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Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the struc-

tural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be

remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limita-

tion to “modest” problems is a result of the computational overhead and numerical challenges encountered

in computing the GP conditional (posterior) distribution on each iteration. In this paper we substantially

expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in

this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored

computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an

algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for

significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA

applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need

not be spatially close. We carefully document the computational savings via complexity analysis and an

extensive empirical study.

Key words : design of experiments; efficiency; statistical analysis

History : Received July 2019; revisions received November 2019, February 2020.

1. Introduction

Stochastic simulation is a standard tool for designing complex systems that are subject to

uncertainty, where a natural goal is to optimize system performance with respect to con-
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trollable decision variables. The focus of this paper is minimizing the expected value of a

stochastic simulation output of interest, which is often referred to as optimization via sim-

ulation (OvS). Within OvS, algorithms have been created that provide various theoretical

or practical guarantees. The algorithm we present in this paper has a global convergence

guarantee as well as finite-time optimality-gap inference for OvS problems whose deci-

sion variables assume integer-ordered values. Such discrete OvS (DOvS) problems appear

frequently in operations research when whole units of a resource (e.g., machines on an

assembly line, beds in a hospital, or agents in a call center) need to be allocated.

We are specifically interested in problems whose feasible solutions are defined on a finite

subset of the integer lattice, and the number of feasible solutions, combined with the

execution time of the simulation, implies that only a small fraction of the feasible solutions

can be simulated. Nevertheless, we desire strong finite-time global inference, such as that

provided by ranking and selection (R&S)—which simulates all feasible solutions—and a

global convergence guarantee in the limit, such as that provided by adaptive random search.

What we refer to as inference-based optimization represents the unknown objective func-

tion surface as a realization of a random (typically Gaussian) process, sequentially updates

the conditional (posterior) distribution of the objective function as the search progresses,

and uses the conditional distribution to guide the search and indicate when it is safe to stop

with some statistical guarantee on the optimality gap, which is the difference between the

mean of the chosen solution and the optimal solution. This remarkably effective approach

is usually credited to ?; in their setting the computer simulation was deterministic, but so

computationally expensive that only a small number of simulation runs could be completed

and therefore each one needed to be deployed as productively as possible. Inference-based

optimization strategies are a staple of the Bayesian optimization literature.

Inference-based optimization employs a more sophisticated and computationally expen-

sive search step than adaptive random search: updating the conditional distribution. The

computational overhead needed to provide this inference has sometimes been ignored

because the simulations were so computationally expensive that the time saved by not

simulating poor solutions overwhelmed the inference overhead. In our setting the output

is stochastic, and the number of feasible solutions is huge, but individual replications of

a solution may be relatively cheap compared to a deterministic computer experiment. In
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combination, the computational overhead for inference is no longer negligible compared to

the simulation cost.

An example of the class of problems we consider is condition-based maintenance-policy

optimization, as studied in ?: The objective is to minimize the expected cost of operation

by assigning a condition number to each machine in a preventative maintenance (PM)

queue to avoid more expensive corrective action if it fails. Each machine has a degrading

health index of L (perfect health), L− 1, . . . ,0 (complete failure). The PM condition is

assigned based on the health index, and thus there are L− 1 feasible conditions for each

machine excluding 0 and L. For a system with d machines in total, the size of the feasible

solution space is (L− 1)d, which explodes as the number of machines d increases. A single

simulation replication of this problem is relatively cheap (a few seconds), but has large

stochastic error variance, which makes it computationally impossible to apply R&S. The

computational cost of inference-based optimization also increases with d.

Obviously the effectiveness of inference-based optimization depends critically on how

well the chosen Gaussian process (GP) provides insight into the unknown objective func-

tion. A GP is defined by its mean function and most critically its covariance function (?). ?

showed that the continuous-decision-variable covariance functions that are often employed

in Bayesian optimization may fail spectacularly when applied to discrete-decision-variable

problems, particularly when used for optimality-gap inference. A discrete Gaussian Markov

random field (GMRF), on the other hand, provided excellent search guidance and stop-

ping inference. Our primary contribution is to greatly extend the reach of GMRF-based

optimization by dramatically reducing the computational cost of inference.

We achieve our speed-up without resorting to any approximations, and therefore obtain

the full benefits of this powerful inference-based approach. Our rapid Gaussian Markov

Improvement Algorithm (rGMIA) combines infrequent evaluations of the full conditional

distribution for global inference, with rapid learning on a smaller, adaptive subset of

promising solutions. The fact that these small subsets need not be spatially close is key to

rGMIA making per-iteration search progress that is nearly the same as would be obtained

by computing the full conditional distribution on each iteration.

The remainder of the paper is structured as follows. In Section ??, we review the use of

GPs in DOvS algorithms. Section ?? provides the necessary background on GMRFs and

complete expected improvement, a functional of the conditional distribution of the GP that
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guides the search. Section ?? restates GMIA as presented in ?. In Section ??, we introduce

rGMIA and delve into its computational details in Section ??. In particular, we analyze the

computational complexity of rGMIA relative to GMIA, and prove its global convergence.

Section ?? shows numerical results, evaluating rGMIA against GMIA on carefully selected

test problems, and Section ?? contains concluding remarks.

2. Gaussian Processes in DOvS

GPs are stochastic processes with the property that any finite collection of the constituent

random variables are jointly normal. GPs are in common use in the design and analysis

of computer experiments to model an unknown response surface (?). Of interest to us is

their use in search algorithms where they play the role of known mathematical proper-

ties of the objective function surface. As feasible solutions are evaluated (deterministic

computer model) or simulated (stochastic simulation), the conditional distribution of the

GP is updated and employed to guide the search for improved solutions. Choosing the

covariance function of a GP is important as it implies certain properties of the objective

function surface it models, and this has consequences both on the validity of the statistical

learning and on the computations. Calculating the conditional distribution usually requires

inverting a large, dense, and sometimes ill-conditioned covariance matrix, and this is the

essential bottleneck for applying GP optimization to large-scale problems.

The use of GPs in OvS problems, with both continuous and discrete decision variables,

often results in algorithms that choose a solution to simulate xt at iteration t where the

selection criterion is prescribed by the acquisition function a(µt,Σt). We use (µt,Σt) to

represent the posterior mean and variance, respectively, of the GP Y(·) that represents the

unknown surface y(·) at iteration t. This notation will be defined more precisely later. In

the following, we review GP methods devised for solving DOvS problems.

? consider a Bayesian R&S problem with independent normal responses and use a GP

model with correlation among alternatives as a prior on the mean values of the response.

They then treat the problem of finding the alternative with the smallest mean as a

dynamic programming problem to optimally allocate computer effort. Since this problem

is intractable, they myopically approximate an optimal allocation by simulating the alter-

native that maximizes the benefit received as if each iteration were the last iteration of

the dynamic program. They term this acquisition function the knowledge gradient (KG). ?
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address the same setting where a multivariate normal prior is used to represent the means

of a finite number of alternatives. They extend the acquisition function found in ? by

considering pairwise sampling using common random numbers (CRN). Our GMRF-based

approach can be considered a form of Bayesian R&S where there is a prior distribution

exhibiting strong correlation among solutions, as in ?. Therefore, not all solutions need to

be simulated to make optimality-gap inference.

Employing a very different approach, ? model the simulation output at a solution, x,

as G(x) = M(x) + ε(x) where M(x) is a stationary, mean-zero GP and ε(x) is an error

term that models the stochastic noise in the simulation output. The “stochastic kriging”

model, G, is updated as the algorithm proceeds and used to construct a distribution from

which the next solution to simulate will be sampled. The use of a sampling distribution

as the acquisition function to guide the search distinguishes this method from the others

discussed above. None of the prior work cited above considers problems on the scale that

we address here in terms of the number of feasible solutions in a discrete space.

3. Optimization using GMRFs

Consider the global DOvS problem: minx∈X y(x) = E [Y (x)], where the feasible region X is

a finite subset of the d-dimensional integer lattice Zd; let n= |X | be the number of feasible

solutions. In particular, we assume X is a d-dimensional hyperrectangle. At each feasible

solution x, the objective function y(x) is the unknown mean of the simulation output,

Y (x), which can be estimated via simulation. For any feasible solution x, we observe the

output Yj(x) = y(x) + εj(x) on replication j = 1,2, . . . , where {εj(x)} are assumed i.i.d.

normal with mean 0 and finite (unknown) variance σ2(x) that may depend on x. In this

section, we present the underlying stochastic process for our inference-based optimization

procedure to solve the DOvS problem.

3.1. Gaussian Markov Random Fields

A GP-based optimization method for a finite feasible-solution space starts by modeling the

unknown objective function values y = [y(x1), y(x2), . . . , y(xn)]> as a multivariate normal

random vector Y = [Y1,Y2, . . . ,Yn]> with mean µ and covariance matrix Σ. A GMRF, a

special case of GP, is a non-degenerate n× 1 Gaussian random vector Y that is associated

with an undirected and labeled graph G = (V,E), where V denotes the set of nodes and

E denotes the set of edges; see ?. Each node in V is associated with a unique element
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of Y. Two nodes in the graph are called neighbors if they are connected by an edge. As

described below, the graph G determines the structure of the precision matrix, Q, which

is the inverse of the covariance matrix Σ of Y.

In general, the diagonal entries Qii of a precision matrix are such that Var(Yi |YV\{i}) =

1/Qii, where YV\{i} is the vector of values of the GMRF observed at the nodes in V \
{i}. Thus, they are the reciprocals of the conditional variances. The off-diagonal ele-

ments are proportional to the conditional correlations; specifically Corr(Yi,Yj |YV\{i,j}) =

−Qij/
√
QiiQjj, where YV\{i,j} is the vector of values of the GMRF observed only at the

nodes in V \ {i, j}.
The graph G determines the non-zero pattern of the precision matrix Q, and vice versa,

since for a GMRF Qij 6= 0 if and only if {i, j} ∈ E . Thus, the precision matrix is sparse if the

set of edges is small. GMRFs are “Markov” because they possess the local Markov property:

Yi ⊥YV\{i,N (i)} |YN (i) for every i ∈ V, where N (i) = {j : {i, j} ∈ E}. This local Markovian

property incapsulates the prior belief that if all of the neighbors of a feasible solution have

been observed then there is little additional information about that solution remaining in

non-neighboring solutions; this regularity is often appropriate for DOvS problems that tend

to feature locally well-behaved objective functions. By contrast, the Gaussian covariance

function favored in Bayesian optimization implies an objective function that is infinitely

continuously differentiable, a much stronger condition.

3.2. Optimization

In a DOvS problem with integer-ordered decision variables, the natural graph G = (V,E)

defines the nodes V to be X . Construction of E requires a neighborhood. ? show that a

particularly effective choice is based on the `2 distance, N (x) = {x′ ∈ X : ||x− x′||2 = 1},
which implies that the fraction of non-zero entries in the precision matrix Q is bounded

above by (2d+ 1)/n for hyperrectangular X , which makes Q very sparse for large n. This

allows faster computations than when a dense precision matrix is used.

We parameterize the entries of Q by θ = [θ0, θ1, . . . , θd]
>. For the neighborhood N (x),

we let Qij = θ0, if xi = xj, and Qij = −θ0θj, if |xi − xj| = ej, where xi,xj ∈ X ,ej is the

jth standard basis vector and | · | is the component-wise absolute value. In all other cases,

Qij = 0. Thus, θ0 is the conditional precision of each solution, and θj is the conditional

correlation between solutions that differ by 1 in the jth coordinate direction, given their

neighbors. Under this parametrization Q = Q(θ), but we omit θ for notational simplicity.
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Solutions on the boundaries of the feasible region, or without neighbors in all coordinate

directions, would require adjusted parameters for the GMRF to be stationary. We have

chosen to ignore this, as the impact seems negligible and, therefore, treat our GMRF as

non-stationary.

