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This paper addresses a class of two-stage robust optimization models with an exponential number of sce-
narios given implicitly. We apply Dantzig-Wolfe decomposition to exploit the structure of these models and
show that the original problem reduces to a single-stage robust problem. We propose a Benders algorithm
for the reformulated single-stage problem. We also develop a heuristic algorithm that dualizes the linear pro-
gramming relaxation of the inner maximization problem in the reformulated model and iteratively generates
cuts to shape the convex hull of the uncertainty set. We combine this heuristic with the Benders algorithm to
create a more effective hybrid Benders algorithm. Since the master problem and subproblem in the Benders
algorithm are mixed integer programs, it is computationally demanding to solve them optimally at each
iteration of the algorithm. Therefore, we develop novel stopping conditions for these mixed integer programs
and provide the relevant convergence proofs. Extensive computational experiments on a nurse planning and
a two-echelon supply chain problem are performed to evaluate the efficiency of the proposed algorithms.
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1. Introduction
In the operations research literature there are many different methodologies to address uncer-
tainty in optimization problems. Stochastic approaches are one of the main classes and are
applicable if probability distributions of uncertain parameters are known. However, these ap-
proaches are usually criticized for requiring information on the probability distributions and
also for computational complexities. Robust optimization, a more recent methodology, gener-
ally assumes that uncertain parameters belong to an uncertainty set, and aims to find a robust
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solution immunizing the decision maker against the worst-case scenario within this uncertainty

set.

Robust optimization was initially proposed for single-stage optimization problems where the

decision maker must choose a complete solution before the disclosure of information about

the real values of uncertain parameters (Soyster 1973, Ben-Tal and Nemirovski 1999). Then it

was extended to multi-stage problems where the values of uncertain parameters are revealed

gradually in several stages (Ben-Tal et al. 2004, Delage and Iancu 2015). In multi-stage robust

problems the decision maker does not choose a complete solution at the beginning, but instead

makes partial decisions sequentially after observing the values of uncertain parameters over

different stages.

In robust optimization problems choosing an appropriate uncertainty set is critical and can

highly affect the robustness and the optimal objective value of the obtained solution. The deci-

sion maker should select a suitable uncertainty set to reasonably represent the randomness of

the uncertain parameters while taking into account the computational issues arising in the solu-

tion algorithm. From the literature on robust optimization, the most prevalent uncertainty sets

are box uncertainty sets (Soyster 1973), ellipsoidal uncertainty sets (Ben-Tal and Nemirovski

1999, El Ghaoui and Lebret 1997, El Ghaoui et al. 1998), polyhedral uncertainty sets and

Γ -cardinality uncertainty sets (Bertsimas and Sim 2004). In box uncertainty sets, uncertain

parameters are assumed to take their values from different intervals independently. Box uncer-

tainty sets usually result in overly conservative solutions because all parameters are allowed

to take their worst values simultaneously. Ellipsoidal uncertainty sets alleviate this issue by

restricting the uncertain parameters to an ellipsoidal space and this prevents them from taking

worst values at the same time. Polyhedral uncertainty sets confine the uncertain parameters to

a polyhedral space and can be viewed as a special case of ellipsoidal uncertainty sets (Ben-Tal

and Nemirovski 1999). In Γ -cardinality uncertainty sets, for each constraint the number of

uncertain parameters deviating from their nominal values must be less than Γ .

In the literature, convex uncertainty sets are used to model robust problems. The main advan-

tage of these uncertainty sets is that they can be simply formulated by continuous parameters

and the problem remains tractable in many cases such as linear programs. However, it is some-

times unavoidable or desirable to use integer parameters to formulate the uncertainty set, which

results in an exponential number of scenarios. Nguyen and Lo (2012) studied a single-stage

robust portfolio problem where the weights of portfolios are fixed such that a generic objective

function is optimized for the worst possible ranking of portfolios. Thus, in this application it is

necessary to use integer parameters to formulate the ranking of portfolios. Feige et al. (2007)
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and Gupta et al. (2014) also studied several classical covering problems where in their uncer-
tainty sets, integer parameters were used to choose a set of active clients in a graph. Moreover,
in some cases integer parameters are used to approximate non-convex uncertainty sets. For
instance, Siddiq (2013) and Chan et al. (2017) studied a robust facility location problem and
discussed how non-convex uncertainty sets can be approximated by discretization.

In this work we assume that the uncertainty appears on the right-hand side values and the
corresponding technology matrix of recourse decision variables has a block-diagonal structure.
The main contribution of our work is a novel reformulation exploiting the block-diagonal struc-
ture and three solution methods for a class of two-stage robust problems with an exponential
number of scenarios given implicitly. This decomposition reduces the original two-stage problem
to a single-stage problem. We then develop a Benders algorithm for the reformulated problem.
We also develop a heuristic algorithm, and combine it with the Benders algorithm to create
a more effective hybrid Benders algorithm. Since the master problem and subproblem in the
Benders algorithm are mixed-integer programs, it is computationally expensive to solve them
to optimality. Hence, we propose novel stopping conditions for these mixed integer programs
and prove the convergence of the algorithm. We evaluate the computational performance of the
proposed algorithms in a nurse planning and a two-echelon supply chain application.

We organize the remainder of this paper as follows. In Section 2, we provide a literature
review on robust optimization with a focus of two-stage problems. In Section 3, we introduce
the structure of the two-stage robust optimization problems studied in this paper and apply
Dantzig-Wolfe decomposition to reformulate the original two-stage robust problem as a single-
stage robust problem. In Section 4, we develop solution methods for the reformulated problem.
In Section 5, we propose stopping conditions for the master problem and subproblem of the
Benders algorithm. In Section 6, we show how to apply the proposed reformulation on a two-
stage nurse planning problem and a two-echelon supply chain problem. We provide extensive
computational results on these applications in Section 7. Finally we give concluding remarks and
future research directions in Section 8. Omitted proofs are provided in the electronic supplement.

2. Literature review
In a single-stage robust optimization problem, constraints must be satisfied for all possible
realizations of uncertain parameters. Therefore, by repeating constraints for different values
of uncertain parameters, we can view a robust problem as a mathematical program with a
large number of constraints. Depending on the structure of the uncertainty set, two techniques
are usually applied to solve single-stage robust problems. The first approach is to iteratively
generate violated constraints of the mathematical program explained above using a constraint
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generation algorithm (Fischetti and Monaci 2012, Bertsimas et al. 2015). In the second ap-

proach, the problem is reformulated as its deterministic robust counterpart and then solved

directly. Soyster (1973) presented such a deterministic counterpart model for robust linear prob-

lems with box uncertainty sets. Ben-Tal and Nemirovski (1999) proposed a second order cone

program for uncertain linear programs with ellipsoidal uncertainty sets. They also showed that

in the case of polyhedral uncertainty sets the robust counterpart model is a linear program.

Bertsimas and Sim (2004) showed that robust linear programs with Γ -cardinality uncertainty

sets can be reformulated as deterministic linear programs.

Multi-stage robust problems are more complicated than single-stage robust problems and are

generally intractable (Ben-Tal et al. 2004). There are two common solution approaches for these

problems. Both approaches transform the multi-stage problem to a single-stage problem and

then apply the solution methods of the single-stage robust problem. In the first approach the

recourse decisions are restricted to a function of uncertain parameters resulting in a single-stage

robust problem. In this context, affine adaptability, also referred to as linear decision rules,

assumes recourse decisions to be affine functions of uncertain parameters. This method is very

popular and is applied in various areas such as supply chain management (Ben-Tal et al. 2005),

inventory control (Ben-Tal et al. 2009), portfolio management (Fonseca and Rustem 2012),

warehouse management (Ang et al. 2012), capacity management (Ouorou 2013) and network

design (Poss and Raack 2013). Chen and Zhang (2009) introduced the extended affine adapt-

ability by re-parameterizing the primitive parameters and then applying the affine adaptability.

Bertsimas et al. (2011) proposed a more accurate approximation of recourse decisions using

polynomial adaptability. A drawback of the functional adaptability is its inability to handle

problems with integer recourse decisions. Another approach is finite adaptability in which the

uncertainty set is split into a number of smaller subsets, each with its own set of recourse

decisions. The number of these subsets can be either fixed a priori or decided by the opti-

mization model (Vayanos et al. 2011, Bertsimas and Caramanis 2010, Hanasusanto et al. 2015,

Postek and Den Hertog 2014, Bertsimas and Dunning 2016). An important advantage of the

finite adaptability is that, in contrast to the functional adaptability approach, it easily handles

problems with integer recourse variables.

There are many papers in the literature that have proposed Benders algorithms to solve

two-stage robust optimization problems (Zheng et al. 2012, Bertsimas et al. 2013, Remli and

Rekik 2013, Zhang et al. 2015). In these papers, assuming that the problem is set as a min-max-

min problem, the authors have dualized the inner minimization to reformulate the problem to

a min-max problem with bilinear terms in the objective function. Then, they have applied a
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Benders algorithm to solve the first-stage problem together with cuts generated from an outer
approximation algorithm which solves the maximization problem.

Column-and-constraint generation is another exact algorithm to solve a two-stage robust
optimization problem (Zeng and Zhao 2013, Zhao and Zeng 2012b, Danandeh et al. 2014, Ding
et al. 2016, Wang et al. 2014, Lee et al. 2014, 2015, Li et al. 2015, 2017, Chen et al. 2016, Wang
et al. 2016, Neyshabouri and Berg 2017). The underlying idea of this approach is to make copies
of recourse decision variables and also second-stage constraints for each possible realization of
uncertain parameters which results in a large-scale mixed-integer programming model. As it is
impossible to solve this model directly, a column-and-constraint generation algorithm is essential
to generate critical uncertain scenarios and their corresponding recourse decision variables and
second-stage constraints. The tricky part of this approach is the reformulation of the max-min
subproblem to a max problem using Karush-Kuhn-Tucker (KKT) conditions. The reformulated
subproblem includes bilinear terms in constraints which are linearized later by introducing a
set of binary variables and adding big-M constraints.

The reformulation approach proposed in this paper is different from the ones used in the
aforementioned Benders and column-and-constraint generation algorithms as it does not result
in any bilinear term in our models. Therefore, our solution methodology does not require an
outer approximation algorithm (Bertsimas et al. 2013) or any linearization by introducing
extra binary variables and big-M constraints (Zeng and Zhao 2013). Moreover, our modeling
approach is capable of handing second-stage integer variables, while these algorithms work only
on problems with continuous recourse variables. To handle second-stage integer variables, Zhao
and Zeng (2012a) extended the original column-and-constraint generation algorithm to a tri-
level algorithm. However, the extended algorithm only works on special problems satisfying
three restrictive assumptions: 1) including at least one continuous recourse variable, 2) holding
the extended relative complete recourse property for recourse problem when the second-stage
integer variables are ignored, and 3) satisfying the quasiconvex property for the inner max-min
problem. The first and third conditions are not satisfied in applications studied in this paper.

The reformulation approach that we propose is inspired from the one proposed in Siddiq
(2013) that presented a reformulation for a specific facility location problem. The advantage
of our reformulation is that it is more general and applicable to any two-stage robust problem
with block-diagonal structure in the technology matrix of recourse decision variables. Here,
we emphasize that the block-diagonal structure of uncertainty sets addressed in Ben-Tal et al.
(2006) and Ben-Tal and Nemirovski (2002) are different from the block-diagonal structure in
the technology matrix of recourse decision variables considered in this work. Moreover, the
reformulation proposed in this work is completely different from the reformulation proposed
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by Zhang (2017) that provides augmented-Lagrangian lower and upper bound for a two-stage

robust optimization problem with objective uncertainty.

3. Model and reformulation
We study a class of two-stage robust optimization problems with the following structure:

(P1) min
x∈X

(
cᵀ1x+ max

u∈U

(
min

y∈Y(x,u)
cᵀ2y

))
. (1)

In the above formulation, x and y are the vector of decision variables in the first and the

second stage, respectively. u is the vector of uncertain parameters that are restricted to the

uncertainty set U . c1 and c2 are given cost vectors. In the second stage problem, we have

Y(x,u) = {y ∈ Ỹ |Cy≤ b−Ax−Bu} where A, B and C are known matrices with appropriate

dimensions and b denotes the known vector of right-hand side values. x∈X and y ∈ Ỹ represent

the integrality and bound constraints that we may have for variables in the first and second

stages. Objective (1) minimizes the sum of the first- and second-stage costs. In this model, x∈X

must be selected such that for all realizations u∈ U there is at least one y ∈Y(x,u). We assume

that U is a finite uncertainty set. This assumption is necessary for the convergence proofs of

the proposed Benders algorithms discussed in Section 5. The first- and second-stage variables

can be continuous, integer or mixed, but without loss of generality all uncertain parameters are

supposed to be integer. In fact, our method generalizes to finite set of fractional parameters

(as shown in EC.14) and for the sake of clarity, we present the overall approaches over integer

parameters. We also assume that C is a block-diagonal matrix. The main focus of this research

is to exploit this block-diagonal structure and develop algorithms to solve the reformulated

problem efficiently.

In the reminder of this section, we propose a reformulation of model (P1) and use it to

develop solution methods in Section 4. For this we need the following additional notation, used

throughout the rest of the paper.

K : The index set of blocks in matrix C.

Ck : The k-th block in matrix C.

Rowk : The number of rows in block Ck.

Colk : The number of columns in block Ck.

yk : The subset of variables y involved in block Ck.

Yk : The set of integrality and bound constraints corresponding to variables yk.

c2k : The subset of c2 corresponding to variables yk.

bk : The right-hand side values in front of block Ck.
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Ak : The rows in matrix A in front of block Ck.
Bk : The rows in matrix B in front of block Ck.

With respect to the block-diagonal structure of matrix C we can rewrite constraint Cy ≤
b−Ax−Bu included within the second-stage feasible space Y(x,u) as follows.

Ckyk ≤ bk−Akx−Bku k ∈K (2)

Furthermore, we define some notation related to Bku as:
S ′k : The set of all realizations for Bku, i.e., S ′k = {v ∈RRowk |v =Bku,u∈ U}.
Sk : The index set of S ′k, i.e., Sk = {1,2, ..., |S ′k|}.
eks : The s-th member of S ′k (defined for s∈ Sk).
wks: A binary variable that takes 1 if Bku is equal to eks, 0 otherwise.
Using all the above notation, we reformulate model (P1) as:

(P2) min
x∈X

cᵀ1x+ max
(u,w)∈(U ,W)

 min
y∈Y(x,w)

∑
k∈K

cᵀ2kyk

 (3)

(U ,W) =
{

(u,w) |u∈ U , (4)

Bku=
∑
s∈Sk

ekswks k ∈K, (5)
∑
s∈Sk

wks = 1 k ∈K, (6)

wks ∈ {0,1} k ∈K s∈ Sk
}

(7)

Y(x,w) =
{
y |yk ∈Yk k ∈K, (8)

Ckyk ≤ bk−Akx−
∑
s∈Sk

ekswks k ∈K
}

(9)

In the following we introduce a new model that is equivalent to model (P2) as we will show
later in Theorem 1 and Corollary 1. To introduce model (P3), for each k ∈ K we make |Sk|
copies of variables yk ∈ RColk and define variables y′ks ∈ RColk(s ∈ Sk). Model (P3) is given by
(10)-(12).

(P3) min
x∈X

cᵀ1x+ max
(u,w)∈(U ,W)

 min
y′∈Y ′(x)

∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

 (10)

Y ′(x) =
{
y′ |y′ks ∈Yk k ∈K s∈ Sk, (11)

Ckyks ≤ bk−Akx− eks k ∈K s∈ Sk
}

(12)
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The structure of model (P3) is such that, if wks takes 1, y′ks is equal to the optimal solution of

yk in model (P2). Indeed by introducing constraint (12) we have made |Sk| copies of constraint

(9) to compute the values of y′ks independently. Moreover, to ensure that the optimal objective

values of models (P2) and (P3) are the same, cᵀ2ky′ks in (10) is multiplied by wks.

