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Abstract

We consider a robust optimization problem in an electric power system under uncertain
demand and availability of renewable energy resources. Solving the deterministic alternating
current optimal power flow (ACOPF) problem has been considered challenging since the 1960s
due to its nonconvexity. Linear approximation of the AC power flow system sees pervasive
use, but does not guarantee a physically feasible system configuration. In recent years, various
convex relaxation schemes for the ACOPF problem have been investigated, and under some
assumptions, a physically feasible solution can be recovered. Based on these convex relaxations,
we construct a robust convex optimization problem with recourse to solve for optimal control-
lable injections (fossil fuel, nuclear, etc.) in electric power systems under uncertainty (renewable
energy generation, demand fluctuation, etc.). We propose a cutting-plane method to solve this
robust optimization problem, and we establish convergence and other desirable properties. Ex-
perimental results indicate that our robust convex relaxation of the ACOPF problem can provide
a tight lower bound.

1 Introduction

The alternating current optimal power flow (ACOPF) problem has been a topic of interest in the

academic literature since the 1960s (Carpentier 1962). The ACOPF problem is used to determine

the output for all generators and establish the system’s configuration, i.e., the voltage and phase

angle at each bus and resulting power flows on lines. The goal is usually to minimize the generation

cost and keep the system configuration within a stable range; see, for example, Bienstock (2015) for

a detailed discussion. While the ACOPF problem can be formulated as a quadratically constrained

quadratic program, realistic instances are challenging to solve within time limits commensurate

with an operational schedule—usually a few minutes—because of their scale and nonconvexities

(see, e.g., discussions on such challenges in Lavaei and Low 2012, Low 2014a, Verma 2010). Lin-

earizing the power flow equations simplifies the nonconvex ACOPF problem to what the literature

calls a DCOPF approximation, which is a linear program, and this approximation is frequently

applied. However, optimality and feasibility of the solution to the original ACOPF problem cannot

be guaranteed because the voltage at each bus is assumed to be fixed and reactive power is ignored;

see, e.g., Momoh et al. (1999) and Stott et al. (2009) for reviews of such DCOPF approximations.

In recent years, there has been an increasing focus on the ACOPF problem, and employing convex

relaxations rooted in semidefinite programming and second-order cone programming as an approx-

imation of this nonconvex problem (Bai and Wei 2011, Bai et al. 2008, Coffrin et al. 2016, Jabr

2006, Kocuk et al. 2016, Lavaei and Low 2012, Low 2014b), and under some circumstances, these

relaxed solutions recover the exact optimal solution of the original nonconvex ACOPF problem.

Electric power systems operate under significant uncertainty due to system load, failure of

generation and transmission assets, and uncertain generation from renewable energy sources (RESs)
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including wind and solar resources. In this context, we seek an economic dispatch decision that is

robust to uncertainty in load and RES generation. With stochastic realizations of power from wind

farms, Phan and Ghosh (2014) model economic dispatch under ACOPF as a two-stage stochastic

program, and use a sample average approximation. Monticelli et al. (1987) introduce a security-

constrained variant of an economic dispatch model in which the goal is to obtain a solution that can

adapt to failure of a subset of system components explicitly modeled through a set of contingencies.

Instead of enforcing feasibility for all modeled contingencies, Lubin et al. (2016) formulate a chance-

constrained model that ensures feasibility with high probability. Robust optimization is a natural

modeling framework for security-constrained problems in that such models yield solutions that can

handle any contingency within a specified uncertainty set. Jabr (2013) and Louca and Bitar (2017)

propose an adaptive robust optimization model, in which recourse decisions are represented as an

affine function of realizations of uncertainty such as available power from RESs. Attarha et al.

(2018) propose a tri-level decomposition algorithm, where in the second level a DCOPF relaxation

is solved to obtain worst-case scenarios, which are further used to construct a large-scale extensive

formulation of the robust ACOPF problem.

Although significant progress has been made both in convex relaxations of nonconvex ACOPF

problems and in modeling dispatch under uncertainty, there is much less work that combines these

two threads; i.e., most stochastic or robust models for economic dispatch use the linear DCOPF

approximation. Liu and Ferris (2015) solve a scenario-based security-constrained ACOPF problem,

in which for each contingency the ACOPF is relaxed as a semidefinite program (SDP). Lorca and

Sun (2018) model a multi-period two-stage robust ACOPF problem using a conic relaxation, which

is similar to our approach, but we focus more on the feasibility guarantee and the properties of our

robust solution.

We solve a robust convex approximation, without specifying scenarios but by constructing an

uncertainty set, to simultaneously reap the benefit of a tighter relaxation and include uncertainty in

our model. We assume an uncontrollable injection represents net load at each bus. Here, net load

captures demand and RES generation, which are subject to simple bounds and further constraints

that define the uncertainty set. Our broad goal is to find a robust and economical energy generation

plan. Here, robustness means that for all contingencies modeled by our uncertainty set, we can

find a configuration that satisfies the system’s physical and operational constraints. We call such

a plan a robust optimal solution to the ACOPF problem.

Our formulation is unique in that, in addition to using a convex relaxation of the ACOPF

problem rather than a DC approximation, we employ a “full recourse” solution rather than relying

on simpler approximations like linear decision rules. There are three possible outcomes from solving

our model. First, the solution to the convex approximation may be feasible to the robust nonconvex

ACOPF problem, which means we exactly recover a robust solution. Second, due to the convex
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relaxation, the solution we obtain may not be feasible to the robust nonconvex ACOPF problem,

but we obtain a lower bound on the optimal cost of the nonconvex counterpart, which yields a bound

on the optimality gap when coupled with a heuristically obtained feasible solution. Third, if the

convex relaxation is infeasible, we identify infeasibility of the robust nonconvex ACOPF problem.

Our specific goals are to understand: (i) whether our convex relaxation of the robust ACOPF

problem yields a high quality lower bound on the nonconvex model’s optimal value; (ii) whether

the solution we obtain from the convex relaxation is feasible, or nearly feasible, to the robust

ACOPF model; and, (iii) how solutions to our robust convex relaxation compare to alternatives

from simpler deterministic models. Addressing these goals requires developing an algorithm to

handle problems of reasonable scale.

In Section 2, we formulate our convex relaxation of the ACOPF problem. A cutting-plane

method is proposed in Section 3, and the proof of its convergence is detailed. Experimental results

are reported in Section 4, and conclusions are drawn in Section 5.

2 Problem Formulation

In this section we formulate the robust nonconvex ACOPF problem and its convex relaxation. We

index the set of buses in the power system by N , and the set of lines by A. The set of controllable

generators is denoted by G, and the subset of generators connected to bus i is indexed by Gi.
Each controllable generator g ∈ G injects active power spg and reactive power sqg at the single bus

i satisfying g ∈ Gi. Each bus i ∈ N has an uncontrollable injection, which may be negative,

consisting of the uncertain net load due to actual demand and RES generation at that bus. At bus

i ∈ N , the uncontrollable active power injected, upi , is bounded within an uncertainty set [
¯
upi , ū

p
i ],

where
¯
upi ≤ ūpi , ∀i ∈ N . The uncontrollable reactive power is bounded in a similar way, where

uqi ∈ [
¯
uqi , ū

q
i ], ∀i ∈ N .

In addition to simple bounds, we introduce a “budget constraint” in our uncertainty set,

which limits the magnitude of deviation from a nominal injection, summed across all buses. Such

budget-constrained uncertainty sets have been widely applied in robust optimization, starting with

Bertsimas and Sim (2003, 2004). Here we denote the nominal uncontrollable active and reac-

tive power injection as up,0 and uq,0, which are both vectors with |N | components and satisfy

(
¯
upi , ¯

uqi ) ≤ (up,0, uq,0) ≤ (ūpi , ū
q
i ), for i ∈ N . Appendix A details how we cluster the set of buses

N into |M| subgroups, denoted by Nm, m ∈ M, using a facility location problem. There has

been significant work regarding the geographical correlation of renewable generation and load in

power systems (e.g., Bernstein et al. 2014, Fang et al. 2018, Klima and Apt 2015, Lohmann et al.

2016, Malvaldi et al. 2017, Xie and Ahmed 2018), which is broadly consistent with our clustering

scheme. We assume within each cluster the relative magnitude of deviation is the same for both

the active power and reactive power at every bus. We define the uncertainty set with the following
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constraints:

0 ≤ up,+i ≤ ūpi − u
p,0
i 0 ≤ up,−i ≤ up,0i − ¯

upi ∀i ∈ N (1a)

0 ≤ uq,+i ≤ ūqi − u
q,0
i 0 ≤ uq,−i ≤ uq,0i − ¯

uqi ∀i ∈ N (1b)

up,+i
ūpi − u

p,0
i

=
uq,+i

ūqi − u
q,0
i

= u+
m

up,−i
up,0i − ¯

upi
=

uq,−i
uq,0i − ¯

uqi
= u−m ∀m ∈M, i ∈ Nm (1c)

U =

(up,+, up,−, uq,+, uq,−) ∈ R4|N |

∣∣∣∣∣∣∣
(1a)-(1b) and ∃u+

m, u
−
m,m ∈M,

satisfying (1c) and
∑
m∈M

(
u+
m + u−m

)
≤ Γ

 . (2)

Budget parameter Γ controls the deviation from nominal values, summed across all buses. We can

substitute out variables u+
m, u

−
m,m ∈M, and we assume this has been done when referencing U in

what follows.

In most of the power systems literature, lines are assumed to be undirected, and an orientation

indicates the direction of flow. We represent multiple lines by a triple (i, j, n), which uses the

orientation to indicate that positive flow is from i to j on the n-th line between these two buses and

negative flow is the opposite. Each bus has a voltage, vi, and a phase angle, θi. These configurations,

along with the line parameters (complex admittance yk = gk +
√
−1 bk), the charging susceptance

bck, and the shunt admittance of a bus yshi = gshi +
√
−1 bshi determine the power flow on line

k = (i, j, n) ∈ A, where Pk and Qk denote active and reactive power flow, respectively:

Pk =gk
v2
i

τ2
1,k

− gk
vivj

τ1,kτ2,k
cos(θi − σk − θj)−

bk
vivj

τ1,kτ2,k
sin(θi − σk − θj), ∀k = (i, j, n) ∈ A (3a)

Qk =− (bk +
bck
2

)
v2
i

τ2
1,k

+ bk
vivj

τ1,kτ2,k
cos(θi − σk − θj)−

gk
vivj

τ1,kτ2,k
sin(θi − σk − θj), ∀k = (i, j, n) ∈ A. (3b)

Here we split the tap ratio for each line k = (i, j, n) ∈ A into τ1,k and τ2,k to represent the

change of voltage at two ends of that line. We have τ1,k = τ and τ2,k = 1 if a transformer with

tap ratio τ is located at the bus i of line k = (i, j, n) ∈ A, while we have τ1,k = 1, τ2,k = τ if a

transformer with tap ratio τ is located at the bus j of line k = (i, j, n) ∈ A. Similarly, for the

transformer phase angle shift, if a transformer with phase angle shift is located at the bus i of line

k = (i, j, n) ∈ A, we set σk = σ; otherwise, if a transformer with phase angle shift is located at the

bus j of line k = (i, j, n) ∈ A, we set σk = −σ.

At each bus i ∈ N , we enforce flow conservation of active and reactive power via equations (4).

The left-hand side of constraint (4) is the net active and reactive power flowing out of bus i, and
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they equal the sum of controllable and uncontrollable injections:∑
k=(i,j,n)∈A

Pk + gshi (vi)
2 =

∑
g∈Gi

spg +
(
up,0i + up,+i − up,−i

)
, ∀i ∈ N (4a)

∑
k=(i,j,n)∈A

Qk − bshi (vi)
2 =

∑
g∈Gi

sqg +
(
uq,0i + uq,+i − uq,−i

)
, ∀i ∈ N . (4b)

Constraint (5a) bounds the difference in phase angle between adjacent buses, constraint (5b)

limits the apparent power flowing through each line k, and constraints (5c)-(5f) provide simple

bounds on voltage and phase angle at each bus and active and reactive power at each generator:

¯
∆k ≤ θi − σk − θj ≤ ∆̄k ∀k = (i, j, n) ∈ A (5a)

P 2
k +Q2

k ≤W 2
k ∀k ∈ A (5b)

¯
vi ≤ vi ≤ v̄i ∀i ∈ N (5c)

¯
θi ≤ θi ≤ θ̄i ∀i ∈ N (5d)

¯
spg ≤ spg ≤ s̄pg ∀g ∈ G (5e)

¯
sqg ≤ sqg ≤ s̄qg ∀g ∈ G. (5f)

We denote the cost of controllable injections as c(sp, sq), and assume c is convex, where sp and

sq are |G|-dimensional vectors with respective components spg and sqg, g ∈ G. The first-stage decision

variables, sp and sq, denote controllable injections that cannot adapt to the realized scenario. We

allow small adjustments to these injections via variables op,+, op,−, oq,+, oq,−, which can be selected

once the uncertainty is revealed. These denote near real-time compensation in net generation;

these variables have upper bounds proportional to the generation capacity at each bus so that the

upper bound is zero for buses without generators. This setting permits greater flexibility than

the linearly adaptive control used in previous research (Bienstock et al. 2014, Jabr 2013, Louca

and Bitar 2017, Lubin et al. 2016). We seek a robust optimal controllable injection such that for

all possible uncontrollable injections in U , there is a feasible system configuration via variables

(v, θ, op,+, op,−, oq,+, oq,−, P,Q).

We minimize the set point cost, and consider linear and convex quadratic cost functions:

c(sp, sq) =
∑
g∈G

[
cpg,2

(
spg
)2

+ cpg,1s
p
g + cqg,2

(
sqg
)2

+ cqg,1s
q
g

]
,

where cpg,2 ≥ 0 and cqg,2 ≥ 0 for all g ∈ G and take value zero in the linear case.