Since the conditional precisions must be positive, it follows that θ0 > 0. We also want

neighbors to have non-negative conditional correlations, so θ1, θ2, . . . , θd are chosen to be

non-negative. Additionally, Q should be positive definite. With these conditions, Q is

a non-singular M -matrix so its inverse is nonnegative (?). In other words, there are no

negative (unconditional) correlations among nodes in the GMRF, a property that makes

sense in many DOvS problems as the objective-function values of neighboring solutions

should be similar to one another. Notice that even though we construct Q to be sparse,

its covariance matrix, Σ = Q−1, is typically dense, as it should be.

Based on our GMRF model, the prior joint distribution of Y is N(µ,Q−1). We adopt

non-informative constant prior mean µ = µ1n×1, where 1n×1 is an n× 1 vector of 1s. In

total, we have d+ 2 parameters to specify a GMRF for a d-dimensional decision variable

x.

Suppose that we simulate a subset of solutions in X . Let Ȳ be an n× 1 vector such

that each element is either the sample mean of the associated feasible solution, if it has

been simulated, or µ if it has not. Consistent with the output model, we represent Ȳ as a

realization of the GMRF Yε =Y+ε, where the entries of ε are jointly normally distributed,

if the corresponding solutions have been simulated, and 0s, otherwise. The composite prior

distribution of Yε is N (µ, (Q + Qε)
−1). We choose to simulate all solutions independently

(no CRN), which makes Qε a diagonal matrix so that the sparsity pattern of Q is preserved

for Q + Qε. If solution x has been simulated, the corresponding diagonal element of Qε is

estimated by r(x)/S2(x), where r(x) is the number of replications that have been obtained

and S2(x) is the sample variance estimate of σ2(x); otherwise the corresponding element

in Qε is set to 0.

? prove that the conditional distribution of Y|Yε = Ȳ is

N
(
µ+ Q̄−1Qε(Ȳ−µ), Q̄−1

)
, (1)

where Q̄ = Q + Qε is the conditional precision matrix. Notice that computing the condi-

tional mean and variance requires Q̄−1, and Q̄ changes as we simulate additional feasible
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solutions. Efficiently calculating quantities that depend on (??) for a large number of fea-

sible solutions is the principal topic of this paper. In practice, parameters such as θ and µ

are unknown, but are estimated via maximum likelihood after simulating an initial set of

feasible solutions. The intrinsic precision matrix, Qε, on the other hand, is often directly

estimated from simulation output by using the sample variances at simulated solutions, as

described above.

Both the GMIA algorithm of ? and our rGMIA guide their search and (possibly) termina-

tion using complete expected improvement (CEI), which is defined in ?. At any iteration, the

estimated optimal solution is x̃ = arg min{x∈X :r(x)>0} Ȳ (x), where Ȳ (x) is the component of

Ȳ associated with solution x. The CEI of each candidate solution, x∈X \ x̃, is the expected

improvement in the objective function offered by solution x compared to x̃, where the

expectation is with respect to the current conditional distribution of the GMRF. Thus, the

CEI of a candidate solution x relative to x̃, is CEI(x̃,x) = E
[
max (Y(x̃)−Y(x),0) |Yε = Ȳ

]
,

where the expectation is conditional on Yε = Ȳ, the simulation output that has been

collected. CEI is an extension of the EI acquisition function (?) tailored for stochastic sim-

ulation (?). The joint conditional distribution of Y(x̃) and Y(x), x̃ 6= x is bivariate normal

with parameters taken from the mean and the covariance matrix of (??) corresponding to

x̃ and x. We denote the conditional mean and conditional variance at x as M(x) and V (x),

respectively, and the conditional covariance between x̃ and x as C(x̃,x). For a given solu-

tion, x, the variance of the difference of Y(x̃)−Y(x) is V (x̃,x)≡ V (x̃) +V (x)− 2C(x̃,x).

? show that the CEI of x can be expressed as

CEI(x̃,x) = (M(x̃)−M(x)) Φ

(
M(x̃)−M(x)√

V (x̃,x)

)
+
√
V (x̃,x) φ

(
M(x̃)−M(x)√

V (x̃,x)

)
, (2)

where φ and Φ are the density and cumulative distribution functions, respectively, of a

standard normal random variable. Both GMIA and rGMIA use CEI for search guidance—

simulate next the solution with the largest CEI—and as a stopping criterion—stop when

maxx∈X\x̃ CEI(x̃,x)≤ δ, where δ is user-specified acceptable optimality gap. CEI has been

shown to have desirable properties. For instance, ? prove that under simplified conditions

(R&S with independent and normally distributed simulation output with known variances),

CEI satisfies the conditions found in ? that ensure that the probability of incorrect selection

converges to zero at the fastest possible exponential rate as the total simulation budget
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increases to infinity. Such asymptotic properties, along with the impressive empirical per-

formance shown in ?, argue that CEI is a good acquisition function for inference-based

optimization.

Let M(xX ) = [M(x1),M(x2), . . . ,M(xn)]>, V(xX ) = [V (x1), V (x2), . . . , V (xn)]>, and

C(x̃,xX ) = [C(x̃,x1),C(x̃,x2), . . . ,C(x̃,xn)]>. From a computational point of view, to

obtain V (x̃,x),∀x ∈ X , we need to compute the diagonal of Q̄−1 to obtain V(xX ) and

the column of Q̄−1 corresponding to x̃ for C(x̃,xX ). The latter operation requires solving

the linear system Q̄z = ex̃ for z, where ex̃ is an n-dimensional basis vector consisting of

zeroes, except for a 1 in the position corresponding to x̃. The former is more expensive

to compute; a naive approach is to compute the full inverse Q̄−1 and extract its diagonal.

Both operations require factorizing Q̄ at every iteration. Although sparsity of Q̄ helps, it

is increasingly expensive for large n. Such computational challenges serve as our motiva-

tion to substantially extend GMIA’s reach to larger numbers of feasible solutions in higher

dimensions.

? introduced a multi-resolution framework in which the feasible solution space is divided

into non-overlapping regions. Each region is represented by a solution-level GMRF, and the

average objective function values of the regions are represented by a region-level GMRF.

Their approach provides global and local search guidance as well as stopping inference

while reducing the size of the solution-level GMRFs. Of course, any such multi-resolution

approach will eventually be limited by the largest solution-level GMRF it can handle.

Thus, we concentrate on extending the solution-level algorithm in this paper.

? propose an efficient way to compute the diagonal elements of Q̄−1 without full inver-

sion when Q̄ is sparse. PARDISO (?), a linear solver specialized for parallel computation

using state-of-the-art algorithms, was employed to perform this calculation. However, the

? algorithm still requires factorizing Q̄ on every iteration. Our approach not only avoids

fully updating Q̄−1, but also factorizing Q̄ on every iteration, and it employs exact, rapidly

computed CEIs on all iterations.

4. Gaussian Markov Improvement Algorithm

In this section, we provide a quick review of GMIA. As presented in Algorithm ??, GMIA

begins by simulating a small number, n0, of well-placed initial design points (feasible

solutions) and uses the outputs to compute the maximum likelihood estimators (MLEs)
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of µ and θ. Then, it updates the conditional distribution in (??) given the simulation

outputs from the initial design and computes the CEIs of all solutions in X . While the

stopping criterion is not satisfied, GMIA simulates the current sample-best solution, x̃,

and the solution with the largest CEI, xCEI, at each iteration. If Y (x) is discrete-valued,

then arg min{x∈X :r(x)>0} Ȳ (x) and arg maxx∈X\x̃ CEI(x̃,x) may be sets of size greater than

1. When this occurs, we randomly select a single solution in the set to be x̃ and xCEI,

respectively.

There are two stopping paradigms in OvS: fixed-precision and fixed-budget (?). For the

former, the algorithm terminates when the inferred optimality gap of the current best solu-

tion falls below a user-defined δ. Using CEI to terminate, as discussed in Section ??, is an

example of a fixed-precision approach. In this paradigm, the performance of an algorithm is

evaluated by whether it actually achieves the inferred optimality gap at termination, as well

as the computational effort required to terminate. On the other hand, for a fixed-budget

paradigm an algorithm terminates when a predefined computational budget is expended

and the performance of the algorithm is evaluated by how small the achieved optimality

gap is at termination. Typically for a R&S procedure the computational budget is specified

as the allowable number of simulation replications, since other computational overhead is

negligible when the number of feasible solutions is small. For large-scale, inferential opti-

mization, however, the budget should encompass both simulation time and non-simulation

time.

Algorithm 1: GMIA

1 Choose n0� n initial design points. Simulate r replications for each design point
and use the simulation output to compute MLEs for the GMRF parameters
(µ,θ). Construct Q̄ = Q + Qε and Ȳ;

2 while Stopping criterion not reached do
3 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
4 Compute Cholesky factor of Q̄: LQ̄;
5 Compute V(xX ) = diag(Q̄−1), using LQ̄;
6 Compute C(x̃,xX ) = Q̄−1ex̃, using LQ̄;
7 Compute M(xX ) = µ+ Q̄−1Qε(Ȳ−µ), using LQ̄;
8 Calculate CEI(x̃,x),∀x∈X ;
9 Find xCEI = arg maxx∈X\x̃ CEI(x̃,x);

10 Simulate at x̃ and xCEI. Update Ȳ, Qε, and Q̄ by incorporating the new
simulation outputs;

11 end
12 Return x̃ = arg min{x∈X :r(x)>0} Ȳ (x) as the estimated optimal solution;
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In Algorithm ??, Steps 4 and 5 are the most expensive in terms of non-simulation

overhead. As mentioned in the previous section, ? propose extracting the diagonal elements

of Q̄−1 without computing the inverse entirely. Although this approach greatly reduces

the cost of Step 5, Step 4 remains a bottleneck. Due to the sparsity of Q̄, the cost of

the Cholesky factorization is much cheaper than it is for a dense matrix. Nonetheless, it

still becomes costly when the problem size is large, limiting the scope of GMIA. In GP-

based optimization algorithms, a common trick is to update the conditional distribution

efficiently using the Sherman-Morrison-Woodbury (SMW) formula to avoid factorizing Q̄

every iteration. In the Online Supplement (Appendix ??), we show that this approach

results in greater computational burden than our rGMIA.

5. Overview of rGMIA

Computing the CEIs for all feasible solutions enables GMIA to exploit global optimality-

gap inference, but it comes at a computational cost. Moreover, when X is large, most

solutions’ CEIs are largely unaffected by the new simulation outputs at x̃ and xCEI. If we

knew that a much smaller subset of solutions would contain those with the largest CEIs

over the next, say, p− 1 iterations, then we could update the CEIs for only those solu-

tions in the subset. Of course, we do not know such a subset, but this insight motivates

restricting CEI computation to a small subset of promising solutions for several iterations.

Since we only require the diagonal elements of Q̄−1 corresponding to those solutions in

the subset, this strategy will greatly reduce the computational overhead in Step 5 of Algo-

rithm ??. Furthermore, as shown in the following sections, this scheme avoids an expensive

factorization in Step 4 by replacing it with much cheaper, lower-dimensional linear alge-

bra. Accomplishing this in a way that significantly reduces computation without hampering

search progress is our key contribution.

