 851 7.91 -7.1%

Table 2: Number of correlations specified for generating scenarios for different P.
P=3 P=5 P=15 P=30 P=60
10,911 19,807 64,287 131,007 264,447

6.2. Is it important to solve the stochastic VRP?

We start by testing whether uncertainty matters for this case — otherwise, there would
be no point in testing the stochastic VRP approach. To compare the performance
of the stochastic VRP (solved by the heuristic in Section 6.1) with its deterministic
counterpart, we use some simulated instances with customers randomly placed on the
map. We compare the out-of-sample performance of the solutions to the stochastic
problem (SP) with the solutions to the corresponding deterministic problem (DP).
Table 1 compares results for five such problem instances. For each instance, we show
the mean of nine out-of-sample objective values (corresponding to m = 4 in Section 5)
of the best solution to the DP and the SP as well as the percentage differences between
the averages. The out-of-sample test used is described as the “weaker out-of-sample
test”® in Kaut and Wallace (2007, p. 262). For each instance, using |S| from Table 4
— which shows the number of scenarios needed for a stability level of less than 2% —
we have generated nine scenario sets of sizes |S|-4, |S]-3, ..., |S], ..., |S|+4, solved the
VRP problem on each of them and then evaluated the solutions on the remaining 8
scenario sets and computed the average. For the deterministic version, we have used all
9 scenario sets for the evaluation. As expected, the SP generates lower out-of-sample
(“true”) objective values than the DP does. Taking problem (48,7,3) as an example,
the average objective value (5.46 hours) generated by the SP is around 10% less than
the corresponding value (6.07 hours) generated by the DP. This shows that uncertainty
has a reasonably large effect on the solutions in the test case. The number of specified
correlations, as explained in Section 4.2, is given in Table 2. The numbers might seem
high, but they are extremely low compared to the total number of correlations involved.

4We use the weaker out-of-sample test because a full-scale test requires either a full distribution (with
an exact evaluation of the out-of-sample values as in Zhao and Wallace (2014)) or more often, a
distribution to sample from in order to obtain an out-of-sample estimate. But since we do not have
a full distribution, we cannot do any of these tests — sampling requires something to sample from.
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7. Experimental Results

7.1. Stability Tests for Test Case

The next step is to find the minimal number of scenarios |S| that can achieve stability
for each of our test instances. For this, we follow the method described in Section 5,
with m = 4. We first illustrate the approach on instance (18, 3,3) — that is, a case with
18 customers, three vehicles and three time periods — and then present results for all
the tested instances.

For the test, we use 10 solutions, where the first one is the best solution found to
the deterministic version of the problem instance, and the other nine are generated by
randomly swapping two customer nodes or randomly putting a customer node from one
route into another in that solution. For each solution, we test stability for several values
of |S|. For each of them, we generate nine scenario sets sized from |S| — 4 to |S| + 4,
evaluate the objective function on each of them and calculate the average objective value
(AOV) and the relative differences (RD) between the largest and the smallest objective
values. The results are presented in Table 3, where the last line is the stability level for a
given |S|, defined in Section 5 as the maximum RD over all the tested solutions. We see
that the scenario generation method gives a reasonable stability. When increasing the
number of scenarios, the relative differences usually get smaller, and the AOVs usually
get closer to the AOV found with |S| = 1,000. In this case, if the required stability level
happens to be 2%, we can set |S| = 100 since it is the minimum |S| that achieves this
level.

Applying the same logic, we have determined the minimal |S| to achieve stability levels
under 1% for a number of instances. The results, including the actual stability level for
each instance, are presented in Table 4. The main observation is that the number of
scenarios needed is very low — just 15 — for the larger instances, though somewhat larger
for the smaller instances. Note that we do not present results with less than 15 scenarios,
although several large problem instances need only 10 scenarios to achieve a stability
level of 1%.

Note that so far we have tested stability levels for the evaluation of given feasible
solutions, which is a weaker concept than in- and out-of-sample stability as discussed in
Kaut and Wallace (2007), as that involves also the interaction with the optimization (in
this case heuristic) procedure, as explained in Section 5. We do this as our goal is to
show how objective functions can be evaluated without reference to the chosen heuristic.
However, for completeness, we also tested relative differences for the best found solutions
using the heuristic in Section 6.1. We did this for all instances using the scenario counts
in Table 4. In all cases, stability was confirmed for the stochastic solution. The results
are presented in Table 5. We see that the relative differences are within or very close to
those presented in Table 4.

All tests have used nine scenario sets, corresponding to m = 4. To make sure m = 4
was not a bad choice, we investigated the effects of increasing m for each problem instance
and the value of |S| shown in Table 4 . The complete results are shown in Table 6. We
note that increasing m from 4 to 6, 8 and 10 increases the relative differences on average
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Table 3: Results of stability tests for test instance VRP (18,3,3), that is, an instance with
18 customers, 3 vehicles and 3 time periods.