Convexity of the cost function is important because, although the ACOPF problem has non-

convex constraints, a convex objective function, together with the convex relaxation of the feasible

region to be discussed below, yields a convex program. Our robust optimization formulation can

be expressed as follows:

min c(sp, sq) (6a)
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s.t.
¯
spg ≤ spg ≤ s̄pg ∀g ∈ G (6b)

¯
sqg ≤ sqg ≤ s̄qg ∀g ∈ G (6c)

P uk = gk
(vui )2

τ2
1,k

− gk
vui v

u
j

τ1,kτ2,k
cos(θui − σk − θuj )−

bk
vui v

u
j

τ1,kτ2,k
sin(θui − σk − θuj ) ∀k = (i, j, n) ∈ A, u ∈ U (6d)

Quk = −(bk +
bck
2

)
(vui )2

τ2
1,k

+ bk
vui v

u
j

τ1,kτ2,k
cos(θui − σk − θuj )−

gk
vui v

u
j

τ1,kτ2,k
sin(θui − σk − θuj ) ∀k = (i, j, n) ∈ A, u ∈ U (6e)

¯
∆k ≤ θui − σk − θuj ≤ ∆̄k ∀k = (i, j, n) ∈ A, u ∈ U (6f)

(P uk )2 + (Quk)2 ≤W 2
k ∀k ∈ A, u ∈ U (6g)

¯
vi ≤ vui ≤ v̄i ∀i ∈ N , u ∈ U (6h)

¯
θi ≤ θui ≤ θ̄i ∀i ∈ N (6i)∑
k=(i,j,n)∈A

P uk + gshi (vui )2 + op,−,ui − op,+,ui

=
∑
g∈Gi

spg +
(
up,0i + up,+i − up,−i

)
∀i ∈ N , u ∈ U (6j)

∑
k=(i,j,n)∈A

Quk − bshi (vui )2 + oq,−,ui − oq,+,ui

=
∑
g∈Gi

sqg +
(
uq,0i + uq,+i − uq,−i

)
∀i ∈ N , u ∈ U (6k)

op,+,ui ≤ ōpi +
(
hpi + ζ+

i u
p,+
i − ζ−i u

p,−
i

)
∀i ∈ N , u ∈ U (6l)

oq,+,ui ≤ ōqi +
(
hqi + ζ+

i u
q,+
i − ζ−i u

q,−
i

)
∀i ∈ N , u ∈ U (6m)

op,−,ui ≤ ōpi ∀i ∈ N , u ∈ U (6n)

oq,−,ui ≤ ōqi ∀i ∈ N , u ∈ U (6o)

op,+,ui , op,−,ui , oq,+,ui , oq,−,ui ≥ 0 ∀i ∈ N , u ∈ U . (6p)

Model (6) seeks a first stage vector of generation dispatch decisions, (sp, sq), that minimizes con-

trollable generation cost. All other decision variables, including power compensations, voltages and

phase angles at buses, as well as power flow on lines, adapt to the realization of uncertainty. Con-

straints (6b)-(6c) replicate the simple bounds on injections (5e)-(5f), constraints (6d)-(6e) replicate

the power flow equations (3) for each u ∈ U , and constraints (6f)-(6i) similarly replicate (5a)-(5d).

Constraints (6j) and (6k) modify constraints (4) by incorporating the deviation variables, whose

values are limited by (6l)-(6o). The maximum adjustment at a bus, due to traditional generators,

is denoted by ō. Net load uncertainty includes generation uncertainty, due to renewable sources

and demand uncertainty. When an uncertain parameter is larger than its nominal value, this can
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be because load is low or because RES generation is high. In the latter case, we allow for curtail-

ment of RES generation. Parameters ζ+
i and ζ−i represent the fraction of total uncertainty due

to RES generation, and hpi and hqi denote nominal renewable generation. The right-hand sides of

constraints (6l) and (6m) capture the option for curtailment, and we discuss this in greater detail

in Section 4.1.1. It is well known that the power flow equations (3), as well as the shunt compo-

nents in (6j) and (6k), are nonconvex, and so model (6) is an infinite-dimensional nonconvex robust

optimization problem with recourse.

There are multiple convex relaxation schemes for ACOPF problems. In the semidefinite pro-

gramming relaxation of Bai and Wei (2011) and Bai et al. (2008), the vector of voltage variables in

model (6) is re-expressed as a higher-dimensional matrix, coupled with a rank-one constraint and

a positive semidefinite requirement, along with a collection of linear constraints. After dropping

the rank-one constraint, the relaxed problem becomes an SDP and can be solved by an interior

point method. Experience on realistically sized instances suggests that such SDP formulations

are computationally expensive, and so Jabr (2006) proposes a further relaxation of the positive

semidefinite constraint, yielding a second-order cone program (SOCP). Although computationally

easier to solve, this SOCP relaxation has the disadvantage of tending to exhibit a larger optimality

gap than the SDP relaxation for many test cases. See Low (2014a) for a detailed review of such

SDP and SOCP relaxations.

We use the convex relaxation that Coffrin et al. (2016) call the quadratic convex (QC) relaxation.

While the QC formulation is also an SOCP, it tightens the relaxation compared to previous SOCP

formulations. Coffrin et al. (2016) suggest relaxing equation (3) by replacing trigonometric functions

by quadratic functions and using a McCormick relaxation to linearize the multi-linear terms. The

quadratic terms in (6j) and (6k), v2
i , are replaced by v̂i, which is constrained by a linear upper

bound and a quadratic lower bound. The formulation of the QC relaxation of model (6) is detailed

in Appendix B. Here, we use generic notation x to represent the system configuration and express

the convex relaxation of model (6), as formulated in Appendix B, more compactly in model (7)

below.

In what follows, we largely use a vector form to denote the controllable and uncontrollable

injections for conciseness. A symbol without a subscript represents a vector, while a subscript-

indexed symbol represents a specific component within that vector. Here we denote up,+, up,−,

uq,+ and uq,− as |N |-dimensional vectors of uncontrollable active and reactive deviation. Similar

notation is used for ū,
¯
u, u0, s, s̄ and

¯
s as:

ū =

[
ūp

ūq

]
,

¯
u =

[
¯
up

¯
uq

]
, u0 =

[
up,0

uq,0

]
, s =

[
sp

sq

]
, s̄ =

[
s̄p

s̄q

]
,

¯
s =

[
¯
sp

¯
sq

]
.

In this context, we also represent the active and reactive controllable injections of each bus i ∈ N
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as a linear transformation of the vector of generation sp and sq:

Dsp =

∑
g∈Gi

spg


i∈N

and Dsq =

∑
g∈Gi

sqg


i∈N

,

for an appropriate matrix D. We use ζ+ and ζ− to denote |N |× |N | diagonal matrices with entries

ζ+
i and ζ−i , ∀i ∈ N . This leads to the following compact formulation for the convex relaxation of

model (6):

min c(s) (7a)

s.t.
¯
s ≤ s ≤ s̄ (7b)

Axu ≤ b ∀u ∈ U (7c)

‖Bixu + ai‖2 ≤ e>i xu + fi ∀i = 1, . . . ,mc, u ∈ U (7d)

Aopxu ≤ ōp + hp + ζ+up,+ − ζ−up,− ∀u ∈ U (7e)

Aoqxu ≤ ōq + hq + ζ+uq,+ − ζ−uq,− ∀u ∈ U (7f)

Apxu = Dsp + up,0 + up,+ − up,− ∀u ∈ U (7g)

Aqxu = Dsq + uq,0 + uq,+ − uq,− ∀u ∈ U . (7h)

Constraint (7b) replicates the analogous constraints (6b) and (6c). The linear inequality (7c)

and the SOCP constraint (7d) capture constraint (6g), and the relaxation of the nonlinear terms

in constraints (6d)-(6e) and (6j)-(6k), while the linear inequality (7c) also includes (6f), (6h)-

(6i), and (6n)-(6p). Constraints (7e) and (7f) match their counterparts (6l) and (6m). Finally,

constraints (7g) and (7h) replicate linearized constraints (6j) and (6k). Model (7) can also represent

the robust convex relaxation of the ACOPF problem in which we replace the QC relaxation with

alternative convex relaxations discussed in Bai et al. (2008), Jabr (2006) and Kocuk et al. (2016).

Model (7) is an infinite-dimensional convex optimization problem, and is an example of robust

optimization with recourse. Such models have been discussed in the context of linear program-

ming in Terry (2009) and Thiele et al. (2009). In power systems optimization, similar formulations

have been applied to unit commitment problems (Jiang et al. 2012, 2014), joint reserve and energy

dispatch (Zugno and Conejo 2015), and microgrid operations (Khodaei 2014). There has been

limited work of which we are aware involving conic programming, or more general convex pro-

gramming, variants of such models (although we can point to Terry 2009). In the next section we

discuss reformulation of this problem and an algorithm to solve the reformulated finite-dimensional

problem.

3 A Cutting-Plane Method

In this section we propose a cutting-plane method to solve the robust convex optimization prob-

lem (7). To facilitate decomposition of model (7), we project onto the set of feasible (sp, sq)
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variables, and we employ an outer approximation to iteratively characterize this set. At each iter-

ation, given a candidate solution, we compute, and add to the master problem, the most-violated

inequality. With introduction of auxiliary binary decision variables, we can transform what would

otherwise be an infinite number of constraints in (7) into a finite formulation and obtain a solution

within some acceptable tolerance from the feasible set.

3.1 Master Problem and Subproblems

Similar to the generalized Benders’ decomposition method of Geoffrion (1972), we can rewrite

model (7) as:

min c(s) (8a)

s.t. s ∈ S ≡ ∩u∈USu ∩ {s |
¯
s ≤ s ≤ s̄}, (8b)

where for each u ∈ U we have the induced feasibility set

Su =


s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∃x s.t.

Ax ≤ b

‖Bix+ ai‖2 ≤ e>i x+ fi ∀i = 1, . . . ,mc

Aopx ≤ ōp + hp + ζ+up,+ − ζ−up,−

Aoqx ≤ ōq + hq + ζ+uq,+ − ζ−uq,−

Apx = Dsp + up,0 + up,+ − up,−

Aqx = Dsq + uq,0 + uq,+ − uq,−


. (9)

This reformulation motivates a cutting-plane algorithm in which we iteratively solve a master

problem and a collection of SOCP subproblems. In addition to the simple bounds, constraint (8b)

requires that s be in the intersection of Su, ∀u ∈ U . When we solve the subproblems, we either find

a feasible xu for each u ∈ U , or we generate linear cuts, each of which is a valid outer approximation

for S. The master (M) and the subproblem (Su) are as follows:

(M) V ∗ = min c(s) (10a)

s.t.
¯
s ≤ s ≤ s̄ (10b)

− λp,k>Dsp − λq,k>Dsq + zk ≤ 0 ∀k = 1, 2, . . . (10c)

(Su) min 1>
(
lp,+ + lp,− + lq,+ + lq,−

)
(11a)

s.t. Ax ≤ b (11b)

‖Bix+ ai‖2 ≤ e>i x+ fi ∀i = 1, . . . ,mc (11c)

Aopx ≤ ōp + hp + ζ+up,+ − ζ−up,− (11d)

Aoqx ≤ ōq + hq + ζ+uq,+ − ζ−uq,− (11e)

9



Apx+ lp,+ − lp,− = Dŝp + up,0 + up,+ − up,− (11f)

Aqx+ lq,+ − lq,− = Dŝq + uq,0 + uq,+ − uq,− (11g)

lp,+, lp,−, lq,+, lq,− ≥ 0. (11h)

Here, λp and λq denote dual variables for constraints (11f) and (11g), respectively. We intro-

duce artificial variables lp,+, lp,−, lq,+, and lq,− in (Su) to represent violation of the power balance

constraints. At optimality, if the vector (lp,+, lp,−, lq,+, lq,−) is nonzero then for the given master

solution, ŝ, and uncertainty realization, u, there is no feasible x such that constraints in (9) can

be satisfied. As a result, by a generalized theorem of the alternative (see Boyd and Vandenberghe

2004, Section 5.8) a feasibility cut (10c) can be generated to ensure the master (M) cannot again

select ŝ in subsequent iterations. (We return to this in detail in Lemma 2.) Index k corresponds to

the k-th feasibility cut, and the scalar cut intercept, zk, accounts for all objective function terms

in the dual of model (11) that do not involve ŝp and ŝq.

The decomposition algorithm is not directly implementable because there are infinitely many

subproblems, (Su). So, we instead seek the most violated inequality across all elements of the

uncertainty set, which results in the following max-min problem:

max
u∈U

min
l,x

1>
(
lp,+ + lp,− + lq,+ + lq,−

)
s.t. (11b)-(11h).

(12)

To reformulate model (12) in a computationally tractable manner we first take the dual of

the inner minimization. We denote the dual variables for constraints (11b) and (11d)-(11g) by

λ, λop, λoq, λp, and λq. For the second-order cone constraints in (11c), we denote the dual variables

as (µi, νi), i = 1, . . . ,mc. Then taking the dual yields:

max
u∈U

max
λ,λop,λoq ,λp,λq ,µ,ν

− λ>b−
mc∑
i=1

(
νifi + µ>i ai

)
−

λop>(ōp + hp + ζ+up,+ − ζ−up,−)− λoq>(ōq + hq + ζ+uq,+ − ζ−uq,−)−

λp>
(
Dŝp + up,0 + up,+ − up,−

)
− λq>

(
Dŝq + uq,0 + uq,+ − uq,−

)
(13a)

s.t. λ>A+ λop>Aop + λoq>Aoq + λp>Ap + λq>Aq

−
mc∑
i=1

(
µi
>Bi + νie

>
i

)
= 0> (13b)

‖µi‖2 ≤ νi ∀i = 1, . . . ,mc (13c)

− 1 ≤ λpi ≤ 1 ∀i ∈ N (13d)

− 1 ≤ λqi ≤ 1 ∀i ∈ N (13e)

λ, λop, λoq ≥ 0. (13f)

The optimal value of the inner maximization problem is a convex function of the 4|N |-dimensional

vector u. The outer problem maximizes this convex function over the polytope U . We know that an
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optimal solution can be obtained by restricting attention to the extreme points of U (e.g., Bertsekas

2009, Proposition 2.4.1), and we denote this set by UE . When U has an amenable structure this

can allow for a finite reformulation. In what follows, we assume that U is defined as in equation (2),

and we introduce 2|M| binary variables to model the extreme points:

(SDI) max − λ>b−
mc∑
i=1

(
νifi + µ>i ai

)
−
∑
i∈N

[
y+
mi

(
ūpi − u

p,0
i

)
(λpi + ζ+

i λ
op
i )+

y−mi

(
¯
upi − u

p,0
i

)
(λpi + ζ−i λ

op
i ) + y+

mi

(
ūqi − u

q,0
i

)
(λqi + ζ+

i λ
oq
i )+

y−mi

(
¯
uqi − u

q,0
i

)
(λqi + ζ−i λ

oq
i )
]
− λop>(ōp + hp)− λoq>(ōq + hq)−[

λp>
(
Dŝp + up,0

)
+ λq>

(
Dŝq + uq,0

)]
(14a)

s.t. (13b)− (13e)

y+
m + y−m ≤ 1 ∀m ∈M (14b)∑
m∈M

(
y+
m + y−m

)
≤ Γ (14c)

y+
m, y

−
m ∈ {0, 1} ∀m ∈M (14d)

λ, λop, λoq ≥ 0. (14e)

For i ∈ Nm, we use y+
m to indicate that up,+i and uq,+i take their upper bound and y−m to indicate

that up,−i and uq,−i take their lower bound. The objective function in (14a) includes bilinear terms

such as λpi ymi , where mi is used to indicate bus i’s cluster. These are linearized in a straightforward

way as shown in Appendix C. We use (SDI) to denote the subproblem in dual form with integer-

constrained variables.