Algorithm ?? illustrates the steps of rGMIA including the necessary computation

required at each step. We defer discussion of the derivation of these results to Section ??

and provide a high-level description here: There are three stages to rGMIA: initialization,

rapid search and global search. In the initialization stage, rGMIA estimates the GMRF

parameters and updates its conditional distribution. Then, it proceeds to Step ?? of global

search.
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rGMIA alternates between many rapid-search iterations and a single global-search iter-

ation, as long as the global-search termination criterion is not met. For a fixed-budget set-

ting, this would be the constraint on the algorithm run-time. For a fixed-precision setting,

the CEI stopping criterion, maxx∈X\x̃ CEI(x̃,x)≤ δ, is used. At each global-search iteration

(Steps ??–??), rGMIA partitions the feasible region into a search set S ⊂X and a fixed set

F ≡X \S. The former contains the best simulated solution, x̃ = arg min{x∈X :r(x)>0} Ȳ (x),

and promising candidate solutions that need not be spatially close. The intermediate matri-

ces, A and B, and vector, a, required for fast linear algebra during the rapid-search itera-

tions are also computed. Then, rGMIA proceeds to rapid search (Steps ??–??), checking

the rapid-search termination criterion along the way, which allows the algorithm to escape

from simulating the solutions in S and return to a global-search iteration when the ben-

efit from additional rapid search is marginal. We discuss candidates for the rapid-search

termination criterion in Section ??. During rapid-search iterations, rGMIA computes the

CEIs of solutions in S exactly and selects the next solution to simulate within S. In the

following global-search iteration, S and F are updated reflecting cumulative simulation

results.

We let M(xS), V(xS) and C(x̃,xS) represent the vectors of conditional means, condi-

tional variances, and conditional covariances with respect to x̃, respectively, of solutions in

S; M(xF), V(xF) and C(x̃,xF) are defined similarly for F . During rapid-search iterations,

we choose x̃ to be the best simulated solution within S, i.e., x̃ = arg min{x∈S:r(x)>0} Ȳ (x).

This ensures that we only need to update the conditional distribution of solutions in S

during the rapid-search iterations. Because CEI is relative to the current sample-best solu-

tion, if we allowed x̃ to be in F , then we would need a full conditional-distribution update

to compute the exact CEIs. We do a full update only on a global-search iteration.

Computational savings per iteration for rGMIA come largely from |S|� |F| ≈ |X |. That

is, the relatively small cardinality of S is the key factor. However, effective search, which

is per-iteration progress toward the optimal solution, depends on the content of S. Our

proposal is to select solutions with the largest CEIs with respect to x̃ at each global-search

iteration. This is based on the premise that the CEIs of solutions change incrementally in

subsequent iterations unless they are very close to a solution chosen for simulation. Other

choices are possible. There is no computational advantage for the solutions in S to be

close to each other in X , which allows the rapid search to remain global even though only
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considering a subset of solutions. We have observed that the resulting S includes solutions

near x̃, other solutions with favorable sample means, as well as solutions in unexplored

regions of X . However, savings in the form of per-iteration computational overhead do not

depend on this choice of S.

The idea of restricting inference to a smaller subset to reduce computational cost appears

in other work as well. For instance, for their GP-based search ? propose forming a smaller

set of candidate solutions in some randomized fashion or applying a local gradient search

on the KG surface by relaxing the integrality condition. Unlike our approach, these subsets

or local search perimeters are altered and the GP conditional distribution is updated for a

different set of solutions at every iteration. By contrast, concentrating on the same S for

several rapid-search iterations allows rGMIA to exploit the savings from cheap computa-

tional linear algebra to a greater extent.
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Algorithm 2: rGMIA

1 Choose n0� n initial solutions. Simulate at each solution and compute MLEs for
the GMRF parameters (µ,θ). Construct Q̄ = Q + Qε;

2 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
3 Compute Cholesky factor of Q̄: LQ̄;
4 Compute V(xX ) = diag(Q̄−1), C(x̃,xX ) = Q̄−1ex̃, M(xX ) = µ+ Q̄−1Qε(Ȳ−µ),

using LQ̄. Go to Step ??;
5 while global-search termination criterion not reached do
6 while rapid-search termination criterion not reached do
7 Simulate at x̃, xCEI. Update simulation information by updating Ȳ (x̃),

Ȳ (xCEI), Qε, Q̄, Q̄SS ;
8 Find x̃ = arg min{x∈S:r(x)>0} Ȳ (x);
9 Compute V(xS), C(x̃,xS) by computing ΣSS = (Q̄SS −B)−1;

10 Compute M(xS) = µS + ΣSS([Qε]SS(Ȳ(xS)−µS)−a);
11 Calculate CEI(x̃,x),∀x∈ S ;
12 Find xCEI = arg maxx∈S\x̃ CEI(x̃,x);
13 end
14 Simulate at x̃, xCEI. Update simulation information by updating Ȳ (x̃), Ȳ (xCEI),

Qε, Q̄, Q̄SS ;
15 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
16 Compute V(xS) from ΣSS = (Q̄SS −B)−1;
17 Compute M(xS) = µS + ΣSS([Qε]SS(Ȳ(xS)−µS)−a);
18 Compute V(xF) = diag(Q̄−1

FF) + diag(AΣSSA
>), using LQ̄FF ;

19 Compute M(xF) = µF + Q̄−1
FF [Qε]FF(Ȳ(xF)−µF)−A(M(xS)−µS), using

LQ̄FF ;
20 if x̃∈ S then
21 Compute C(x̃,xS) = [ΣSS ]·x̃;
22 Compute C(x̃,xF) =−A[ΣSS ]·x̃;
23 else
24 Compute C(x̃,xS) =−ΣSS [A

>]·x̃;
25 Compute C(x̃,xF) = Q̄−1

FFex̃ + AΣSS [A
>]·x̃, using LQ̄FF ;

26 end
27 Calculate CEI(x̃,x),∀x∈X ;
28 Find xCEI = arg maxx∈X\x̃ CEI(x̃,x);
29 Construct {F ,S} partition of Q̄ into Q̄FF , Q̄FS , Q̄SS ;
30 Compute Cholesky factor of Q̄FF : LQ̄FF ;
31 Compute A = Q̄−1

FFQ̄FS , using LQ̄FF , B = Q̄>FSA, a = A>([Qε]FF(Ȳ(xF)−µF));
32 end
33 Return x̃ as the estimated optimal solution;

Initialization
Rapid

search

Global

search
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6. Properties of rGMIA

In this section we provide computational complexity analysis of rGMIA. We analyze the

computational costs of rapid search and global search in Sections ?? and ??, respectively.

Section ?? then compares rGMIA to GMIA and proves global convergence.

Partitioning Q̄ into block matrices corresponding to F and S as

Q̄ =

Q̄FF Q̄FS

Q̄>FS Q̄SS

 ,
we obtain the following expression for Σ via standard block-matrix inversion:

Σ =

ΣFF ΣFS

Σ>FS ΣSS

=

Q̄−1
FF + Q̄−1

FFQ̄FSΣSSQ̄
>
FSQ̄

−1
FF −Q̄−1

FFQ̄FSΣSS

−ΣSSQ̄
>
FSQ̄

−1
FF ΣSS

 , (3)

where ΣSS = (Q̄SS− Q̄>FSQ̄
−1
FFQ̄FS)

−1 is the covariance matrix of the search set. Our focus

is on ΣSS during the rapid-search iterations. Recall that before beginning rapid search,

rGMIA computes intermediate matrices A and B. These contain information to compute

V(xS) and C(x̃,xS) during rapid-search iterations without updating V(xF) and C(x̃,xF).

Since only solutions in S are simulated, B = Q̄>FSQ̄
−1
FFQ̄FS remains unchanged during

rapid search and needs to be computed only once at the end of the previous global-search

iteration. In addition, we retain the Cholesky factor of Q̄FF (that is, LQ̄FF such that

Q̄FF = LQ̄FFL>
Q̄FF

), as well as A = Q̄−1
FFQ̄FS since they are needed to update the exact

conditional means and variances of the solutions in F efficiently in the next global iteration.

Like the conditional covariance matrix, we partition the conditional mean vector M(xX ):

M(xX ) =

µF
µS

+

Q̄FF Q̄FS

Q̄>FS Q̄SS

−1[Qε]FF 0nS×nF

0nF×nS [Qε]SS

Ȳ(xF)

Ȳ(xS)

−
µF
µS

 , (4)

where nS = |S|, nF = |F|, [Qε]FF and [Qε]SS are block matrices of Qε corresponding to F
and S, and {Ȳ(xF), Ȳ(xS)} and {µF ,µS} are subvectors of Ȳ and µ, respectively. Thus,

M(xS) = µS + ΣSS
(
[Qε]SS(Ȳ(xS)−µS)−A>[Qε]FF(Ȳ(xF)−µF)

)
. (5)

During the rapid search, only [Qε]SS and Ȳ(xS) change, while a = A>[Qε]FF(Ȳ(xF) −
µF) remains unchanged; A,B, LQ̄FF and a are intermediate matrices that we store in

memory at the end of each global-search iteration. In the following sections, we discuss the

computational details of rapid-search and global-search iterations.
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6.1. Rapid Search

During the rapid-search iterations we replace sparse-matrix inversions of very large Q̄ with

dense inversions of very small ΣSS . From (??), ΣSS = (Q̄SS −B)−1, which is performed

in Step 9 of Algorithm ??. By construction, Q̄SS is a sparse matrix, but B may be dense.

Hence, the floating point operation (flop) count of computing ΣSS is O(n3
S). Following

directly from (??), Step 10 computes M(xS) by multiplying the dense nS×nS matrix ΣSS

by a vector, which costs O(n2
S). Thus, the overall cost of a single rapid-search iteration

is O(n3
S). Compared to a single iteration of GMIA, this can be made much cheaper by

choosing the size of the search set nS� n. Later we consider nS ranging from 50 to 200.

Rapid-search iterations continue until the termination criterion is reached in Step 6. We

propose two candidate termination criteria and evaluate their performance empirically in

Section ??. The first is to employ a fixed p− 1 iterations of rapid search, implying that

global search is repeated every p iterations. There is a trade-off between large versus small

p. The former brings greater computational savings for inference by restricting the search

to be within S longer; however, effectiveness of the search will diminish if p is so large that

there is not much information left to gain from this set. Determining the best value of p

is difficult without complete knowledge of the response surface of the problem as well as

the stochastic error variance at the solutions. Also the best p may be different late in the

search as opposed to earlier. We show later that p= nS is often a reasonable choice.

The second criterion is to stop simulating within the current search set S based on

optimality-gap inference. Consider the following thought experiment: If we also knew the

CEIs of solutions in the fixed set F at every rapid-search iteration, then we would escape

from S when all of the CEIs of solutions xS fall below the maximum CEI in xF . As

an approximation of this ideal choice, we instead escape S when maxx∈S\x̃ CEI(x̃,x)< γ,

where γ is a small positive number. In words, we stop searching within S when the CEIs

of solutions within S fall below a threshold, γ, as it implies that only marginal reduction

in the optimality gap is expected by further exploring S. We refer to this criterion as the

adaptive scheme. A sensible choice for γ is the maximum CEI of the solutions in F at the

last global-search iteration. Other choices of γ are possible, but our results (Lemma 1 and

Theorem 1) were developed with this choice in mind. Clearly, this is not the same as the

true maximum CEI of the solutions in F , as it does not reflect the new simulation results

obtained during the rapid-search iterations, and it is calculated with respect to the best
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solution at the time of the last global iteration, which may have changed. Nevertheless, this

threshold is a strong indicator that greater improvement might be obtained by exploring

solutions in F .