Number of scenarios 10 30 50 100 500 1000
AOV 0.8640 0.8615 0.8619 0.8616 0.8648 0.8646

Solution 1 “p iy 4990 2.85%  3.79% 1.65% 0.65% 0.33%
Solution 9 AOV 13138 13080 1.3080 13107 1.3106 13105
orution RD  4.56% 1.92% 0.91% 0.87% 0.36% 0.14%
Solution 3 AOV L7906 L7811 17882 17863 1.7864 L7858
uhion RD  3.63% 1.33% 1.49% 0.53% 0.32% 0.19%
Solution 4 AOV 40130 40007 40023 4.0068 40078 4.0073
ortion RD  1.58% 1.17% 0.96% 0.57% 0.27% 0.23%
Soltion 5 AOV 47501 47572 47522 47538 47552 4.7563
oo RD  2.73% 2.59% 1.51% 0.73% 0.58% 0.30%
Solution 6 MOV 47501 47572 47520 47535 47548 47559
orution RD  2.73% 2.59% 151% 0.73% 0.59% 0.30%
Solution 7 AOV 32530 32447 3.2362 32350 3.2375 3.2402
ution RD  1.62% 1.79% 1.22% 1.19% 0.37% 0.33%
Solution s AOV  3.0840 3.0612 3.0672 3.0632 3.0625 3.0624
ortion RD  1.53% 087% 1.35% 1.17% 0.28% 0.27%
. AOV  2.8224 27840 2.7793 2.7780 2.7845 2.7863
Solution 9

RD 7.66% 1.85% 257% 1.32% 0.55% 0.44%

AOV  4.2755 4.2517 4.2485 4.2382 4.2469 4.2483
RD  280% 1.85% 1.44% 1.04% 0.35% 0.33%

stability level 7.66% 2.85% 3.79% 1.65% 0.65% 0.44%

Solution 10
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Table 4: Stability levels (SL) in the evaluations.
P=3 P=5 P =15 P =30 P =60
(N, K) S| SL S| SL |S| SL S| SL S| SL

) 100 1.7% 60 0.7% 65 1.0% 45 0.9% 35 1.0%
) 55 0.9% 20 0.9% 25 0.8% 22 0.9% 32 0.8%

48,7) 25  0.8% 15 1.0% 15 0.6% 15 0.9% 15 0.9%
)

15 1.0% 15 0.6% 15 0.6% 15 0.8% 15 1.0%

Table 5: Stability of best solutions of cases from Table 4, in terms of relative differences
(RD) of objective values.

P=3 P=5 P=15 P =230 P =60

(N,K) |S| RD S| RD |S| RD |S| RD |S| RD
(18,3) 100 1.7% 60 09% 65 0.7% 45 1.1% 35 1.3%
(32,5) 55 09% 20 09% 25 08% 22 07% 32 05%
(48,7) 25 04% 15 11% 15 03% 15 07% 15 1.0%
(64,90 15 04% 15 04% 15 03% 15 04% 15 0.3%

by 19%, 29%, and 37%, respectively. Given the definition of stability level, it is bound
to increase when m increases. But we notice that even for m=10, the stability levels are
between 0.6% and 2.0% for the 20 instances. This is especially surprising for cases with
|S| = 15, since m = 10 means that we are comparing values from sets with 5,6, ...,25
scenarios. To conclude, the table suggests that the numbers of scenarios indicated in
Table 4 are safe to use, and that we have the necessary stability.

To further validate the results shown in Table 4, we took the solutions from the tests
in Table 4 and performed the weaker out-of-sample test outlined in Kaut and Wallace
(2007, p. 262). We cannot do a complete out-of-sample test as we have nothing to sample
from to perform such a test. For each instance, we take each of the nine solutions (as
we have nine different scenario sets and each scenario set corresponds to one solution)
and evaluate them in the other eight scenario sets. Each solution then leads to a relative
difference (over eight values), and we thus get nine relative differences, among which
the largest is defined as the out-of-sample stability level. The results given in Table 7
further confirm the stabilities of the numbers of scenarios indicated in Table 4, and they
are reliable to use.

How do we understand and interpret these results above?

1. A solution consists of routes. A route is actually a sequence of neighboring road
links in time and space, and they have correlations we have controlled well in the
scenario generation method. The calculation of travel time on a route and corre-
sponding overtime pay is therefore rather good, particularly taking into account
that the expected travel time is always correct (details in Section 4.2). Even if the
scenario set contains spurious correlations, they do not affect the route travel time
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Table 6: Stability levels of cases from Table 4, for varying m.
(N,K,P) |S|] m=4 m=6 m=8 m=10

(18,3,3) 100 1.7% 1.8% 18%  2.0%
(18,3,5) 60 0.7% 0.8% 0.8%  0.8%
(18,3,15) 65 1.0% 1.8% 1.9%  1.9%
(18,3,30) 45 0.9% 15% 15%  1.5%
(18,3,60) 35 1.0% 1.0% 15%  1.5%
(32,5,3) 55 0.9% 1.1% 1.2%  1.2%
(32,5,5) 20 0.9% 09% 12%  1.2%
(32,5,15) 25 0.8% 0.8% 0.8%  0.9%
(32,5,30) 22 09% 1.2% 12%  1.2%
(32,5,60) 32 08% 1.1% 11% 1.1%
(48,7,3) 25 0.8% 0.8% 1.1%  1.3%
(48,7,5) 15 1.0% 1.1% 11% 1.1%
(48,7,15) 15 0.6% 0.6% 0.9%  0.9%
(48,7,30) 15 09% 1.1% 11%  1.2%
(48,7,60) 15  0.9% 1.4% 14%  1.4%
(64,9,3) 15  1.0% 1.0% 11%  1.3%
(64,9,5) 15 0.6% 0.6% 0.7%  0.9%
(64,9,15) 15  0.6% 0.6% 0.6%  0.6%
(64,9,30) 15 0.8% 0.9% 09%  1.2%
(64,9,60) 15 1.0% 1.0% 11%  1.1%

average stab. 0.89% 1.06% 1.15% 1.22%

distribution estimations too much. But of course, two links (in time and space)
that are incorrectly correlated in the scenario set may be on the same route, and
hence, the distribution of travel times on the route will be affected (though the
mean is always correct).