Constraints (14b) enforce that at most one, instead of exactly one, end point of the feasible

range is taken, and constraint (14c) requires that at most Γ clusters of uncontrollable injections

take their end-point value. We include in Appendix C the full formulation of model (14), which is

derived from the convex quadratic relaxation detailed in Appendix B.

Algorithm 1 formalizes our cutting-plane procedure, where at iteration k we solve the master

problem, (M), and obtain (ŝp,k, ŝq,k). Then, using the uncertainty set defined in equation (2),

we solve model (14), and denote the optimal value by zkfeas and part of the optimal solution by

λp,k, λq,k. If zkfeas > 0, we then generate the most violated cut as:

zkfeas − λp,k
>
D(sp − ŝp,k)− λq,k>D(sq − ŝq,k) ≤ 0. (15)

With zk = zkfeas + λp,k
>
Dŝp,k + λq,k

>
Dŝq,k, inequality (15) is of form (10c).

3.2 Convergence of the Algorithm

Given ε > 0, we show that in a finite number of iterations Algorithm 1 either finds an ε-feasible

solution or terminates with a statement that model (7)—and hence model (6)—is infeasible. Fur-
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Algorithm 1 Cutting-plane algorithm for model (7)

1: Initialize with iteration number k := 1 and tolerance ε > 0;
2: Solve master problem (M) and obtain solution (ŝp,k, ŝq,k) and optimal value V ∗;
3: Solve (SDI) with (ŝp,k, ŝq,k) and obtain solution (λp,k, λq,k) and optimal value zkfeas;

4: while zkfeas > ε do

5: Append zkfeas − λp,k
>
D(sp − ŝp,k)− λq,k>D(sq − ŝq,k) ≤ 0 to constraints (10c) of (M);

6: Let k := k + 1;
7: Solve (M) and obtain solution (ŝp,k, ŝq,k);
8: if (M) is feasible then
9: Obtain optimal value V ∗;

10: else
11: Stop and return the status of infeasibility;

12: Solve (SDI) with (ŝp,k, ŝq,k) and obtain solution (λp,k, λq,k) and optimal value zkfeas;

end while
13: Output V ∗ as a lower bound on the optimal value of model (7), and output (ŝp,k, ŝq,k) as an

ε-feasible solution.

thermore, the sequence of solutions generated by our algorithm converges to an optimal solution

when the tolerance in the algorithm is ε = 0. We make the notion of an “ε-feasible” solution precise

as follows.

Definition 1. Let ε > 0. An s ∈ {s |
¯
s ≤ s ≤ s̄} is ε-feasible to model (7) if for each u ∈ U there

exists an ŝ ∈ Bε(s) such that
x

∣∣∣∣∣∣∣∣∣∣∣

Ax ≤ b

‖Bix+ ai‖2 ≤ e>i x+ fi ∀i = 1, . . . ,mc

Aopx ≤ ōp + hp + ζ+up,+ − ζ−up,− Aoqx ≤ ōq + hq + ζ+uq,+ − ζ−uq,−

Apx = Dŝp + up,0 + up,+ − up,− Aqx = Dŝq + uq,0 + uq,+ − uq,−


6= ∅, (16)

where Bε(s) is an l1 ball with center s and radius ε.

For an ε-feasible s, the l1 distance from s to the corresponding ŝ is at most ε for each u ∈ U .

The definition does not ensure that there is a uniform ŝ that works for all u ∈ U . To establish

convergence properties of Algorithm 1, we make the following assumptions:

Assumption 1. Function c(·) is convex and continuous on domain defined by (8b).

Assumption 2. Set 
x

∣∣∣∣∣∣∣∣∣∣∣

Ax ≤ b

‖Bix+ ai‖2 ≤ e>i x+ fi ∀i = 1, . . . ,mc

Aopx ≤ ōp + hp + ζ+up,+ − ζ−up,−

Aoqx ≤ ōq + hq + ζ+uq,+ − ζ−uq,−


is non-empty, and hence model (11) is feasible, for all u ∈ U .
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Assumption 3. Set U is defined by (2).

Assumption 1 is consistent with the treatment of thermal generators in the power systems

literature and, to our knowledge, in industry practice. Thermal generation costs are dominated

by the cost of fuel, and are typically modeled adequately via convex piecewise linear or quadratic

functions. However, the physics of some power plants, e.g., certain combined-cycle plants, dictate

no-operate regions that can lead to nonsmooth, nonconvex cost functions, which we do not address.

Assumption 2 should hold with great generality for an actual power system because the set is a

relaxation of the system’s constraints, which does not include load satisfaction. Assumption 3 is

revisited in Section 4.1.1. We now establish convergence properties of the sequence of solutions

generated by Algorithm 1.

Lemma 1. Let Zu(s) denote the optimal value of model (11) for a specific u ∈ U , where ŝ on the

right-hand side of constraints (11f) and (11g) is replaced by s, and let Z(s) denote the analogous

optimal value for model (12). If Assumptions 2 and 3 hold, then both Zu(·) and Z(·) are convex

on the domain R2|G|.

Proof of Lemma 1. The function Zu(s) is the optimal value of model (11), which is feasible by

Assumption 2 for any s ∈ R2|G|, and hence has a finite optimal value. Thus Zu(s) is also the

optimal value of the dual of model (11). The dual’s feasible region is independent of s, and its

objective function is an affine function of s. Therefore, Zu(·) is the maximum of a collection of

affine functions in s, and hence convex. Furthermore, Z(·) is the maximum of convex functions

Zu(·) over the set of U , and so Z(·) is also convex.

Lemma 2. Let Sk = {s |
¯
s ≤ s ≤ s̄, zjfeas−λ

p,j>D(sp−ŝp,j)−λq,j>D(sq−ŝq,j) ≤ 0, ∀j = 1, . . . , k},
where these cuts are defined in (15). If Assumptions 2 and 3 hold then S ⊆ Sk, ∀k = 1, 2, . . ..

Proof of Lemma 2. At iteration k of Algorithm 1, the solution to model (14) specifies an element

of U via binary variables, and we denote this element uk ∈ U . By a theorem of the alternative for

an SOCP model (see Boyd and Vandenberghe 2004, Section 5.8), any inequality of the form (15)

satisfies Suk ⊆ {s | zkfeas − λp,k
>
D(sp − ŝp,k) − λq,k>D(sq − ŝq,k) ≤ 0}. Since S = ∩u∈USu ∩ {s |

¯
s ≤ s ≤ s̄}, and each cut is produced for a specific u, we have that S ⊆ Sk for all k.

Theorem 3. Let Assumptions 1-3 hold, and assume that model (7) is feasible. Let ε = 0, and let

{ŝk} denote the sequence of iterates produced by Algorithm 1. Every limit point of this sequence

solves model (7).

Proof of Theorem 3. If Algorithm 1 terminates in a finite number of iterations, then it does so with

zkfeas = 0. In this case, the associated solution solves model (7) by Lemma 2 because the master

problem is a relaxation, and the proof is complete. Now assume that the algorithm produces an

13



infinite sequence of iterates, and let S be defined as in (8b). Set S is compact because it is a closed

subset of
¯
s ≤ s ≤ s̄. So, {ŝk} has at least one limit point in S, which we denote as ŝ, and we let K

index a corresponding convergent subsequence; i.e., limk∈K,k→∞ ŝ
k = ŝ.

Solving model (14) yields a uk ∈ UE ⊆ U , which represents a most violated element of the

uncertainty set. Because these solutions are in UE , there are a finite number of possibilities. So,

there is at least one û ∈ UE that occurs infinitely many times among the iterations indexed by K,

and we let K′ ⊂ K denote such a further subsequence. Let k, k′ ∈ K′ with k′ > k. Then we have

zkfeas ≤ λp,k
>
D(ŝp,k

′ − ŝp,k) + λq,k
>
D(ŝq,k

′ − ŝq,k)

≤ ‖λp,k‖‖D(ŝp,k
′ − ŝp,k)‖+ ‖λq,k‖‖D(ŝq,k

′ − ŝq,k)‖. (17)

From constraints (13d) and (13e), we know ‖λp‖ and ‖λq‖ are bounded. Both ŝk and ŝk
′

converge to ŝ so

lim
k→∞
k′→∞
k′>k
k′,k∈K′

(
‖λp,k‖‖(ŝp,k′ − ŝp,k)‖+ ‖λq,k‖‖(ŝq,k′ − ŝq,k)‖

)
= 0. (18)

We let Zu(s) denote the optimal value of model (11) for a specific u ∈ U , which is equivalent to

the inner minimization problem of (12), and we let Z(s) denote the optimal value of (12), where

the right-hand side is parametrized by s rather than ŝ. Thus, we have:

lim
k→∞
k∈K′

Z û(sk) = Z û(ŝ) = Z(ŝ) ≤ 0, (19)

where the first equality holds by continuity of Z û(·) from Lemma 1, and the second equality holds

because û corresponds to a most violated point of U . Thus, ŝ is feasible to model (7). Let z∗ denote

the optimal value of model (7). Then c(ŝ) ≥ z∗.
By Lemma 2, we have c(ŝk) ≤ z∗, ∀k ∈ K, and hence by Assumption 1, we have that

lim
k→∞
k∈K

c(ŝk) = c(ŝ) ≤ z∗. (20)

Thus, ŝ solves model (7).

Finally we show that when Algorithm 1 terminates, it returns an ε-feasible solution to model (7)

in a finite number of iterations, if model (7) is feasible.

Theorem 4. Let Assumptions 1-3 hold, and assume that model (7) is feasible. Let ε > 0. Algo-

rithm 1 terminates with an ε-feasible solution in a finite number of iterations.

Proof of Theorem 4. Model (7) is feasible, and hence S 6= ∅. By Lemma 2 S ⊆ Sk, which is the

feasible region of model (10) for all k = 1, 2, . . .. Therefore, Algorithm 1 does not terminate with a

status of infeasibility because model (10) is feasible for all k = 1, 2, . . ..
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We first prove by contradiction that the algorithm terminates in a finite number of iterations.

Here ε only determines the stopping criterion but does not affect the cuts generated in Algorithm 1.

Suppose Algorithm 1 does not terminate after a finite number of iterations. Thus, we have an

infinite sequence of solutions {ŝk}, and Z(ŝk) > ε, ∀k = 1, 2, . . .. By the proof of Theorem 3,

every convergent subsequence of {ŝk} indexed by K with a limit point ŝ satisfies Z(ŝ) ≤ 0. We

have limk∈K,k→∞ Z(sk) = Z(ŝ) ≤ 0 because Z(·) is convex and hence continuous. However, this

contradicts that Z(sk) > ε > 0. ∀k = 1, 2, . . .. Therefore, the algorithm terminates in a finite

number of iterations.

If Algorithm 1 terminates in iteration k < ∞, then zkfeas ≤ ε. By hypothesis, model (12) is

feasible and has a finite optimal value. Hence, by strong duality, the optimal value of model (14) is

equal to that of model (12) and is at most ε. Let (ŝp,k, ŝq,k) denote the input of Algorithm 1 (step

12) to model (14), or equivalently, to model (12). For each u ∈ U , let (xu, lp,+,u, lp,−,u, lq,+,u, lq,−,u)

denote the optimal solution of the inner minimization problem defined in (12). For each u ∈ U , let

sp,u = ŝp,k−lp,+,u+lp,−,u and sq,u = ŝq,k−lq,+,u+lp,−,u. From the formulation of model (12) we know

that (sp,u, sq,u) yields {x | (11b)-(11g)} 6= ∅, and ‖su−ŝk‖1 = 1>(lp,++lp,−+lq,++lq,−) = zkfeas ≤ ε;
i.e., ŝ is an ε-feasible solution.

3.3 Improving Convergence of Algorithm 1

It is well known that cutting-plane algorithms can converge slowly; see, e.g., Nemirovsky and Yudin

(1983). This can occur because master problem solutions differ dramatically from one iteration to

the next. There are multiple ways to improve such algorithms ranging from trust-region meth-

ods to level-set methods to bundle methods. We studied a bundle method by adding a quadratic

regularization term to the master’s objective function. This approach improved computational

performance, but did not facilitate solving our largest test cases. The method is detailed in Ap-

pendix E.

Therefore we considered a second method in which we identify extreme points, u ∈ UE , for which

Su characterizes important parts of the boundary of S. In a Benders’ decomposition algorithm for

stochastic integer programs, Crainic et al. (2016) include a subset of the scenario subproblems in

the master problem in order to reduce generation of feasibility cuts. We employ a similar approach,

but we discover the requisite elements u to be added to the master problem in the cutting-plane

process instead of generating them upfront. (Lorca and Sun 2018 employ a similar idea in their

Algorithm 2.) In each iteration of Algorithm 1 we record the û obtained by solving (SDI), and

if a particular û is repeatedly generated nc times then, instead of appending the linear cutting

planes (15), we add û to a set Û and use the modified master program:

min c(s) (21a)

s.t.
¯
s ≤ s ≤ s̄ (21b)
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− λp,k>Dsp − λq,k>Dsq + zk ≤ 0 ∀k = 1, 2, . . . (21c)

Axu ≤ b ∀u ∈ Û (21d)

‖Bixu + ai‖2 ≤ e>i xu + fi, ∀i = 1, . . . ,mc, u ∈ Û (21e)

Aopxu ≤ ōp + hp + ζ+up,+ − ζ−up,− ∀u ∈ Û (21f)

Aoqxu ≤ ōq + hq + ζ+uq,+ − ζ−uq,− ∀u ∈ Û (21g)

Apxu = Dsp + up,0 + up,+ − up,− ∀u ∈ Û (21h)

Aqxu = Dsq + uq,0 + uq,+ − uq,− ∀u ∈ Û . (21i)

4 Experimental Results

In this section, we describe computational results to help understand the nature of our robust

convex optimization problem and the performance of Algorithm 1, along with enhancements to that

algorithm. The optimal value of model (7) is a lower bound on that of the nonconvex model (6). It is

important to assess the tightness of this lower bound, while also answering the question of whether

the robust solution generated by Algorithm 1 is feasible for model (6), at least for a selection of

points from the uncertainty set. Doing so helps assess the robustness of our solution.