6.2. Global Search

When the rapid-search termination criterion is met, rGMIA switches to global search, first

selecting x̃ among all simulated solutions in X in Step 15, then proceeding to compute the

CEIs for all solutions. Although one might be tempted to compute CEIs of all solutions

as in Steps 3–4 in the initialization phase of rGMIA, this involves factorizing Q̄ and com-

puting diag(Q̄−1). Then, after choosing S and F , we would once again need to factorize

Q̄FF and diag(Q̄−1
FF) to set up the rapid-search iterations. To avoid doing these expen-

sive computations twice, rGMIA computes the CEIs of all solutions without factorizing

Q̄, but using the matrices computed in the previous global-search iteration and the last

rapid-search iteration. In the following, we explain this scheme in detail.

Steps 16 and 17 compute V(xS) and M(xS) in the same way as in Steps 9 and 10 of

rapid search. Steps 18 and 19 compute V(xF) and M(xF), respectively. From (??),

ΣFF = Q̄−1
FF + A(Q̄SS − Q̄>FSA)−1A> = Q̄−1

FF + AΣSSA
>. (6)

Because V(xF) = diag(ΣFF), we have V(xF) = diag
(
Q̄−1
FF
)

+diag
(
AΣ−1

SSA
>). Recall that

A = Q̄−1
FFQ̄FS is computed and saved from the previous global-search iteration. Further,

diag
(
Q̄−1
FF
)

can be computed by performing a selected inverse, as discussed in ?, using

the Cholesky factor of Q̄FF saved from the previous iteration. Moreover, diag
(
AΣSSA

>)
can be obtained efficiently without computing the entire matrix by exploiting that the ith

diagonal element of AΣSSA
> is equal to the sum of squared elements of the ith column

vector of ALΣSS , where LΣSS is the lower Cholesky factor of ΣSS . This operation costs

O(n3
S) flops, whereas fully computing AΣSSA

> requires O(n2
Sn). From (??)

M(xF) = µF + Q̄−1
FF [Qε]FF(Ȳ(xF)−µF)−A(M(xS)−µS). (7)

Notice that Q̄−1
FF [Qε]FF(Ȳ(xF) − µF) can be computed efficiently by solving Q̄FFz =

[Qε]FF(Ȳ(xF)− µF) for z using the Cholesky factor of Q̄FF . Thus, the only remaining

pieces needed for CEI computation are the covariance vectors.

Since x̃ is selected globally in the global-search iteration, x̃ can be in either S or F .

This does not affect the way conditional variances and conditional means are calculated;
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however, it does affect the way the covariance vectors, C(x̃,xS) and C(x̃,xF), are com-

puted. When x̃ ∈ S, C(x̃,xS) is simply [ΣSS ]·x̃, the column of ΣSS corresponding to x̃.

Also, from (??)

ΣFS =−Q̄−1
FFQ̄FS(Q̄SS − Q̄>FSA)−1 =−Q̄−1

FFQ̄FSΣSS =−AΣSS .

Therefore, C(x̃,xF) =−A[ΣSS ]·x̃. These are computed in Steps 21 and 22.

When x̃ ∈ F , C(x̃,xS) is a column of ΣSF corresponding to x̃. Since ΣSF =−ΣSSA
>,

C(x̃,xS) = −ΣSS [A
>]·x̃. Similarly, C(x̃,xF) is a column of ΣFF corresponding to x̃.

From (??), C(x̃,xF) = Q̄−1
FFex̃ + AΣSS [A

>]·x̃. Again, Q̄−1
FFex̃ can be computed efficiently

by solving Q̄FFz = ex̃ for z. Steps 24 and 25 perform these computations.

Combining these pieces, rGMIA computes the CEIs for all solutions in X and constructs

a new {F ,S} partition in Steps 28 and 29. Finally, the intermediate matrices are recom-

puted according to the new partition and stored for the next global-search iteration.

The most expensive calculations during a global-search iteration are the Cholesky fac-

torization of Q̄FF , performing a selected inverse to compute diag
(
Q̄−1
FF
)

and solving a

linear system of equations with Q̄FF . We use the PARDISO software (?) to perform these

calculations, which improves their efficiency by pre-processing large matrices such as Q̄FF .

Unfortunately, this makes it difficult to characterize the flops required by these calcula-

tions. Therefore, we conducted timing experiments to estimate how the computation times

scale as the number of feasible solutions and problem dimension grow; see the Online

Supplement (Appendix ??) for the results.

Despite the lack of explicit flop counts for PARDISO calculations, we can still charac-

terize the computational savings attained by rGMIA compared to GMIA by parameter-

izing the flop counts for computing LQ̄FF , the Cholesky factor of Q̄FF , for performing a

selected inverse to obtain diag(Q̄−1
FF) given LQ̄FF , and for solving a single-column right-

hand-side linear system involving Q̄FF given LQ̄FF ; we denote these by CF = CF (GF),

CI =CI(GF) and CL =CL(GF), respectively. Note that GF is the induced graph of solutions

in F associated with the GMRF that uniquely specifies the sparsity pattern of Q̄FF and

thus determines the cost of performing these matrix operations.

As previously characterized for rapid-search iterations, computing V(xS) and M(xS)

costs O(n3
S) flops. To compute V(xF), it costs CI for diag

(
Q̄−1
FF
)

and O(n3
S) flops for

diag
(
AΣ−1

SSA
>). For M(xF), it costs CL for solving a system of linear equations and
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O(nSn) for the matrix-vector multiplication in (??). The cost for covariance vector com-

putation depends on whether x̃ is selected in S or F ; the latter case is the most expen-

sive, costing CL +O(nSn) flops. In our numerical experiments we observed that x̃ tends

to remain in S in later iterations. Finally, computing the intermediate matrices requires

CF +nSCL +O(n2
Sn).

To summarize, a single global-search iteration incurs a cost of CF +CI + (nS + 2)CL +

O(n2
Sn) flops. See the Online Supplement (Appendix ??) for a more detailed analysis.

6.3. rGMIA vs. GMIA

To illustrate the computational savings of rGMIA, we analyze how the number of flops

grows for both GMIA and rGMIA as n increases. Recall that GMIA factorizes Q̄ at

every iteration to compute diag(Q̄−1) and M(xX ). Thus, per-iteration cost of GMIA is

O(CF (G)+CI(G)+CL(G)+n), where O(n) comes from computing Qε(Ȳ−µ) in Step 7 of

Algorithm ??. Although CF (GF) 6=CF (G), their difference is negligible as F includes most

of the solutions in X .
In rGMIA, for a cycle of p− 1 rapid-search iterations and one global-search iteration,

the per-iteration cost grows as O (n3
S + (CF +CI +nSCL +n2

Sn)/p). Recall that nS is small

by construction of S and CF , CI , CL and n are relatively large. In fact, CF , CI and CL

grow at a rate at least as fast as, and often faster than, n (see the Online Supplement,

Appendix ??, for evidence), suggesting that p should be chosen large to mitigate the per-

iteration cost. Immediately we see that performing p− 1 rapid-search iterations amortizes

the cost of performing the expensive operations during the global-search iteration. As the

problem size grows, if we allow p to grow as quickly as CF , CI and CL grow, then we can

control the cost of expensive matrix operations in global-search iterations by performing

many rapid-search iterations cheaply. No such control is available in GMIA and the number

of flops simply grows without bound. From a computational standpoint, this explains the

power of rGMIA.

To give a sense of the relative time cost of rapid-search vs. global-search computations,

consider Q̄ associated with a two-dimensional DOvS problem having a 1000×1000 feasible

region, and a randomly selected search set S with nS = 100. The global calculations of

matrix factorization, selected inverse to obtain the diagonal elements, and solving a single-

column right-hand-side linear system, performed by PARDISO over 100 trials, took on

average 31.17 seconds (0.16 seconds), 44.55 seconds (0.27 seconds) and 1.09 seconds (0.02
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seconds), respectively, with standard errors in parentheses. Compare this to the rapid-

search operation of computing the inverse of a dense nS × nS matrix. Using MATLAB,

with nS = 100, such an operation took on average 0.2203 seconds (0.0087 seconds) over

100 trials. Clearly global-search operations are the bottleneck, and they become even more

significant as problem size and dimension increases. More results demonstrating this are

found in the Online Supplement (Appendix ??).

? show that GMIA without a stopping criterion simulates each solution x∈X infinitely

often with probability 1 as the number of iterations goes to infinity. This establishes global

convergence via the strong law of large numbers. Here we show that with far superior

computational efficiency—demonstrated empirically in Section ??—rGMIA still achieves

global convergence for either the fixed-p or adaptive schemes; see the Online Supplement,

Appendix ??, for the proofs. To begin, we introduce the following lemma:

Lemma 1. At any iteration of GMIA or global-search iteration of rGMIA, CEI(x̃,x)>

0,∀x∈X \ x̃ with probability 1.

This lemma guarantees that, in the adaptive scheme, our choice of γ = maxx∈F CEIt(x̃,x)

will be positive with probability 1 after any finite number of iterations of rGMIA. With the

aid of Lemma ??, we establish global convergence of rGMIA using only the assumptions

presented in ? to prove convergence of GMIA as stated below.

Theorem 1. Assume: (i) y(x)>−∞,∀x∈X , (ii) 0<Var[Y (x)]<∞,∀x∈X and (iii)

the initially estimated Q(θ̂) is positive definite and not updated, where θ̂ are parame-

ter estimates. Given assumptions (i)-(iii), rGMIA, implemented with either the adaptive

or fixed-p <∞ scheme and without a stopping condition, simulates each solution x ∈ X

infinitely often with probability 1 as the number of iterations goes to infinity.

7. Empirical Evaluation

We use three test problems to evaluate different aspects of the performance of rGMIA.

The first is an (s,S) inventory optimization problem from ?, which has characteristics

of a practical DOvS problem and has already been used to test the behavior of GMRF-

based optimization algorithms in ?. The objective function is the expected average cost

per period of the inventory system over 30 periods. To obtain a rectangular feasible region,

we choose the decision variables to be s and S − s. We test two different sized feasible



Semelhago, Nelson, Song and Wächter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 21

regions: inventory 100 covering solutions s× (S− s) = [1,2, . . . ,100]× [1,2, . . . ,100], and

inventory 150 covering solutions s× (S− s) = [1,2, . . . ,150]× [1,2, . . . ,150]. The optimal

solution in both cases is s= 17 and S − s= 36 with an estimated expected average cost

per period of $106.14 based on 500,000 replications at each feasible solution.

The second problem is based on a modified Griewank function; see ? for a description.

The Griewank function is a popular test problem due to its many local minima. We slightly

modified the parameters of this function to make the range larger and the global minimum

more distinguishable. We chose the domain of the Griewank function to be [−5,5]× [−5,5]

in which it has 5 local minima (colored in blue) with the global minimum at (0,0). The

range of the function is [0,2.5490]. The 4 local minima have response values of 0.6828,

compared to 0 for the global minimum. To create DOvS problems based on this surface we

project it onto lattices of varying resolution, resulting in four problems with feasible regions

of increasing size: griewank 101 (101× 101 = 10,201 solutions), griewank 201 (201×

201 = 40,401 solutions), griewank 301 (301×301 = 90,601 solutions) and griewank 401

(401× 401 = 160,801 solutions). To make it stochastic, we added independent N(0,10−4)

simulation noise to the response function, mimicking the behavior of a DOvS problem.

Much of the variability in this problem is driven by the nature of the surface rather than

that of the stochastic simulation noise.