. We also see that we need more scenarios when K (and hence N) and P are low.
The reason is simple enough: All routes, but to a different degree, will be affected
by spurious correlations. With a low K and / or P, the effect of a single correlation
becomes more important. Since stability is defined as a maximal difference over
many scenario sets, this max will therefore tend to increase as the number of routes
and periods decrease.

. What were the effects of the spurious correlations on the number of scenarios
needed for stability? First note two facts: Firstly, as the number of scenarios
increases, the spurious correlations will change. They may converge to something,
or they may not. But in any case, there is no reason why they should converge
to the right values. Hence, the noise from correlations will remain in the results.
Secondly, as we do not know what the uncontrolled correlations are (or could be),
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Table 7: The out-of-sample stability levels for solutions from Table 4.

P=3 P=5 P=15 P =30 P =60
(NJK) S| SL |S| SL  |S| SL || SL |S| SL

) 100 1.7% 60 1.2% 65 0.8% 45  1.2% 35 1.3%
;D) 55 1.3% 20 1.2% 25 1.0% 22 1.1% 32 0.8%
) 25 0.6% 15 1.1% 15 0.6% 15 0.9% 15 1.1%
) 15 0.5% 15 0.6% 15 0.4% 15 0.6% 15 0.8%

we cannot compare the correlations from the scenarios (which we can find) with
anything meaningful. So they will either converge to something or keep jumping
around, but we will never get rid of the noise. What we observe is that there are
errors in the stability tests that come from the correlations, and these errors are
(except for some noise) independent of the number of scenarios, but larger the
smaller are K and P.

Hence, when we perform the stability tests, and we measure errors, these errors
stem from correlations and scenarios. With the errors from correlations more or
less fixed for a given pair (K, P), it becomes harder to achieve a certain total error
by increasing the number of scenarios if the errors from the correlations are large.
Hence, when correlation errors are large, we need many more scenarios to achieve
a certain total errors. And this explains the relationship between problem size and
necessary scenarios.

. Despite the, at times, enormous dimension of our problem, each route actually
covers rather few random variables, with a vehicle traveling on twenty to thirty
links while visiting six to eight customers. The number of random variables in-
volved increases with P, but the increase is purely caused by adding many speeds
representing the same link in neighboring periods — and those are the ones we
control the most. Assume, just for the sake of argument, that we knew exactly
which random variables were involved in a route, and we generated scenarios for
just those variables. It is maybe not so surprising that rather few scenarios are
needed in such a moderate dimension. The clue of the scenario generation method
we use is that it produces good scenarios for any possible route. In a sense, that
is why it takes so long to find just 15 scenarios (see next section), as the scenario
set must work for all routes at the same time. So, it is not always true that
the number of scenarios will likely be quite large, as expressed by Gendreau et al.
(2016). The reason is that in a VRP we end up with routes (of course) which have
a very nice structure relative to our scenario generation heuristic. So the num-
ber of random variables can be huge, but typically not the number of scenarios.
In detail, a route can be seen as a sequence of link pairs, and we control all the
correlations representing link pairs. It means that even though we control rather
few correlations (relative to the total number) we can focus on the ones that we
know will be most important. This may not be true for other scenario generation
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methods, and certainly not for other optimization problems that lack this useful
structure. It is because, in problems where it is not clear which correlations will
be important, it is also not clear which limited subset of correlations to handle in
the scenario generation method. And the result will be that crucial correlations
are not controlled.

Other VRPs. To investigate if our approach works for other VRPs, we further
perform stability tests for eight typical VRPs with different constraints and objectives.
This includes vehicle capacity constraints, soft route duration constraints, hard route
duration constraints, earliest arrival time constraints, and latest arrival time constraints.
The objectives involve such as maximizing the expected number of served customers,
minimizing the expected total costs, and minimizing the expected total travel costs.
To keep the main text short, we put the details of these VRPs and the corresponding
stability tests in the Appendix. The results show that fifteen scenarios are sufficient to
achieve a stability level of 1% in almost all problem instances.

7.2. Computation Time

The CPU time for solution evaluations consists of two parts. The first part is the CPU
time of the scenario generation, measured in seconds, which we denote by 77. Note that
this is run only once before the start of the search heuristic. The scenarios can be reused
for any instances as long as the speed patterns do not change.

The second part, denoted T, is the average CPU time (in seconds) needed to evaluate
the objective function for one scenario (for a given feasible solution). We compute this
by generating 5,000 feasible solutions for each of the 20 problem instances, and report
the average CPU times. These results are shown in Table 8. The tests were carried out
on a laptop with Intel Core i7-5500U CPU @2.4GHz and 8 GB RAM using MATLAB
version R2009a.