Throughout this section we use Algorithm 1 with the scenario-appending technique of Sec-

tion 3.3. We use test cases from NESTA, the NICTA Energy System Test Case Archive (Coffrin

et al. 2014). We select IEEE cases with 5, 9, 14, 118, and 300 buses and the Polish system winter

peak cases with 2383 and 2746 buses. We refer to these by the number of buses (e.g., Case 5). All

tests are run on a server with 20 Intel Xeon cores at 3.1 GHz and 256 GB of RAM. All models are

constructed using version 0.18.0 of the JuMP package (Dunning et al. 2017) on the Julia platform.

The mixed integer second-order cone programs (MISOCPs) and SOCPs are solved by Gurobi 7.52

(Gurobi Optimization, Inc. 2016), where we set the option “NumericFocus” to 3 for Case 2383 and

Case 2746. All nonconvex optimization problems are solved by Ipopt 3.12.1 (Wächter and Biegler

2006), with the linear solver MA27. Prior to solving model (7), we run a bound-tightening process

to improve the quality of the QC relaxation. This process is detailed in Appendix D and involves

solving a sequence of SOCPs. The appendix includes the requisite computational effort, which

can be significant for cases with many buses. The results that we report in this section do not

include time to carry out the bound-tightening process, which is performed once for each case as a

preprocessing step.

We first introduce some modeling specifics used to build our test instances. Then we detail the

tests to characterize our robust convex relaxation of the ACOPF problem and the computational

performance of our algorithms.
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4.1 Modeling and Implementation Details

4.1.1 Uncertainty Set and Recourse Bounds

We first specify construction of the uncertainty set, U , which includes both generation and demand

uncertainty. Then we discuss two specific parameter selection schemes used in our tests. For

each bus, i ∈ N , nominal values of uncertain demand, (dpi , d
q
i ) ≥ 0, are known from the NESTA

datasets. We model uncertain renewable generation at a subset of buses, NG, where selection of this

subset is detailed in Appendix A. The nominal active generation from renewables is given by hpi =

0.05|NG|−1∑
i∈N d

p
i for i ∈ NG and is zero otherwise. We fix the constant power factor at γ = 98%

and calculate hqi =
√

1
γ2
− 1hpi . We assume the maximum allowable deviation of both generation

and demand is a percentage of their nominal values, and the positive and negative deviation can

differ. Therefore, we can parametrize the deviation by a set of percentages (αh,+, αh,−, αd,+, αd,−),

with αh,+, αh,−, αd,+, αd,− ∈ [0, 1]:

ūpi = (1 + αh,+)hpi − (1− αd,+)dpi ūqi = (1 + αh,+)hqi − (1− αd,+)dqi (22a)

¯
upi = (1− αh,−)hpi − (1 + αd,−)dpi ¯

uqi = (1− αh,−)hqi − (1 + αd,−)dqi . (22b)

Handling demand spikes, or more generally, the right-skewed nature of electrical load (e.g., Maisano

et al. 2016, Singh et al. 2010) can pose challenges for system operators, and so we model asymmetric

uncertainty sets. In particular, at bus i, we set αd,− = 5αd,+ to focus on large negative deviation.

We consider symmetric generation uncertainty, i.e., αh,+ = αh,−, which is commonly used for

generation uncertainty (e.g., Jiang et al. 2012, Attarha et al. 2018).

We assume that at each bus the upper bounds on recourse decisions in constraints (6l)-(6o)

have the same ratio β to their corresponding maximum generation level; i.e.,

ōpi = β
∑
g∈Gi

s̄pg ōqi = β
∑
g∈Gi

s̄qg ∀i ∈ N . (23)

The curtailment coefficients ζ+ and ζ− can be derived under the current setup as follows:

ζ+
i =

αh,+hpi
αh,+hpi + αd,+dpi

ζ−i =
αh,−hpi

αh,−hpi + αd,−dpi
∀i ∈ N . (24)

Power systems are distinguished by numerous characteristics. The use of α and β sketched

above provides a relatively simple way of parameterizing the tests that follow.

4.1.2 Measure of Infeasibility

We measure infeasibility of a set point as follows. Given an (ŝp, ŝq), it is possible that the nonconvex

model (6) is infeasible for one or more values of (up,+, up,−, uq,+, uq,−) ∈ U . Therefore, we modify

the model to allow for additional flexibility in satisfying constraints (6j) and (6k) through variables
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lp,+i , lp,−i , lq,+i , lq,−i . For a given u ∈ U we measure the magnitude of infeasibility by:

I(ŝ, u) = min
∑
i∈N

(
lp,+i + lp,−i + lq,+i + lq,−i

)
∑

i∈N (|dpi |+ |d
q
i |)

(25a)

s.t. constraints (6b)-(6i)∑
k=(i,j,n)∈A

Pk + gshi v
2
i + op,+i − op,−i + lp,+i − lp,−i

=
∑
g∈Gi

ŝpg + (up,0i + up,+i − up,−i ) ∀i ∈ N (25b)

∑
k=(i,j,n)∈A

Qk − bshi v2
i + oq,+i − oq,−i + lq,+i − lq,−i

=
∑
g∈Gi

ŝqg + (uq,0i + uq,+i − uq,−i ) ∀i ∈ N (25c)

constraints (6l)-(6o)

op,+i , op,−i , oq,+i , oq,−i ≥ 0 ∀i ∈ N (25d)

lp,+i , lp,−i , lq,+i , lq,−i ≥ 0 ∀i ∈ N . (25e)

The infeasibility measure, I(s, u), given by nonconvex model (25) yields a minimum normalized

adjustment to the right-hand side of constraints (25b) and (25c) needed to construct a feasible

recourse solution for a given u ∈ U .

4.1.3 Solving Nonconvex Problems

In this section, we discuss two nonconvex problems that we solve. First, we solve model (25) using

Ipopt to measure the infeasibility of a solution ŝ for a given scenario u. Since we may not find a

global minimum, we obtain an upper bound on the infeasibility measure for a fixed u. To quantify

the gap on this infeasibility measure, we obtain a lower bound by solving the convex relaxation of

model (25), which is model (11) under the same value of u. We denote this lower bound by
¯
I(ŝ, u).

The second nonconvex problem that we face is the robust ACOPF model. Model (7)’s optimal

value provides a lower bound for that of its nonconvex counterpart, i.e., model (6). However, it

is difficult to obtain a tight upper bound on model (6)’s optimal value (e.g., Nguyen et al. 2019)

because of the challenge in guaranteeing feasibility: for model (7), we can restrict attention to

UE , but in the nonconvex setting, the worst-case violation need not be at an extreme point of

U . Ensuring feasibility of a candidate solution, ŝ, to model (6) requires checking every scenario,

u ∈ U , or equivalently, solving the nonconvex variant of model (12), which is difficult. Instead, we

do the following. First, we compute a candidate solution, which we denote s∗, by finding a local

minimum of model (6) in which U is replaced by UE . (We do not solve this model directly, but

rather iteratively identify violated scenarios and add them to the master program.) While this is

not guaranteed to be an upper bound because we cannot ensure feasibility with respect to all u ∈ U ,
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we use this as a proxy for an upper bound. In addition, we compute an upper bound on I(s∗, u)

by finding a local minimum to model (25), for a large number of randomly selected elements from

the set U .

4.2 Descriptions of Tests and Results

We explore the relationship between αd,− and β in equations (22) and (23). For fixed values of the

other α-parameters, β, and Γ, we determine αd,−max, the largest value of αd,− for which model (7) is

feasible in order to help design the uncertainty set for our test cases. Figure 1 suggests the resulting

αd,−max is concave in β.

Figure 1: The plots specify αd,−max as a function of β for various values of Γ; see equations (22)

and (23). Here, αd,−max is the largest value for which model (7) (solid line) / model (6) (dashed line)
is feasible.

To understand this concavity, consider model (7), where we restrict u ∈ UE , and replace the

objective function by 0. Let Λ denote the model’s dual feasible region, which is the intersection of

polyhedral and second-order cones. Writing this dual compactly we have:

max
λ∈Λ

αd,−(a>λ) + β(b>λ) + c>λ, (26)

where terms a and b come from (7g) and (7h). For the primal to be feasible, we must have

αd,−(a>λ) + β(b>λ) + c>λ ≤ 0 ∀λ ∈ Λ. (27)

This condition implies:

αd,−max = inf
λ∈Λ
a>λ>0

−β(b>λ)− c>λ
a>λ

, (28)

which is consistent with the concave functions for model (7) in Figure 1 (solid lines).

The dashed lines in Figure 1 repeat the αd,−max–β relationship for the nonconvex ACOPF model (6).

Since model (7) is a relaxation of model (6), we see the former model can accommodate a slightly

larger value of αd,−max for a given β. While the gaps between solid and dashed lines in Figure 1 give

some insight to the difference between models (6) and (7), this relationship does not involve the

19



objective function, c(s). Hence a small or large gap in Figure 1 does not necessarily correspond

to a small or large optimality gap. For example, in results that we report below, Case 5 has the

largest optimality gap while the difference between the curves for Case 5 in Figure 1 is modest.

All tests use αh,+ = αh,− = 1, and β = 0.05; αd,− = 5αd,+ is set at the case-specific αd,−max for

β = 0.05, and the stopping tolerance is ε = 10−4
(∑

i∈N |d
p
i |+ |d

q
i |
)

for all tests. We first assess three

properties of our robust ACOPF problem: the quality of the lower bound generated by model (7),

the robustness of the solution to model (7) in the nonconvex setting, and the performance of this

robust solution relative to a deterministic alternative.

For each budget parameter Γ, a robust convex ε-feasible solution, ŝ, is first obtained by executing

Algorithm 1 with the scenario-appending technique from Section 3.3. The cost associated with this

solution, c(ŝ), provides a lower bound for model (6). We let CR denote the lower bound obtained by

solving the robust convex relaxation, and we let CN denote our proxy for the upper bound obtained

by finding a local minimum of model (6) with U replaced by UE as described in Section 4.1.3. The

gap is defined by g = 100× CN−CR
CN

.

We measure the infeasibility of solution ŝ by solving model (25) at every u ∈ UE , and report

the maximum as I(ŝ, û). We also obtain a deterministic nominal solution, ŝ0, and optimal value,

C0, by solving the deterministic QC relaxation; i.e., model (7) with the singleton U defined under

αd,− = αd,+ = αh,− = αh,+ = 0, and keeping the same recourse adjustment range so that the results

are comparable. We again measure the infeasibility of this nominal solution at every u ∈ UE , and

report the maximum as I(ŝ0, û).

From Table 1 we observe that many of the gaps between the lower bound and estimated upper

bound are below 1.5%, while the gaps for Case 5, Case 9 (Γ = 5), and Case 300 (Γ = 3 and 5) exceed

5%. This result suggests that solving model (7) can provide a tight lower bound for model (6). The

large gap of Case 5 is caused by the convex relaxation, given a specific realization of uncontrollable

injections, not being tight. In the deterministic setting, Coffrin et al. (2015b) report a gap of about

9.3% for Case 5. We can also find a general trend that the robust optimality gaps shown in Table 1

are larger than their deterministic counterpart described in Coffrin et al. (2015b). For a specific

uncontrollable injection, the nonconvex feasible region may coincide with that of the QC relaxation

near the optimum, but once we take the intersection of feasible regions under the robust setting,

this may no longer be true. The degree of this phenomenon depends on the power system structure

and level of uncertainty, which may explain the larger gaps in Cases 9 and 300.

For Case 5, the infeasibility measure for model (7)’s solution is about 6% of the total demand. It

is under 2.5% of the total demand for other cases, and does not grow with the size of the uncertainty

set (Γ). For example, for Γ = 1 of Case 30, the unmet demand is 1.3 MW, about 0.33% of the

total demand. These results contrast with the corresponding infeasibility of the nominal solution

in column I(ŝ0, û), where the magnitude can be significantly larger. For all test cases but Case 5,
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Test Case Γ CN CR g% C0 I(ŝ, û) I(ŝ0, û)
¯
I(ŝ0, û)

Case 5
1 17101.9 15005.7 12.26 12651.2 5.59× 10−2 9.86× 10−2 4.63× 10−2

3 19863.1 17715.2 10.81 12651.2 5.71× 10−2 1.43× 10−1 1.19× 10−1

5 20181.0 17979.6 10.91 12651.2 5.98× 10−2 1.46× 10−1 1.34× 10−1

Case 9
1 4751.4 4751.4 0.00 4059.1 4.46× 10−5 7.23× 10−2 7.23× 10−2

3 5917.4 5917.3 0.00 4059.1 4.09× 10−6 1.81× 10−1 1.81× 10−1

5 7208.9 6035.6 16.27 4059.1 3.92× 10−3 1.91× 10−1 1.91× 10−1

Case 14
1 233.0 232.9 0.02 209.0 0 6.07× 10−2 6.06× 10−2

3 252.9 252.9 0.02 209.0 1.70× 10−2 1.11× 10−1 1.11× 10−1

5 260.3 260.2 0.02 209.0 1.41× 10−2 1.34× 10−1 1.31× 10−1

Case 30
1 187.8 186.7 0.54 164.7 3.28× 10−3 5.15× 10−2 4.57× 10−2

3 201.6 200.6 0.50 164.7 1.38× 10−2 8.01× 10−2 7.65× 10−2

5 209.8 208.8 0.47 164.7 1.01× 10−2 9.87× 10−2 9.65× 10−2

Case 118
1 3456.2 3426.5 0.86 3110.6 1.87× 10−2 5.21× 10−2 4.81× 10−2

3 3808.3 3777.3 0.81 3110.6 2.19× 10−2 1.04× 10−1 1.02× 10−1

5 4045.4 4008.1 0.92 3110.6 1.59× 10−2 1.37× 10−1 1.35× 10−1

Case 300
1 15743.7 15116.7 3.98 13915.0 2.93× 10−3 2.56× 10−2 2.51× 10−2

3 17794.6 16832.5 5.41 13915.0 2.66× 10−3 5.75× 10−2 5.69× 10−2

5 18455.0 17522.3 5.05 13915.0 2.07× 10−3 7.96× 10−2 7.91× 10−2

Case 2383
1 1629795.2 1611397.2 1.13 1562639.8 5.48× 10−3 1.27× 10−2 8.93× 10−3

3 1714285.1 1696575.3 1.03 1562639.8 5.79× 10−3 2.71× 10−2 2.59× 10−2

5 1789041.5 1772009.8 0.95 1562639.8 5.48× 10−3 4.29× 10−2 4.18× 10−2

Case 2746
1 1483630.4 1480689.5 0.20 1440355.8 9.94× 10−4 1.51× 10−2 1.42× 10−2

3 1564579.5 1561091.4 0.22 1440355.8 1.04× 10−3 4.20× 10−2 4.12× 10−2

5 1623337.0 1619767.2 0.22 1440355.8 1.31× 10−3 6.10× 10−2 6.02× 10−2

Table 1: Robustness results of the robust convex relaxation solution and nominal solution.