The third problem is “restaurant seating” modified from a problem available in the

SimOpt.org library (?): Suppose a restaurant has the objective of maximizing profit (or

minimizing negative profit). There are d different sizes of tables, si, i= 1,2, . . . , d, and we

are to decide how many of each size of table to make available, xsi. Customers arrive in

groups that range in size from 1 to sd and are seated instantly at the smallest available

table that can seat the entire group. Successfully seating a group results in revenue r,

in $1000s, per person. Groups that find no available table upon arrival leave without

waiting. Keeping a size-si table costs csi × $1000/hour. The restaurant runs continuously

for T hours. We consider three different problems, restaurant 125, restaurant 25 and

restaurant 5, each having 15,625 feasible solutions, but of different dimensions: d = 2,

3 and 6, respectively. Table ?? in the Online Supplement (Appendix ??) outlines the

parameters used for each problem.

For all experiments, 10 replications were obtained at each simulated solution on first

visit, and 2 additional replications on subsequent visits. MLEs of the GMRF parameters
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were estimated using a Latin hypercube sample of 10d feasible solutions, where d is the

problem dimension. Experiments were run using a high-performance computing cluster

(HPCC) consisting of three compute nodes, each with 40 cores and 256GB of RAM, and

a head node that has 20 cores and 256GB of RAM. For each experiment, we ran 30

macro-replications, setting different random number streams for each run and assigning a

single core for each macro-replication with sufficient memory to successfully perform the

experiment.

7.1. Comparing rGMIA to GMIA

We compare the performance of rGMIA to GMIA considering both fixed-precision and

fixed-budget paradigms. The version of GMIA used for comparison adopts the smart sparse

linear algebra techniques discussed in ?. We use the inventory and restaurant problems in

the former setting, where we evaluate the time until termination and the resulting achieved

optimality gap of the estimated optimal solution given desired gaps of δ = 0.1,0.05,0.01.

We use the Griewank problem in the fixed-budget setting with a time budget of 1 hour,

comparing the achieved optimality gap after the budget has been exhausted for problems

of increasing size. To simplify the comparisons, we ran rGMIA for a fixed search set size

nS = 50 with p= 10,25,50,100,200 rapid-search iterations per global-search iteration, and

the adaptive scheme. Results in Tables ??–?? indicate that p = 50 performs especially

well. For (favorable) comparisons of the GMIA approach with other Bayesian optimization

algorithms see ?. The focus of this paper is providing a computationally superior way to

achieve the same search progress and inference.



Semelhago, Nelson, Song and Wächter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 23

T
a

b
le

1
F

ix
ed

-p
re

ci
si

o
n

re
su

lt
s

a
ve

ra
g

ed
fr

o
m

3
0

m
a

cr
o

-r
ep

lic
a

ti
o

n
s

o
f

rG
M

IA
a

n
d

G
M

IA
a

p
p

lie
d

to
th

e
in

ve
n

to
ry

1
0

0
a

n
d

in
ve

n
to

ry
1

5
0

p
ro

b
le

m
s.

S
ta

n
d

ar
d

er
ro

rs
o

f
m

ea
n

va
lu

es
ar

e
p

ro
vi

d
ed

in
p

ar
en

th
es

es
.

P
ro

b
le

m
in

v
e
n
to

ry
1
0
0

δ
0
.1

0.
05

0
.0

1
A

lg
o
ri

th
m

p
=

10
p

=
2
5
p

=
50

p
=

10
0
p

=
2
00

A
d
ap

ti
v
e

G
M

IA
p

=
10

p
=

25
p

=
50

p
=

10
0
p

=
2
00

A
d
a
p
ti

v
e

G
M

IA
p

=
1
0
p

=
25

p
=

5
0
p

=
1
00

p
=

2
00

A
d
a
p
ti

v
e

G
M

IA
M

e
a
n

T
im

e
u

n
ti

l
T

e
rm

in
a
ti

o
n

(s
)

24
7

(1
1)

12
1

(4
)

10
2

(4
)

12
4

(4
)

17
3

(6
)

14
0

(5
)

11
86

(4
2)

27
7

(1
1)

1
35 (4
)

11
2

(4
)

13
4

(4
)

18
6

(6
)

15
4

(5
)

13
33

(4
1
)

3
82

(1
5
)

18
1

(5
)

14
0

(4
)

1
5
5

(4
)

2
1
3

(6
)

18
2

(4
)

1
80

2
(4

7)
M

a
x

T
im

e
u

n
ti

l
T

e
rm

in
a
ti

o
n

(s
)

41
0

16
7

1
44

1
7
4

2
32

19
1

1
61

8
45

4
18

0
15

4
1
83

24
2

20
4

17
44

5
90

25
1

1
7
8

20
0

2
60

22
3

2
30

5

M
e
a
n

O
p

ti
m

a
li
ty

G
a
p

0
.0

9
(0

.0
2)

0.
11

(0
.0

3)
0
.0

8
(0

.0
2)

0
.0

7
(0

.0
1
)

0.
04

(0
.0

1)
0.

24
(0

.0
9
)

0.
13

(0
.0

3
)

0.
06

(0
.0

1)
0
.0

7
(0

.0
2)

0.
04

(0
.0

1)
0.

09
(0

.0
2)

0.
0
3

(0
.0

1)
0.

08
(0

.0
2)

0
.1

6
(0

.0
4
)

0
.0

3
(0

.0
1
)

0.
04

(0
.0

1)
0
.0

3
(0

.0
1
)

0
.0

5
(0

.0
1
)

0.
0
2

(0
.0

0)
0
.0

6
(0

.0
2
)

0
.0

5
(0

.0
1
)

M
a
x

O
p

ti
m

a
li

ty
G

a
p

0
.3

3
0.

75
0.

64
0
.1

4
0.

13
2.

08
0.

77
0.

22
0.

52
0.

23
0.

49
0.

13
0.

53
0
.9

3
0
.1

3
0
.2

3
0
.1

2
0
.2

3
0
.1

1
0
.5

3
0.

3
0

M
e
a
n

N
u

m
b

e
r

o
f

It
e
ra

ti
o
n

s
66

84
(2

3
6)

66
98

(2
36

)
71

46
(2

30
)

1
40

3
4

(4
5
2)

2
79

88
(9

04
)

67
09

(2
36

)
67

22
(2

38
)

75
12

(2
4
2)

74
86

(2
33

)
7
86

8
(2

29
)

15
23

8
(4

42
)

30
16

8
(8

72
)

7
53

0
(2

37
)

75
92

(2
3
6)

1
03

7
0

(3
02

)
10

2
44

(2
6
7)

1
02

33
(2

47
)

17
81

8
(3

9
4)

34
56

1
(7

9
9)

9
99

4
(2

61
)

10
4
98

(2
7
9
)

P
ro

b
le

m
in

v
e
n
to

ry
1
5
0

δ
0
.1

0.
05

0
.0

1
A

lg
o
ri

th
m

p
=

10
p

=
2
5
p

=
50

p
=

10
0
p

=
2
00

A
d
ap

ti
v
e

G
M

IA
p

=
10

p
=

25
p

=
50

p
=

10
0
p

=
2
00

A
d
a
p
ti

v
e

G
M

IA
p

=
1
0
p

=
25

p
=

5
0
p

=
1
00

p
=

2
00

A
d
a
p
ti

v
e

G
M

IA
M

e
a
n

T
im

e
u

n
ti

l
T

e
rm

in
a
ti

o
n

(s
)

12
07

(6
7)

60
3

(3
6
)

35
2

(2
0
)

4
12

(2
5)

54
0

(3
4)

40
3

(2
6)

53
26

(3
3
5)

13
18

(6
6)

66
4

(3
6)

38
6

(2
0)

45
0

(2
4)

58
8

(3
4)

43
6

(2
6
)

5
9
02

(3
26

)
15

92
(6

5
)

8
21

(3
5)

47
1

(1
9
)

52
2

(2
4
)

6
74

(3
2)

4
9
5

(2
6
)

7
3
75

(3
19

)
M

a
x

T
im

e
u

n
ti

l
T

e
rm

in
a
ti

o
n

(s
)

18
05

9
63

53
5

6
28

8
99

59
1

9
56

0
18

98
10

28
5
68

6
52

92
2

61
9

9
56

0
21

07
1
15

9
6
3
3

6
96

9
64

67
6

10
06

8

M
e
a
n

O
p

ti
m

a
li
ty

G
a
p

0
.0

4
(0

.0
1)

0.
12

(0
.0

3)
0
.0

5
(0

.0
1)

0
.0

5
(0

.0
1
)

0.
03

(0
.0

1)
0.

12
(0

.0
3
)

0.
12

(0
.0

3
)

0.
07

(0
.0

2)
0
.0

8
(0

.0
2)

0.
08

(0
.0

3)
0.

06
(0

.0
2)

0.
0
3

(0
.0

1)
0.

05
(0

.0
1)

0
.0

9
(0

.0
2
)

0
.0

4
(0

.0
1
)

0.
04

(0
.0

1)
0
.0

3
(0

.0
1
)

0
.0

2
(0

.0
1
)

0.
0
1

(0
.0

0)
0
.0

3
(0

.0
1
)

0
.0

6
(0

.0
2
)

M
a
x

O
p

ti
m

a
li

ty
G

a
p

0
.2

5
0.

80
0.

14
0
.2

3
0.

14
0.

64
0.

62
0.

30
0.

30
0.

74
0.

49
0.

14
0.

13
0
.5

7
0
.1

9
0
.1

4
0
.2

5
0
.1

3
0
.0

7
0
.1

9
0.

6
4

M
e
a
n

N
u

m
b

e
r

o
f

It
e
ra

ti
o
n

s
14

0
02

(8
10

)
14

06
9

(8
0
5)

1
47

70
(8

03
)

2
9
23

5
(1

62
4
)

58
47

7
(3

2
15

)
1
41

22
(8

04
)

14
03

1
(8

1
6)

15
50

0
(7

9
2)

15
52

5
(7

89
)

16
19

9
(7

77
)

31
78

4
(1

54
3)

63
47

0
(3

0
79

)
15

54
6

(8
02

)
1
55

7
2

(7
91

)
1
93

5
7

(7
67

)
19

3
54

(7
1
3)

1
97

75
(6

92
)

36
71

8
(1

4
69

)
7
23

67
(2

8
3
2)

1
9
31

3
(7

45
)

1
95

2
2

(7
60

)

R
ep

o
rt

ed
re

su
lt

s
fo

r
in

v
e
n
to

r
y

1
5
0

is
a
v
er

a
g
ed

a
cr

o
ss

2
9

m
a
cr

o
-r

ep
li
ca

ti
o
n

w
it

h
o
u

tl
ie

r
m

a
cr

o
-r

ep
li
ca

ti
o
n

re
m

o
v
ed

.
T

h
is

is
fu

rt
h

er
ex

p
la

in
ed

in
S

ec
ti

o
n

?
?
.

T
a

b
le

2
F

ix
ed

-b
u

d
g

et
re

su
lt

s
a

ve
ra

g
ed

fr
o

m
3

0
m

a
cr

o
-r

ep
lic

a
ti

o
n

s
o

f
rG

M
IA

(|
S
|=

5
0

)
a

n
d

G
M

IA
a

p
p

lie
d

to
th

e
g

ri
ew

a
n

k
1

0
1

,
g

ri
ew

a
n

k
2

0
1

,
g

ri
ew

a
n

k
3

0
1

a
n

d
g

ri
ew

a
n

k
4

0
1

p
ro

b
le

m
s,

g
iv

en
a

1
h

o
u

r
ti

m
e

b
u

d
g

et
.