Theorem 1. Suppose that model (P2) is feasible. Then,

(a) x̂ is a first-stage feasible solution of model (P2) if and only if it is a first-stage feasible

solution of model (P3),

(b) the objective values of models (P2) and (P3) for the first-stage solution x̂ are the same

if max
u,w

and min
y′

are solved optimally, and

(c) for this first-stage solution, the optimal values of variables y′ks in model (P3) represent

the second-stage optimal policies in model (P2).

The following corollary states the relations between models (P2) and (P3).

Corollary 1. Models (P2) and (P3) are equivalent, that is, either

- both models are unbounded, or

- both models are infeasible, or

- both models are feasible and bounded with the same optimal objective value and the same

optimal solution for the first-stage variables. In this case the optimal solution of variables

y′ks in model (P3) represents the optimal policies for variables yk in model (P2).

Proof. Theorem 1 directly results in cases 1 and 3. To prove case 2, we note that with respect

to Theorem 1 for any feasible solution in model (P2) there is an equivalent feasible solution in

model (P3). Therefore, model (P3) is infeasible if and only if model (P2) is infeasible. 2

The next theorem shows that model (P3) can be reduced to a single-stage problem.

Theorem 2. In model (P3) the objective function maxu,w (miny′ (.)) can be replaced by

miny′ (maxu,w (.)).

Therefore, we can rewrite model (P3) as:

(P4) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

(u,w)∈(U ,W)

( ∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(13)

In fact, the reformulation presented in this section shows that we can transform the two-stage

robust problem (P1) to a single-stage robust problem. In the above model, we have (X ,Y ′) =

{(x, y′) |x∈X , y′ ∈Y ′(x)}. We use the latter model to present our solution methods in Section

4.
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4. Solution methods
In this section we propose three solution methods for model (P4). We present a Benders al-

gorithm that iterates between a master problem and a subproblem to tighten the optimality

gap. We also propose a heuristic that dualizes the linear programming relaxation of the inner

max problem in model (P4). Then it iteratively generates cuts to shape the convex hull of the

uncertainty set. We also present a hybrid Benders algorithm that applies the heuristic within

the framework of the Benders algorithm.

4.1. Benders algorithm

In our Benders algorithm, valid lower and upper bounds are obtained by solving the master

problem and the subproblem, respectively. The algorithm iterates between these problems until

the bounds converge. In the following we present the master problem and subproblem. Then

we explain the framework of the Benders algorithm.

Suppose that m scenarios (ûj, ŵj) ∈ (U ,W), j = 1,2, ...,m are already generated by solving

the subproblem. We define the master problem of the Benders algorithm as:

(MP) min
(x,y′)∈(X ,Y ′),θ

θ (14)

θ≥ cT1 x+ ∑
k∈K

∑
s∈Sk

cᵀ2ky
′
ksŵ

j
ks j = 1,2, ...,m (15)

Theorem 3. The optimal objective value of model (MP) is a valid lower bound for model

(P4).

For a feasible solution (x̂′, ŷ′)∈ (X ,Y ′) a valid upper bound is obtained by solving the inner max

problem in model (P4). We refer to the following problem as the subproblem of the Benders

algorithm.

(SP) max
(u,w)∈(U ,W)

(
cᵀ1x̂+ ∑

k∈K

∑
s∈Sk

cᵀ2kŷ
′
kswks

)
(16)

Algorithm 1 provides the pseudo code of the Benders algorithm. In this algorithm, UB and

LB respectively denote the best upper and lower bounds found during the algorithm. In Line

3, we obtain an initial solution (x̂, ŷ′) by a heuristic algorithm that is explained at the end

of Section 4.2. In Line 6, the algorithm sets UB equal to the optimal objective value of the

subproblem if it is less than the current UB. The stopping conditions of the Benders algorithm

are then checked in Line 9 where δBendersacc and AlgT imeLimit respectively denote the maximum

acceptable optimality gap and the available computational time.
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Algorithm 1. Benders algorithm
1: Input parameters: δBendersacc and AlgT imeLimit.
2: Set UB=∞, LB=-∞, and m = 0.
3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat

5: Modify the objective function of subproblem (SP) using (x̂, ŷ′).
6: Solve the subproblem and update UB if it is necessary.
7: Add a new optimality cut (15) to the master problem and set m=m+ 1.
8: Solve the master problem and update LB.
9: until (100(UB−LB)/LB ≤ δBendersacc or time limit AlgT imeLimit is reached)

4.2. Heuristic algorithm

In this section we present a heuristic algorithm. This algorithm dualizes the linear programming
relaxation of the inner max problem in model (P4) to transform the min-max problem to a
single minimization problem. Let us assume that constraints forming the convex hull of the
inner max problem in model (P4) are as:

Du+Ew≤ b2 (17)

In constraint (17), u and w are the vectors of uncertainty variables, D and E are technology
matrices with appropriate dimensions and b2 is the known vector of right-hand side values. D,
E and b2 are independent from the values of (x̂, ŷ′) that are fixed in the outer min problem
in model (P4). This is because the solution space of uncertainty variables does not depend on
the variables in the outer min problem. If we have constraints (17) we can replace constraints
(u,w)∈ (U ,W) with them. In this case, the inner max problem is a linear programming model
for fixed values of (x̂, ŷ′) in the outer min problem. Therefore by dualizing the inner max
problem we obtain the following model.

(D-P4) min
x̂,ŷ′,γ

(cᵀ1x+ bᵀ2γ) (18)

(x, y′)∈ (X ,Y ′) (19)

Eᵀ
ksγ ≥ c

ᵀ
2ky
′
ks k ∈K, s∈ Sk (20)

Dᵀγ = 0 (21)

γ ≥ 0 (22)

In model (D-P4), γ is the vector of dual variables for constraint (17) and Eks is the column
in E that includes coefficients of variable wks. We can observe that the min-max problem in
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model (P4) reduces to a single min problem and can be solved directly as a mixed-integer
programming model. In the literature, the above dualization technique is prevalent to simplify
single-stage robust problems where the inner max problem is a linear programming model.
However, in our model, the inner max problem is a mixed integer program and constraints
(17) forming the convex hull of the uncertainty set are unknown. In the following we present
a heuristic algorithm that relaxes the integrality constraints of the variables in the inner max
problem of model (P4). Then by iteratively generating cuts, it attempts to shape the solution
space of the relaxed inner max problem into its convex hull before the relaxation. To present
this heuristic we first need to define models (P5) and (P6).

(P5) min
(x,y′)∈(X ,Y ′)

cᵀ1x+ max
(u,w)∈(U ,W)′

∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

 (23)

(U ,W)′ =
{

(u,w)∈ (U ,W) | (24)

Fu+Gw≤ b3

}
(25)

In model (P5), constraint (25) is the set of valid cuts that the heuristic algorithm generates
iteratively. This constraint set is empty at the beginning of the algorithm. In this constraint, F
and G are technology matrices with appropriate dimensions and b3 the known vector of right-
hand side values. We obtain the following model (P6) by relaxing the integrality constraints of
variables u and w in model (P5) and then dualizing the inner max problem.

(P6) min
x,y′,π,λ,α,β

(
cᵀ1x+ bᵀ3π+ bᵀ4λ+ ∑

k∈K
αk

)
(26)

(x, y′)∈ (X ,Y ′) (27)

Bᵀ
kβk +Hᵀλ+F ᵀπ = 0 (28)

αk + eᵀksβk +Gᵀ
ksπ≥ c

ᵀ
2ky
′
ks k ∈K, s∈ Sk (29)

In model (P6), βk and π are vectors of dual variables for constraints (5) and (25) respectively,
αk is the dual variable of constraint (6) defined for each k ∈ K and Gks is the column in G

that includes coefficients of variable wks. To write the dual of the inner max problem in model
(P5) we have supposed that linear constraints hidden in uncertainty set U in constraint (4) are
represented by Hu≤ b4. In model (P6), λ denotes the vector of dual variables for Hu≤ b4.

Algorithm 2 provides the pseudo code of our heuristic algorithm. In Line 2, we suppose that
no instance of constraint (25) is available at the beginning of the algorithm and F , G and b3

are empty. “Ite” is the iteration counter of the loop starting in Line 3. In Line 5, we solve
model (P6) to obtain a feasible solution for (x̂, ŷ′). For a fixed solution (x̂, ŷ′) in model (P5),
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the inner max problem is an integer program and we denote it by InnerMax(x̂, ŷ′). In Line
7, we call Procedure 1. In each iteration of this procedure, we solve the linear programming
relaxation of InnerMax(x̂, ŷ′) and obtain a new fractional scenario (û, ŵ). Then this procedure
generates a number of valid cuts to remove this fractional scenario. This procedure continues
until it cannot detect any other violated cut or time limit AlgT imeLimit is reached. We use an
integer programming solver to perform Procedure 1 and let it generate valid cuts as explained
above. In calling the integer programming solver, we limit the maximum number of nodes to
be explored in the branch and bound tree to one. In Line 8 in Algorithm 2, we extract the cuts
generated by the integer programming solver and update F , G and b3 in models (P5) and (P6).
In Lines 9, the algorithm checks stopping criteria. One of these stopping criteria checks if the
percentage of the objective value improvement obtained in the current iteration is less than or
equal to parameter δHacc.

Algorithm 2. Heuristic algorithm
1: Input parameters: LocalT imeLimit , AlgT imeLimit and δHacc.
2: Set Ite= 0 and empty F , G and b3 in models (P5) and (P6).
3: repeat

4: Ite+ +.
5: Solve model (P6) with time limit LocalT imeLimit to obtain a feasible solution (x̂, ŷ′).
6: Set ObjIte equal to the objective value of model (P6).
7: Apply Procedure 1 to generate several cuts (25).
8: Extract the generated cuts and update F , G and b3 in models (P5) and (P6).
9: until (No cut is generated in Line 7 in this iteration or time limit AlgT imeLimit is reached

or (100(ObjIte−ObjIte−1)/ObjIte−1 ≤ δHacc))

Procedure 1. Cut generation for the proposed heuristic algorithm
1: repeat

2: Solve the linear programming relaxation of InnerMax(x̂, ŷ′) to obtain (û, ŵ).
3: Detect some valid cuts to remove the fractional solution (û, ŵ).
4: Update F , G and b3 in InnerMax(x̂, ŷ′).
5: until (No valid cut is generated or time limit AlgT imeLimit is reached)

The proposed heuristic algorithm does not necessarily find the optimal solution. Appendix
EC.4 presents an example to demonstrate that the heuristic algorithm does not guarantee
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optimality. In the Benders algorithm presented by Algorithm 1, in Line 3 we solve model (P6)
with empty F , G and b3 to find an initial solution (x̂, ŷ′).

4.3. Hybrid Benders algorithm

In this section, we combine the Benders and heuristic algorithms to create a more efficient
algorithm. In this hybrid algorithm, the Benders algorithm guarantees the convergence of the
algorithm. The proposed heuristic algorithm improves the overall efficiency by generating valid
cuts for the inner max problem and also by finding better solutions (x̂, ŷ′) by solving model
(P6).

Algorithm 3. Hybrid Bender algorithm
1: Input parameters: WarmupT imeLimit, AlgT imeLimit, LocalHeuristicT imeLimit,
EvaT imeLimit, δHacc and δBendersacc .

2: Set UB =∞, LB =−∞, m= 0 and empty F , G and b3 in models (P5) and (P6).
3: Find an initial solution (x̂, ŷ′) by a heuristic.
4: repeat

5: Modify the objective function of subproblem (SP) using solution (x̂, ŷ′).
6: Solve the subproblem and update UB if it is necessary.
7: Add a new optimality cut to the master problem and set m=m+ 1.
8: Solve the master problem, update LB and save (x̂, ŷ′) in the solution pool.
9: if (WarmupT imeLimit is reached) then

10: Set Ite = 0.
11: repeat

12: Ite+ +.
13: Apply Procedure 1 using solution (x̂, ŷ′) to generate several cuts (25).
14: Extract the generated cuts and update F , G and b3 in models (P5) and (P6).
15: Solve model (P6) to obtain a solution (x̂, ŷ′) and save it in the solution pool.
16: Set ObjIte to the objective value of model (P6).
17: until (No cut is generated in Line 14 or time limit LocalHeuristicT imeLimit is

reached or 100(ObjIte−ObjIte−1)/ObjIte−1 ≤ δHacc)
18: Choose the best solution (x̂, ŷ′) from the solution pool.
19: end if

20: until (100(UB−LB)/LB ≤ δBendersacc or AlgT imeLimit is reached)

Algorithm 3 provides the pseudo code of the hybrid Benders algorithm. In Line 3 of this
algorithm, we obtain an initial solution (x̂, ŷ′) by solving model (P6) while F , G and b3 are



14 Hashemi Doulabi et al.: Exploiting the Structure of Two-Stage RO Models with Exponential Scenarios

ignored. Lines 4 to 8 together with Line 20 are the same as the main loop of the Benders
algorithm given in Algorithm 1. The algorithm finds a scenario by solving the subproblem in
Line 6. We then add a new optimality cut to the master problem and solve it to find a new
solution (x̂, ŷ′). Then if time limit WarmupT imeLimit is already reached, the algorithm enters
an inner loop starting in Line 11. This loop is taken from the heuristic algorithm and improves
the current solution (x̂, ŷ′) by iteratively generating cuts (25) in Line 13 and then solving model
(P6) in Line 15. Then we check the stopping criteria of the heuristic algorithm in Line 17. To
check if time limit LocalHeuristicT imeLimit is reached, the algorithm tracks the time from
the start of the inner loop in Line 11.

After leaving the inner loop in Line 17 and before starting a new iteration of the algorithm,
we have to decide on the new solution (x̂, ŷ′) to modify the objective function of the subproblem
in Line 5. Therefore, during the algorithm we save all generated solutions (x̂, ŷ′) in a solution
pool. Then in Line 18 among all solutions in the pool, we choose the one with the lowest
worst objective value against all generated scenarios as the current solution (x̂, ŷ′). In Line 9 of
Algorithm 3, we have a time limit WarmupT imeLimit to prevent from entering the inner loop
in Line 11 before this time limit. This is because, in small instances, the Benders algorithm
converges very fast without any need of the heuristic algorithm.

There are generally two advantages for combining the Benders and heuristic algorithms. First,
by generating cuts (25) in the heuristic algorithm and including them in the subproblem, we
hope that the algorithm can solve the subproblem faster in next iterations. Also it is possible
to improve the best solution (x̂, ŷ′) by solving model (P6) in Line 17 in Algorithm 3.

5. Stopping conditions
The main shortcoming of the Benders and hybrid Benders algorithms is that their master
problem and subproblem are mixed integer programs (MIPs) and therefore it would be very
time consuming to optimally solve them in all iterations of the algorithms. In the following we
present novel stopping conditions for these MIPs. Before explaining these conditions we define
“ε-dominant incumbents” for the master problem and subproblem as follows: For a constant
ε > 0, an ε-dominant incumbent of the master problem is a feasible solution in the master
problem with an objective value that is less than the lower bound of the recent subproblem by
a margin of ε. Similarly, an ε-dominant incumbent of the subproblem is a feasible solution in
the subproblem with an objective value that is at least ε higher than the upper bound of the
recent master problem. The stopping conditions are presented as follows.