Let us first look at 77 in Table 8. The number of random variables is 418 x P. So
for P = 3 we have 1254 random variables, up to 25,080 random variables for P = 60.
For a certain |S|, T} increases with P, and the increase is much more than linear as the
handling of dependencies becomes increasingly complicated. This is also partly caused
by memory and disk I/O operations on our laptop. The largest T in the table is 21,287
seconds, i.e., about 6 hours. A more descriptive case in terms of algorithmic behavior
(not affected by memory operations) can be found for P = 30. This could, for example,
correspond to a 10-hour day splitting into thirty 20-minute intervals. In this case it
took about 37 minutes to create 15 scenarios. It might seem excessive to use 37 minutes
on fifteen scenarios. But remember that these fifteen scenarios involve over 188,000
different numbers, and it is the carefulness of setting these up that makes it possible to
have so few scenarios. There are certainly quicker ways to set up fifteen scenarios, but
the question will then be if such stability can be achieved.

Once a scenario set is defined and found stable, it is 75 that determines the speed
of solving the stochastic VRP. It can be found from Table 8 that T5 is approximately
linear in N and K. Given a route and an evaluation algorithm, 75 is determined mainly
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Table 8: CPU times in seconds needed for stochastic instances.
P=3 P=5 P=15 P =30 P =60
(NNKY |IS] Tv T S| Tn T S| Tn T S| T T IS| T T

) 100 160 0.008 60 113 0.008 65 659 0.008 45 2557 0.008 35 21287 0.008
) 55 51 0.014 20 25 0.015 25 342 0.015 22 2273 0.015 32 18097 0.015
) 25 15 0.021 15 20 0.021 15 294 0.021 15 2240 0.022 15 17198 0.022
) 15 9 0.028 15 20 0.028 15 294 0.029 15 2240 0.029 15 17198 0.029

by the number of calls to the Dijkstra algorithm (which is very close to the number
of customer nodes) and the number of links included in the route. The sets of 5000
feasible solutions are the same at different P in our experiments. Thus, the average
number of links and the average number of Dijkstra calls are not dependent on P. That
is why 15 at different P are almost the same for given N and K. Note that we have not
optimized the computations reflected in Table 8, as that is not the point of this paper;
our goal is to show a useful approach. More can be achieved by for example using a
faster language such as C/C++, parallel evaluation of routes/scenarios, and caching of
already evaluated routes.

But in any case, since evaluating the objective function in the deterministic case cor-
responds to the evaluation for one scenario, the number of scenarios is what determines
how much slower one function evaluation is in the stochastic case compared to the de-
terministic one. And this is where, in our view, 15 is a very acceptable number. This
is why it is so critical to have a good method for generating scenarios so that stability
(at a chosen accuracy) can be achieved with as few scenarios as possible. Our scenario
generation method is particularly well suited to VRPs. Of course, the setup of scenarios
is rather expensive, but this can be done offline and is valid as long as the map and the
speed patterns do not change.

8. Conclusions

This paper provides a starting point for handling correlated travel times (speeds) in
VRPs. Correlations cover both time and space. We point out that such VRPs need
to be defined on the underlying map (network) and not on just the customer nodes;
correlations in time and space cannot be properly expressed in that setting. The main
reason is that as soon as two node pairs share a link the speeds become dependent. This
is even more involved when we face multiple time periods.

Next, we point out that VRPs with stochastic speeds easily bring the number of
dependent random variables into the thousands. Our largest case had 25,080 random
variables. In such dimensions it is close to impossible to define and represent the full
correlation matrix. In our largest case, there are, for example, over 310 million distinct
correlations. As a result of this problem of size, sampling, as a way to generate scenarios,
is also out as methodology in most cases, as sampling requires something to sample from.

We chose to circumvent the above problem by not defining a complete distribution.
Rather, we focus on the dependencies that are most critical for a VRP, namely between
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speeds on the same and neighboring links in neighboring periods as well as neighboring
links in the same period; a route will always pick a sequence of links (random variables)
visiting such neighbors. This approach will create spurious correlations for some unspec-
ified road link pairs. Whether or not this is a major problem is tested as part of the
procedure for determining the necessary number of scenarios. We show that stability
can indeed be achieved, partly caused by the fact that our scenario generation method
always creates correct expected speeds, and hence expected travel times. Typical num-
bers we get is that for a case where the expected behavior of the stochastic solution is
10% better than that of the corresponding deterministic solution, we can obtain solu-
tions with a 1% error using 15 scenarios in dimensions as high as 25,080. This very low
number of scenarios is a result of our scenario generation method and cannot be carried
over to other approaches without testing.

We provide a simple way to calculate the objective function value for any feasible
solution (set of routes). This can be used in most cases, somewhat adjusted based
on the VRP being studied. If P = 1, i.e., there is no time dimension, any existing
deterministic approach can be used, scenario by scenario. The number of necessary
scenarios shows how much more running time is needed for a stochastic case, compared
to its deterministic counterpart. For a case with 142 nodes, 418 road links, we found a
ratio of about 15. The substantial time needed to set up the scenarios comes in addition,
but these can be reused as long as the map and the speed distributions do not change.