Γ = 1, the lower bound on the infeasibility measure (see
¯
I(ŝ0, û) as defined in Section 4.1.3), is

close to the upper bound, I(ŝ0, û), and significantly larger than the upper bound of the infeasibility

measure for the robust solution, I(ŝ, û). This suggests that the nominal solution is inferior to the

robust solution in terms of feasibility under the worst-case scenario.

As we discuss in Section 4.1.3, we are unsure whether CN is a valid upper bound on the optimal

value of model (6) because we relax the model, replacing U with UE , and then obtain a local

minimum, s∗. For this reason, we solve model (25) to obtain I(s∗, u), or rather an upper bound on

this value, at interior points of u ∈ U to assess potential infeasibilities. When we do so for the eight

test cases, each under three values of Γ, using 1000 uniform random vectors from the corresponding

U , we obtain I(s∗, u) = 0 in each instance. While we are still unsure that CN is a valid upper

bound, we have been unable to find evidence that s∗ is infeasible at interior points of U , and this

helps support using CN as a proxy for an upper bound.

To construct set U , we correlate the uncontrollable injections at different buses as described

in Section 2 and Appendix A. Of course, injections may not occur in a worst-case manner or in

a manner with this type of correlation. To assess the performance of our solution in a stochastic

environment, we assume that u = (up, uq) is a uniform random vector in the box specified by
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the bounds in equation (22), and we sample 1000 realizations. Given a solution, ŝ, obtained from

model (7), for each realization u, we find a local minimum to the nonconvex model (25), and denote

the upper bound on the infeasibility measure, I. Next, we solve the convex relaxation of model (25)

as we describe in Section 4.1.3 to compute the lower bound on the infeasibility measure,
¯
I.

We show the computational results in Table 2. For a batch of 1000 realizations, we denote the

mean violation in the nonconvex setting by µI , and the expected maximum violation by Imax. Their

counterparts under the convex relaxation are denoted µ
¯
I and

¯
Imax. Due to its probabilistic nature,

we replicate this test 20 times to obtain a point estimate for these four infeasibility measures as well

as 95% confidence intervals. As expected, our robust solution for Γ = 5 is feasible for all u ∈ U for

the convex relaxation (7) by construction, and µ
¯
I and

¯
Imax decrease monotonically as Γ increases.

We largely observe a similar trend for the nonconvex infeasibility measures, although there are a

few exceptions.

Test Case Γ Imax± CI halfwidth
¯
Imax± CI halfwidth µI± CI halfwidth µ

¯
I± CI halfwidth

Case 5
1 9.05× 10−2 ± 8.71× 10−3 6.33× 10−2 ± 1.32× 10−2 2.52× 10−2 ± 1.34× 10−3 3.08× 10−3 ± 5.94× 10−4

3 4.93× 10−2 ± 6.89× 10−3 1.63× 10−4 ± 1.43× 10−3 7.24× 10−3 ± 6.03× 10−4 1.63× 10−7 ± 1.43× 10−6

5 5.54× 10−2 ± 3.14× 10−3 0± 0 1.71× 10−2 ± 6.38× 10−4 0± 0

Case 9
1 9.24× 10−2 ± 1.64× 10−2 9.24× 10−2 ± 1.64× 10−2 4.17× 10−3 ± 7.58× 10−4 4.17× 10−3 ± 7.58× 10−4

3 0± 0 0± 0 0± 0 0± 0
5 6.69× 10−4 ± 1.53× 10−3 0± 0 7.93× 10−7 ± 2.34× 10−6 0± 0

Case 14
1 4.50× 10−2 ± 1.08× 10−2 4.49× 10−2 ± 1.08× 10−2 1.24× 10−3 ± 2.17× 10−4 1.23× 10−3 ± 2.16× 10−4

3 1.57× 10−2 ± 9.62× 10−4 6.36× 10−4 ± 3.18× 10−3 1.71× 10−3 ± 2.08× 10−4 7.61× 10−7 ± 4.05× 10−6

5 1.16× 10−2 ± 9.65× 10−4 0± 0 7.95× 10−4 ± 1.28× 10−4 0± 0

Case 30
1 2.94× 10−2 ± 5.68× 10−3 2.84× 10−2 ± 6.36× 10−3 1.06× 10−3 ± 2.57× 10−4 6.81× 10−4 ± 2.04× 10−4

3 1.26× 10−2 ± 6.46× 10−4 6.42× 10−4 ± 2.14× 10−3 1.65× 10−3 ± 2.38× 10−4 9.73× 10−7 ± 3.56× 10−6

5 8.56× 10−3 ± 6.47× 10−4 0± 0 6.24× 10−4 ± 1.33× 10−4 0± 0

Case 118
1 6.56× 10−2 ± 1.45× 10−2 5.72× 10−2 ± 1.69× 10−2 1.14× 10−2 ± 7.56× 10−4 3.29× 10−3 ± 4.52× 10−4

3 2.42× 10−2 ± 1.04× 10−2 6.88× 10−3 ± 1.32× 10−2 9.44× 10−4 ± 1.82× 10−4 7.94× 10−6 ± 1.60× 10−5

5 3.98× 10−3 ± 2.84× 10−3 0± 0 2.32× 10−5 ± 1.79× 10−5 0± 0

Case 300
1 3.62× 10−2 ± 7.35× 10−3 3.52× 10−2 ± 7.38× 10−3 2.57× 10−3 ± 2.63× 10−4 2.03× 10−3 ± 2.45× 10−4

3 3.78× 10−3 ± 4.04× 10−3 3.15× 10−3 ± 4.66× 10−3 1.11× 10−4 ± 2.08× 10−5 4.03× 10−5 ± 1.17× 10−5

5 1.38× 10−3 ± 4.04× 10−3 0± 0 7.99× 10−5 ± 1.51× 10−5 0± 0

Case 2383
1 2.41× 10−2 ± 5.39× 10−3 2.29× 10−2 ± 5.44× 10−3 3.31× 10−3 ± 1.98× 10−4 1.23× 10−3 ± 2.04× 10−4

3 7.52× 10−3 ± 4.03× 10−3 5.71× 10−3 ± 5.13× 10−3 2.05× 10−3 ± 6.60× 10−5 1.38× 10−5 ± 1.48× 10−5

5 4.89× 10−3 ± 3.41× 10−4 0± 0 2.06× 10−3 ± 5.76× 10−5 0± 0

Case 2746
1 3.22× 10−2 ± 7.91× 10−3 3.12× 10−2 ± 7.90× 10−3 1.95× 10−3 ± 2.35× 10−4 1.71× 10−3 ± 2.21× 10−4

3 5.75× 10−3 ± 5.06× 10−3 4.59× 10−3 ± 4.82× 10−3 2.16× 10−5 ± 1.14× 10−5 7.73× 10−6 ± 8.70× 10−6

5 3.74× 10−4 ± 1.35× 10−4 0± 0 4.18× 10−6 ± 1.43× 10−6 0± 0

Table 2: Computational results for solving model (7) for a range of values of Γ, and then assessing
feasibility, along with 95% confidence intervals, using 20 replications over 1000 uniformly distributed
realizations over the hyper-rectangle governing u.

Next, we report the computational performance of Algorithm 1 and its scenario-appending im-

provement scheme. If we append scenario-specific constraints to the master problem, the master

becomes larger and takes longer to solve, but this helps decrease the number of iterations of the

cutting-plane algorithm. In Table 3 we show computational results for Cases 118 and 300, which

best exemplify the effectiveness of the scenario-appending scheme. The table shows that direct

application of Algorithm 1 fails to obtain an ε-feasible solution within 300 iterations, but by ap-
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pending scenarios to the master, we solve Cases 118 and 300 in at most 12 iterations. The results

that we report elsewhere in this section all use the improvement of appending scenarios to the

master program in which nc, the number of repetitions after which a scenario û ∈ U is appended

to the master program, is nc = 1; see Section 3.3.

Parameters
No. of iterations ε-feasibility achieved T (sec.)

Case 118 Case 300 Case 118 Case 300 Case 118 Case 300

Algorithm 1 300 300 No No 2414 23042

nc = 1 5 6 Yes Yes 53 306
nc = 2 6 5 Yes Yes 56 226
nc = 3 7 9 Yes Yes 63 366
nc = 4 8 11 Yes Yes 70 447
nc = 5 9 12 Yes Yes 77 463

Table 3: Computational results of solving model (7) with different improvement techniques for
Case 118 and Case 300 with Γ = 3.

The scenario-appending method aims to reduce the number of iterations of Algorithm 1. To

decrease the running time of each iteration, we compare the computational performance of two

alternatives: solving the MISOCP (14) directly, or enumerating all extreme points of U and solving

the corresponding SOCPs individually, which is possible when |M| is modest. For example, if Γ = 1,

there are only 2|M| extreme points, and solving this moderate number of SOCPs each iteration

may reduce computation time, especially when parallelizing the calculations. Furthermore, rather

than identifying u ∈ U for a most violated constraint, we can generate multiple feasibility cuts in

one iteration to again attempt to reduce the number of overall iterations. For our tests, we generate

cuts at the 10 most violated scenarios at each iteration, and we solve SOCPs in parallel with 20

threads.

We present the test results in Table 4. The number of extreme points of U is denoted by N and

the number of iterations until ε-feasibility is achieved is denoted “iter.” and the clock time of the

two approaches is denoted by “time.” For all test cases, solving the SOCPs in parallel requires less

time than solving MISOCPs. When |M| is small, the number of extreme points, N , of U is modest,

and so solving SOCPs corresponding to each extreme point in parallel can be more efficient than

solving MISOCPs. In our implementation, we note that solving the MISOCP—either directly or

by enumerating SOCPs—is the computational bottleneck. Gurobi generates outer linearizations of

SOCP subproblems in its branch-and-bound algorithm, which is the default setting. This facilitates

warm starts for the resulting linear programs and tends to improve numerical performance over

solving subproblems directly as SOCPs. Still, we encounter numerical problems when solving the

MISOCP for Case 2746. Of course as the number of extreme points of U becomes large, enumeration

of SOCPs is not viable, and solving the corresponding MISOCP, or developing an alternative, in

such cases requires further work.
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Table 2 compares results for solutions ŝ with optimal value CR from model (7); s∗ with optimal

value CN from model (6) with U replaced by UE ; and, ŝ0 with optimal value C0 from the nominal

model. The “MISOCP” and “SOCP” columns of Table 4 concern the computational effort to

obtain ŝ, and the two right-most columns concern the effort to compute s∗ (“Nonconvex”) and ŝ0

(“Nominal”). As we indicate in Section 4.1.3 we do not solve model (6) under UE directly because

it is too computationally expensive for our largest problems. Rather we iteratively identify violated

scenarios and append them to the master program, and doing so involves solving nonconvex ACOPF

problems in parallel using Ipopt. The resulting computational effort (“Nonconvex”) is less than

that of “SOCP”, but similar in order of magnitude. The times to solve the nominal problem are

significantly less, but the solution it provides can be far from feasible; see Table 2.

MISOCP SOCP Nonconvex Nominal
Test Case Γ N iter. time (sec.) iter. time (sec.) iter. time (sec.) time (sec.)

Case 5
1 10 2 0.7 2 0.4 2 0.2 0.05
3 80 2 0.5 2 0.7 2 0.4 0.07
5 32 2 0.6 1 0.2 2 0.3 0.05

Case 9
1 10 2 1.2 2 0.4 2 0.3 0.09
3 80 2 0.9 2 0.8 2 0.5 0.10
5 32 2 1.1 1 0.3 2 0.4 0.08

Case 14
1 10 2 1.9 2 0.9 2 0.4 0.2
3 80 2 2.2 2 1.5 3 1.3 0.2
5 32 2 2.0 1 0.4 2 0.5 0.1

Case 30
1 10 2 4.3 2 1.4 2 0.6 0.3
3 80 2 4.4 2 2.7 2 1.6 0.4
5 32 2 5.3 1 0.8 2 0.9 0.3

Case 118
1 10 2 20.3 3 15.6 2 3.3 1.7
3 80 5 53.0 2 18.5 3 13.5 1.6
5 32 2 27.8 1 4.1 2 6.5 1.6

Case 300
1 10 4 122.9 3 44.2 3 17.2 4.3
3 80 6 306.1 2 61.6 2 25.7 4.7
5 32 2 170.2 1 14.8 1 6.0 4.6

Case 2383
1 10 2 1508.5 2 344.8 2 87.1 76.4
3 80 2 3008.4 2 848.6 3 366.4 76.2
5 32 1 2071.1 1 257.7 1 56.1 79.4

Case 2746
1 10 − − 2 557.6 2 250.8 102.5
3 80 − − 2 1175.3 2 330.5 121.9
5 32 − − 1 250.8 2 272.3 95.6

Table 4: Comparison of solving model (7) by Algorithm 1 using (14) (“MISOCP” column), or
by solving enumerating SOCPs for each u ∈ UE . The “Nonconvex” column shows computation
times for solving model (6) with U replaced by UE , and the right-most column shows that for the
single-scenario nominal problem.
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5 Conclusions

In this paper we present a model to relax the nonconvex robust ACOPF problem to a robust convex

program with recourse. A cutting-plane algorithm is proposed to solve the convex relaxation,

and within each iteration of the cutting-plane algorithm, an MISOCP is solved to generate a cut

separating the incumbent solution from the robust convex feasible region. In summary, we:

• formulated a two-stage robust model that permits full recourse decisions rather than simpler,

e.g., linear, decision rules;

• established desirable convergence properties of a cutting-plane algorithm;

• showed that our algorithm can provide a good lower bound for the nonconvex ACOPF prob-

lem (6);

• found the solution to the robust convex relaxation model (7) is robust in the nonconvex

setting, provided its deterministic QC relaxation is reasonably tight; and,

• reduced solution time in the cutting-plane algorithm by appending a small number of key

scenarios to the master program.