Stopping condition for the master problem (subproblem): The mixed integer pro-
gram terminates when the optimal solution is found or at least TimeMP seconds (TimeSP
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Table 1. A numerical example to explain the stopping
conditions of MIPs in the Benders algorithm.

Iteration Subproblem Master problem
Order LB UB Order LB UB

1 1 120 470 2 45 110
2 3 340 650 4 30 300
3 5 320 360 6 155 165
4 7 170 185 8 157 160
5 9 160 160 10 160 160

seconds) is passed from the moment that the first ε-dominant incumbent of the master problem
(subproblem) is found.

In Table 1, we present a numerical example with ε= 5 to explain this stopping condition for
both the master problem and the subproblem. In this table, the results of the master problem
and of the subproblem are presented in separate columns. We report the lower and upper
bounds of the related mixed integer programs. Since these MIPs are not optimally solved there
are gaps between the lower and upper bounds. Columns “Order” also give the order in which
these MIPs are solved. In this example, in iterations 1 to 4, the upper bound of the master
problem is at least ε= 5 units less than the lower bound of the previous subproblem. Moreover,
in iterations 2 to 4, the lower bound of the subproblem is at least ε= 5 units higher than the
upper bound of the master problem in the previous iteration. In Iteration 5, when solving the
subproblem, we observe that the lower bound does not increase to ε= 5 units higher than the
upper bound of the master problem in Iteration 4. Therefore, the stopping condition is not
met and the subproblem has to be solved optimally. Similarly, in the same iteration, when we
solve the master problem, the upper bound does not decrease to ε= 5 units less than the lower
bound of the subproblem in that iteration. Thus, the stopping condition is not satisfied and
the master problem has to be solved to optimality.

The upper bound in the master problem and the lower bound in the subproblem correspond
to feasible solutions of MIPs. Therefore, the stopping condition for the subproblem means that
the subproblem terminates before reaching the optimality if we find a critical uncertain scenario.
We refer to a scenario as a critical one if by adding its corresponding cut (15) to the master
problem, the objective value of solution (x̂, ŷ′) found in the previous iteration, increases by at
least ε units.

Lower bounds in the master problem and the upper bounds in the subproblem are valid
lower and upper bounds of the original robust problem, respectively. Therefore, we can impose
the following constraints based on the best obtained lower and upper bounds as the Benders
algorithm proceeds.

θ≥LB (30)
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θ≤UB (31)

Constraint (31) is valid because the optimal objective value of the subproblem is an upper
bound on the optimal objective value of the original robust problem. As it will be discussed
later, constraints (30)-(31) are vital for proving the convergence of the Benders algorithm with
stopping conditions for the master problem and subproblem.

When we apply the stopping conditions, most of the time the subproblem is not solved
optimally. Therefore, the best upper bound obtained by Algorithms 1 and 3 is poor if the
algorithm times out. In this case, we call Procedure 2 at the end of Algorithms 1 and 3 to
improve the quality of the best upper bound. This procedure sorts all solutions (x̂, ŷ′) found
by the master problem based on their upper bounds. The upper bound of each solution (x̂, ŷ′)
is the upper bound of its corresponding subproblem obtained in Line 6 of Algorithms 1 and
3. Procedure 2 evaluates these solutions separately by solving the subproblem without any
stopping condition. When solving a subproblem if we obtain a feasible solution with an objective
value higher than the best upper bound UB, the subproblem terminates and Procedure 2
evaluates the next solution (x̂, ŷ′) in the sorted list. This is because in this case, another solution
with a better upper bound is already known. We consider a time limit EvaT imeLimit for this
procedure.

Procedure 2. Evaluation of the generated solutions (x̂, ŷ′)
1: Input parameters: EvaT imeLimit and δBendersacc .
2: if (100(UB−LB)/LB > δBendersacc ) then

3: Sort solutions (x̂, ŷ′) in the solution pool.
4: for (i=1 to NumberSolutions) do

5: Solve the subproblem for i-th solution (x̂, ŷ′) and update UB if necessary.
6: if (100(UB−LB)/LB ≤ δBendersacc or EvaT imeLimit is reached) then

7: break;
8: end if

9: end for

10: end if

In the following we discuss the convergence of the Benders algorithm with and without
stopping conditions for the subproblem and master problem. We use the following notation to
present the next lemmas and theorems.
W : The set of vectors w for which there is u∈ U such that (u,w)∈ (U ,W).
n : The number of scenarios in (U ,W).
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n′ : The number of unique vectors w that the algorithm visits in the subproblem before it
converges.

n
′′ : The number of times that the algorithm visits an already encountered vector w before it

converges.
ε : A positive constant used in stopping conditions of the master problem and subproblem.
Opt : The optimal objective value of the original robust problem.
OSP
i : The optimal objective value of the subproblem in iteration i.

UMP
i : The upper bound of the master problem in iteration i.

f(j) : The iteration in which for the j-th times the algorithm generates a scenario with a new
vector w in the subproblem.

g(i) : The iteration in which for the i-th times the algorithm re-visits any of the generated
vectors w in the subproblem.

Ii : An indicator that is equal to 1 if in iteration i the algorithm generates a scenario with a
repeated vector w, 0 otherwise.

Observation 1. The Benders algorithm without stopping conditions for the master prob-
lem and subproblem converges in at most |W|+ 1≤ n+ 1 iterations.

In the following, we present Lemmas 1-4 where Lemma 1 is a basis in the proofs of other lemmas
and Lemmas 2-4 are used in the proof of Theorem 4.

Lemma 1. In the Benders algorithm with stopping conditions for the master problem and
subproblem, if the algorithm finds a scenario with a repeated vector w in the subproblem of
iteration i, then it is the optimal solution of the subproblem and the optimal objective value of
the subproblem is equal to the upper bound of the recent master problem in iteration i− 1, i.e.
UMP
i−1 =OSP

i .

Lemma 2. In the Benders algorithm with the stopping conditions for the master problem
and subproblem, if the algorithm finds a scenario with a repeated vector w in the subproblem of
iteration i and OSP

i −Opt > ε holds, then in at most k = b(OSP
i −Opt)/εc iterations either the

algorithm finds a scenario with a new vector w or OSP
i+k−Opt≤ ε holds.

Lemma 3. In the Benders algorithm with the stopping conditions for the master problem
and subproblem, if the algorithm finds a scenario with a repeated vector w in the subproblem
of iteration i and OSP

i −Opt≤ ε holds, then in the next iteration either the Benders algorithm
converges or a scenario with a new vector w is found.

Lemma 4. In the Benders algorithm with the stopping conditions, relation OSP
g(i1) ≥ OSP

g(i2)

holds for any integer numbers i1 and i2 satisfying 1≤ i1 < i2 ≤ n
′′.
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Theorem 4. The Benders algorithm with the stopping conditions converges in at most
n′∑
j=1

(1 + (b(OSP
f(j)+1 − Opt)/εc + 1)If(j)+1) iterations that is bounded above by |W|(b(OSP

g(1) −
Opt)/εc+ 2) iterations.

OSP
g(1) is bounded as a result of the boundedness of the feasible area in subproblem (SP).

Therefore, Theorem 4 proves the convergence of the Benders algorithm in a finite number of
iterations.

6. Applications
In this section, we demonstrate how to apply the proposed reformulation on a nurse planning
and a two-echelon supply chain problem.

6.1. Two-stage nurse planning problem

In a two-stage nurse planning problem, we plan wards’ nurses of a hospital for a medium term.
The daily workloads of nurses depend on the number of patients brought from operating rooms
to wards. Patients are already scheduled in operating rooms over the planning horizon. Before
transferring patients from operating rooms to wards they may stay in ICUs for several days.
The lengths of stays in ICUs and wards are uncertain and discrete. For each patient a number
of local scenarios about the lengths of stays in ICUs and wards are available.

In the first stage of this problem, we assign a number of nurses to wards over the planning
horizon. In the second stage if the nurses’ workload on a day is more than the service capacity
of nurses assigned to that day, some extra nurses are hired. Nurses hired in the second-stage
are paid more than those hired in the first-stage. Nurse staffing based on the workloads of
patients transferred from operating rooms to wards is studied in the literature (Beliën and
Demeulemeester 2008). The problem is formulated as follows:
Parameters:
c1 : The daily cost of a nurse hired in the first stage.
c2 : The daily cost of a nurse hired in the second stage.
Md : The maximum number of nurses available for hiring on day d in the second-stage.
δ : The amount of service time provided by a first- or second-stage nurses per day (in

hours).
ρ : The average of required service time for each patient per day (in hours).
lICUtp : The length of stay in ICUs for patient t in local scenario p∈Pt.
lWard
tp : The length of stay in wards for patient t in local scenario p∈Pt.
d′t : The surgery day for patient t.

Set:
D : The set of days in the planning horizon.
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T : The set of patients already scheduled in operating rooms over the planning horizon.
Td : The set of patients scheduled on day d.
Pt : The set of local scenarios for patient t. Each local scenario gives information on the

lengths of stays in ICUs and wards.
Ptd : The subset of local scenarios in Pt where patient t is in wards on day d, i.e., Ptd ={

p∈Pt : d′t + lICUtp ≤ d, d′t + lICUtp + lWard
tp > d

}
Variables:
xd : The number of nurses assigned to day d in the first stage.
utp : 1 if patient t follows local scenario p after its surgery, 0 otherwise. (uncertainty variable)
yd : The number of nurses hired on day d in the second stage.

min
x∈X

∑
d∈D

c1xd + max
u∈U

 min
y∈Y(x,u)

∑
d∈D

(c2yd)
 (32)

X =
{
x |xd ≥ 0, integer

}
(33)

U =
{
u |
∑
p∈Pt

utp = 1 t∈ T , (34)

utp ∈ {0,1} t∈ T p∈Pt
}

(35)

Y(x,u) =
{
y | δyd ≥ ρ

∑
t∈T

∑
p∈Ptd

utp− δxdd∈D, (36)

0≤ yd ≤Md, integer d∈D
}

(37)

Constraints (33) and (37) represent the bounds and integrality constraints for first- and
second-stage variables, respectively. (34) and (35) define the discrete uncertainty set. Constraint
(36) is the daily demand constraints over the planning horizon.

In the following, we give the corresponding nurse planning problem reformulation in the form
of model (P4). The definitions of variables xd and uip from the nurse planning problem remain
unchanged.
New sets:
Sd : The set of all possible realizations for the number of patients in wards on day d.

New variables:
wds : 1 if exactly s patients are in wards on day d, 0 otherwise.

min
(x,y′)∈(X ,Y ′)

∑
d∈D

c1xd + max
(u,w)∈(U ,W)

∑
d∈D

∑
s∈Sd

c2wdsy
′
ds

 (38)

(U ,W) =
{

(u,w) |
∑
s∈Sd

wds = 1 d∈D, (39)
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∑
t∈T

∑
p∈Ptd

utp =
∑
s∈Sd

swds d∈D, (40)
∑
p∈Pt

utp = 1 t∈ T , (41)

wds ∈ {0,1} d∈D s∈ Sd, (42)

utp ∈ {0,1} t∈ T p∈Pt
}

(43)

(X ,Y ′) =
{

(x, y′) | δxd + δy′ds ≥ ρ× s d∈D, s∈ Sd, (44)

xd ≥ 0, integer d∈D, (45)

0≤ y′ds ≤Md, integer d∈D, s∈ Sd
}

(46)

6.2. Two-echelon supply chain problem

We consider a two-echelon supply chain problem where each customer’s order requires different

numbers of various products. The second-layer facilities make the products and send them to

the first-layer facilities that consolidate the products corresponding to each customer before

shipping. There are several uncertain local scenarios for the demand of each customer. Similar

two-echelon supply chain problems are studied in the literature (Amiri 2006, Gendron and

Semet 2009, Sadjady and Davoudpour 2012, Pan and Nagi 2013).

In a two-stage robust optimization setting, the decision maker chooses which facilities to open

in both layers in the first stage. Then the worst-case scenario for customers’ demands realizes.

In the second-stage, the decision maker decides about the transportation of products from the

second-layer facilities to first-layer facilities and from them to the customers. We formulate the

problem as follows:

Set:

F1 : The set of first-layer facilities.

F2 : The set of second-layer facilities.

I : The set of customers.

K : The set of products.

Pi : The set of local scenarios for customer i. Each local scenario gives information on the

demands of the customer for various products.

Parameters:

cf : The opening cost of facility f .

dikp : The demand of customer i for product k in the local scenario p∈Pi.

tkif : The per unit transportation cost of product k from first-layer facility f to customer i.
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t′kff ′ : The per unit transportation cost of product k from first-layer facility f to second-layer
facility f ′.

cifp : The transportation cost of products from first-layer facility f to customer i if local
scenario p happens for the customer. We have cifp = ∑

k∈K
dikptkif .

cikff ′p : The transportation cost of all products k demanded by customer i, from first-layer
facility f to second-layer facility f ′ if local scenario p happens for the customer. We
have cikff ′p = dikptkff ′ .

bk : The maximum number of product k that can be demanded by all customers.

Variables:
xf : 1 if facility f is opened; 0 otherwise.
uip : 1 if local scenario p realizes for customer i, 0 otherwise. (uncertainty variable)
y1
if : 1 if first-layer facility f supplies the demand of customer i, 0 otherwise.
y2
ikff ′ : 1 if customer i’s demand for product k is transported from second-layer facility f ′ to

first-layer facility f , 0 otherwise.

min
x∈X

 ∑
f∈F1∪F2

cfxf + max
u∈U

 min
y∈Y(x,u)

∑
i∈I

∑
f∈F1

∑
p∈Pi

(cifpuipy1
if )+

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

(cikff ′puipy
2
ikff ′)

 (47)

X =
{
x |xf ∈ {0,1} f ∈F1 ∪F2

}
(48)

U =
{
u |
∑
p∈Pi

uip = 1 i∈ I, (49)

∑
i∈I

∑
p∈Pi

dikpuip ≤ bk k ∈K (50)

uip ∈ {0,1} i∈ I p∈Pi
}

(51)

Y(x,u) =
{
y |

∑
f∈F1

y1
if = 1 i∈ I (52)

y1
if ≤ xf i∈ I f ∈F1 (53)∑

f ′∈F2

y2
ikff ′ = y1

if i∈ I k ∈K f ∈F1 (54)

y2
ikff ′ ≤ xf ′ i∈ I k ∈K f ∈F1 f

′ ∈F2 (55)

y1
if ∈ {0,1} i∈ I f ∈F1 (56)

y2
ikff ′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2

}
(57)

Constraint (49) implies that exactly one of the local scenarios realizes for each customer.
Constraint (50) is a budget constraint that makes the uncertainty set more general. Constraint
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(52) states that each customer receives his/her order exactly from one of the first-layer facilities.
First- and second-stage variables are linked by constraints (53) and (55) that let y1

if and y2
ikff ′

take 1 only if x1
f = 1 and x2

f ′ = 1 hold, respectively. Constraint (54) links the second-stage
variables y1

if and y2
ikff ′ to each other.