It is our hope that others can use our general approach to investigate different VRPs
with correlated travel times (speeds). The code used to generate scenarios is available
from its author for free. Future work can also focus on developing fast and effective
heuristics for stochastic VRPs based on our solution evaluation approach.
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Appendix

A. Stability tests for different VRP cases

In this appendix, we present stability tests for several stochastic VRPs with typical
constraints and objective functions so that the effectiveness of our approach can be
validated further.
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A.1. More VRP cases

There exist various constraints and objectives in VRPs. The following are used in our
tests.

(1) Vehicle capacity constraint: The total delivery on a route must not exceed the
vehicle capacity (). Let g; denote the delivery at customer ¢, r; the route of vehicle k,
and Dy, the total amount of freight delivered on route r,. We have

Dp=)Y ¢<Q (1)

1ETY

(2) Soft route duration constraint: If the total travel time of a route is greater
than the route duration limit, the vehicle can continue working but an overtime pay is
incurred. Let T}] denote the total travel time of route rj, in scenario s (1 < s < .5), T
the route duration limit, and Oj the overtime of route rj in scenario s. We have,

0§ = max(T§ — 7™, 0) 2)

(3) Hard route duration constraint: For route 7, once the remaining time, using
expected speeds, is insufficient to serve the next customer in scenario s, the vehicle stops
working and returns to the depot. The remaining time will end up being 7" minus
the travel time using the speeds of the scenario. But this is not known at the time of
leaving customer ¢ since future speeds are not actually known. Assume that ¢ and j
are the last two customers visited on route ry. Let 77 (t;’;g) denote the scenario-based
(expected) travel time from customer i to customer j to the depot starting at time m in
scenario s. The total travel time (7)) of route 7, could exceed the route duration limit

if the realized travel time tijo to serve the last customer is larger than its expected travel
time tg»“o). We have
Ty —tis + tﬁg < maer (3)

(4) Soft earliest arrival time constraint: If the vehicle’s arrival time is less than
the specified earliest arrival time at a customer, an earliness penalty cost is incurred. Let
a; denote the actual arrival time at customer ¢ in scenario s, and e; the required earliest
arrival time at customer ¢. The earliness I of customer 7 in scenario s is expressed
below,

E; = max(e; — a;,0) (4)

(5) Soft latest arrival time constraint: If the vehicle’s arrival time is greater than
the specified latest arrival time at a customer, a tardiness penalty cost is incurred. Let
l; denote the required latest arrival time at customer i. The tardiness L; of customer i
in scenario s is expressed below,

L{ = max(a; —1;,0) (5)

To examine the effects of different objectives and constraints on stability and the
number of scenarios, we use VPRs with one or more constraints from above and different
objectives. The detail of these cases are described as follows.
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Case 1: The objective is to maximize the expected number of served customers with
a vehicle capacity constraint and a hard route duration constraint. Some customers
cannot be served due to the vehicle capacity constraint and some due to the hard route
duration constraint. Let N; denote the number of customers visited on route ry in
scenario s. The objective can be formulated as follows.

max F1 = E() (N})) (6)

k

Case 2: Following Case 1, this case considers the same vehicle capacity constraint
but a soft route duration constraint. The objective is to maximize the expected total
profit (revenue). Let 1) denote the profit per unit freight, w, the overtime pay per hour,
wy the cost per unit fuel (unit: liter), and f; the total fuel consumption of route 7} in
scenario s. The fuel consumption is a nonlinear function of travel distance and travel
time®. The objective can be formulated as follows.

max F2 = E() (- Dy — wo - Of, — wy - f})) (7)
k

Case 3: Following Case 2, this case considers the same constraints. The objective is
also to maximize the expected total profit (revenue). But we do not consider the fuel
cost in this objective, which is formulated as follows

maXF3:E(Z(1/J-Dk —w, - OF)) (8)
k

Case 4: All customers need to be served and each customer must be served once by
exactly one vehicle. The objective is to minimize the expected total cost with the vehicle
capacity constraint and the soft route duration constraint. The expected total cost is the
summation of expected transportation costs, including the fixed cost of vehicles used,
the overtime cost, and the fuel-related travel cost. Let ¢ denote the fixed operational
cost of one vehicle. Let z; be 1 if vehicle k is used; otherwise it is 0. The objective can
be formulated as follows.

min F4 = E() (¢ +wo - Of +wy - f7) - 2)) 9)
k

Case 5: Following Case 4, the objective is to minimize the expected total cost with
the vehicle capacity constraint and the soft route duration constraint. The expected
total cost is the summation of expected transportation costs, including the fixed cost of
vehicles used, the overtime cost, and the distance-related travel cost. Let dj denote the
distance travelled in scenario s, and wy the travel cost per unit distance. The objective
can be formulated as follows.

min F5 = E() (¢ +wo - Of +wq - d}) - 2)) (10)
k

5Refer to: Barth, M., Younglove, T., Scora, G. (2005). Development of a heavy-duty diesel modal
emissions and fuel consumption model. California PATH research report.
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Case 6: All customers must be served and a fixed number of vehicles are available.
The objective is to minimize the expected total travel cost with the vehicle capacity
constraint and the soft latest arrival time constraint. The total travel cost is defined
as the summation of the travel time-related cost and the tardiness penalty cost. Let ~y
denote the travel cost per unit time and let w; denote the tardiness penalty per unit
time. The objective can be formulated as follows.