S
ta

n
d

ar
d

er
ro

rs
o

f
m

ea
n

va
lu

es
ar

e
p

ro
vi

d
ed

in
p

ar
en

th
es

es
.

P
ro

b
le

m
g
ri

e
w

a
n

k
1
0
1

g
ri

e
w

a
n

k
2
0
1

A
lg

o
ri

th
m

p
=

10
p

=
25

p
=

50
p

=
10

0
p

=
20

0
A

d
ap

ti
ve

G
M

IA
p

=
10

p
=

25
p

=
5
0

p
=

10
0

p
=

20
0

A
d
ap

ti
ve

G
M

IA
M

e
a
n

O
p

ti
m

a
li
ty

G
a
p

0 (0
)

0 (0
)

0 (0
)

0 (0
)

0 (0
)

0 (0
)

0 (0
)

3.
17

E
-4

(7
.7

0E
-5

)
3
.6

0
E

-4
(8

.3
0
E

-5
)

0 (0
)

0 (0
)

0 (0
)

0 (0
)

5.
6
4E

-4
(9

.0
7E

-5
)

M
a
x

O
p

ti
m

a
li

ty
G

a
p

0
0

0
0

0
0

0
1.

31
E

-3
1
.3

1
E

-3
0

0
0

0
2.

00
E

-3

M
e
a
n

N
u

m
b

e
r

o
f

It
e
ra

ti
o
n

s
96

0
26

(8
38

)
2
54

43
3

(2
38

8)
48

28
21

(3
3
69

)
8
02

33
4

(2
02

08
)

1
27

9
15

4
(8

49
4
)

40
72

7
(3

52
)

2
16

96
(3

15
)

1
72

26
(2

6
1)

39
20

9
(6

50
)

11
55

76
(2

54
2)

2
38

30
8

(3
1
65

)
40

28
81

(5
29

1)
22

06
97

(1
96

6)
49

47
(9

5
)

P
ro

b
le

m
g
ri

e
w

a
n

k
3
0
1

g
ri

e
w

a
n

k
4
0
1

A
lg

o
ri

th
m

p
=

10
p

=
25

p
=

50
p

=
10

0
p

=
20

0
A

d
ap

ti
ve

G
M

IA
p

=
10

p
=

25
p

=
5
0

p
=

10
0

p
=

20
0

A
d
ap

ti
ve

G
M

IA
M

e
a
n

O
p

ti
m

a
li
ty

G
a
p

3.
69

E
-4

(6
.0

0E
-5

)
3.

7
8E

-4
(5

.0
6E

-5
)

1
.7

1
E

-4
(3

.4
1
E

-5
)

2.
4
9E

-4
(4

.9
2
E

-5
)

2.
5
0E

-4
(4

.2
7E

-5
)

3
.0

0
E

-4
(4

.9
0
E

-5
)

6.
8
6E

-2
(3

.8
0
E

-2
)

4.
79

E
-2

(3
.1

6E
-2

)
2
.9

6
E

-4
(3

.6
4
E

-5
)

2.
57

E
-4

(3
.6

7E
-5

)
2.

02
E

-4
(2

.6
7E

-5
)

1.
62

E
-4

(2
.9

2E
-5

)
2.

07
E

-4
(3

.0
4E

-5
)

9.
7
0E

-2
(4

.2
8E

-2
)

M
a
x

O
p

ti
m

a
li

ty
G

a
p

1.
22

E
-3

8.
8
9E

-4
5.

8
3E

-4
8.

8
9E

-4
8.

8
9E

-4
8.

8
9E

-4
6.

83
E

-1
6.

83
E

-1
6
.8

7
E

-4
6.

8
7E

-4
5.

0
0E

-4
5
.0

0
E

-4
5.

00
E

-4
6.

83
E

-1

M
e
a
n

N
u

m
b

e
r

o
f

It
e
ra

ti
o
n

s
7
85

3
(1

80
)

18
59

8
(5

4
0)

34
3
86

(8
38

)
8
24

51
(2

04
2
)

1
66

8
88

(1
44

5
)

30
67

5
(8

70
)

2
13

7
(3

2)
4
34

6
(2

51
)

1
03

5
6

(5
46

)
16

69
8

(6
3
7)

31
53

8
(6

31
)

58
1
88

(1
59

9)
20

00
9

(8
58

)
9
28

(2
5)
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Table ?? contains the results of fixed-precision GMIA and rGMIA applied to the inven-

tory problem. In each subtable, we record the mean and maximum run times, mean and

maximum achieved optimality gaps, and mean number of iterations until stopping across

30 macro-replications. “Optimality gap” here refers to the difference between the true

response at the estimated optimal solution and the true minimum of the response surface.

Each column specifies an algorithm and the desired acceptable optimality gap, δ. The

inventory problems are low-dimensional and have smaller numbers of solutions compared

to other test problems. However, even in this setting with relatively cheap computational

overhead, Table ?? shows that GMIA’s mean run time is almost an order of magnitude

greater than rGMIA across every choice of p or the adaptive scheme. Such differences

in mean run time become larger as the problem size increases (see inventory 100 vs.

inventory 150). Consider the scenario where a user wishes to solve the inventory 150

problem to fixed precision given δ = 0.01 and must purchase processor time on an HPCC

at an hourly rate. The user of GMIA would potentially be required to purchase almost 3

hours of run time, corresponding to the maximum observed run time in our experiment

(10068.06s). Whereas, for rGMIA with p= 50, the maximum observed run time is under 11

minutes; 16 times faster than GMIA. An outlier macro-replication was removed from the

inventory 150 results. The design points placed in this run resulted in MLEs that mis-

characterized the surface, highlighting a challenge in initial parameter estimation for both

GMIA and rGMIA; they completed only a single iteration before attaining a maximum

CEI < 0.05, terminating with an achieved optimality gap of 8.51.

Table ?? highlights the advantage rGMIA has in a fixed-budget setting using the

Griewank problems. For each problem and algorithm, we examine the achieved optimal-

ity gap at termination and number of iterations that are performed across 30 macro-

replications after the 1 hour time budget has been exhausted. Keeping dimension fixed

(d= 2), as the number of solutions increases, it becomes more difficult to find the optimum,

because 1) more simulations are required as there are more feasible solutions and 2) com-

putational overhead for inference at each iteration increases. However, the latter affects

GMIA far more than rGMIA. For example, the mean number of iterations GMIA performs

within 1 hour in griewank 401 is 1/23 of that in griewank 101. The impact is far milder

for rGMIA; for example, the mean number of iterations of rGMIA with p= 200 decreases

by 1/2 comparing griewank 401 and griewank 101. Performing more iterations given a
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time budget means more simulations are made, which ultimately manifests in the optimal-

ity gap of the solution returned at termination. Even though griewank 401 was a difficult

problem to solve for all algorithms tested, we note that GMIA had a mean optimality gap

that was two orders of magnitude larger than that of most settings of rGMIA.

To test the effect of increasing dimensions, we ran GMIA and rGMIA on the restaurant

problems under the fixed-precision setting. Table ?? contains three subtables correspond-

ing to restaurant 125, restaurant 25 and restaurant 5 problems. Recall that all three

problems have 15,625 solutions, but have dimensions d= 2,3,6, respectively. This affects

both simulation time as well as computational overhead. To ensure that optimal solutions

are located in the interior of the feasible region, arrival rates were chosen to be different

for each problem; see Table ?? in the Online Supplement, Appendix ??, for details. As

a result, the simulation time per replication generally increases as the problem dimen-

sion decreases. On the other hand, the computational overhead increases as the precision

matrix becomes denser in higher dimensions. GMIA spent 50.52%, 8.53% and 0.18% of its

run time for simulations in restaurant 125, restaurant 25 and restaurant 5, respec-

tively. This reflects that as the problem’s dimension increases the precision matrix becomes

denser and the linear algebra in GMIA becomes more costly. For the restaurant 125

problem, Table ?? shows that GMIA actually outperforms rGMIA by terminating sooner.

In this case, the simulation is relatively more expensive than the linear algebra, thus it

is more important to select good solutions to simulate at each iteration from the entire

solution space than reducing the cost of linear algebra by restricting the search. For the

restaurant 25 experiments, however, the mean time until termination of GMIA increases

compared to the restaurant 125 experiments, whereas that of rGMIA decreases. This is

because the simulation is now cheaper and linear algebra is more expensive, thus rapid

search of rGMIA pays off. Recall that this combination of large computational overhead

and relatively smaller simulation effort is the setting for which rGMIA was proposed.

Finally, the restaurant 5 problem is higher dimensional to push the limits of what GMIA

can solve. With a mean run time of over 2 days across 30 macro-replications for δ = 0.1,

GMIA effectively was unable to terminate. rGMIA was able to return an estimated optimal

solution within δ = 0.1 in 2 hours on average.
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7.2. rGMIA’s Performance Sensitivity to nS and p

In this section, we investigate how rGMIA’s performance is affected by the search set size.

In the previous section, all experiments used search set size nS = 50, and p = 50 rapid-

search iterations showed good performance across all problems. We now vary the search

set size as nS = 50,100,200 and evaluate the performance of different choices for p, as well

as the adaptive scheme, under the fixed-precision setting. We provide complete results for

all of the test problems in the Online Supplement (Tables ??–?? of Appendix ??), and

summarize our findings here.

Tables ??–?? show that for a given search set size nS , p = nS is the best choice. We

confirmed that in many cases when p = nS all solutions in S are simulated at the end

of each rapid search. We speculate that this is because the spatial diversity among the

solutions in the search set overwhelms the stochastic error at each solution, which causes

CEI to rank not-yet-visited solutions higher than already-simulated solutions. As a result,

rGMIA tends to include many unvisited solutions in the search set at each global-search

iteration, and then explores all of them rather than revisiting a solution multiple times.

Therefore, when p < nS we do not fully exploit the computational benefit of rapid-search

iterations because there is still value in simulating the remaining unvisited solutions in S.

On the other hand, when p > nS , rGMIA is forced to simulate the same solutions in S
more than once instead of exploring new solutions. Thus, the adaptive scheme does not

outperform p= nS .

Nonetheless, we speculate the adaptive scheme may be useful when δ is small. For

example, we can observe in Table ?? that for smaller δ, the relative performance difference

between the adaptive scheme and p= nS becomes smaller. This is because for smaller δ,

rGMIA must evaluate more solutions to achieve the smaller acceptable optimality gap, and

later iterations tend to explore solutions with poor conditional means and high uncertainty.

Once some of these solutions are simulated during the rapid-search iterations, rGMIA may

realize that these are in fact bad solutions and it is sensible to break out of the search set

early. On the other hand, when the search set contains very good solutions then it may

be worth exploiting the search set for more than p iterations to confirm a small achieved

optimality gap. This situation will also favor using the adaptive scheme over a fixed p.

From the experiment results, the best choice of nS appears problem specific. Never-

theless, the run times indicate the performance is not sensitive to the choice of nS . This

suggests that there is little penalty in choosing a suboptimal nS , given that p= nS .
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8. Conclusions

A lingering barrier to large-scale DOvS is the inability to exploit strong problem struc-

ture to efficiently dispense with large portions of the space of feasible solutions. Inferential

optimization is promising in characterizing DOvS structure statistically and thereby deem-

phasizing large portions of the space of feasible solutions with high confidence. While the

DOvS problems that can be addressed in this way are still small in dimension and num-

ber of feasible solutions relative to mathematical programming, gains thus far have been

substantial.