Model (47)-(57) is not in the format of model (P1) because, in objective function (47), the
second-stage variables are multiplied by the uncertainty variables uip. After performing the
reformulation explained in Appendix EC.10, we obtain the following model that is in the format
of model (P4).
New variables:
y1
ifp : 1 if first-layer facility f supplies the demand of customer i assuming that local scenario

p has happened for the customer, 0 otherwise.
y2
ikff ′p : 1 if customer i’s demand for product k is transported from second-layer facility f ′ to

first-layer facility f assuming that local scenario p has happened for the customer,
0 otherwise.

min
(x,y)∈(X ,Y)

 ∑
f∈F1∪F2

cfxf + max
u∈U

∑
i∈I

∑
f∈F1

∑
p∈Pi

(cifpuipy1
ifp)+

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

(cikff ′puipy
2
ikff ′p)

 (58)

(49)− (51) (59)

(X ,Y) =
{

(x, y) |xf ∈ {0,1} f ∈F1 ∪F2 (60)∑
f∈F1

y1
ifp = 1 i∈ I p∈P (61)

y1
ifp ≤ xf i∈ I f ∈F1 p∈P (62)∑

f ′∈F2

y2
ikff ′p = y1

ifp i∈ I k ∈K f ∈F1 p∈P (63)

y2
ikff ′p ≤ xf ′ i∈ I k ∈K f ∈F1 f

′ ∈F2 p∈P (64)

y1
ifp ∈ {0,1} i∈ I f ∈F1 p∈P (65)

y2
ikff ′p ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 p∈P
}

(66)

7. Computational results
In this section, we present extensive computational results for the nurse planning and two-
echelon supply chain problem introduced in Section 2. We implemented all algorithms in C++
and used IBM ILOG CPLEX 12.6 to solve the mixed integer programs. We ran experiments
on a computer with two Intel Xeon X5675 processors, 3.07 Ghz, and a total of 12 cores. We
ran each instance on a single core.
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For all computational experiments, we set AlgT imeLimit to 2 hours in Algorithms 1 to 3. In
the hybrid Benders algorithm, we fix the convergence limits δBendersacc and δHacc at 0.1%. We use the
same values δBendersacc and deltaHacc for the Benders and heuristic algorithms, respectively. We also
consider 5 seconds for TimeLB and TimeUB in the stopping conditions of the master problem
and the subproblem in Algorithms 1 and 3. Furthermore, to run Procedure 2 for Algorithms
1 and 3 we set EvaT imeLimit to 2 hours. Therefore, considering parameters AlgT imeLimit
and EvaT imeLimit, we run a problem instance for at most 4 hours by Algorithms 1 and 3
and 2 hours by Algorithm 2. In Algorithms 2 and 3, we fix LocalHeuristicT imeLimit at 30
seconds. In the hybrid Benders algorithm, we consider 20 minutes for WarmupT imeLimit.
The generated data sets for both applications are available as an online supplement.

7.1. Nurse planning instances

We generated 750 instances with different parameter settings. The parameters considered in the
generation of the instances include the length of the planning horizon (L), the incentive factor
(IF ) and the number of operating rooms over the planning horizon (OR). We set the number
of weeks in the planning horizon to {2, 3, 4}. We also assume that surgeries are scheduled only
on workdays. We define the incentive factor (IF ) as the ratio of c2/c1 where c1 and c2 are the
daily cost of first-stage and second-stage nurses in objective function (7). A higher value of the
incentive factor shows that the hospital pays more to second-stage nurses than first-stage ones.
We set the incentive factor to {1.1, 1.3, 1.5, 1.7, 1.9}. We suppose that first-stage nurses are
paid 1 unit cost per hour which for 8 work hours results in c1 = 8. Furthermore, we also fix
the number of operating rooms over the planning horizon at {1, 2, 3, 4, 5}. For each operating
room we generate 3, 4, or 5 surgeries randomly with a uniform distribution. Considering a
full factorial experiment, 75 combinations of L, IF and OR are possible and we generate 10
instances for each problem setting for a total of 750 instances. For each patient, we generate
two scenarios for the lengths of stays in ICU and wards. In each scenario, both lengths of stays
are uniformly generated from interval [1 day, 10 days]. The total number of global scenarios
which include information for all patients can be computed by 2|T | where |T | is the number of
patients in the planning horizon. It is worth noting that in our small-sized instances with 39
surgeries we have 239 ≈ 5.4× 1011 scenarios. We also assume that each nurse works for 8 hours
a day (δ = 8) and the average daily service time for each patient is 2 hours (ρ= 2).

7.2. Results of nurse planning instances

In this Section, we present computational results for three sets of experiments performed on
nurse planning instances. In the first set of experiments, we aim at evaluating the computa-
tional performance of our proposed heuristic, Benders, and hybrid Benders algorithms. In our
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computational experiments, we also consider a tri-level Benders algorithm that is inspired from
Chen (2013). We give the details about the recent algorithm in Appendix EC.11. In Appendix
EC.12, we have provided some computational experiments to tune ε for the stopping conditions
of the Benders and hybrid Benders algorithms that resulted in ε= 5.

In Table 2, we report the results for our heuristic, Benders, and hybrid Benders algorithms
and the tri-level algorithm inspired from Chen (2013). In this table, each row gives the average
results for 50 instances with different values of the incentive factor. For the heuristic algorithm,
we do not report “LB” as this algorithm does not provide any lower bound. To compute
the optimality gap values for the heuristic algorithm, we use the lower bound values of the
Benders algorithm. Moreover, under Column “Hybrid Benders algorithm”, we have reported
∆(UB)(%) that presents the gap between the upper bounds of the Benders and the hybrid
Benders algorithms. We compute it by ∆(UB)(%) = 100(UBB − UBHB)/UBB) where UBB

and UBHB denotes the upper bound values of the Benders and hybrid Benders algorithms.
In Table 2, we observe that for most instances the heuristic algorithm converges quickly after

only a few iterations and the average optimality gaps are worse than those of the Benders and
hybrid Benders algorithms. This is because the heuristic algorithm is a heuristic, while the two
other algorithms are exact algorithm and converge to the optimal solution. We also observe that
the averages of optimality gaps for the hybrid Benders algorithm are 0.61%, 3.29%, and 5.46%.
These averages are higher than the averages of optimality gaps for the Benders algorithm.
However, the averages of “∆(UB)” are -0.46%, 0.09%, and 0.94%, respectively. These values
show that the hybrid Benders algorithm finds better upper bounds than the Benders algorithm
in instances with planning horizons of 3 and 4 weeks. Moreover, the average optimality gaps
for the tri-level Benders algorithm, proposed in the literature, are 2.74%, 25.45%, and 37.53%
that are significantly higher than those of our Benders and hybrid Benders algorithms. It is
also noteworthy that the tri-level Benders algorithm does not find feasible solutions for L =
3,OR= 5, and L= 4,OR= 4,5.

In the second set of experiments, we evaluate the computational efficiency of the Benders
algorithm for different levels of block-diagonal decomposition in the nurse planning problem. In
Table 3, R stands for the percent of the smallest-size blocks (day blocks) that are merged with
other blocks to form larger ones. R = 0 represents an extreme case where the block-diagonal
structure of the nurse planning problem is decomposed as much as possible and each block is
corresponding to a single day. Higher values of R means that the Benders algorithm benefits
less from the block-diagonal structure of the problem. This table shows that, for the largest
set of instances with L= 4, the average optimality gap increases from 5.11% to 12.13% as R
increases. Figure 1 depicts the bound values and the number of variables in the subproblem



H
ash

em
i

D
ou

lab
i

et
al.:

E
xploiting

the
Structure

of
T

w
o-Stage

R
O

M
odels

w
ith

E
xponential

Scenarios
25

Table 2. Computational results for the proposed heuristic, Benders, and hybrid Benders algorithms and the tri-level Benders algorithm from the literature

Data Info. Proposed algorithms Tri-Level Benders algorithm
from the literatureHeuristic algorithm Benders algorithm Hybrid Benders algorithm

L OR Sur. Time
(sec)

Ite. UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
∆(UB)

(%)
Time
(sec)

Ite. LB UB
Gap

(%)

2 1 39 1 2 350 4.02 2 29 336 336 0.00 2 34 336 336 0.00 0.00 2271 85 336 336 0.18
2 79 55 7 682 4.87 12 49 650 650 0.00 39 87 650 650 0.00 0.00 14400 119 643 660 2.61
3 119 100 8 1000 4.36 341 65 958 958 0.00 1086 165 958 959 0.05 -0.06 14400 83 944 974 3.15
4 157 99 8 1323 5.46 1567 91 1254 1254 0.00 12027 298 1252 1266 1.08 -0.92 14400 74 1232 1277 3.66
5 202 34 6 1666 5.61 8512 113 1577 1581 0.24 14400 311 1572 1602 1.92 -1.31 14400 73 1553 1617 4.08

Average 58 6 1004 4.86 2087 69 955 956 0.05 5511 179 954 963 0.61 -0.46 11974 87 942 973 2.74

3 1 59 182 12 704 4.77 28 44 672 672 0.00 75 75 672 672 0.00 0.00 14400 32 650 825 26.69
2 121 335 13 1402 6.01 7235 101 1323 1326 0.23 13838 261 1314 1343 2.17 -1.29 14400 27 1268 1664 31.31
3 182 257 11 2043 6.70 14400 171 1913 1965 2.68 14400 276 1894 1970 3.97 -0.22 14400 27 1837 2299 25.19
4 240 332 10 2691 7.47 14400 258 2506 2618 4.46 14400 266 2477 2601 4.95 0.75 14400 29 2407 2855 18.60
5 300 580 13 3344 6.93 14400 370 3122 3294 5.48 14400 267 3091 3259 5.38 1.20 14400 19 INF INF INF

Average 337 12 2037 6.38 10093 189 1907 1975 2.57 11422 229 1890 1969 3.29 0.09 14400 27 1540 1911 25.45

4 1 80 528 15 1082 4.95 886 84 1031 1031 0.00 7840 204 1029 1036 0.73 -0.52 14400 34 975 1458 49.49
2 163 871 15 2129 6.34 14400 183 2001 2070 3.40 14400 251 1978 2069 4.53 0.13 14400 32 1905 2624 37.87
3 241 766 15 3062 7.25 14400 459 2853 3022 5.90 14400 237 2807 2989 6.42 1.18 14400 30 2715 3399 25.21
4 318 904 15 3992 7.27 14400 523 3717 3988 7.25 14400 242 3659 3924 7.16 1.74 14400 19 INF INF INF
5 397 2370 19 4926 7.64 14400 565 4573 4985 8.98 14400 241 4496 4879 8.44 2.17 14400 1 INF INF INF

Average 1088 16 3039 6.69 11697 363 2835 3019 5.11 13088 235 2794 2979 5.46 0.94 14400 23 1865 2494 37.53
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versus R. This figure shows that both LB and UB values deteriorates as R increases. This
is because higher values of R lead to more complicated subproblems (more variables) due to
less benefiting from the bock-diagonal structure. Figure 2 shows the improvement of the lower
bound during the run time for different value of R. We can see that, during the run time, the
lower bound is stronger for cases with smaller R.

0

10000

20000

30000

40000

2740

2840

2940

3040

3140

0 10 20 30 40

Figure 1 Lower bound, upper bound, and the number of variables in the subproblem versus R.

0.5 1.5

Figure 2 Lower bound trends for different values of R during the run time.

In the third set of experiments, we intend to evaluate the performance of our stopping condi-
tions proposed in Section 5. In Table 4, we report the results for three implementations of our
Benders algorithm. The first implementation is the one with our proposed stopping condition
for ε= 5. In the second implementation, we deactivated our proposed stopping conditions and
added the conventional stopping condition. This stopping condition terminates the subprob-
lem as soon as it finds a solution that defines an inequality cutting off the master problem’s
solution. We can view this conventional stopping condition as a special case of our proposed
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stopping condition with ε= 0 that works only for the subproblem. The third algorithm reported
in Table 4 is the branch-and-cut implementation of our Benders algorithm. In this algorithm,
the master problem is solved only once and whenever a new incumbent solution is found within
the branch-and-bound tree, the algorithm solves the subproblem and add the optimality cuts
to the tree.

In Table 4, each row gives the average results for 50 instances with different values of the
incentive factor. The results of “Time (sec)”, “Ite.”, LB, UB, and “Gap(%)” for the first
implementation are the same as those presented for the Benders algorithm in Table 2. In fact,
in Table 4, we report the same results for the first implementation for ease of comparison with
the two other algorithms. Moreover, in this table, for the Benders algorithm with our proposed
stopping conditions, we have presented additional results. “LB1” and “UB1” give the lower
and upper bounds in the first iteration of the Benders algorithm and Gap1 computes the gap
between these bounds. Moreover, “Imp”, gives the percentage of the upper bound improvement
obtained during the Benders algorithm. We compute it by 100(UB1−UB)/UB1.

We observe that the average optimality gaps for the Benders algorithm when we apply the
proposed stopping conditions are 0.05%, 2.57%, and 5.11% for instances with L= 2, L= 3, and
L= 4. However, the average optimality gaps for the Benders algorithm with the conventional
stopping condition and the branch-and-cut algorithm are 0.29%, 5.59%, 9.33% and 2.32%,
27.06 %, 40.28%, respectively. This observation indicates that the proposed stopping conditions
are essential for the efficiency of the proposed Benders algorithm. For small instances such as
those with L= 2,OR= 1,2,3, the algorithm with the conventional stopping condition repeats
more iterations than the algorithm with the proposed stopping conditions. However, for larger
instances such as those with L = 4,OR = 2,3,4,5, the former algorithm repeats significantly
fewer iterations than the latter algorithm does. There are two reasons for this behaviour: 1) the
algorithm with the conventional stopping condition stops the subproblem as soon as it finds a
second-stage solution that cuts off the current first-stage solution. As a result, the generated
cuts are generally less effective than the cuts that the algorithm with the proposed stopping
conditions generates and therefore the first algorithm requires more iterations for convergence.
2) For small instances the master problem is simpler and the algorithm with the conventional
stopping condition can optimally solve it fairly quickly. However, for larger instances proving the
optimality of the master problem becomes the bottleneck of the algorithm, while the algorithm
with the proposed stopping conditions avoids this issue by terminating the master problem
when the ε-stopping condition is satisfied.

Furthermore, large optimality gaps of the branch-and-cut algorithm are due to the fact that,
whenever the algorithm finds a first-stage feasible solution, it solves a subproblem that is a
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Table 3. Computational results of the Benders algorithm for different level of decomposing the block-diagonal structure.

Data Info. Proposed Benders algorithm

R=0 R=10 R=20 R=30 R=40

L OR Time
(sec)

LB UB
Gap

(%)
Time
(sec)

LB UB
Gap

(%)
Time
(sec)

LB UB
Gap

(%)
Time
(sec)

LB UB
Gap

(%)
Time
(sec)

LB UB
Gap

(%)

2 1 2 336 336 0.00 6 336 336 0.00 6 336 336 0.00 10 336 336 0.00 10 336 336 0.00
2 12 650 650 0.00 631 650 650 0.00 825 650 650 0.00 1247 650 650 0.00 1938 650 650 0.06
3 341 958 958 0.00 5714 958 961 0.33 8684 958 968 1.03 12175 958 977 1.97 11112 958 976 1.92
4 1567 1254 1254 0.00 14400 1253 1304 4.01 14400 1252 1309 4.59 14400 1251 1312 4.83 14400 1252 1312 4.86
5 8512 1577 1581 0.24 14400 1575 1653 4.93 14400 1573 1655 5.20 14400 1571 1658 5.52 14400 1572 1659 5.52

Average 2087 955 956 0.05 7030 954 981 1.85 7663 954 983 2.16 8446 953 986 2.47 8372 953 987 2.47

3 1 28 672 672 0.00 316 672 672 0.00 665 672 672 0.00 852 672 672 0.00 845 672 672 0.00
2 7235 1323 1326 0.23 14140 1319 1379 4.56 14353 1318 1393 5.64 14339 1317 1396 6.02 14400 1316 1398 6.13
3 14400 1913 1965 2.68 14400 1905 2031 6.58 14400 1899 2043 7.57 14400 1897 2044 7.69 14400 1898 2047 7.86
4 14400 2506 2618 4.46 14400 2488 2684 7.89 14400 2472 2732 10.53 14400 2466 2734 10.92 14400 2468 2729 10.56
5 14400 3122 3294 5.48 14400 3088 3423 10.84 14400 3064 3471 13.35 14400 3049 3473 13.97 14400 3046 3478 14.26

Average 10093 1907 1975 2.57 11531 1895 2038 5.97 11644 1885 2062 7.42 11678 1880 2064 7.72 11689 1880 2065 7.76

4 1 886 1031 1031 0.00 4433 1031 1034 0.32 8351 1030 1040 0.98 10076 1030 1050 1.97 10938 1030 1054 2.27
2 14400 2001 2070 3.40 14400 1994 2115 6.06 14400 1988 2126 6.92 14400 1984 2132 7.39 14400 1983 2135 7.62
3 14400 2853 3022 5.90 14400 2835 3065 8.10 14400 2810 3112 10.73 14400 2787 3175 14.00 14400 2785 3164 13.64
4 14400 3717 3988 7.25 14400 3684 4072 10.52 14400 3619 4188 15.82 14400 3573 4196 17.55 14400 3565 4196 17.81
5 14400 4573 4985 8.98 14400 4481 5156 15.15 14400 4395 5171 17.75 14400 4362 5171 18.68 14400 4337 5171 19.33

Average 11697 2835 3019 5.11 12407 2805 3088 8.03 13190 2768 3127 10.44 13535 2747 3145 11.92 13708 2740 3144 12.13
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Table 4. Computational results to evaluate the performance of the proposed stopping conditions.