min F6 = E() (v Tp + Y _(w; - L)) (11)

k 1ETE

Case 7: This case is similar to Case 6. The only difference is that this case considers
the earliness penalty cost in the objective function instead of the tardiness penalty cost.
Let w, denote the earliness penalty per unit time. The objective can be formulated as
follows.

min F7=E (y-Ti + Y (we - E)) (12)
k 1ETE

Case 8: Following Case 6 and Case 7, the objective function in this case considers
both the earliness penalty cost and the tardiness penalty cost, which is formulated as
follows.

min F8 = E() (v-Ti + Y _(we - Bj +w; - L)) (13)

k 1ETE

In Cases 1-5, either the number of customers visited or the number of vehicles used
needs to be determined in the decision process. Customers visited and the corresponding
visiting sequence in a route could affect customers visited in other routes in Cases 1-
3 and affect the number of used vehicles in Cases 4-5. However, both the number of
customers visited and the number of vehicles used are pre-specified in Cases 6-8.

A.2. Numerical results

To observe how these different types of constraints and objectives affect the stability, we
conduct the stability tests in terms of 20 problem instances, for each test case, based on
different value combinations of N, K, and P. For each case, P could be 3, 5, 15, 30 or 60.
The (N, K) combinations in different cases are shown in Table Al. In Cases 1-5, either
N or K could be different from the corresponding one in the case of Section 6. Cases
1-3 consider more customers because these cases need to select out the most appropriate
customers from all customers. In Cases 4-5, Ns are the same as in Section 6, but K is
not pre-specified. In Cases 6-8, (IV, K') could be (18, 3), (32, 5), (48, 7), or (64, 9).

The weights in the experiments are set as follows: ¥ = 1, ¢ = 100, v = 1, wg = 1,
we = 10, wy = 1, wy = 20, and w, = 10. The settings of other experimental data are
consistent with those in the main text.

Using the same stability test method as described in Section 5, we examine the result-
ing relative differences at |S|=15 for 20 problem instances of each test case. Table A2
shows the resulting relative differences. From the results in Table A2, we find that:
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Table Al: (N,K) combinations in different cases

Cases (N',K') (N2,K?) (N3 K3 (N*K*%)
-3 (27.3)  (485)  (647)  (80,9)
5 (8K) (32.K) (8K) (64K)
6-8 (18,3) (32,5) (48,7) (64,9)

Table A2: The relative differences at |S|=15

N.K.,P Casel Case2 Case3d Cased4d Cased Case6 Case7 CaseS8
(NY, K, 3)  2.73%  1.46% 0.51%  1.46%  0.42% 2.20% 2.92% 0.97%
(NY, K1 5)  249% 0.72% 0.36% 0.72% 0.15% 1.06% 1.69% 1.04%
(N, K1 15)  1.92%  0.27% 025% 0.27% 0.11% 0.85% 1.38%  0.54%
(N, K1 30) 295% 1.36% 0.49% 1.36% 0.28% 1.53%  3.09%  0.85%
(N, K, 60) 291% 2.04% 0.73% 2.04% 0.21% 1.14% 2.01% 2.95%
(N%, K%, 3) 1.52% 1.02% 0.43% 1.02% 0.10% 1.44% 1.06% 0.99%
(N2, K2,5) 1.11% 0.64% 0.34% 0.64% 0.08% 0.58% 1.81% 0.97%
(N%, K2,15) 0.25% 0.60% 0.28% 0.60% 0.15% 0.80% 0.81% 0.44%
(N2, K2,30) 0.56% 0.84% 0.55% 0.84% 0.05% 0.59% 1.29%  0.81%
(N2, K2,60) 0.80% 1.37% 0.58% 1.37% 0.19% 1.17% 1.9™% 1.06%
(N3, K3,3) 0.94% 0.88% 0.36% 0.88% 0.22% 0.81% 1.60% 1.10%
(N3, K3,5)  1.09% 0.24% 0.13% 0.24% 0.13% 0.66% 1.72%  0.47%
(N3, K3,15)  0.92% 0.58% 0.31% 0.58% 0.11% 0.41% 0.78%  0.36%
(N3, K3,30) 0.93% 0.73% 037% 0.73% 0.24% 0.72% 1.26%  0.48%
(N3, K3,60) 1.07% 0.68% 0.44% 0.68% 0.27% 0.89% 2.03% 0.68%
(N*, K% 3) 053% 0.89% 0.36% 0.89% 0.16% 0.46% 0.54%  0.40%
(N*, K*'5)  052% 0.51% 020% 0.51% 0.06% 0.38% 0.24% 0.26%
(N*, K* 15) 0.81% 0.30% 0.16% 0.30% 0.11% 0.50% 0.60% 0.56%
(N*, K*,30) 0.64% 0.68% 0.20% 0.68% 0.12% 0.29% 0.67%  0.30%
(N%, K%, 60) 0.34% 0.55% 0.28% 0.55% 0.20% 0.94% 0.65% 0.75%
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1. Using 15 scenarios, we can achieve a stability level of 2% or 1% for most problem
instances.

2. For the last five large problem instances of all test cases, fifteen scenarios are
sufficient to achieve a stability level of 1%.