There are many possible ways to extend the result of this research. One important direction is

to reduce the computational effort required to solve the “separation problem,” which is currently

modeled as an MISOCP. Doing so would further facilitate scaling our algorithm to larger problems.

Finding a valid upper bound for our nonconvex robust ACOPF problem, or further characterizing

our proxy for an upper bound, would be valuable by itself, but also has the potential to be combined

with the optimization-based bound-tightening process (e.g., Sundar et al. 2018) to further tighten

the formulation and the lower bound that we obtain. Furthermore, our modeling framework, and

associated solution algorithm, has the potential to be used in, or adapted to, applications of robust

optimization with convex recourse in areas such as microgrid planning (e.g., Khodaei 2014), location

transportation (e.g., Gabrel et al. 2014), and call center staffing (e.g., Gurvich et al. 2010, Zan et al.

2014).
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Electriciens, 3:431–447, 1962.

C. Coffrin, D. Gordon, and P. Scott. NESTA, the NICTA energy system test case archive. arXiv preprint
arXiv:1411.0359, 2014. URL https://arxiv.org/pdf/1411.0359.pdf.

C. Coffrin, H. L. Hijazi, and P. Van Hentenryck. Strengthening convex relaxations with bound tightening
for power network optimization. In International Conference on Principles and Practice of Constraint
Programming, pages 39–57. Springer, 2015a.

C. Coffrin, H. L. Hijazi, and P. Van Hentenryck. Strengthening the SDP relaxation of AC power flows with
convex envelopes, bound tightening, and lifted nonlinear cuts. arXiv preprint arXiv:1512.04644, 2015b.

C. Coffrin, H. L. Hijazi, and P. Van Hentenryck. The QC relaxation: A theoretical and computational study
on optimal power flow. IEEE Transactions on Power Systems, 31(4):3008–3018, 2016.

T. G. Crainic, M. Hewitt, F. Maggioni, and W. Rei. Partial benders decomposition strategies for two-stage
stochastic integer programs. Technical report, CIRRELT, 2016.

I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical optimization. SIAM
Review, 59(2):295–320, 2017. doi: 10.1137/15M1020575.

X. Fang, B. Hodge, E. Du, N. Zhang, and F. Li. Modelling wind power spatial-temporal correlation in
multi-interval optimal power flow: A sparse correlation matrix approach. Applied Energy, 230:531–539,
2018.

V. Gabrel, M. Lacroix, C. Murat, and N. Remli. Robust location transportation problems under uncertain
demands. Discrete Applied Mathematics, 164:100–111, 2014.

A. M. Geoffrion. Generalized Benders decomposition. Journal of Optimization Theory and Applications, 10
(4):237–260, 1972.

Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2016. URL http://www.gurobi.com.

I. Gurvich, J. Luedtke, and T. Tezcan. Staffing call centers with uncertain demand forecasts: A chance-
constrained optimization approach. Management Science, 56(7):1093–1115, 2010.

R. A. Jabr. Radial distribution load flow using conic programming. IEEE Transactions on power systems,
21(3):1458–1459, 2006.

R. A. Jabr. Adjustable robust OPF with renewable energy sources. IEEE Transactions on Power Systems,
28(4):4742–4751, 2013.

R. Jiang, J. Wang, and Y. Guan. Robust unit commitment with wind power and pumped storage hydro.
IEEE Transactions on Power Systems, 27(2):800–810, 2012.

R. Jiang, M. Zhang, G. Li, and Y. Guan. Two-stage network constrained robust unit commitment problem.
European Journal of Operational Research, 234(3):751–762, 2014.

A. Khodaei. Resiliency-oriented microgrid optimal scheduling. IEEE Transactions on Smart Grid, 5(4):
1584–1591, 2014.

K. Klima and J. Apt. Geographic smoothing of solar PV: results from Gujarat. Environmental Research
Letters, 10(10):104001, 2015.

26



B. Kocuk, S. S. Dey, and X. A. Sun. Strong SOCP relaxations for the optimal power flow problem. Operations
Research, 64(6):1177–1196, 2016.

J. Lavaei and S. H. Low. Zero duality gap in optimal power flow problem. IEEE Transactions on Power
Systems, 27(1):92–107, 2012.

Y. Liu and M. C. Ferris. Security constrained economic dispatch using semidefinite programming. In 2015
IEEE Power and Energy Society General Meeting. Institute of Electrical and Electronics Engineers
(IEEE), 2015. doi: 10.1109/pesgm.2015.7286268. URL http://dx.doi.org/10.1109/PESGM.2015.

7286268.

G. M. Lohmann, A. H. Monahan, and D. Heinemann. Local short-term variability in solar irradiance.
Atmospheric Chemistry and Physics, 16(10):6365–6379, 2016.
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A Grouping Buses

To construct the uncertainty set U , we solve a facility location problem for each test case to cluster

the buses. That is, while we solve the test instances with the full resolution of network topology,

as indicated in equation (1c), uncertain injections at buses occur in concert within a cluster. We

assume the distance between two directly connected buses is 1, and more generally, the distance

between two buses is the length of the shortest path (counted in hops) between them. We select

a total of |M| = 5 buses to be the “facilities” and assign each bus to a facility. All buses that are

assigned to a facility are considered a cluster, i.e., elements of Nm. The detailed formulation is

expressed as follows:

Indices and index sets
i ∈ N set of buses;
Ji ⊆ N set of buses eligible to be associated with bus i, i ∈ N ;
Parameters
dij distance between bus i and j, i, j ∈ N ;
N number of facilities (|M|);
Decision variables
xij indicator of whether bus i is assigned to bus j, i, j ∈ N ;
yi indicator of whether bus i is selected as a facility, i ∈ N .

Facility Location Problem:

min
∑
i∈N

∑
j∈Ji

dijxij (29a)

s.t.
∑
j∈Ji

xij = 1 ∀i ∈ N (29b)

∑
i∈N

yi = N (29c)

xij ∈ {0, 1} ∀i ∈ N , j ∈ Ji (29d)

yi ∈ {0, 1} ∀i ∈ N . (29e)

To facilitate computational tractability, we control the size of Ji via a distance threshold so that

we can only assign one bus to another if their distance is within the threshold. The clusters formed

by model (29) define the sets M and Nm used in equation (1c) to construct U as described at the

beginning of Section 2.
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In addition to clustering buses, we distinguish uncertainty in load and in renewable generation

as described in Section 4.1.1. The latter occurs only at a subset of buses, denote NG, and we now

describe construction of this set. Once clusters are formed, we select the two buses in each cluster

that have the largest capacity, defined by the sum of the capacities of the incident lines. If the

cluster is a singleton, then only that bus is selected, and the process for other clusters remains the

same. The buses selected in this way form set NG.

B QC Relaxation

We use the quadratic convex (QC) relaxation from Coffrin et al. (2016). Nonconvex functions in

the ACOPF problem, such as quadratic, cosine and sine functions are transformed into a collection

of second-order cone constraints and linear constraints. A McCormick relaxation is applied to

linearize multi-linear terms. We also assume the difference in phase angles at adjacent buses i and

j satisfies −π
6 ≤ ¯

∆k ≤ θi − σk − θj ≤ ∆̄k ≤ π
6 . The detailed formulation of the QC relaxation is

expressed as follows:

Indices and index sets
i ∈ N set of buses;
k = (i, j, n) ∈ A set of lines;
g ∈ G set of generators;
g ∈ Gi set of generators that are connected to bus i ∈ N ;

Parameters
upi uncontrollable active power injection at bus i ∈ N ;
uqi uncontrollable reactive power injection at bus i ∈ N ;

¯
spg, s̄

p
g lower and upper bound of active power generation by generator g, g ∈ G;

¯
sqg, s̄

q
g lower and upper bound of reactive power generation by generator g, g ∈ G;

¯
vi, v̄i lower and upper bound of voltage magnitude at bus i, i ∈ N ;

¯
θi, θ̄i lower and upper bound of phase angle at bus i ∈ N ;

¯
∆k, ∆̄k lower and upper bound of phase angle difference of adjacent buses

on line k ∈ A;

¯
csk, c̄sk lower and upper bound of cosine of phase angle difference of

adjacent buses on line k ∈ A;

¯
ssk, s̄sk lower and upper bound of sine of phase angle difference of

adjacent buses on line k ∈ A;
gk conductance of line k, k ∈ A;
bk susceptance of line k, k ∈ A;
bck charging susceptance of line k, k ∈ A;
gshi shunt conductance of bus i, i ∈ N ;
bshi shunt susceptance of bus i, i ∈ N ;
Wk maximum apparent power flow on line k, k ∈ A;
τ1,k tap ratio of transformer at bus i on line k, k ∈ A;
τ2,k tap ratio of transformer at bus j on line k, k ∈ A;
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σk phase angle shift of transformer on line k, k ∈ A;
θuk upper bound of absolute value of phase angle difference

of line k, k ∈ A, θuk = max(|∆̄k|, |
¯
∆k|);

¯
vδi sum of lower and upper bound of voltage magnitude at bus i, i ∈ N ,

vδi = v̄i +
¯
vi;

θφk mid-point of range of difference in phase angles on line k, k ∈ A,

θφk =
(∆̄k+

¯
∆k)

2 ;

θδk range of difference in phase angles on line k, k ∈ A, θδk =
(∆̄k−

¯
∆k)

2 ;

Decision variables
spg active power generation at generator g, g ∈ G;
sqg reactive power generation at generator g, g ∈ G;
vi voltage magnitude at bus i, i ∈ N ;
θi phase angle at bus i, i ∈ N ;
Pk active power flow on line k, k ∈ A;
Qk reactive power flow on line k, k ∈ A;
ĉsk approximation term of cos(θi − σk − θj), k = (i, j, n) ∈ A;
ŝsk approximation term of sin(θi − σk − θj), k = (i, j, n) ∈ A;
v̂i approximation term of v2

i , i ∈ N ;
v̂vk approximation term of

vivj
τ1,kτ2,k

, k = (i, j, n) ∈ A;

ŵck approximation term of
vivj

τ1,kτ2,k
cos(θi − σk − θj), k = (i, j, n) ∈ A;

ŵsk approximation term of
vivj

τ1,kτ2,k
sin(θi − σk − θj), k = (i, j, n) ∈ A.

Formulation:

min c(sp, sq) (30a)

s.t.
¯
vi ≤ vi ≤ v̄i ∀i ∈ N (30b)

¯
∆k ≤ θi − σk − θj ≤ ∆̄k ∀k = (i, j, n) ∈ A (30c)

¯
θi ≤ θi ≤ θ̄i ∀i ∈ N (30d)

¯
csk ≤ ĉsk ≤ c̄sk ∀k = (i, j, n) ∈ A (30e)

¯
ssk ≤ ŝsk ≤ s̄sk ∀k = (i, j, n) ∈ A (30f)

¯
spg ≤ spg ≤ s̄pg ∀g ∈ G (30g)

¯
sqg ≤ sqg ≤ s̄qg ∀g ∈ G (30h)

Pk = gk
v̂i

(τ1,k)2
− gk

ŵck
τ1,kτ2,k

− bk
ŵsk

τ1,kτ2,k
∀k = (i, j, n) ∈ A (30i)

Qk = −(bk +
bck
2

)
v̂i

(τ1,k)2
+ bk

ŵck
τ1,kτ2,k

− gk
ŵsk

τ1,kτ2,k
∀k = (i, j, n) ∈ A (30j)

P 2
k +Q2

k ≤W 2
k ∀k ∈ A (30k)∑

k=(i,j,n)∈A

Pk + gshi v̂i =
∑
g∈Gi

spg + upi ∀i ∈ N (30l)

∑
k=(i,j,n)∈A

Qk − bshi v̂i =
∑
g∈Gi

sqg + uqi ∀i ∈ N (30m)
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v̂v2
k ≤

v̂i
τ2

1,k

v̂j
τ2

2,k

∀k = (i, j, n) ∈ A (30n)

ĉsk +
1− cos (θuk )(

θuk
)2 (θi − σk − θj)2 ≤ 1 ∀k = (i, j, n) ∈ A (30o)

ĉsk ≥
cos
(
∆̄k

)
− cos (

¯
∆k)

∆̄k −
¯
∆k

(θi − σk − θj −
¯
∆k) + cos (

¯
∆k) ∀k = (i, j, n) ∈ A (30p)

ŝsk − cos

(
θuk
2

)
(θi − σk − θj) ≤ sin

(
θuk
2

)
−
θuk
2

cos

(
θuk
2

)
∀k = (i, j, n) ∈ A (30q)

− ŝsk + cos

(
θuk
2

)
(θi − σk − θj) ≤ sin

(
θuk
2

)
−
θuk
2

cos

(
θuk
2

)
∀k = (i, j, n) ∈ A (30r)

v2
i − v̂i ≤ 0 ∀i ∈ N (30s)

v̂i − (v̄i +
¯
vi)vi ≤ −v̄i

¯
vi ∀i ∈ N (30t)

v̂vk ≥ ¯
vi
τ1,k

vj
τ2,k

+ ¯
vj
τ2,k

vi
τ1,k
− ¯

vi
τ1,k

¯
vj
τ2,k

∀k = (i, j, n) ∈ A (30u)

v̂vk ≥
v̄i
τ1,k

vj
τ2,k

+
v̄j
τ2,k

vi
τ1,k
− v̄i
τ1,k

v̄j
τ2,k

∀k = (i, j, n) ∈ A (30v)

v̂vk ≤ ¯
vi
τ1,k

vj
τ2,k

+
v̄j
τ2,k

vi
τ1,k
− ¯

vi
τ1,k

v̄j
τ2,k

∀k = (i, j, n) ∈ A (30w)

v̂vk ≤
v̄i
τ1,k

vj
τ2,k

+ ¯
vj
τ2,k

vi
τ1,k
− v̄i
τ1,k

¯
vj
τ2,k

∀k = (i, j, n) ∈ A (30x)