Data Info. Benders algorithm with the
proposed stopping conditions

Benders algorithm with the
conventional stopping condition

Branch-and-cut algorithm

L OR Sur. LB1 UB1
Gap1

(%)
Imp

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

LB UB
Gap

(%)

2 1 39 252 350 41.22 3.96 2 29 336 336 0.00 1 35 336 336 0.00 2 336 336 0.00
2 79 426 686 70.61 5.16 12 49 650 650 0.00 14 55 650 650 0.00 216 650 650 0.00
3 119 586 1008 85.36 4.98 341 65 958 958 0.00 395 89 958 958 0.00 4333 956 958 0.25
4 157 796 1334 77.27 5.91 1567 91 1254 1254 0.00 9402 96 1250 1259 0.64 13960 1234 1270 3.00
5 202 1111 1677 56.97 5.71 8512 113 1577 1581 0.24 14400 124 1572 1586 0.83 14400 1516 1640 8.34

Average 634 1011 66.29 5.14 2087 69 955 956 0.05 4842 80 953 958 0.29 6582 938 971 2.32

3 1 59 432 713 75.08 5.64 28 44 672 672 0.00 28 46 672 672 0.00 167 672 672 0.00
2 121 860 1424 77.92 6.83 7235 101 1323 1326 0.23 12971 85 1320 1329 0.69 14135 1282 1356 5.72
3 182 1474 2076 44.81 5.31 14400 171 1913 1965 2.68 14400 95 1876 2002 6.53 14400 1799 2440 35.44
4 240 1945 2718 42.70 3.58 14400 258 2506 2618 4.46 14400 97 2441 2683 9.48 14400 2203 3323 50.98
5 300 2552 3383 34.53 2.57 14400 370 3122 3294 5.48 14400 75 3040 3385 11.24 14400 2815 4031 43.16

Average 1453 2063 55.01 4.79 10093 189 1907 1975 2.57 11240 80 1870 2014 5.59 11501 1754 2365 27.06

4 1 80 687 1100 69.40 6.25 886 84 1031 1031 0.00 938 92 1031 1031 0.00 9148 1028 1036 0.73
2 163 1421 2167 61.82 4.43 14400 183 2001 2070 3.40 14400 68 1967 2106 6.93 14400 1888 2723 43.41
3 241 2283 3119 40.94 3.02 14400 459 2853 3022 5.90 14400 64 2763 3064 10.61 14400 2582 4145 60.17
4 318 3114 4057 32.17 1.67 14400 523 3717 3988 7.25 14400 59 3603 4098 13.42 14400 3351 5118 52.56
5 397 3833 5043 33.08 1.14 14400 565 4573 4985 8.98 14400 51 4423 5139 15.69 14400 4227 6116 44.52

Average 2268 3097 47.48 3.30 11697 363 2835 3019 5.11 11708 67 2757 3087 9.33 13350 2615 3828 40.28
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mixed-integer programming model. This requires solving a larger number of mixed-integer pro-
grams that is computationally expensive. We also observe that the averages of initial gaps in
the first iteration of the Benders algorithm with the proposed stopping conditions (Gap1) are
66.29%, 55.10%, and 47.56% that are considerably higher than the final optimality gaps. This
demonstrates that the Benders algorithm significantly improves the optimality gap. Moreover,
the averages of “Imp” are 5.14%, 4.80%, and 3.31%. These averages show that the Benders
algorithm improves the upper bound during the algorithm and the improvement of optimality
gap is not only because of improving the lower bound. We also observe that the upper bound
improvement decreases as the length of the planning horizon increases. This observation con-
firms that instances with longer planning horizons are more difficult and the Benders algorithm
becomes less effective in solving them. Similarly instances with more operating rooms are more
difficult and the Benders algorithm performs more iterations before stopping for such instances.

7.3. Supply chain instances

We generated 600 instances for the supply chain problem. The parameters that we considered to
generate the instances include the number of customers (|I|), the number of first- and second-
layer facilities (|F1| and |F2|), customers’ demands (dikp), and transportation costs (tkif and
tkff ′). For each instance, we uniformly generate the coordinates of customers and facilities in a
square with a side length of 100 kilometers. Then, we set tkif = αk[(xi−xf )2 +(yi−yf )2]0.5 and
tkff ′ = αk[(xf−x′f )2 +(yf−y′f )2]0.5 where αk is the per kilometer transportation cost for product
k ∈ K = {1,2,3} and is uniformly chosen from [0.7,1.3]. Also, we uniformly generate the de-
mands dikp from [100,200]. Moreover, we assume cf = λβf where βf is uniformly generated from
[100,200] and λ is a parameter to tune the relative magnitude of facilities fixed costs compared
to the transportation costs. We set the number of customers (|I|) to {50,60,70}. For the num-
ber of facilities, we consider five cases of (|F1|, |F2|)∈ {(5,5), (5,10), (10,10), (10,20), (20,20)}.
Finally, we set the relative cost parameter λ to {1,10,100,1000}. We generated 600 instances by
considering 10 instances for each combination of |I|, (|F1|, |F2|), and λ. For each test instance,
we set bk in constraint (50) equal to 1.5 ∑

i∈I
d̄ik/|I| where d̄ik represents the average demand of

product k by customer i.

7.4. Results of supply chain instances

As demonstrated in Table 2, the Benders algorithm outperforms the heuristic and hybrid Ben-
ders algorithms in terms of the optimality gap. Therefore, in Table 5, we have provided the
computational results to compare the proposed Benders algorithm with the tri-level Benders
algorithm proposed by Chen (2013). We have explained the different components of the tri-level
algorithm for the supply chain problem in Appendix EC.13. In Table 5, Columns LB1, UB1,
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Gap1(%), and Imp(%), Time(sec), LB, UB, and Gap(%) are the same as those in Tables 2 and
4. Furthermore, under Column “Tri-Level Benders algorithm”, we have reported ∆(UB)(%)
that gives the gap between the upper bounds of the Benders and tri-level algorithms. We com-
pute it by ∆(UB)(%) = 100(UBT −UBB)/UBT ) where UBB and UBT respectively denote the
upper bound values of the Benders and tri-level Benders algorithms. Table 5 shows that the
average optimality gap of the proposed Benders algorithm for instances with L=, 2, 3, and 4 is
0.78%, 1.25%, and 1.23%, respectively. However, the optimality gaps for the tri-level Benders
algorithm are very poor that is mainly due to very weak lower bounds. As explained at the
end of Appendix EC.13, this is because the structure of the supply chain problem is such that
optimality cuts for the outer master problem cannot be enhanced. Also, the average values
of ∆(UB)(%) are 30.47%, 28.57%, and 28.90% implying that the solutions found by the pro-
posed Benders algorithm are significantly superior than those of the tri-level Benders algorithm.
There are also two noteworthy points about Gap1(%) and Imp(%). Comparison of Gap1(%)
and Gap(%) for the Benders algorithm shows that the algorithm significantly improves the
optimality gap from the first iteration to the last one. Also, the values of Imp(%) shows that
the final upper bound values are around 60% stronger than the initial upper bound values. This
demonstrates that the improvement of the optimality gap from the first iteration to the last
iteration of the Benders algorithm, is not just because of improving the lower bound.

8. Conclusion
We have considered a class of two-stage robust optimization models with an exponential num-
ber of scenarios. We exploited the structure of the problem using Dantzig-Wolfe decomposition
and reduced the original two-stage robust problem to a single-stage robust problem. We then
proposed a Benders and a heuristic algorithm for the reformulated problem and combined them
to create a more effective hybrid algorithm capable of finding solutions with better objective
values. Since the master problem and subproblem of the Benders algorithm are mixed integer
programs, it is computationally demanding to optimally solve them in each iteration of the
algorithm. Therefore, we presented novel stopping conditions for them and provided the rele-
vant convergence proofs. We performed extensive computational experiments to evaluate the
performance the proposed algorithms in a nurse planning and a supply chain problem. For the
nurse planning problem, the computational results demonstrated that the Benders and hybrid
Benders algorithms find solutions with an average optimality gap of less than 3% over all in-
stances with planning horizons up to four weeks. Moreover, our experiments showed that the
proposed Benders algorithm is capable of finding quality solutions with an average optimality
gap of less than 1.25% for the supply chain instances with up to 70 customers and 40 facil-
ities. A possible future research direction would be to explore the extension of the proposed
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algorithms to multi-stage robust problems with exponential scenarios. Moreover, applying the
proposed algorithms to other applications should be of interest.
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Table 5. Computational results to the proposed Benders algorithm and the tri-level Benders algorithm from the literature for the supply chain problem.

Data Info. Proposed Benders algorithm Tri-Level Benders algorithm from the literature

|I| F1 F2 LB1 UB1
Gap1

(%)
Imp

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
∆(UB)

(%)

50 5 5 1247540 2627100 114.93 49.14 53 19 1247930 1247910 0.00 14205 785 396992 1263130 31905.10 1.41
5 10 1148410 2956400 167.45 59.41 4700 184 1148640 1149170 0.05 14400 844 157548 1279660 57170.10 13.59
10 10 972704 2845650 209.88 62.21 10037 119 977884 981521 0.38 14400 523 123985 1265680 73034.50 35.37
10 20 873758 2832400 247.82 67.45 10446 58 877424 884883 0.98 14400 873 114936 1167640 73744.80 39.93
20 20 808930 2554760 255.38 65.17 12552 24 820099 837699 2.52 14400 830 100384 1219510 87906.60 62.06

Average 1010268 2763262 199.09 60.68 7558 81 1014395 1020237 0.78 14361 771 178769 1239124 64752.22 30.47

60 5 5 1572470 3262890 111.17 45.56 966 85 1572540 1572580 0.00 14216 767 368722 1592880 36815.90 1.59
5 10 1434340 3551960 164.27 57.11 8502 280 1436820 1441550 0.29 14400 789 161716 1567880 68612.50 10.15
10 10 1152620 3152940 190.71 60.44 12396 119 1161530 1174380 1.21 14400 671 131269 1517890 82908.30 34.61
10 20 1050400 3242130 230.28 66.72 11776 57 1057910 1073850 1.70 14400 838 113491 1409470 89415.20 38.17
20 20 999629 3567130 292.77 69.03 13707 25 1016500 1045190 3.03 14400 1006 107327 1513820 101375.00 58.33

Average 1241892 3355410 197.84 59.77 9470 113 1249060 1261510 1.25 14363 814 176505 1520388 75825.38 28.57

70 5 5 1785810 4133370 135.83 54.59 3025 175 1787480 1788830 0.08 14285 776 413016 1798490 42785.80 0.68
5 10 1513660 3593600 140.13 55.43 11903 233 1521500 1534590 0.95 14400 857 160591 1667430 74067.80 9.99
10 10 1279060 3867250 218.25 63.82 12974 84 1286440 1307560 1.73 14400 525 123108 1692220 101293.00 34.98
10 20 1226830 3833660 233.50 64.16 13333 58 1229710 1254860 2.15 14400 481 106025 1710550 120517.00 43.51
20 20 1409450 3756658 185.11 59.55 10141 133 1414838 1429470 1.23 14370 691 195849 1677816 82897.80 55.36

Average 1442962 3836908 182.56 59.51 10275 137 1447994 1463062 1.23 14371 666 199718 1709301 84312.28 28.90



34 Hashemi Doulabi et al.: Exploiting the Structure of Two-Stage RO Models with Exponential Scenarios

Acknowledgments
The authors thank the associate editor and two anonymous referees for their constructive comments that

significantly improved the quality of this work.

References
Amiri, Ali. 2006. Designing a distribution network in a supply chain system: Formulation and efficient solution

procedure. European Journal of Operational Research 171(2) 567–576.

Ang, Marcus, Yun Fong Lim, Melvyn Sim. 2012. Robust storage assignment in unit-load warehouses. Manage-

ment Science 58(11) 2114–2130.
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EC.1. Proof of Theorem 1
We use the following notation.

(U ,W) : The uncertainty set that is defined by (4)-(7).

J : The index set of (U ,W) that is defined as J = {1,2, ..., |(U ,W)|} where |(U ,W)|

represents the cardinality of (U ,W).

(uj,wj) : The j-th member of (U ,W).

We also define fk(x,w) and gk(x, eks) as follows.

fk(x,w) = min
yk

cᵀ2kyk (EC.1.1)

Ckyk ≤ bk−Akx−
∑
k∈K

ekswks k ∈K (EC.1.2)

yk ∈Yk k ∈K (EC.1.3)

gk(x, eks) = min
y′

ks

cᵀ2ky
′
ks (EC.1.4)

Cky
′
ks ≤ bk−Akx− eks k ∈K (EC.1.5)

y′ks ∈Yk k ∈K (EC.1.6)

For each scenario (y,w)∈ (U ,W) with index j ∈J , with respect to constraint (6)-(7), exactly

one of the variables wjks s ∈ Sk is equal to 1 for each k ∈ K. Let sj denote the index in Sk for

which wjksj
is equal to 1. Therefore we have the following relations.

wjksj
= 1 j ∈J (EC.1.7)

wjks = 0 j ∈J , s 6= sj (EC.1.8)

In the following we prove the if -statement of Theorem 1. The only if -statement of this

theorem can be proven in a reverse direction. Assume that x̂ is a first-stage feasible solution of

model (P2). In the following we separately prove that

- x̂ is also a first-stage feasible solution of model (P3).
- The objective values of (P2) and (P3) for this fixed first-stage solution are the same if

max
u,w

and min
y′

are solved optimally.

Proof of Part 1: Since model (P2) is feasible, there is at least a feasible second-stage policy

〈αkj〉(k∈K) for each j ∈J such that

Ckαkj ≤ bk−Akx̂−
∑
s∈Sk

eksw
j
ks k ∈K, j ∈J (EC.1.9)

αkj ∈Yk k ∈K, j ∈J (EC.1.10)
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Using (EC.1.7) and (EC.1.8), we can rewrite relations (EC.1.9)-(EC.1.10) as follows.