3. Compared to Case 3, Case 2 leads to a larger RD, which is caused by the fuel cost
term in its objective since it is the only difference between the two cases. It implies
that the weight setting for different terms in a polynomial objective functions has
effects on the stability results since the objective function F'3 is actually a special
case of the objection function F'2. Just to illustrate, take Case 4 as an example.
If we change w, to 500 from 10 (an extremely large change) in F'4, the resulting
RD range for the 20 problem instances will be changed to [1.11%, 16.64%)] from
the current range [0.27%, 2.04%).

References

Bent RW, Van Hentenryck P (2004) Scenario-based planning for partially dynamic vehicle routing
with stochastic customers. Operations Research 52(6):977-987.

Beyer HG, Schwefel HP (2002) Evolution strategies: A comprehensive introduction. Natural
Computing 1(1):3-52.

Campbell AM, Wilson JH (2014) Forty years of periodic vehicle routing. Networks 63(1):2-15.
Casey B, Bhaskar A, Guo H, Chung E (2014) Critical review of time-dependent shortest path
algorithms: A multimodal trip planner perspective. Transport Reviews 34(4):522-539.
Cattaruzza D, Absi N, Feillet D (2016) The multi-trip vehicle routing problem with time windows

and release dates. Transportation Science 50(2):676-693.

Cimen M, Soysal M (2017) Time-dependent green vehicle routing problem with stochastic vehicle
speed: An approximate dynamic programming algorithm. Transportation Research Part D:
Transport and Environment 54:82-98.

Dupacova J, Consigli G, Wallace SW (2000) Scenarios for multistage stochastic programs. Annals
of Operations Research 100(1-4):25-53, ISSN 0254-5330, URL http://dx.doi.org/10.
1023/A:1019206915174.

Ehmke JF, Campbell AM, Thomas BW (2016) Vehicle routing to minimize time-dependent
emissions in urban areas. Furopean Journal of Operational Research 251(2):478-494, ISSN
0377-2217, URL http://dx.doi.org/10.1016/j.ejor.2015.11.034, 9.

Ehmke JF, Campbell AM, W TB (2018) Optimizing for total costs in vehicle routing in urban
areas. Transportation Research Part E: Logistics and Transportation Review 116:242-265,
URL http://dx.doi.org/10.1016/j.tre.2018.06.008.

Errico F, Desaulniers G, Gendreau M, Rei W, Rousseau LM (2016) A priori optimization with
recourse for the vehicle routing problem with hard time windows and stochastic service
times. European Journal of Operational Research 249(1):55-66.

Feng Y, Zhang RQ, Jia G (2017) Vehicle routing problems with fuel consumption and stochastic
travel speeds. Mathematical Problems in Engineering 2017:1-16, URL http://dx.doi.
org/10.1155/2017/6329203.

Fisher ML, Jaikumar R (1981) A generalized assignment heuristic for vehicle routing. Networks
11(2):109-124.

28


http://dx.doi.org/10.1023/A:1019206915174
http://dx.doi.org/10.1023/A:1019206915174
http://dx.doi.org/10.1016/j.ejor.2015.11.034
http://dx.doi.org/10.1016/j.tre.2018.06.008
http://dx.doi.org/10.1155/2017/6329203
http://dx.doi.org/10.1155/2017/6329203

Fu L, Rilett L (1998) Expected shortest paths in dynamic and stochastic traffic networks.
Transportation Research Part B: Methodological 32:499-516, URL http://dx.doi.org/
10.1016/50191-2615(98)00016-2.

Gendreau G, Jabali O, Rei W (2016) Future research directions in stochastic vehicle routing.
Transportation Science 50(4):1163-1173.

Goodson JC (2015) A priori policy evaluation and cyclic-order-based simulated annealing for the
multi-compartment vehicle routing problem with stochastic demands. Furopean Journal of
Operational Research 241(2):361-369.

Han J, Lee C, Park S (2014) A robust scenario approach for the vehicle routing problem with
uncertain travel times. Transportation Science 48(3):373-390.

Huang Y, Zhao L, Woensel TV, Gross JP (2017) Time-dependent vehicle routing problem with
path flexibility. Transportation Research Part B: Methodological 95:169-195.

Hui YV, Gao J, Leung L, Wallace S (2014) Airfreight forwarder’s shipment planning under
uncertainty: A two-stage stochastic programming approach. Transportation Research Part
E: Logistics and Transportation Review 66:83-102.

Ichoua S, Gendreau M, Potvin JY (2003) Vehicle dispatching with time-dependent travel times.
FEuropean Journal of Operations Research 144:379-396.

Juan AA, Faulin J, Jorba J, Caceres J, Marques JM (2013) Using parallel & distributed com-
puting for real-time solving of vehicle routing problems with stochastic demands. Annals
of Operations Research 207(1):43-65.

Kaut M (2014) A copula-based heuristic for scenario generation. Computational Management
Science 11(4):503-516, URL http://dx.doi.org/10.1007/s10287-013-0184~4.

Kaut M, Wallace SW (2007) Evaluation of scenario-generation methods for stochastic program-
ming. Pacific Journal of Optimization 3(2):257-271.

King AJ, Wallace SW (2012) Modeling with Stochastic Programming. Springer Series in Opera-
tions Research and Financial Engineering (Springer), URL http://dx.doi.org/10.1007/
978-0-387-87817-1.

Laporte G (2009) Fifty years of vehicle routing. Transportation Science 43(4):408-416.

Laporte G, Louveaux F, Mercure H (1992) The vehicle routing problem with stochastic travel
times. Transportation Science 26(3):161-170.