ŵck ≥ ¯
vi

¯
vj

τ1,kτ2,k
ĉsk +

¯
cskv̂vk − ¯

vi
¯
vj

τ1,kτ2,k ¯
csk ∀k = (i, j, n) ∈ A (30y)

ŵck ≥
v̄iv̄j

τ1,kτ2,k
ĉsk + c̄skv̂vk −

v̄iv̄j
τ1,kτ2,k

c̄sk ∀k = (i, j, n) ∈ A (30z)

ŵck ≤ ¯
vi

¯
vj

τ1,kτ2,k
ĉsk + c̄skv̂vk − ¯

vi
¯
vj

τ1,kτ2,k
c̄sk ∀k = (i, j, n) ∈ A (30aa)

ŵck ≤
v̄iv̄j

τ1,kτ2,k
ĉsk +

¯
cskv̂vk −

v̄iv̄j
τ1,kτ2,k ¯

csk ∀k = (i, j, n) ∈ A (30ab)

ŵsk ≥ ¯
vi

¯
vj

τ1,kτ2,k
ŝsk +

¯
sskv̂vk − ¯

vi
¯
vj

τ1,kτ2,k ¯
ssk ∀k = (i, j, n) ∈ A (30ac)

ŵsk ≥
v̄iv̄j

τ1,kτ2,k
ŝsk + s̄skv̂vk −

v̄iv̄j
τ1,kτ2,k

s̄sk ∀k = (i, j, n) ∈ A (30ad)

ŵsk ≤ ¯
vi

¯
vj

τ1,kτ2,k
ŝsk + s̄skv̂vk − ¯

vi
¯
vj

τ1,kτ2,k
s̄sk ∀k = (i, j, n) ∈ A (30ae)

ŵsk ≤
v̄iv̄j

τ1,kτ2,k
ŝsk +

¯
sskv̂vk −

v̄iv̄j
τ1,kτ2,k ¯

ssk ∀k = (i, j, n) ∈ A (30af)

ŵsk − tan(∆̄k)ŵck ≤ 0 ∀k = (i, j, n) ∈ A (30ag)

ŵsk − tan(
¯
∆k)ŵck ≥ 0 ∀k = (i, j, n) ∈ A (30ah)

vδi v
δ
j

τ1,kτ2,k
(ŵck cos(θφk ) + ŵsk sin(θφk ))− v̄j

τ2,k
cos(θδk)

vδj
τ2,k

v̂i
τ2

1,k

− v̄i
τ1,k

cos(θδk)
vδi
τ1,k

v̂j
τ2

2,k

≥ v̄iv̄j
τ1,kτ2,k

cos(θδk)( ¯
vi

¯
vj

τ1,kτ2,k
− v̄iv̄j
τ1,kτ2,k

) ∀k = (i, j, n) ∈ A (30ai)
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vδi v
δ
j

τ1,kτ2,k
(ŵck cos(θφk ) + ŵsk sin(θφk ))− ¯

vj
τ2,k

cos(θδk)
vδj
τ2,k

v̂i
τ2

1,k

− ¯
vi
τ1,k

cos(θδk)
vδi
τ1,k

v̂j
τ2

2,k

≥ − ¯
vi

¯
vj

τ1,kτ2,k
cos(θδk)( ¯

vi
¯
vj

τ1,kτ2,k
− v̄iv̄j
τ1,kτ2,k

) ∀k = (i, j, n) ∈ A (30aj)

ĉsk = ĉsk̃ ∀k = (i, j, n) ∈ A (30ak)

ŝsk = −ŝsk̃ ∀k = (i, j, n) ∈ A (30al)

ŵck = ŵck̃ ∀k = (i, j, n) ∈ A (30am)

ŵsk = −ŵsk̃ ∀k = (i, j, n) ∈ A (30an)

v̂vk = v̂vk̃ ∀k = (i, j, n) ∈ A. (30ao)

Constraints (30b)-(30f) are simple bounds for voltage magnitude, difference in phase angles, phase

angles and approximation terms for cos(θi − σk − θj) and sin(θi − σk − θj), respectively. Using the

bound-tightening techniques in Coffrin et al. (2015a), we can derive the upper bounds and lower

bounds of cos(θi − θj) and sin(θi − θj) as:

c̄sk = cos(∆̄k),
¯
csk = cos(

¯
∆k) if ∆̄k ≤ 0

c̄sk = cos(
¯
∆k),

¯
csk = cos(∆̄k) if

¯
∆k ≥ 0

c̄sk = 1,
¯
csk = min{cos(

¯
∆k), cos(∆̄k)} if ∆̄k ≥ 0 and

¯
∆k ≤ 0,

and

s̄sk = sin(∆̄k)

¯
ssk = sin(

¯
∆k).

Constraints (30i) and (30j) are linearized versions of the power flow constraints in (3), and con-

straint (30k) replicates (5b), while active and reactive power flow balance constraints (30l) and

(30m) replicate (4). Since we are modeling the deterministic ACOPF problem here, we do not

have the recourse freedom variables op,+, op,−, oq,+, oq,− in this formulation. Constraint (30n) rep-

resents the correct quantitative relationship between v̂vk and v̂iv̂j , where v̂v can be considered as a

relaxation of the bilinear term vivj . Constraint (30o)-(30t) are linear and convex quadratic bound-

ing approximations of cosine, sine and quadratic functions. For multi-linear terms, a McCormick

scheme is applied to relax vivj , vivj cos(θi − θj) and vivj sin(θi − θj) in constraints (30u)-(30af).

The model includes valid inequalities described in Coffrin et al. (2015b) to further tighten this

convex relaxation. One set of valid constraints uses the trigonometric relationship tan(θ) = sin(θ)
cos(θ) to

build valid inequalities on ŵc and ŵs as in (30ag) and (30ah), using the fact that ŵc ≥ 0. Another

set of valid constraints, constraints (30ai)-(30aj), is called a lifted nonlinear cut. See Coffrin et al.

(2015b) for a detailed derivation of the lifted nonlinear cut. Finally, we use constraints (30ak)-

(30an) to make sure variables describing the forward flow are consistent with those describing the
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backward flow between the same pair of buses, where k̃ = (j, i, n) represents the backward flow of

the flow k = (i, j, n).

C Detailed Formulation of Model (14)

In this section we first expand the formulation of model (14), and then we explain the correspond-

ing relationship between the dual variables and the primal constraints in formulation (14) and

Appendix B.

max −
∑
k∈A

Wkν1,k −
∑
i∈N

∑
g∈Gi

(
ŝpgλ

p
i + ŝqgλ

q
i

)
+ (ūpi − u

p,0
i )(rp,+i + ζ+i r

op,+) + (
¯
up,−i − up,0i )(rp,−i + ζ−i r

op,−)+

(ūqi − u
q,0
i )(rq,+i + ζ+i r

oq,+) + (
¯
uq,−i − uq,0i )(rq,−i + ζ+i r

oq,−) + up,0i λpi + uq,0i λqi−
1

4
µ4,i2 +

1

4
ν4,i + v̄iλ

vu
i +

¯
viλ

vl
i + ōpi λ

op,−
i + ōqiλ

oq,−
i + v̄i

¯
viλ

v
i + λopi (ōpi + hpi ) + λoqi (ōqi + hqi )

]
−

∑
k=(i,j,n)∈A

[
−3

4
µ3,k2 +

5

4
ν3,k −

√
1− cos θuk

(θuk )2
µ3,k1+

c̄skλ
cs1
k +

¯
cskλ

cs2
k + s̄skλ

ss1
k +

¯
sskλ

ss2
k + (∆̄k + σk)λθ1k + (

¯
∆k + σk)λθ2k +(

cos
¯
∆k −

cos ∆̄k − cos
¯
∆k

∆̄k −
¯
∆k

(
¯
∆k + σk)

)
λcs3k +(

sin
θuk
2
− θuk

2
cos

θuk
2

)
(λss3k − λss4k )−

¯
vi

¯
vj

τ1,kτ2,k
λvv1k − v̄iv̄j

τ1,kτ2,k
λvv2k − ¯

viv̄j
τ1,kτ2,k

λvv3k − v̄i
¯
vj

τ1,kτ2,k
λvv4k +

v̄iv̄j
τ1,kτ2,k

cos θδk( ¯
vi

¯
vj

τ1,kτ2,k
− v̄iv̄j
τ1,kτ2,k

)λlnc1k − ¯
vi

¯
vj

τ1,kτ2,k
cos θδk( ¯

vi
¯
vj

τ1,kτ2,k
− v̄iv̄j
τ1,kτ2,k

)λlnc2k −

¯
csk ¯

vi
¯
vj

τ1,kτ2,k
λwc1k − c̄sk

v̄iv̄j
τ1,kτ2,k

λwc2k − c̄sk ¯
vi

¯
vj

τ1,kτ2,k
λwc3k −

¯
csk

v̄iv̄j
τ1,kτ2,k

λwc4k −

¯
ssk ¯

vi
¯
vj

τ1,kτ2,k
λws1k − s̄sk

v̄iv̄j
τ1,kτ2,k

λws2k − s̄sk ¯
vi

¯
vj

τ1,kτ2,k
λws3k −

¯
ssk

v̄iv̄j
τ1,kτ2,k

λws4k

]
(31a)

s.t. λptk − µ1,k1 + λpi = 0 ∀k = (i, j, n) ∈ A (31b)

λqtk − µ1,k2 + λqi = 0 ∀k = (i, j, n) ∈ A (31c)

‖µ1,k‖ ≤ ν1,k ∀k ∈ A (31d)

‖µ2,k‖ ≤ ν2,k ∀k ∈ A (31e)

‖µ3,k‖ ≤ ν3,k ∀k ∈ A (31f)

‖µ4,i‖ ≤ ν4,i ∀i ∈ N (31g)

−
∑

k=(i,j,n)∈A

(
¯
vj

τ1,kτ2,k
λvv1k +

v̄j
τ1,kτ2,k

λvv2k +
v̄j

τ1,kτ2,k
λvv3k + ¯

vj
τ1,kτ2,k

λvv4k

)
−

∑
k=(j,i,n)∈A

(
¯
vj

τ1,kτ2,k
λvv1k +

v̄j
τ1,kτ2,k

λvv2k + ¯
vj

τ1,kτ2,k
λvv3k +

v̄j
τ1,kτ2,k

λvv4k

)
−

µ4,i1 − (v̄i +
¯
vi)λ

v
i + λvui + λvli = 0 ∀i ∈ N (31h)∑

k=(i,j,n)∈A

[
−gk

λptk
τ21,k

+ (bk +
bck
2

)
λqtk
τ22,k

]
− µ4,i2 − ν4,i + λvi + λpi g

sh
i − λqi b

sh
i −

33



∑
k=(i,j,n)∈A

[
µ2,k2

τ21,k
√

2
+

ν2,k

τ21,k
√

2
+ cos θδk

vδj
τ2,k

(
v̄j
τ2,k

λlnc1k

τ21,k
+ ¯

vj
τ2,k

λlnc2k

τ21,k

)]
−

∑
k=(j,i,n)∈A

[
µ2,k3

τ22,k
√

2
+

ν2,k

τ22,k
√

2
+ cos θδk

vδj
τ1,k

(
v̄j
τ1,k

λlnc1k

τ22,k
+ ¯

vj
τ1,k

λlnc2k

τ22,k

)]
= 0 ∀i ∈ N (31i)

λvv1k + λvv2k + λvv3k + λvv4k + λvvek − λvvek̃ − µ2,k1 −
¯
cskλ

wc1
k − c̄skλwc2k −

c̄skλ
wc3
k −

¯
cskλ

wc4
k −

¯
sskλ

ws1
k − s̄skλws2k − s̄skλws3k −

¯
sskλ

ws4
k = 0 ∀k ∈ A (31j)

gkλ
pt
k − bkλ

qt
k − tan ∆̄kλ

tan 1
k − tan

¯
∆kλ

tan 2
k + λwc1k + λwc2k + λwc3k + λwc4k +

λwcek − λwcek̃ +
vδi v

δ
j

τ1,kτ2,k
cos θφk (λlnc1k + λlnc2k ) = 0 ∀k ∈ A (31k)

bkλ
pt
k + gkλ

qt
k + λws1k + λws2k + λws3k + λws4k + λwsek + λwsek̃ +

λtan 1
k + λtan 2

k +
vδi v

δ
j

τ1,kτ2,k
sin θφk (λlnc1k + λlnc2k ) = 0 ∀k ∈ A (31l)

− ¯
vi

¯
vj

τ1,kτ2,k
λwc1k − v̄iv̄j

τ1,kτ2,k
λwc2k − ¯

vi
¯
vj

τ1,kτ2,k
λwc3k − v̄iv̄j

τ1,kτ2,k
λwc4k +

λcs1k + λcs2k + λcs3k − µ3,k2 + ν3,k + λcsek − λcsek̃ = 0 ∀k = (i, j, n) ∈ A (31m)

− ¯
vi

¯
vj

τ1,kτ2,k
λws1k − v̄iv̄j

τ1,kτ2,k
λws2k − ¯

vi
¯
vj

τ1,kτ2,k
λws3k − v̄iv̄j

τ1,kτ2,k
λws4k +

λss1k + λss2k + λss3k + λss4k + λssek + λssek̃ = 0 ∀k = (i, j, n) ∈ A (31n)∑
k=(i,j,n)∈A

(
λθ1k + λθ2k −

cos ∆̄k − cos
¯
∆k

∆̄k −
¯
∆k

λcs3k − cos
θuk
2

(λss3k + λss4k )−

√
1− cos θuk

θuk
µ3,k1

)
+

∑
k=(j,i,n)∈A

(
−λθ1k − λθ2k +

cos ∆̄k − cos
¯
∆k

∆̄k −
¯
∆k

λcs3k +

cos
θuk
2

(λss3k + λss4k ) +

√
1− cos θuk

θuk
µ3,k1

)
= 0 ∀i ∈ N (31o)