Ckαkj ≤ bk−Akx̂− eksj
k ∈K, j ∈J (EC.1.11)

αkj ∈Yk k ∈K, j ∈J (EC.1.12)

Relations (EC.1.11)-(EC.1.12) demonstrate that for each k ∈ K and s ∈ Sk there is at least
one j ∈J such that for y′ks = αkj constraints Cky′ks ≤ bk−Akx− eks and y′ks ∈Yk are satisfied.
Therefore, x̂ is also a first-stage feasible solution of model (P3).
Proof of Part 2: To prove that the objective values of (P2) and (P3) for the fixed first-stage
solution x̂ are the same, it is enough to prove that relation (EC.1.13) or its equivalent, relation
(EC.1.14), holds.

cᵀ1x̂+ max
(u,w)∈(U ,W)

( ∑
k∈K

fk(x̂,w)
)

= cᵀ1x̂+ max
(u,w)∈(U ,W)

( ∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(EC.1.13)

max
(u,w)∈(U ,W)

( ∑
k∈K

fk(x̂,w)
)

= max
(u,w)∈(U ,W)

( ∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(EC.1.14)

Moreover, regarding (EC.1.7) and (EC.1.8), in constraint (EC.1.2) of fk(x̂,wj) we can substi-
tute ∑

s∈Sk

eksw
j
ks by eksj

. It is then clear that mathematical programs corresponding to gk(x̂, eksj
)

and fk(x̂,wj) have the same structure and following relations hold.

gk(x̂, eksj
) = fk(x̂,wj) k ∈K, j ∈J (EC.1.15)

arg min
y′

ks

(
gk(x̂, eksj

)
)

= arg min
yk

(fk(x̂,wj)) k ∈K, j ∈J (EC.1.16)

The following stream of equalities proves the validity of (EC.1.14). In the following relations
the second equality is obtained using (EC.1.15). The third equality is valid because of (EC.1.7)-
(EC.1.8).

max
(u,w)∈(U ,W)

( ∑
k∈K

fk(x̂,w)
)

= max
j∈J

( ∑
k∈K

fk(x̂,wj)
)

= max
j∈J

( ∑
k∈K

gk(x̂, eksj
)
)

=

max
j∈J

( ∑
k∈K

∑
s∈Sk

gk(x̂, eks)wjks
)

= max
(u,w)∈(U ,W)

( ∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

In addition, (EC.1.16) shows that we can obtain the second-stage optimal policies for variables
yk in model (P2) from the optimal values of variables y′ks.

EC.2. Proof of Theorem 2
As discussed in Appendix EC.1, we can present the inner max problem in model (P3) by

max
(u,w)∈(U ,W)

( ∑
k∈K

∑
s∈Sk

gk(x̂, eks)wks
)

(EC.2.1)
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where gk(x̂, eks) is defined as:

gk(x, eks) = min
y′

ks

cᵀ2ky
′
ks (EC.2.2)

Cky
′
ks ≤ bk−Akx− eks k ∈K (EC.2.3)

y′ks ∈Yk k ∈K (EC.2.4)

It is clear that the optimal values of vectors y′ks for k ∈K, s∈ Sk are independent of (u,w)∈

(U ,W) and are defined by

y′∗ks = arg min
y′

ks
∈Gks

(cᵀ2ky′ks) k ∈K, s∈ Sk (EC.2.5)

where Gks = {y′ks ∈ Yk |Cky′ks ≤ bk − Akx̂ − eks}. Therefore, because of the independence of

y′ks, k ∈K, s∈ Sk from (u,w)∈ (U ,W ), we can swap max
(u,w)

and min
y′

in model (P3) and Theorem

2 is proven.

EC.3. Proof of Theorem 3
Consider the following problem.

(MP′) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

(y,w)∈(U ,W)′

( ∑
k∈K

∑
s∈Sk

cᵀ2ky
′
kswks

))
(EC.3.1)

where (U ,W)′ = {(uj,wj), j = 1,2, ...,m}. Since (U ,W)′ ⊆ (U ,W) the optimal objective value

of model (MP′) is a valid lower bound for the optimal objective value of the original robust

problem (P4). In the following we demonstrate that (MP′) is equivalent to (MP). By writing

the convex combination of m scenarios (uj,wj), model (MP′) can be rewritten as:

(MP′′) min
(x,y′)∈(X ,Y ′)

(
cᵀ1x+ max

λ

(
m∑
j=1

λj

( ∑
k∈K

∑
s∈Sk

cᵀ2ky
′
ksŵ

j
ks

)))
(EC.3.2)

m∑
j=1

λj = 1 (EC.3.3)

λj ≥ 0 j = 1,2, ...,m. (EC.3.4)

In model (MP′′), for a fixed value of (x, y′), the inner max problem is a linear programming

model and one of its extreme points will be the optimal solution. Each extreme point of this

model corresponds to one of the scenarios (uj,wj). Therefore, model (MP′′) is equivalent to

model(MP′). By dualizing the inner max problem in model (MP′′) and assuming θ as the dual

variables of constraint (EC.3.3) we obtain model (MP) and Theorem 3 is proven.
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EC.4. An example to show the local optimality of the heuristic algorithm
Consider the problem min(x1,x2)∈X (2x1 + 1.5x2 + max(u1,u2)∈U(x1u1 +x2u2)) where

U = {(u1, u2)∈N2 |u1 ≤ 2, u2 ≥ 1, 0.99u1 + 2u2 ≤ 5.98, 1.99u1 +u2 ≥ 2.99}
and

X = {(x1, x2)∈R2 |x1 +x2 = 1, (x1, x2)∈ {0,1}2}.

The solution space of the variables (u1, u2) are four points A, B, C, and D in Figure EC.1.
The optimal solution of this problem is (x1, x2) = (0,1). For this solution the objective line in
max(u1,u2)∈U is Line L1. This objective line shows that scenarios A and B in the problem are
optimal with a total objective value of 3.5. If we relax the integrality constraints on variables u1

and u2 the solution space in the problem extends to polytope E-B-C-D. In this case, for solution
(x1, x2) = (0,1) the optimal scenario is Point E with an objective value of 4.49. However, for
solution (x1, x2) = (1,0) the objective line L2 represents the objective function of the inner max
problem. This objective line finds points B and C as the optimal scenarios with an objective
value of 4. In this example, if we apply the heuristic algorithm to solve this problem the
algorithm converges in the first iteration by finding the non-optimal solution (x1, x2) = (1,0).

0 1 2

1

2

3

Figure EC.1 The solution space of the uncertainty variables in the example presented to show the non-optimality
of the heuristic algorithm.
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Notation used in EC.5 to E.9

We use the following notation in the proofs of Appendices EC.5 to EC.9.
W : The set of vectors w for which there is u∈ U such that (u,w)∈ (U ,W).
n : The number of scenarios in (U ,W).
n′ : The number of unique vectors w that the algorithm visits in the subproblem before it

converges.
n′′ : The number of times that the algorithm visits an already encountered vector w in the

subproblem before it converges.
ε : A positive constant used in stopping conditions of the master problem and subproblem.
MP (i): The master problem in iteration i.
SP (i) : The subproblem in iteration i.
Opt : The optimal objective value of the original robust problem.
UMP
i : The upper bound of the master problem in iteration i.

OMP
i : The optimal objective value of the master problem in iteration i.

LMP
i : The lower bound of the master problem in iteration i.

USP
i : The upper bound of the subproblem in iteration i.

OSP
i : The optimal objective value of the subproblem in iteration i.

LSPi : The lower bound of the subproblem in iteration i.
f(j) : The iteration in which for the j-th times the algorithm generates a scenario with a new

vector w in the subproblem.
g(i) : The iteration in which for the i-th times the algorithm re-visits any of the generated

vectors w in the subproblem.
Ii : An indicator that is equal to 1 if in iteration i the algorithm generates a scenario with a

repeated vector w, 0 otherwise.
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EC.5. Proof of Lemma 1
Let (x̂, ŷ′) and θ̂ respectively denote the solution and the objective value of the master problem
in iteration i− 1. Furthermore, let (û, ŵ) denote the scenario with the repeated vector w = ŵ

found in the subproblem in iteration i. Since vector w= ŵ is repeated, we have already included
an instance of constraint (15) corresponding to this vector in the master problem in iteration
i− 1 and the following relation holds.

θ̂≥ cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks (EC.5.1)

The Benders algorithm applies solution (x̂, ŷ′) to modify the objective function of the sub-
problem in iteration i. If (û, ŵ) is not the optimal solution of subproblem then it means that
in the subproblem the following stopping condition is satisfied.

cᵀ1x̂+
∑
k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks ≥ θ̂+ ε (EC.5.2)

Obviously relation (EC.5.2) is in contrast with (EC.5.1) and we conclude that if the algorithm
visits a scenario with a repeated vector w in the subproblem, this scenario is the optimal solution
of the subproblem. To prove that the optimal objective value of the subproblem is equal to
the upper bound of the master problem in iteration i− 1, we have to show that in the master
problem, an instance of constraint (15) corresponding to the repeated vector ŵ is binding.
If for another scenario with a different repeated vector w = w′, constraint (15) is binding,
then we must have cᵀ1x̂+ ∑

k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksŵks < cᵀ1x̂+ ∑

k∈K

∑
s∈Sk

cᵀ2kŷ
′
ksw

′
ks which is a contradiction

regarding the optimality of (û, ŵ) in the subproblem in iteration i. Therefore, if the algorithm
finds a scenario with a repeated vector ŵ in the subproblem, the optimal objective value of the
subproblem is equal to the upper bound of the recent master problem.

EC.6. Proof of Lemma 2
Equivalently this lemma states that if in k = b(OSP

i −Opt)/εc iterations after iteration i the
algorithm does not find any scenario with a repeated vector w then OSP

i+k −Opt≤ ε holds. In
iteration i, since the algorithm found a scenario with a repeated vector w in subproblem SP (i),
regarding Lemma 1 this scenario is the optimal solution of the subproblem and LSPi = OSP

i

holds. Furthermore, in the master problem MP (i) that is solved after subproblem SP (i), two
cases are possible.

Case 1) OMP
i > OSP

i − ε holds. First note that OMP
i < Opt is a valid regarding Theorem

3. OMP
i > OSP

i − ε together with OMP
i < Opt results in Opt > OSP

i − ε. The latter relation
contradicts with the initial assumption OSP

i −Opt > ε. Therefore, this case does not happen.
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Case 2) OMP
i ≤OSP

i − ε holds. This relation is equivalent to OMP
i ≤ LSPi − ε with respect

to relation LSPi =OSP
i . Regarding OMP

i ≤ LSPi − ε, the stopping condition in master problem

MP (i) is satisfied and the master problem stops when it finds a feasible solution with an upper

bound UMP
i satisfying the following relation.

UMP
i ≤LSPi − ε=OSP

i − ε (EC.6.1)

We have assumed that no scenario with a new vector w is generated in k = b(OSP
i −Opt)/εc

iterations after iteration i. Therefore, in iteration i + 1 a scenario with a repeated vector w

is generated and regarding Lemma 1 we have OSP
i+1 = UMP

i . The recent relation together with

(EC.6.1) results in the following relation.

OSP
i+1 ≤OSP

i − ε (EC.6.2)

Similarly we can show that for k≤ b(OSP
i −Opt)/εc relation (EC.6.3) holds. This is because it

is supposed form iteration i to iteration i+ b(OSP
i −Opt)/εc all visited scenarios have repeated

vectors w.

OSP
i+h ≤OSP

i+h−1− ε h∈ {1,2, ..., k} (EC.6.3)

Relation (EC.6.3) is equivalent to (EC.6.4).

OSP
i+h−Opt

ε
≤
OSP
i+h−1−Opt

ε
− 1 h∈ {1,2, ..., k} (EC.6.4)

From (EC.6.4) we can simply obtain

OSP
i+k−Opt

ε
≤
OSP
i+h−1−Opt

ε
− k (EC.6.5)

For k = b(OSP
i −Opt)/εc we will have:

OSP
(i+k)−Opt

ε
≤
OSP

(i+h−1)−Opt
ε

−
⌊
OSP
i −Opt

ε

⌋
(EC.6.6)

which is equivalent to

OSP
(i+k)−Opt≤ ε (EC.6.7)

Therefore, we proved that if in k = b(OSP
i −Opt)/εc iterations after iteration i the algorithm

does not find any scenario with a repeated vector w then OSP
i+k−Opt≤ ε holds.
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EC.7. Proof of Lemma 3
Three cases are possible.

Case 1) OSP
i −Opt ≤ ε and OSP

i −OMP
i ≥ ε hold. We show that in this case in the next

iteration the algorithm generates a scenario with a new vector w. Because of OSP
i −OMP

i ≥ ε,
the stopping condition in the master problem in iteration i is satisfied and the following relation
holds.

UMP
i ≤OSP

i − ε≤Opt (EC.7.1)

If the algorithm visits a scenario with a repeated vector w in the subproblem in iteration
i+1, we must have UMP

i =OSP
i+1 regarding Lemma 1. Then with respect to (EC.7.1), OSP

i+1 <Opt

holds which is a contradiction because the optimal objective value of the subproblem is an
upper bound of the optimal objective of the robust problem. Therefore, in this case in the next
iteration a scenario with a new vector w will be generated.

Case 2) OSP
i −Opt≤ ε, OSP

i −OMP
i ≤ ε and OMP

i <Opt hold. We show in the next iteration
the algorithm generates a scenario with a new vector w. Because of OSP

i −OMP
i ≤ ε, in the

master problem in iteration i there is not any scenario satisfying the stopping condition. Thus,
the master problem is solved optimally and we will have the following relation.

OMP
i =UMP

i (EC.7.2)

In the subproblem of next iteration, if the algorithm visits a scenario with a repeated vector
w, then regarding Lemma 1 we must have relation (EC.7.3).

UMP
i =OSP

i+1 (EC.7.3)

Considering the primary assumption OMP
i <Opt and relations (EC.7.2)- (EC.7.3) we must

have OSP
i+1 <Opt which is a contradiction because the optimal objective value of the subproblem

is an upper bound of the optimal objective value of the robust problem. Therefore, in this case
in iteration i+ 1 the algorithm generates a scenario with a new vector w.

Case 3) OSP
i −Opt≤ ε, OSP

i −OMP
i ≤ ε and OMP

i = Opt hold. We show that in this case
in the next iteration either the Benders algorithm converges or it generates a scenario with a
new vector w. Because of OSP

i −OMP
i ≤ ε, in the master problem in iteration i there is not any

scenario satisfying the stopping condition. Therefore, the master problem is solved optimally
and relation (EC.7.4) holds.

LMP
i =OMP

i =UMP
i (EC.7.4)
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In the subproblem of iteration i+ 1, the algorithm generates a scenario with either a new
vector w or a repeated vector w. In the later case regarding Lemma 1 we must have relation
(EC.7.3). Considering the primary assumption OMP

i =Opt and relations (EC.7.3)-(EC.7.4) we
have LMP

i = Opt = OSP
i+1. This relation demonstrates that the optimal solution of the robust

problem is obtained and the Benders algorithm is converged. Therefore, in this case, in the
next iteration either the Benders algorithm converges or it generates a scenario with a repeated
vector w.

EC.8. Proof of Lemma 4
Regarding constraint (31) since the algorithm visits a scenario with a repeated vector w in the
subproblem of iteration g(i1), in any iteration j ≥ g(i1), the inequality UMP

j ≤OSP
g(i1) holds and

by setting j = g(i2)− 1≥ g(i1) we obtain the following relation.

UMP
g(i2)−1 ≤OSP

g(i1) (EC.8.1)

Note that g(i2)−1≥ g(i1) holds because i1 < i2. Also regarding Lemma 1, in the subproblem
of iteration g(i2) that the algorithm has visited a scenario with a repeated vector w, we have
UMP
g(i2)−1 =OSP

g(i2). This relation together with (EC.8.1) demonstrates the validity ofOSP
g(i2) ≤OSP

g(i1).