GMIA (?) is the current state-of-the-art in inferential optimization for DOvS. The focus

of ? was identifying and parameterizing an advantageous GP—the discrete GMRFs—

and creating an acquisition function suitable for stochastic simulation—CEI. The focus

of this paper is improved computational efficiency via smart computational linear algebra

to greatly extend the reach of GMIA without degrading the inference. The result is a

specific algorithm, rGMIA. However, the central idea of partitioning a feasible region into a

search set and fixed set, and updating the conditional distributions efficiently, is generally

applicable to DOvS problems that use the GP conditional distribution for inference.

To realize the full potential of inferential optimization, future work will need to address

some open questions. Clearly, we need an effective strategy for allocating simulation effort

(i.e., replications) to solutions. More specifically, rGMIA simulates two solutions, x̃ and

xCEI, on each iteration, so we need to specify the number of replications to be obtained to

promote search progress without wasting effort. This problem is challenging as neither EI

nor CEI account for the cost of simulation or the downstream progress of the search. And

while the alternative KG acquisition function does look ahead, it is only one step ahead

and it does not provide optimality-gap inference.

We have thus far constructed the search set S by simply selecting x̃ and the solutions

with the nS − 1 largest CEI values. While this method seems to be effective, there is

potential for alternative constructions that might be better. This is a topic of ongoing

research.

Presently, GMIA and rGMIA both assume a sequential search; that is, simulation repli-

cations are obtained sequentially on a single processor. With the proliferation of parallel

computation, it is natural to extend both algorithms to a parallel paradigm where multi-

ple solutions or replications can be simulated simultaneously. This involves deciding which
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solutions to simulate in parallel, and how to efficiently update relevant statistics and CEI

values once the solutions have been simulated.

Finally, at the present state of development high dimension is more challenging than

number of feasible solutions: Q̄ becomes less sparse with dimension d. ? consider projecting

less-active dimensions onto active dimensions, and while this seems promising, creative

ideas for addressing large d are clearly needed.
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Online Supplement

Appendix A: rGMIA Convergence Proof

In this appendix we provide the proofs of Lemma 1 and Theorem 1. We do not introduce any additional

assumptions beyond those already presented in ?, which we restate here:

1. y(x)>−∞,∀x∈X .

2. 0<Var[Y (x)]<∞,∀x∈X .

3. The initially estimated Q = Q(θ̂) is positive definite and not updated, where θ̂ are parameter estimates.

As in ? we have implicitly assumed that Y (x) is continuous-valued, in which case the assumptions above

imply that Q̄ is always positive definite: Q̄ = Q + Qε, Q is positive definite by Assumption 3, and Qε is a

diagonal matrix with finite, non-negative elements on its diagonal with probability 1. However, it is possible

that Y (x) is discrete-valued, in which case there is a positive probability that S2(x) = 0 for some x ∈ X
during some iterations. Therefore, when the output Y (x) is discrete-valued, we set the diagonal elements of

Qε to r(x)/max{S2(x), η}, for some very small η > 0, whenever r(x)> 0.

An immediate consequence is that V (x̃,x)> 0 and finite for all x ∈ X . Furthermore, Assumptions 1 and

2 imply that ∞ < Ȳ (x) <∞,∀x ∈ X with probability 1, so the conditional means are also finite, −∞ <

M(x)<∞,∀x∈X , with probability 1. We use these insights in the proof that follows.

Lemma 1. At any finite iteration of GMIA or finite global-search iteration of rGMIA, CEI(x̃,x)> 0,∀x∈
X \ x̃ with probability 1.

Proof Recall from Equation (??),

CEI(x̃,x) = (M(x̃)−M(x)) Φ

(
M(x̃)−M(x)√

V (x̃,x)

)
+
√
V (x̃,x) φ

(
M(x̃)−M(x)√

V (x̃,x)

)
.

To show that this expression is positive with probability 1 is equivalent to proving the following inequality

holds with probability 1:

− (M(x̃)−M(x))√
V (x̃,x)

<

φ

(
M(x̃)−M(x)√

V (x̃,x)

)
Φ

(
M(x̃)−M(x)√

V (x̃,x)

) . (8)

First, we need to show that (−M(x̃)−M(x))/
√
V (x̃,x) <∞,∀x ∈ X , with probability 1. This follows

immediately from the fact that V (x̃,x)> 0 and −∞<M(x)<∞,∀x∈X , with probability 1.

Next, recall that x̃ is chosen as the solution with the smallest sample mean. Therefore, it is possible that:

(i) M(x̃)−M(x)≥ 0 or (ii) M(x̃)−M(x)< 0. Assume (i); then it is clear that (??) holds with probability

1 since for any finite argument both φ(·)> 0 and Φ(·)> 0. Now assume (ii); then

φ

(
M(x̃)−M(x)√

V (x̃,x)

)
Φ

(
M(x̃)−M(x)√

V (x̃,x)

) =

φ

(
−(M(x̃)−M(x))√

V (x̃,x)

)
1−Φ

(
−(M(x̃)−M(x))√

V (x̃,x)

)
=E

[
Z |Z > −(M(x̃)−M(x))√

V (x̃,x)

]
, where Z ∼N(0,1)

>
−(M(x̃)−M(x))√

V (x̃,x)
.
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The last inequality follows since −(M(x̃)−M(x))/
√
V (x̃,x)<∞, with probability 1. �

We next prove Theorem 1:

Theorem 1. rGMIA, implemented with either the adaptive or fixed-p <∞ scheme, without a stopping

condition simulates each solution x∈X infinitely often with probability 1 as the number of iterations goes to

infinity.

Proof In proving Theorem 1, we draw on Theorem 2 from ? which proves an identical result for the

GMIA algorithm, which we restate here:

GMIA without a stopping condition simulates each solution x ∈X infinitely often with probability 1 as

the number of iterations goes to infinity.

To prove Theorem 1, we consider rGMIA when p is fixed and finite and for our adaptive scheme.

Fixed p : When we fix p <∞ it means that rGMIA will cycle between p − 1 rapid-search iterations

and a single global-search iteration until termination is reached. Global-search iterations are simply GMIA

iterations, for which convergence has already by proven in Theorem 2 of ?. The p−1 rapid-search iterations

simply force more solutions to be simulated more often than GMIA would, and therefore do not change the

convergence result.

Adaptive : Proving convergence in the adaptive scheme requires proving that the number of rapid-

search iterations between global-search iterations is finite with probability 1. Recall that γ is the threshold

such that whenever maxx∈S CEI(x̃,x) < γ the rapid-search iterations end. In the adaptive scheme, γ =

maxx∈F CEIt(x̃,x), where CEIt(x̃,x) are the CEI values computed during preceding global-search iteration,

t. With this choice of γ, Lemma 1 implies that for finite t we are guaranteed that γ > 0.

When the search set S is constructed, the subgraph it induces is itself a GMRF for which we define

x̃ = arg minx∈S Ȳ (x) and xCEI = arg maxx∈S\x̃ CEI(x̃,x) to execute rapid-search iterations of rGMIA. These

iterations on S are GMIA iterations restricted to the induced subgraph, which means that Theorem 2 from

? yields the same convergence guarantee on the subgraph. This means that if we restrict the search to rapid-

search iterations then CEIt(x̃,x)→ 0 as the number of rapid-search iterations t→∞ for all x ∈ S, with

probability 1. This further implies that for each sample path ω ∈Ω, there exists t?(ω) such that for t≥ t?(ω),

CEIt(x, x̃) < γ, for any γ > 0 and for all x ∈ S. Therefore, we will attain termination of rapid search in a

finite number of iterations with probability 1. �

Appendix B: Analysis of Computational Effort in rGMIA

We analyze the number of flops required to implement rGMIA, in Algorithm ??, by breaking the algorithm

into three sections: initialization, rapid search and global search, analyzing the matrix computations of each

section separately. Recall that we make the approximation nF ≈ n, since S is constructed to be small. We

use CF , CI and CL to represent the flop count to perform a matrix factorization, selected inverse of diagonal

elements and single-column right-hand-side system solve involving matrices of size n× n and nF × nF . In

Appendix ??, we time these three operations performed by PARDISO on Q̄ corresponding to problems with

varying feasible region sizes and dimension to estimate how expensive these operations are to implement

from a timing standpoint.
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B.1. Initialization

1 Choose n0� n initial solutions. Simulate at each solution and compute MLEs for the GMRF
parameters (µ,Q). Construct Q̄ = Q + Qε;

2 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
3 Compute Cholesky factor of Q̄: LQ̄;
4 Compute V(xX ) = diag(Q̄−1), C(x̃,xX ) = Q̄−1ex̃, M(xX ) = µ+ Q̄−1Qε(Ȳ−µ), using LQ̄. Go to

Step 27;

Initialization in rGMIA is a one-time sequence of steps that allows us to set up global and rapid search

by constructing F and S. Step 3 costs CF flops to compute the Cholesky factor. Step 4 costs CI , CL and

CL + 3n flops to compute the conditional variances, covariances and means, respectively.

Therefore, the total flop count for initialization in rGMIA is CF +CI + 2CL + 3n.

B.2. Rapid Search

7 Simulate at x̃, xCEI. Update simulation information by updating Ȳ (x̃), Ȳ (xCEI), Qε, Q̄, Q̄SS ;
8 Find x̃ = arg min{x∈S:r(x)>0} Ȳ (x);
9 Compute V(xS), C(x̃,xS) by computing ΣSS = (Q̄SS −B)−1;

10 Compute M(xS) = µS + ΣSS([Qε]SS(Ȳ(xS)−µS)−a);
11 Calculate CEI(x̃,x),∀x∈ S;
12 Find xCEI = arg maxx∈S\x̃ CEI(x̃,x);

Within the rapid-search steps, only Steps 9 and 10 are computationally intensive. Step 9 computes Σ−1
SS ,

a dense matrix. This involves subtracting two dense nS×nS matrices, computing the Cholesky factorization

and performing a forward and backward substitution to solve the resulting systems. Note that since |S| is

small, and we require the diagonal elements of ΣSS , we compute ΣSS in its entirety. This costs n2
S , 1

3
n3
S , n3

S

and n3
S flops, respectively. Step 10 requires one nS×nS diagonal matrix-vector multiplication and three nS×1

vector addition/subtractions, which cost nS flops each, and a dense nS × nS matrix-vector multiplication,

which costs 2n2
S flops.

Therefore, the total flop count for a single rapid-search iteration is 7
3
n3
S + 3n2

S + 4nS .