λop,−i ≥ λpi ∀i ∈ N (31p)

λopi ≥ −λ
p
i ∀i ∈ N (31q)

λoq,−i ≥ λqi ∀i ∈ N (31r)

λoqi ≥ −λ
q
i ∀i ∈ N (31s)

− y+m ≤ rp,+i ≤ y+m ∀m ∈M, i ∈ Nm (31t)

− y−m ≤ rp,−i ≤ y−m ∀m ∈M, i ∈ Nm (31u)

− y+m ≤ rq,+i ≤ y+m ∀m ∈M, i ∈ Nm (31v)

− y−m ≤ rq,−i ≤ y−m ∀m ∈M, i ∈ Nm (31w)

λpi − 1 + y+m ≤ rp,+i ≤ λpi + 1− y+m ∀m ∈M, i ∈ Nm (31x)

λpi − 1 + y−m ≤ rp,−i ≤ λpi + 1− y−m ∀m ∈M, i ∈ Nm (31y)

λqi − 1 + y+m ≤ rq,+i ≤ λqi + 1− y+m ∀m ∈M, i ∈ Nm (31z)

λqi − 1 + y−m ≤ rq,−i ≤ λqi + 1− y−m ∀m ∈M, i ∈ Nm (31aa)

− y+m ≤ rop,+i ≤ y+m ∀m ∈M, i ∈ Nm (31ab)

− y−m ≤ rop,−i ≤ y−m ∀m ∈M, i ∈ Nm (31ac)

− y+m ≤ roq,+i ≤ y+m ∀m ∈M, i ∈ Nm (31ad)

− y−m ≤ roq,−i ≤ y−m ∀m ∈M, i ∈ Nm (31ae)

λopi − 1 + y+m ≤ rop,+i ≤ λopi + 1− y+m ∀m ∈M, i ∈ Nm (31af)

λopi − 1 + y−m ≤ rop,−i ≤ λopi + 1− y−m ∀m ∈M, i ∈ Nm (31ag)

λoqi − 1 + y+m ≤ roq,+i ≤ λoqi + 1− y+m ∀m ∈M, i ∈ Nm (31ah)

λoqi − 1 + y−m ≤ roq,−i ≤ λoqi + 1− y−m ∀m ∈M, i ∈ Nm (31ai)
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y+m + y−m ≤ 1 ∀m ∈M (31aj)∑
m∈M

(
y+m + y−m

)
≤ Γ (31ak)

− 1 ≤ λp ≤ 1 (31al)

− 1 ≤ λq ≤ 1 (31am)

λcs1, λss1, λss3, λv, λvu, λθ1, λvv3, λvv4, λwc3, λwc4, λws3, λws4 ≥ 0 (31an)

λop, λoq, λop,−, λoq,−, λtan 1, ν1, ν2, ν3, ν4 ≥ 0 (31ao)

λvl, λcs2, λcs3, λss2, λss4, λθ2, λvv1, λvv2, λwc1, λwc2, λws1, λws2, λtan 2, λlnc1, λlnc2 ≤ 0 (31ap)

y+, y− ∈ {0, 1}|M|. (31aq)

The formulation above is an exact form of problem (14). In this formulation, λpt and λqt are

the dual variables of line transmission constraints (30i) and (30j), while λp and λq are the dual

variables of the equivalent constraints of flow balance constraints (30l) and (30m) in problem (14).

For approximation of function cos and sin, we use λcs1, λcs2, λss1 and λss2 to represent the dual

variables of the upper bound and the lower bound of ĉs and ŝs respectively, and λcs3, λss3 and λss4

for constraints (30p)-(30r). Dual variables λv correspond to constraint (30t). We denote the dual

variables for the recourse freedom bounds as λop,−, λoq,−, λop and λoq.

We use λvv1-λvv4, λwc1-λwc4, λws1-λws4 as the dual variables of McCormick relaxation con-

straints (30u)-(30af). The dual variables λtan 1 and λtan 2 correspond to the tangent tightening

constraints (30ag) and (30ah), and λlnc1 and λlnc2 correspond to the lifted nonlinear cuts (30ai)

and (30aj). For variable equality enforcement constraints (30ak)-(30ao), we use λcse, λsse, λwce, λwse

and λvve as their dual variables. The remaining SOCP constraints (30k), (30n), (30o) are (30s)

have their dual variables as (µ1, ν1), (µ2, ν2), (µ3, ν3) and (µ4, ν4), respectively. Notice that those

SOCP constraints can be rewritten in a standard form for duality derivation:

‖(Pk, Qk)‖2 ≤Wk ∀k ∈ A∥∥∥∥∥
(
v̂vk,

v̂i

τ2
1,k

√
2
,

v̂j

τ2
2,k

√
2

)∥∥∥∥∥
2

≤
v̂i/τ

2
1,k + v̂j/τ

2
2,k√

2
∀k = (i, j, n) ∈ A∥∥∥∥∥

(√
1− cos θuk

θuk
2 (θi − σk − θj), ĉsk −

3

4

)∥∥∥∥∥
2

≤ 5

4
− ĉsk ∀k = (i, j, n) ∈ A∥∥∥∥(vi, v̂i − 1

4

)∥∥∥∥
2

≤ v̂i +
1

4
∀i ∈ N ,

which means that µ1,k, µ2,k, µ3,k and µ4,i are vectors with cardinality 2, 3, 2 and 2, respectively,

while ν1,k, ν2,k, ν3,k and ν4,i are scalars. The dual SOCP constraints are formed as (31d)-(31g).

With the dual variables established, we build constraint (31b) for the primal variable P , (31c) for

Q, (31h) for v, (31i) for v̂, (31j) for v̂v, (31k) for ŵc, (31l) for ŵs, (31m) for ĉs, (31n) for ŝs, and (31o)

for θ. Constraints (31p)-(31s) characterize the dual constraints for primal variables op,+, op,−, oq,+

and oq,−. Constraints (31t)-(31ai) are the direct replicate of the linearization constraints of bilinear

terms in problem (14). Constraints (31aj) guarantees that for each bus the uncontrollable injection
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can be either at the nominal value or at one of the bounds. Constraint (31ak) is the budget

constraint.

D Bound Tightening Process

Coffrin et al. (2015a,b) introduce a bound-tightening process for the QC relaxation involving the

bounds that appear in constraints (6f) and (6h). A new variable, θdk, is created to represent the

phase angle difference between two buses of the line k = (i, j, n) ∈ A, and appended to x. The

constraints defining θdk, θ
d
k = θi−θj , are included in the general form linear constraints Ax ≤ b. The

process iteratively updates the bounds vi =
¯
vi or v̄i at bus i ∈ N and the phase angle difference

θdk =
¯
∆k or ∆̄k of line k = (i, j, n) ∈ A, by a set of QC relaxation problems with the objective

function substituted by vi, ∀i ∈ N or θdk, ∀k = (i, j, n) ∈ A:

min
s,x,u

or max
s,x,u

xloc (32a)

s.t.
¯
s ≤ s ≤ s̄ (32b)

Ax ≤ b (32c)

‖Bix+ ai‖2 ≤ e>i x+ fi ∀i = 1, . . . ,mc (32d)

Apx = Dsp + up (32e)

Aqx = Dsq + uq (32f)

Aopx ≤ ōp + (1 + αh,+)hp (32g)

Aoqx ≤ ōq + (1 + αh,+)hq (32h)

¯
up ≤ up ≤ ūp (32i)

¯
uq ≤ uq ≤ ūq. (32j)

In this formulation we treat uncertain uncontrollable injections as decision variables so that the

resulting upper and lower bounds are valid for all (up, uq) where
¯
up ≤ up ≤ ūp and

¯
uq ≤ uq ≤ ūq,

hence for all u ∈ U . In the objective function the subscript loc references the position of vi or

θdk in the decision vector x. The bounds are iteratively updated using the optimal solutions from

problem (32) for each vi and θdk. The process terminates when changes in the bounds are negligible.

We perform bound tightening as a preprocessing step prior to running optimization. We focus

on the bounds on vi and θdk because the tightness of our linear-quadratic relaxation for the sine and

cosine functions and that of the McCormick relaxation for the multi-linear terms depends on the

bounds of vi and θdk. As illustrated in Coffrin et al. (2015b), tightening these bounds tightens the

QC relaxation and allows for a tighter lower bound on the nonconvex ACOPF problem. We employ

bound tightening in all results reported in Section 4. We show the runtimes of the bound-tightening
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process for each test case but do not give detailed improvements from this process beyond indicating

here that the optimal values of instances of model (7) grow by 1-10% by tightening these simple

bounds.

Test Case Time (sec.)

Case 5 1.8
Case 9 3.6
Case 14 8.0
Case 30 29.2
Case 118 809.3
Case 300 5759.0
Case 2383 61001.3
Case 2746 175095.7

Table 6: Computational effort for the bound-tightening process.

E Regularized Cutting-plane Algorithm

In this section we describe the regularized cutting-plane algorithm mentioned in Section 3.3. Given

a current incumbent solution, ŝ, we modify the master problem from model (10) by adding a

quadratic regularization term, as indicated in model (33). In general, the regularization term

prevents large changes in incumbent solutions between iterations, which can stabilize the algorithm

and encourage faster converge.

(MR) min c(sp, sq) +
ρ

2
‖(sp, sq)− (ŝp, ŝq)‖22 (33a)

s.t.
¯
s ≤ s ≤ s̄ (33b)

− λp,k>Dspi − λ
q,k>Dsq + zk ≤ 0 ∀k = 1, 2, . . . (33c)

However, additional steps need to be taken to obtain a valid lower bound. When an ε-feasible

solution is reached, since the regularization term is appended to the master problem as shown

in (33), c(ŝp, ŝq) may not be a lower bound on the optimal value of model (7). However, we can

solve the original master problem (10) with all the feasibility cuts (but without the regularization

term) to obtain a valid lower bound, V ∗. Although a valid lower bound is obtained, the solution

(s̃p, s̃q) of this non-regularized master problem may not be equal to (ŝp, ŝq), and it may not be

an ε-feasible solution. The algorithm needs to proceed until we obtain a ε-feasible solution from

solving the regularized master problem and the difference between V ∗ and c(ŝp, ŝq) is negligible

(less than some tolerance η) so that we can approximate the lower bound value with the cost of

this ε-feasible solution. The modified algorithm is presented as Algorithm 2.
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Algorithm 2 Regularized cutting-plane algorithm for model (7)

1: Let (MR) denote regularized master (33) and (M) denote non-regularized master (10); initialize iteration
number k := 1, tolerances ε, η > 0, and regularization weight, ρ > 0;

2: Solve (MR) and obtain solution (ŝp,k, ŝq,k) and optimal value V ∗;
3: Solve (SDI) with (ŝp, ŝq) = (ŝp,k, ŝq,k) and obtain solution (λp,k, λq,k) and optimal value zkfeas;

4: while zkfeas > ε or UB−V ∗

V ∗ > η do

5: Append zkfeas−λp,k
>
D(sp− ŝp,k)−λq,k>D(sq− ŝq,k) ≤ 0 to constraints (33c) of (MR), (10c) of (M);

6: Let k := k + 1;
7: Solve (MR) and obtain solution (ŝp,k, ŝq,k);
8: if (MR) is feasible then
9: Solve (SDI) with (ŝp, ŝq) = (ŝp,k, ŝq,k) and obtain solution (λp,k, λq,k) and optimal value zkfeas;

10: if zkfeas ≤ ε then

11: Obtain optimal value UB = c(ŝp,k, ŝq,k);
12: Solve (M) and obtain solution (s̃p, s̃q) and optimal value V ∗;
13: Solve (SDI) with (ŝp, ŝq) = (s̃p, s̃q) and obtain solution (λp,k, λq,k) and optimal value zkfeas;

14: else
15: Stop and return the status of infeasibility;

end while
16: Output V ∗ as lower bound on optimal value of model (7), and output (ŝp,k, ŝq,k) as an ε-feasible solution.

Table 7 compares the computational performance of Algorithms 1 and 2 on Cases 118 and 300

with ρ = 0.1, 1, 10 and η = 10−4. It takes more than 300 iterations for Algorithm 1 to reach an

ε-feasible solution, with both the violation and the lower bound improving slowly. We can see that

adding a regularization term may decrease the number of iterations to convergence, but the average

time for each iteration increases as ρ increases.

Parameters
No. of iterations ε-feasibility achieved Time (sec.)

Case 118 Case 300 Case 118 Case 300 Case 118 Case 300

ρ = 0 300 300 No No 2414 23042
ρ = 0.1 300 300 No No 2640 30480
ρ = 1 178 300 Yes No 2114 33950
ρ = 10 300 226 No Yes 4292 27757

Table 7: Computational results for solving instances of model (7) for Cases 118 and 300 with
Algorithms 1 and 2 with Γ = 3 and with a limit of 300 iterations.

To understand this effect, we plot the violation (in base-10 log scale) and lower bound as a

function of the iteration for Case 118 in Figure 2. The red dots represent the value of UB corre-

sponding to the ε-feasible solutions from running Algorithm 2. Without regularization, the master

solution in the next iteration tends to move far from the incumbent solution. The corresponding

cuts provide a global characterization of the feasible region, but it takes a long time to generate

enough cuts to obtain an ε-feasible solution. On the other hand, the regularized algorithm tends

to generate cuts within a local area, as the new probing solution is close to the incumbent and

moves quickly towards the feasible region. It takes longer to solve (SDI) at a solution closer to the
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Figure 2: Computational performance of Algorithms 1 and 2 for Case 118 with ρ = 0, 0.1, 1 and
10.

feasible region, which leads to a longer average time per iteration for Algorithm 2.

Every time an ε-feasible solution is obtained, the non-regularized master problem (M) is solved

to generate a lower bound. If there is still a large enough gap between the cost of that solution and

the lower bound, the algorithm moves to the incumbent solution of (M), which may lead to a large

feasibility violation. This explains the large spikes in the plots of ρ = 1 and ρ = 10 in Figure 2.

The process between two spikes can be considered as exploitation of a local area. When ρ = 10,

there are many spikes which indicates that the algorithm reaches an ε-feasible solutions frequently,

but in this case the cuts generated only characterize the feasible region locally, which eventually

requires many rounds of exploitation before convergence. Even with an appropriately chosen ρ, the

computational performance of Algorithm 2 is inferior to the scenario-appending technique presented

in Section 3.3.

39