EC.9. Proof of Theorem 4
To prove that the Benders algorithm converges in at most

n′∑
j=1

(1 + (b(OSP
f(j)+1 − Opt)/εc +

1)If(j)+1) iterations it is enough to show it takes at most 1 + (b(OSP
f(j)+1 −Opt)/εc+ 1)If(j)+1

iterations between visiting j-th and (j+ 1)-th new vector w in the subproblem. Let us assume
j < n′. Two cases are possible.

Case 1) we have If(j)+1 = 0 that means in the iteration f(j) + 1 the algorithm finds a
scenario with a new vector w. In this case the number of between visiting j-th and (j + 1)-th
new scenarios is 1.

Case 2) we have If(j)+1 = 1 that means in iteration f(j) + 1 the algorithm visits a scenario
with a repeated vector w. In this case, after visiting the a scenario with a repeated vector w in
iteration f(j) + 1, with respect to Lemma 2 it takes at most k = b(OSP

f(j)+1−Opt)/εc to find a
scenario with a new vector w or to have OSP

f(j)+1+k−Opt≤ ε. In the later case, regarding Lemma
3, we know that in the next iteration f(j) + k + 2 either the Benders algorithm converges
or a scenario with a new vector w is found. Since it is assumed that j < n′, the Benders
algorithm does not converge before finding the (j + 1)-th scenario with a new vector w. Thus,
we expect that the algorithm generates (j + 1)-th new vector w by iteration f(j) + k + 2. In
other words, the number of iterations between visiting j-th and (j + 1)-th new vector w is at



e-companion to Hashemi Doulabi et al.: Exploiting the Structure of Two-Stage RO Models with Exponential Scenarios ec11

most b(OSP
f(j)+1 −Opt)/εc+ 2. Therefore, for j < n′ the number of iterations between visiting

j-th and (j+ 1)-th new vector w is computed by relation (EC.9.1).

(1− If(j)+1) +
(⌊

OSP
f(j)+1−Opt

ε

⌋
+ 2

)
If(j)+1 (EC.9.1)

For j = n′ we can use a similar reasoning as presented above for j < n′. The difference is that
only Case 2 is applicable because regarding the definition of n′ no new vector w is visited
after visiting the n′-th new vector w. Moreover, when we use Lemmas 2 and 3 in Case 2, the
generation of a scenario with a new vector w is not an option and we are sure that after finding
the n′-th new vector w, the Benders algorithm converges in at most

(
b(OSP

f(j)+1−Opt)/εc+ 2
)

iterations that is the same as (EC.9.1) with respect to If(j)+1 = 1 for j = n′. Therefore, by
summing the number of iterations computed by (EC.9.1) from j = 1 to j = n′ we obtain the
following maximum number of iterations.

n′∑
j=1

(
1 +

(⌊
(OSP

f(j)+1−Opt)/ε
⌋

+ 1
)
If(j)+1

)
= n′+

n′∑
j=1

((
b(OSP

f(j)+1−Opt)/εc+ 1
)
If(j)+1

)
≤ n′+

n′∑
j=1

(
b(OSP

f(j)+1−Opt)/εc+ 1
)

= n′
(
b(OSP

g(1)−Opt)/εc+ 2
)

≤ |W|
(
b(OSP

g(1)−Opt)/εc+ 2
)

Proof of the first inequality: We know that in n′ iterations the algorithm visits at least one
scenario with a repeated vector w. g(1) denotes the iteration in which a repeated vector w is
visited for the first time. To prove the first inequality it is enough to show the validity of the
following relation (EC.9.2).⌊

OSP
g(1)−Opt

ε

⌋
+ 1≥

(⌊
OSP
f(j)+1−Opt

ε

⌋
+ 1

)
If(j)+1 j ∈ {1,2, ..., n′} (EC.9.2)

As OSP
g(1) ≥ Opt is a valid relation, (EC.9.2) holds when If(j)+1 equal 0. In the case that

If(j)+1 is equal to 1, regarding the definition of g(1) and If(j)+1 we know that g(1)≤ f(j) + 1.
Thus, with respect to Lemma 4, we have OSP

g(1) ≥OSP
f(j)+1 that results in b(OSP

g(1)−Opt)/εc+ 1≥
b(OSP

f(j)+1−Opt)/εc+ 1. Therefore, relation (EC.9.2) is valid.

EC.10. Details of the reformulation for the supply chain problem
First, we have to make model (47)-(57) consistent with model (P1), and then we can apply
the proposed reformulation. To this end, we replace uipy1

if and uipy
2
ikff ′ by new second-stage

variables v1
ifp and v2

ikff ′p in the objective function as in (EC.10.1) and add the new constraints
(EC.10.2)-(EC.10.3) to Y(x, y) defined by (52)-(57).

min
x∈X

 ∑
f∈F1∪F2

cfxf + max
u∈U

 min
y∈Y(x,y)

∑
i∈I

∑
f∈F1

∑
p∈Pi

(cifpv1
ifp)+
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+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

(cikff ′pv
2
ikff ′p)

 (EC.10.1)

v1
ifp ≥ uipy1

if i∈ I f ∈F1 p∈Pi (EC.10.2)

v2
ikff ′p ≥ uipy2

ikff ′ i∈ I k ∈K f ∈F1 f
′ ∈F2 p∈Pi (EC.10.3)

Then, we linearize (EC.10.2)-(EC.10.3) as (EC.10.4)-(EC.10.5) to make the structure of
Y(x, y) consistent with that of Y(x, y) in model (P1).

v1
ifp ≥ uip + y1

if − 1 i∈ I f ∈F1 p∈Pi (EC.10.4)

v2
ikff ′p ≥ uip + y2

ikff ′ − 1 i∈ I k ∈K f ∈F1 f
′ ∈F2 p∈Pi (EC.10.5)

After the above modifications, set Y(x, y) will be as follows:

Y(x, y) =
{
y | (52)− (57), (EC.10.4)− (EC.10.5)

}
(EC.10.6)

The identifier i ∈ I is common in all relations defining Y(x, y) in (EC.10.6). Therefore, we
can define the block-diagonal structure for i ∈ I. In this case, the new binary variable wip for
the uncertainty set is defined and linked to uip as (EC.10.7)-(EC.10.8).

[uip]p∈Pi
=
∑
p∈Pi

eiwip i∈ I (EC.10.7)

∑
p∈Pi

wip = 1 i∈ I (EC.10.8)

In (EC.10.7), ei is i-th unit vector with 1 as the i-th entry and 0 as other entries. Constraint
(EC.10.7) shows that uip =wip holds in this problem. Comparison of (EC.10.7) with (5) shows
that Bku in (5) is equivalent to [uip]p∈Pi

in (EC.10.7). Therefore, to follow the reformulations
presented by models (P3) and (P4), we makes copies of the second-stage variables by adding
index p′ ∈Pi to them and also multiply the second-stage variables in the objective function by
their corresponding wip′ (or equivalently uip′). In this case, the revised model will be as:

min
x∈X

 ∑
f∈F1∪F2

cfxf + max
u∈U

 min
y∈Y(x,y)

∑
i∈I

∑
f∈F1

∑
p∈Pi

∑
p′∈Pi

(cifpuip′v1
ifpp′)+

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

∑
p′∈Pi

(cikff ′puip′v2
ikff ′pp′)

 (EC.10.9)

X =
{
x |xf ∈ {0,1} f ∈F1 ∪F2

}
(EC.10.10)

U =
{
u |
∑
p∈Pi

uip = 1 i∈ I, (EC.10.11)

∑
i∈I

∑
p∈Pi

dikpuip ≤ bk k ∈K (EC.10.12)
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uip ∈ {0,1} i∈ I p∈Pi
}

(EC.10.13)

Y(x, y) =
{
y |

∑
f∈F1

y1
ifp′ = 1 i∈ I p′ ∈P (EC.10.14)

y1
ifp′ ≤ xf i∈ I f ∈F1 p

′ ∈P (EC.10.15)∑
f ′∈F2

y2
ikff ′p′ = y1

ifp′ i∈ I k ∈K f ∈F1 p
′ ∈P (EC.10.16)

y2
ikff ′p′ ≤ xf ′ i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P (EC.10.17)

y1
ifp′ ∈ {0,1} i∈ I f ∈F1 p

′ ∈P (EC.10.18)

y2
ikff ′p′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P (EC.10.19)

y2
ikff ′p′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P (EC.10.20)

v1
ifpp′ ≥ eipp′ + y1

ifp′ − 1 i∈ I f ∈F1 p∈Pi p′ ∈P (EC.10.21)

v2
ikff ′pp′ ≥ eipp′ + y2

ikff ′p′ − 1 i∈ I k ∈K f ∈F1 f
′ ∈F2 p∈Pi p′ ∈P

}
(EC.10.22)

Comparison of constraints (EC.10.21)-(EC.10.22) with constraints (EC.10.4)-(EC.10.5) im-

plies that we have replaced uip with eipp′ that is a parameter and is equal to 1 for p= p′ and

0 otherwise. The reason for the replacement of uip is that when we make copies of the second-

stage constraints, we replace the uncertainty variables with their realizations (e.g. compare

(9) with (12)). In constraints (EC.10.21)-(EC.10.22), we have v1
ifpp′ = y1

ifp′ and v1
ifpp′ = y2

ikff ′p′

for p = p′. For p 6= p′, v1
ifpp′ and v1

ifpp′ will be equal to 0 because of their non-negative cost

in the objective function. This replacement in model (EC.10.9)-(EC.10.22) results in model

(EC.10.23)-(EC.10.34).

min
x∈X

 ∑
f∈F1∪F2

cfxf + max
u∈U

 min
y∈Y(x)

∑
i∈I

∑
f∈F1

∑
p′∈Pi

(cifpuip′y1
ifp′)

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p′∈Pi

(cikff ′puip′y2
ikff ′p′)

 (EC.10.23)

X =
{
x |xf ∈ {0,1} f ∈F1 ∪F2

}
(EC.10.24)

U =
{
u |
∑
p∈Pi

uip = 1 i∈ I, (EC.10.25)

∑
i∈I

∑
p∈Pi

dikpuip ≤ bk k ∈K (EC.10.26)

uip ∈ {0,1} i∈ I p∈Pi
}

(EC.10.27)

Y(x) =
{
y |

∑
f∈F1

y1
ifp′ = 1 i∈ I p′ ∈P (EC.10.28)
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y1
ifp′ ≤ xf i∈ I f ∈F1 p

′ ∈P (EC.10.29)∑
f ′∈F2

y2
ikff ′p′ = y1

ifp′ i∈ I k ∈K f ∈F1 p
′ ∈P (EC.10.30)

y2
ikff ′p′ ≤ xf ′ i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P (EC.10.31)

y1
ifp′ ∈ {0,1} i∈ I f ∈F1 p

′ ∈P (EC.10.32)

y2
ikff ′p′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P (EC.10.33)

y2
ikff ′p′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 p
′ ∈P

}
(EC.10.34)

This model is in the format of model (P3). Therefore, we can pass the inner min
y∈Y(x)

(.) out of
max
u∈U

(.) that results in model (58)-(66)

EC.11. Tri-level Benders algorithm for the nurse scheduling problem
The structure of this tri-level Benders algorithm that we present in this section is proposed by
Chen (2013). In this Benders algorithm, we have an outer master problem that fixes a first-stage
solution and proposes it to the inner loop. In the inner loop, an inner master problem looks for
the worst-case scenario for the uncertainty considering the given first-stage solution. After fixing
the uncertainty, we solve a subproblem to find a second-stage solution for the given uncertainty
and the fixed first-stage solution. We present the pseudo code of the tri-level Benders algorithm
by Algorithm EC.1.

In Line 1, we initialize the values of lower and upper bounds. The inner loop of the algo-
rithm starts in Line 2 and finishes in Line 14 when the optimality gap is small enough or the
time limit is reached. In Line 3, we solve the outer master problem (EC.11.1)-(EC.11.7) that
provides a first-stage solution for the rest of the algorithm. We have provided the details on
the outer master problem after this explanation for the pseudo code of Algorithm 4. We up-
date the lower bound in Line 4 by setting it equal the optimal objective value of the recent
outer master problem. Then, the inner loop of the algorithm starts in Line 5 and finishes in
Line 11. In this loop, we first add an optimality cut (EC.11.10) to the inner master problem
(EC.11.9)-(EC.11.15) using the most recent second-stage solution < yd >d∈D that is obtained
in the subproblem. In the first iteration of the inner loop, we consider a trivial second-stage
solution ŷd =M d ∈D. This solution means that we hire M nurses on all days over the plan-
ning horizon. In Line 7, we solve the inner master problem (EC.11.9)-(EC.11.15) to find a new
worst-case scenario for the realization of the uncertainty. In Line 8, we update the upper bound
by UB :=max{UB,UBnew} where UB is the current upper bound in the algorithm and UBnew

is the sum of current first-stage cost obtained in the outer master problem and the worst-case
second stage cost that is the optimal objective value of recent inner master problem. In Line 9,
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Algorithm EC.1. Tri-level Benders algorithm
1: Initialize UB=∞ and LB=-∞.
2: repeat

3: Solve the outer master problem (EC.11.1)-(EC.11.7) to find a first-stage solution.
4: Update the lower bound.
5: repeat

6: Add an optimality cut (EC.11.10) to the inner master problem (EC.11.9)-(EC.11.15)
for the current second-stage solution.

7: Solve the inner master problem (EC.11.9)-(EC.11.15) to find a new worst-case scenario.
8: Update the upper bound if necessary.
9: Modify the right-hand side of constraint (EC.11.17) in the subproblem (EC.11.16)-

(EC.11.18) based on the new worst-case scenario.
10: Solve the subproblem (EC.11.16)-(EC.11.18) to find a new second-stage solution for

the given first-stage solution and the given worst-case scenario.
11: until (the objective value of the subproblem is the equal to the objective value of the

inner master problem or the time limit AlgT imeLimit is reached)
12: Remove all optimality cuts from the inner master problem.
13: Add the optimality cut (EC.11.2) to the outer master problem.
14: until (100(UB−LB)/LB ≤ δacc or time limit AlgT imeLimit is reached)

we update the right-hand side value of Constraint (EC.11.17) in the subproblem using the cur-
rent worst-case scenario obtained in the inner master problem (EC.11.9)-(EC.11.15). Then we
solve the subproblem (EC.11.16)-(EC.11.18) for the current firs-stage solution and the current
worst-case scenario. In Line 11, the inner loop stops if the objective value of the subproblem
is the equal to the objective value of the inner master problem or if the time limit is reached.
In Line 12, we remove all optimality cuts added to the inner master problem because the inner
master problem is solved locally for each first-stage solution fixed in the outer master problem.
We then add an optimality cut (EC.11.2) to the outer master problem. In Line 14, the algorithm
stops if the optimality gap is less than δacc or if the time limit is reached.

In the following, we present the outer master problem, inner master problem, and the sub-
problem of the tri-level benders algorithm. We suppose that all variables, sets, and parameters
presented in Section 5 are defined in the same way.

Outer Master Problem
We introduce the following notation for the outer master problem.

Sets:
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J : Index set for the first-stage solutions that are evaluated by the inner master problem.
Id : Index set for the number of first-stage nurses that we may hire for day d. We compute

it by Id = {0,1, ..., Smax
d }.

Parameters:
αj : The second-stage cost for first-stage solution j ∈J .
Smax
d : The maximum number of patients that can be in the ward on day d.
x̂jd : The number of first-stage nurses on day d in solution j ∈J .

Variables:
vdi : 1 if we hire i nurses in the first stage, 0 otherwise.
θouter : A lower bound on the second-stage cost in the outer master problem.