Lecluyse C, Sorensen K, Peremans H (2013) A network-consistent time-dependent travel
time layer for routing optimization problems. FEuropean Journal of Operational Research
226:395-413.

Lee C, Lee K, Park S (2012) Robust vehicle routing problem with deadlines and travel
time/demand uncertainty. Journal of the Operational Research Society 63(9):1294-1306.

Lei HT, Laporte G, Guo B (2012) A generalized variable neighborhood search heuristic for the
capacitated vehicle routing problem with stochastic service times. Top 20(1):99-118.

Lin CH, Choy KL, Ho GTS, Chung SH, Lam HY (2014) Survey of green vehicle routing problem:
Past and future trends. Expert Systems with Applications 41(4):1118-1138.

Lurie PM, Goldberg MS (1998) An approximate method for sampling correlated random variables
from partially-specified distributions. Management Science 44(2):203 — 218.

Martinelli R, Contardo C (2015) Exact and heuristic algorithms for capacitated vehicle routing
problems with quadratic costs structure. INFORMS Journal on Computing 27(4):658-676.

Mester D, Braysy O (2007) Active-guided evolution strategies for large-scale capacitated vehicle
routing problems. Computers & Operations Research 34(10):2964-2975.

29


http://dx.doi.org/10.1016/S0191-2615(98)00016-2
http://dx.doi.org/10.1016/S0191-2615(98)00016-2
http://dx.doi.org/10.1007/s10287-013-0184-4
http://dx.doi.org/10.1007/978-0-387-87817-1
http://dx.doi.org/10.1007/978-0-387-87817-1

Nejad MM, Mashayekhy L, Chinnam RB, Phillips A (2016) Hierarchical time-dependent shortest
path algorithms for vehicle routing under ITS. ITE Transactions 48(2):158-169.

Oyola J, Arntzen H, Woodruf DL (2018) The stochastic vehicle routing problem, a literature
review, part I: Models. EURO Journal on Transportation and Logistics (7):193-221.

Pillac V, Gendreau M, Gueret C, Medaglia AL (2013) A review of dynamic vehicle routing
problems. Furopean Journal of Operational Research 225(1):1-11.

Potvin JY (2009) State-of-the art review: Evolutionary algorithms for vehicle routing. INFORMS
Journal on Computing 21(4):518-548.

Prins C, Lacomme P, Prodhon C (2014) Order-first split-second methods for vehicle routing
problems: A review. Transportation Research Part C: Emerging Technologies 40:179-200.

Ritzinger U, Puchinger J, Hartl RF (2016) A survey on dynamic and stochastic vehicle routing
problems. International Journal of Production Research 54(1):215-231.

Schilde M, Doerner K, Hartl R (2014) Integrating stochastic time-dependent travel speed in
solution methods for the dynamic dial-a-ride problem. Furopean Journal of Operational
Research 238:18-30.

Soysal M, Bloemhof-Ruwaard JM, Bektas T (2015) The time-dependent two-echelon capaci-
tated vehicle routing problem with environmental considerations. International Journal of
Production Economics 164:366-378.

Tas D, Dellaert N, van Woensel T, de Kok T (2013) Vehicle routing problem with stochastic travel
times including soft time windows and service costs. Computers & Operations Research
40(1):214-224.

Tas D, Dellaert N, van Woensel T, de Kok T (2014) The time-dependent vehicle routing prob-
lem with soft time windows and stochastic travel times. Transportation Research Part C:
Emerging Technologies 48:66—-83.

Ticha HB, Absi N, Feillet D, Quilliot A (2018) Vehicle routing problems with road-network
information: State of the art. Networks 72(3):393-406, ISSN 1097-0037, URL http://dx.
doi.org/10.1002/net.21808, 9.

Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heuristics for multi-attribute vehicle routing
problems: A survey and synthesis. Furopean Journal of Operational Research 231(1):1-21.

Vidal T, Crainic TG, Gendreau M, Prins C (2014) A unified solution framework for multi-
attribute vehicle routing problems. European Journal of Operational Research 234(3):658—

673.
Voudouris C, Tsang E (1998) Guided local search. European Journal of Operations Research
113:80-119.

Wang XY, Golden B, Wasil E (2015) The min-max multi-depot vehicle routing problem: Heuris-
tics and computational results. Journal of the Operational Research Society 66(9):1430—
1441.

Zhao Y, Wallace SW (2014) Integrated facility layout design and flow assignment problem under
uncertainty. INFORMS Journal on Computing 26(4):798-808.

Zhu L, Rousseau LM, Rei W, Li B (2014) Paired cooperative reoptimization strategy for the
vehicle routing problem with stochastic demands. Computers € Operations Research 50:1—
13.

30


http://dx.doi.org/10.1002/net.21808
http://dx.doi.org/10.1002/net.21808

	Introduction
	Modeling the Routes
	Evaluating the objective function
	Multi-Dimensional Distributions and Scenario Generation
	Updating a Guess of a Correlation Matrix
	Practical Consideration

	Stability
	Test Case
	Chosen Search Heuristic
	Is it important to solve the stochastic VRP?

	Experimental Results
	Stability Tests for Test Case
	Computation Time

	Conclusions
	Stability tests for different VRP cases
	More VRP cases
	Numerical results