The outer master problem of the tri-level Benders algorithm reads as follows.

Outer-MP min
x,θouter

cᵀ1x+ θouter (EC.11.1)

θouter ≥ αj − c2
∑
d∈D

∑
i∈Id:
i>x̂jd

(i− x̂jd)vdi j ∈J (EC.11.2)

xd =
∑
i∈Id

ivdi d∈D (EC.11.3)
∑
i∈Id

vdi = 1 d∈D (EC.11.4)

θouter ≥ 0 (EC.11.5)

vdi ∈ {0,1} d∈D, i∈ Id (EC.11.6)

δxd + δM ≥ ρSmax
d d∈D (EC.11.7)

In (EC.11.1)-(EC.11.6), the objective function (EC.11.1) minimizes the sum of the first-stage
cost cᵀ1x and θouter that provides a lower bound on the second-stage. Optimality cut (EC.11.2)
approximates the second-stage cost and tightens θouter as the algorithm adds more cuts to the
outer master problem. This cut ensures that θouter will be equal to the second-stage cost αj
if solution j ∈ J is selected again, and for all other first-stage solutions that are not visited
yet, θouter is a lower bound on the second-stage cost. In this constraint, for a fixed day d ∈D,
if the number of first-stage nurses that the model selects is a units less than the number of
hired first-stage nurses in a previously visited solution j (i.e., ∑ i∈Id:

i>x̂jd

(i− x̂jd)vdi = a), then the
second-stage cost for the new solution on this day is most c2×a less than the second-stage cost
αj. This constraint is an improved version of the following big-M constraint.

θouter ≥ αj −
∑
d∈D

M ′

1−
∑
i∈Id:
i≤x̂jd

vdi

 j ∈J (EC.11.8)
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In Constraint (EC.11.8), M ′ is a big-M value. This constraint becomes inactive when∑
i∈Id:
i≤x̂jd

vdi = 0. Since, constraint (EC.11.2) is stronger than (EC.11.8), we consider the former

constraint in the outer master problem. (EC.11.3) links variables vdi to variables xd. (EC.11.4)
implies that for each day d∈D, exactly one of vdi must be equal to 1. Constraint (EC.11.6) is
the set of all feasibility cuts that prevents from infeasibility in the subproblem.

Inner Master Problem

We introduce the following notation for the inner master problem.

Sets:

J ′ : Index set for the second-stage solutions that are generated by the subproblem.

Parameters:

ŷjd : The number of second-stage nurses on day d in the second-stage solution j ∈J ′.

Variables:

θinner : A upper bound on the second-stage cost for the current first-stage solution.

Inner-MP max
w,u,θinner

θinner (EC.11.9)

θinner ≤
∑
d∈D

∑
s∈Sd

c2ŷjdwds j ∈J ′ (EC.11.10)
∑
s∈Sd

wds = 1 d∈D (EC.11.11)
∑
t∈T

∑
p∈Ptd

utp =
∑
s∈Sd

swds d∈D (EC.11.12)
∑
p∈Pt

utp = 1 t∈ T (EC.11.13)

utp ∈ {0,1} t∈ T , p∈Pt (EC.11.14)

wds ∈ {0,1} d∈D, s∈ Sd (EC.11.15)

The objective function (EC.11.9) minimize the upper bound on the second-stage cost. Con-
straint (EC.11.10) is the optimality cut of the inner master problem and approximate the
second-stage cost. This approximation becomes more accurate as more optimality cuts are
generated and added to the inner master problem. Constraints (EC.11.11)-(EC.11.12) define
variables wds and link them to variables utp. Constraint (EC.11.13) implies that for each patient,
exactly one of the possible scenarios realizes.

Subproblem

We define the subproblem as follows. In this model, We introduce parameters ûtp and x̂d as
follows.
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ûtp : The value of utp in the recent inner master problem.
x̂d : The value of xd in the recent outer master problem.

SP min
y

∑
d∈D

c2yd (EC.11.16)

δx̂d + δyd ≥ ρ
∑
t∈T

∑
p∈Ptd

ûtp d∈D (EC.11.17)

0≤ yd ≤Md, integer d∈D (EC.11.18)

The objective function (EC.11.16) minimizes the second-stage cost. Constraint (EC.11.17)
is the demand constraint for a first-stage solution fixed by the outer master problem and an
uncertainty scenario given by the inner master problem.

EC.12. Experiments on the tuning of ε for nurse planning instances
In the first experiment, we investigate the impact of parameter ε in the proposed stopping con-
ditions. In Table EC.1, we report the computational results of the proposed Benders algorithm
for ε= {0.5,5,50,500}. In Table EC.1, each row gives the average results for 50 instances with
different values of the incentive factor. Under “Data Info.”, “L”, “OR”, and “Sur.” respectively
give the number of weeks in the planning horizon, the number of operating room, and the
number of surgeries over the planning horizon. “Time (sec)” gives the total computational time
of algorithms in seconds. Also “Ite.” gives the number of iterations that algorithms repeat their
main loops. Furthermore, “LB” and “UB” indicate the best lower and upper bounds in the
last iteration of the algorithms and “Gap.” computes the gap between these bounds.

In Table EC.1, we observe that the algorithm obtains the best average optimality gaps
for ε = 5. The average optimality gaps deteriorate for very large or small values of ε. For
large values of ε= 50 and 500, the stopping conditions terminate the master problem and the
subproblem more rarely. In this case, the algorithm spends a lot of computational time to prove
the optimality of the problems that is futile especially in initial iterations. As a result, as we can
see in Table EC.1, the algorithm repeats fewer iterations without enough interactions between
the master problem and the subproblem. In the other extreme case, when the ε is very small
(ε= 0.5), the algorithm spends less time to improve the quality of lower and upper bounds in
the master problem and the subproblem and terminates them more frequently. Therefore, the
algorithm repeats more iterations compared to the case of ε= 5 and results in slightly higher
optimality gaps.
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Table EC.1. Computational results of the Benders algorithm for different values of ε in the proposed stopping conditions.

Data Info. ε = 0.5 ε = 5 ε = 50 ε = 500

L OR Sur. Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)
Time
(sec)

Ite. LB UB
Gap

(%)

2 1 39 1 29 336 336 0.00 2 29 336 336 0.00 1 29 336 336 0.00 1 29 336 336 0.00
2 79 12 49 650 650 0.00 12 49 650 650 0.00 12 49 650 650 0.00 12 49 650 650 0.00
3 119 340 65 958 958 0.00 341 65 958 958 0.00 343 65 958 958 0.00 349 65 958 958 0.00
4 157 1583 90 1254 1254 0.00 1567 91 1254 1254 0.00 2377 87 1254 1255 0.02 2542 87 1254 1255 0.04
5 202 8415 114 1577 1581 0.25 8512 113 1577 1581 0.24 10905 104 1576 1583 0.43 11211 101 1576 1588 0.71

Average 2070 69 955 956 0.05 2087 69 955 956 0.05 2728 67 955 956 0.09 2823 66 955 957 0.15

3 1 59 28 44 672 672 0.00 28 44 672 672 0.00 27 44 672 672 0.00 27 44 672 672 0.00
2 121 7882 102 1323 1326 0.23 7235 101 1323 1326 0.23 8407 73 1322 1327 0.36 8588 72 1322 1327 0.37
3 182 14400 171 1914 1968 2.80 14400 171 1913 1965 2.68 14400 98 1903 1973 3.65 14400 70 1876 2048 9.22
4 240 14400 279 2505 2619 4.52 14400 258 2506 2618 4.46 14400 143 2494 2627 5.29 14400 84 2443 2717 11.23
5 300 14400 412 3122 3297 5.56 14400 370 3122 3294 5.48 14400 187 3112 3308 6.26 14400 96 3046 3383 11.07

Average 10222 202 1907 1976 2.62 10093 189 1907 1975 2.57 10327 109 1901 1981 3.11 10363 73 1872 2029 6.38

4 1 80 877 83 1031 1031 0.00 886 84 1031 1031 0.00 1125 59 1031 1031 0.00 1015 60 1031 1031 0.00
2 163 14400 197 2002 2070 3.38 14400 183 2001 2070 3.40 14400 87 1991 2069 3.90 14400 61 1956 2120 8.27
3 241 14400 491 2852 3027 6.09 14400 459 2853 3022 5.90 14400 212 2842 3034 6.72 14400 81 2767 3119 12.73
4 318 14400 561 3716 3989 7.30 14400 523 3717 3988 7.25 14400 300 3708 3999 7.81 14400 97 3623 4057 11.98
5 397 14400 576 4551 4978 9.39 14400 565 4573 4985 8.98 14400 317 4547 4994 9.82 14400 97 4455 5025 12.80

Average 11695 382 2830 3019 5.23 11697 363 2835 3019 5.11 11745 195 2824 3025 5.65 11723 79 2766 3070 9.16
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EC.13. Tri-level algorithm for the supply chain problem
The structure of the tri-level algorithm for the supply chain problem is the same as the one
already explained for the nurse planning problem in Appendix EC.11. In this appendix, we
present the models for the outer master problem, the inner master problem, and the subproblem
of the tri-level algorithm for this application. The pseudo code for the algorithm will be the
same as the one in Algorithm in Appendix EC.11.

Outer Master Problem

We introduce the following notation for the outer master problem.

Sets:

J : Index set for the first-stage solutions that are evaluated by the inner master problem.

Parameters:
αj : The second-stage cost for first-stage solution j ∈J .
x̂jf : 1 if facility f ∈F1 ∪F2 is open in solution j ∈J , 0 otherwise.

Variables:
xf : 1 if we decide to open facility f ∈F1 ∪F2, 0 otherwise.
θouter : A lower bound on the second-stage cost in the outer master problem.

The outer master problem of the tri-level Benders algorithm reads as:

Outer-MP min
x,θouter

∑
f∈F1∪F2

cfxf + θouter (EC.13.1)

θouter ≥ αj −M

 ∑
f∈F1∪F2:
x̂jf =0

xf

 j ∈J (EC.13.2)

xf ∈ {0,1} f ∈F1 ∪F2 (EC.13.3)

In (EC.13.1)-(EC.13.3), the objective function (EC.11.1) minimizes the sum of the first-
stage opening cost and θouter that provides a lower bound on the second-stage. Optimality cut
(EC.13.2) approximates the second-stage cost and tightens θouter as the algorithm adds more
cuts to the outer master problem. This cut implies that θouter will be equal to the second-stage
cost αj if solution j ∈ J is selected again. Otherwise, θouter provides a lower bound on the
second-stage cost. In this constraint, M represents a very large number that we can set to the
trivial value αj.

Inner Master Problem

We introduce the following notation for the inner master problem.
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Sets:

J ′ : Index set for the second-stage solutions that are generated by the subproblem.

Parameters:

ŷ1
jif : 1 if, in the second-stage solution j ∈ J ′, first-layer facility f supplies the demand of

customer i.

ŷ2
jikff ′ : 1 if, in the second-stage solution j ∈J ′, customer i’s demand for product k is trans-

ported from second-layer facility f ′ to first-layer facility f ; 0 otherwise.

Variables:
θinner : A upper bound on the second-stage cost for the current first-stage solution.
uip : 1 if local scenario p realizes for customer i, 0 otherwise.

Inner-MP max
u,θinner

θinner (EC.13.4)

θinner ≤

∑
i∈I

∑
f∈F1

∑
p∈Pi

(cifpŷ1
jifuip)+

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

(cikff ′pŷ
2
jikff ′uip)

 j ∈J ′ (EC.13.5)
∑
p∈Pi

uip = 1 i∈ I (EC.13.6)
∑
i∈I

∑
p∈Pi

dikpuip ≤ bk k ∈K (EC.13.7)

uip ∈ {0,1} i∈ I p∈Pi (EC.13.8)

The objective function (EC.13.4) minimize the upper bound on the second-stage cost. Con-

straint (EC.13.5) is the optimality cut of the inner master problem and approximate the second-

stage cost. This approximation becomes more accurate as more optimality cuts are generated

and added to the inner master problem. Constraints (EC.13.6)-(EC.13.8) define the uncertainty

set.

Subproblem

We introduce parameters ûtp and x̂d as follows.
ûip : The value of uip in the recent inner master problem.
x̂f : The value of xf in the recent outer master problem.

SP min
y

∑
i∈I

∑
f∈F1

∑
p∈Pi

(cifpûipy1
if )

+
∑
f∈F1

∑
f ′∈F2

∑
i∈I

∑
k∈Ki

∑
p∈Pi

(cikff ′pûipy
2
ikff ′)

 (EC.13.9)
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∑
f∈F1

y1
if = 1 i∈ I (EC.13.10)

y1
if ≤ x̂f i∈ I f ∈F1 (EC.13.11)∑

f ′∈F2

y2
ikff ′ = y1

if i∈ I k ∈K f ∈F1 (EC.13.12)

y2
ikff ′ ≤ x̂f ′ i∈ I k ∈K f ∈F1 f

′ ∈F2 (EC.13.13)

y1
if ∈ {0,1} i∈ I f ∈F1 (EC.13.14)

y2
ikff ′ ∈ {0,1} i∈ I k ∈K f ∈F1 f

′ ∈F2 (EC.13.15)

The objective function (EC.13.9) minimizes the second-stage cost. Constraints (EC.13.10)-
(EC.13.15) are the second-stage constraint (52)-(57) for a first-stage solution fixed by the outer
master problem and an uncertainty scenario given by the inner master problem.

An noticeable point about the given tri-level formulation is that the optimality cut (EC.13.2)
is similar to the optimality cut (EC.11.8) for the nurse planning problem, because both con-
straint will be redundant when the the value multiplied by M is equal or larger than 1. In
the nurse planning problem, we could consider constraint (EC.11.2) as an enhanced version
(EC.11.8) that could provide a valid lower bound approximation on the second-stage cost of
neighbourhood solutions. However, in the supply chain problem, the structure of the problem
is such that we cannot improve the original optimality cut (EC.13.2). This is why the tri-level
algorithm provides poor optimality gaps in Table 5.

EC.14. Generalization to finite sets of fractional parameters
The main reason that we consider integrality constraints on U variables is that it makes the
representation and the reformulation of the problem much easier. Here we argue that, even
when the uncertainty set U includes a finite number of fractional points, we can use integer
variables to represent it. Let us suppose that U includes m fractional points û1, ..., ûm. To
represent U using integer variables we introduce binary variables u′1, ..., u′m where u′i is 1 if the
realized uncertainty is point ui, 0 otherwise. Set U can be described as:

U =
{
u |u=

m∑
i=1

ûiu
′
i, (EC.14.1)

m∑
i=1

u′i = 1, (EC.14.2)

u′i ∈ {0,1} i∈ {1, ...,m}
}

(EC.14.3)

Then in the second-stage constraints of the two-stage robust model, we can substitute vari-
ables u using u=

m∑
i=1

ûiu
′
i and define the new uncertainty set U ′ as:
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U ′ =
{
u′ |

m∑
i=1

u′i = 1, (EC.14.4)

u′i ∈ {0,1} i∈ {1, ...,m}
}

(EC.14.5)

In the new uncertainty set all variables are integer. One may criticize this uncertainty set by
saying that it is trivial as we have one binary variable for each fractional point. Indeed, in the
case of an exponential number of points, U ′ would require the same exponential number of binary
variables. The answer is that it is possible to reduce the number of such variables significantly
using additional information about the relation between the fractional points. For example, in
the supply chain problem provided in Section 6.2, the uncertainty set includes |P1|× ...×|P|I||

fractional demand points. As the demand realizations for customers are independent (local
scenarios) then they can be represented by |P1|+ ...+ |P|I|| binary variables, and that is much
less than |P1| × ...× |P|I||.