B.3. Global Search

14 Simulate at x̃, xCEI. Update simulation information by updating Ȳ (x̃), Ȳ (xCEI), Qε, Q̄, Q̄SS ;
15 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
16 Compute V(xS) from ΣSS = (Q̄SS −B)−1;
17 Compute M(xS) = µS + ΣSS([Qε]SS(Ȳ(xS)−µS)−a);
18 Compute V(xF) = diag(Q̄−1

FF) + diag(AΣSSA
>), using LQ̄FF ;

19 Compute M(xF) = µF + Q̄−1
FF [Qε]FF(Ȳ(xF)−µF)−A(M(xS)−µS), using LQ̄FF ;

20 if x̃∈ S then
21 Compute C(x̃,xS) = [ΣSS ]·x̃;
22 Compute C(x̃,xF) =−A[ΣSS ]·x̃;
23 else
24 Compute C(x̃,xS) =−ΣSS [A>]·x̃;
25 Compute C(x̃,xF) = Q̄−1

FFex̃ + AΣSS [A>]·x̃, using LQ̄FF ;
26 end
27 Calculate CEI(x̃,x),∀x∈X ;
28 Find xCEI = arg maxx∈X\x̃ CEI(x̃,x);
29 Construct {F ,S} partition of Q̄ into Q̄FF , Q̄FS , Q̄SS ;
30 Compute Cholesky factor of Q̄FF : LQ̄FF ;
31 Compute A = Q̄−1

FFQ̄FS , using LQ̄FF , B = Q̄>FSA, a = A>([Qε]FF(Ȳ(xF)−µF));

To compute ΣSS in Step 16, we incur a cost of n2
S + 7

3
n3
S flops, identical to Step 9 in the rapid-search

iterations. However, to compute C(x̃,xX ), we either incur 2nSn flops if x̃ ∈ S or CL + 4n2
S + 2nnS flops if



Semelhago, Nelson, Song and Wächter: Rapid Discrete Optimization via Simulation with GMRFs
4 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

x̃∈F . In computing V(xF), we pay a cost of CI flops to evaluate diag(Q̄−1
FF) and 1

3
n3
S+ 2n2

Sn+nSn flops to

compute diag(AΣSSA
>). To implement the latter computation, we first compute the Cholesky factorization

of ΣSS and premultiply A to the resulting factor. Finally, we compute the squared norm of each of the

columns of the resulting product. The squared norm of the ith column gives the ith diagonal element in

AΣSSA
>. Since S is small and we only require the diagonal elements, this is more efficient than computing

AΣSSA
>, which would cost 4n2

Sn flops. To compute M(xX ), we incur CL + 4n+ 5nS + 2nSn+ 2n2
S flops.

Finally, we incur a flop cost of CF to factorize Q̄FF in Step 30 and a cost of nSCL, 2n2
Sn and 2n+ 2nSn to

compute A, B and a, respectively in Step 31.

If we assume a worst-case cost, where x̃ ∈ F , we incur a total cost of CF + CI + (nS + 2)CL + 4n2
Sn+

7nSn+ 6n+ 8
3
n3
S + 7n2

S + 5nS flops in a single global-search iteration.

B.4. Analysis of PARDISO Operations

Figures ??, ?? and ?? are log-log plots of the times to compute the Cholesky factorization, selected inverse

and solving a single-column right-hand-side linear system in PARDISO for Q̄, with the structure as described

in Section ??, for problems of dimension d= 2,3, . . . ,7. For each dimension, d, we perform a linear regression

on the points corresponding to operations that took longer than 0.25s to run (to mitigate effects of overhead

on the trend). The slope of each regression allows us to estimate the power term corresponding to how these

operations scale in time (i.e., a slope of m on the log-log plot indicates the operation scales O(nm)), where

n is the number of feasible solutions.

We then plot these slopes in Figure ?? from which we can estimate how factorizing, performing a selected

inverse and solving a linear system grow in time. Factorizing grows approximately linearly until d = 6

implying growth of O(n0.253d+0.931) until the problem becomes high-dimensional at which point the matrices

lose much of their sparsity. Solving a linear system with PARDISO given the Cholesky factorization of the

matrix remains relatively constant as dimension is increased meaning the growth scales O(n1). Performing

a selected inverse, however, is more difficult to characterize but varies between O(n1.133) and O(n1.592).
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Figure 1 Log-log plot of times to compute Cholesky factorizations of Q̄ for problems of different dimension, d,

and number of feasible solutions, n.

Figure 2 Log-log plot of times to compute selected inverse of Q̄ for problems of different dimension, d, and

number of feasible solutions, n.
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Figure 3 Log-log plot of times to solve a single-column right-hand-side vector system with Q̄ for problems of

different dimension, d, and number of feasible solutions, n.

Figure 4 Slopes of log-log linear regression of PARDISO operations times vs. number of feasible solutions as a

function of dimension, d.
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Appendix C: Sherman-Morrison-Woodbury Update for GMIA

At each iteration of GMIA, exactly two solutions are simulated resulting in a rank-2 update for Q̄. Thus, we

may apply the Sherman-Morrison-Woodbury (SMW) formula to efficiently update Q̄−1 without factorizing

and inverting Q̄ at every iteration. Suppose we factorized Q̄ and computed the entire Q̄−1 in the previous

iteration. These operations cost CF and nCL, respectively. After simulating x̃ and xCEI, Q̄ is updated to

¯̄Q = Q̄ + ∆x̃ex̃e>x̃ + ∆xCEIexCEIe>
xCEI , where ∆x̃ and ∆xCEI are some scalars reflecting the change in Qε

corresponding to x̃ and xCEI, respectively. Then, the SMW formula gives

¯̄Q−1 = Q̄−1− Q̄−1E
(
I2×2 + E>Q̄−1∆

)−1
∆>Q̄−1︸ ︷︷ ︸

(∗)

,

where E =
[
ex̃, exCEI

]
and ∆ =

[
∆x̃ex̃, ∆xCEIexCEI

]
. Notice that (∗) is a product of n× 2 matrix Q̄−1E and

2× n matrix
(
I2×2 + E>Q̄−1∆

)−1
∆>Q̄−1. The former is simply a matrix of two column vectors of Q̄−1

corresponding to x̃ and xCEI, which is available for free from the previous iteration.

Further, E>Q̄−1∆ is a 2 × 2 diagonal matrix, where the diagonal elements are the products of the

diagonal elements of Q̄−1 corresponding to x̃ and xCEI, and ∆x̃ and ∆xCEI , respectively; this costs only

two flops. Since I2×2 + E>Q̄−1∆ is a diagonal matrix, its inverse only costs two flops to compute and(
I2×2 + E>Q̄−1∆

)−1
∆>Q̄−1 is simply rescaling the columns of E>Q̄−1, which costs 2n flops. Finally, the

product of n× 2 and 2×n matrices costs O(n2) (for (∗)) and so does subtracting (∗) from Q̄−1.

The conditional means of solutions can be computed from (??) using the updated ¯̄Q, which costs O(n2).

Notice that for this computation, we perform a matrix-vector multiplication instead of solving a linear system

of equations since we did not factorize ¯̄Q.

Overall, the SMW scheme costs CF +nCL for computing Q̄−1 for one iteration, then costs O(n2) for each

iteration thereafter. This is certainly cheaper than directly updating the conditional distribution as expressed

in (??), but it still requires all elements of the inverse precision matrix to be updated at each iteration. This

forces us to recompute Q̄−1 periodically which diminishes the computational gain.

We refer to this version of GMIA that uses the SMW formula to quickly update the conditional distribution

as SMW GMIA and present it in Algorithm ??. The primary difference between GMIA and SMW GMIA

is that instead of refactorizing, inverting and solving a system with ¯̄Q from scratch at each iteration, we

compute, in full, and update at each iteration Q̄−1. We use the notation P = Q̄−1 to make explicit that

computing an expression such as Px, for an appropriately sized x, results in a matrix-vector multiplication

and not a system solve.

SMW GMIA has the advantage of not requiring Q̄ to be factorized each iteration saving computational

overhead, but by computing all elements of Q̄−1, it loses the savings generated by using sparse linear algebra

computations. Refer to Table ?? for the results comparing SMW GMIA to rGMIA (with |S|= 50, p= 50)

and GMIA, all applied to the inventory 100 problem. We see that SMW GMIA results in mean runtimes

that are well over an order of magnitude larger than corresponding runtimes rGMIA and are even much

larger than corresponding runtimes of GMIA applied to the same problem.

Additionally, the inventory 100 problem with a 100× 100 integer lattice feasible region was the largest

problem that could be solved via SMW GMIA with the memory resources available to us. To make this
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point concrete, the inventory 100 problem results in Q̄ and P matrices that are both of size 10000×10000.

However, since the former is sparse, in MATLAB, it requires about 0.874 MB to store, while the latter

requires 800 MB. Therefore, for most users, this memory requirement results in a very strict constraint in

problem size that can be solved.

Algorithm 3: SMW GMIA
1 Choose n0� n initial solutions. Simulate at each solution and compute MLEs for the GMRF

parameters (µ,θ). Construct Q̄ = Q + Qε;
2 Find x̃ = arg min{x∈X :r(x)>0} Ȳ (x);
3 Compute Cholesky factorization of Q̄: LQ̄;
4 Compute P = Q̄−1, using LQ̄;
5 Extract V(xX ) = diag

(
Q̄−1

)
, C(x̃,xX ) = Q̄−1ex̃ and compute M(xX ) = µ+ Q̄−1Qε(Ȳ−µ), using

LQ̄;
6 Calculate CEI(x̃,xX );
7 while Termination criterion not reached do
8 Simulate at x̃, xCEI. Update simulation information by updating Ȳ (x̃), Ȳ (xCEI), Qε;
9 Construct E = [ex̃, exCEI ] and ∆ = [∆x̃ex̃, ∆xCEIexCEI ];

10 Update ¯̄Q← Q̄ + E∆>;
11 Update P←P−PE(I2×2 + E>P∆)−1∆>P;
12 Find x̃ = arg minx∈X :r(x)>0 Ȳ (x);
13 Extract V(xX ) = diag (P), C(x̃,xX ) = [P]·x̃ and compute M(xX ) = µ+ PQε(Ȳ−µ);
14 Calculate CEI(x̃,xX );
15 Find xCEI = arg maxx∈X\x̃ CEI(x̃,x);

16 Let Q̄← ¯̄Q;
17 end

Table 4 Fixed-precision results averaged from 30 macro-replications of SMW GMIA, rGMIA (|S|= 50, p= 50)
and GMIA applied to the inventory 100 problem. Standard errors of mean values are provided in parentheses.

Algorithm SMW GMIA rGMIA (|S|= 50, p= 50) GMIA
δ 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

Mean Time
Elapsed (s)

4840
(296)

5434
(317)

7338
(398)

102
(4)

112
(4)

140
(4)

1186
(42)

1333
(41)

1802
(47)

Max Time
Elapsed (s)

8379 9029 10845 144 154 178 1618 1744 2305

Mean
Optimality Gap

0.13
(0.03)

0.16
(0.04)

0.05
(0.01)

0.08
(0.02)

0.04
(0.01)

0.03
(0.01)

0.13
(0.03)

0.16
(0.04)

0.05
(0.01)

Max
Optimality Gap

0.77 0.93 0.30 0.64 0.23 0.12 0.77 0.93 0.30

Mean Number
of Iterations

6722
(238)

7592
(236)

10498
(279)

7146
(230)

7868
(229)

10233
(247)

6722
(238)

7592
(236)

10498
(279)



Semelhago, Nelson, Song and Wächter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 9

Appendix D: Additional Results Evaluating rGMIA

Complete tables for all of our experiments are found in this appendix.

Table 5 Parameters used in the restaurant problem.

Problem restaurant 125 restaurant 25 restaurant 5

Feasible Region 125× 125 25× 25× 25 5× 5× 5× 5× 5× 5

Table Sizes Available (s)
[
1 3
] [

1 3 5
] [

1 3 5 7 9 11
]

Time (T ) 1 1 1
Arrival Rate (λ) 250 50 10
Service Rate (µ) 10 10 10
Revenue/person

in $1000s (r)
0.01 0.01 0.01

Cost of Table/hr
in $1000s (c)

[
0.005 0.015

] [
0.005 0.015 0.025

] [
0.005 0.015 0.025 0.035 0.045 0.055

]
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Appendix E: Leveraging Sparsity of Q̄

This appendix restates the smart sparse linear algebra techniques outlined in ? with corrections made to the

example that was presented previously. GMIA was enhanced to tackle problems with larger feasible regions

by using sparse linear algebra techniques to compute CEI values more efficiently. Proposed in ?, this strategy

leverages the sparsity pattern of Q̄ to compute the diagonal elements of its inverse, Σ, which proved to be

particularly fruitful for use in computations involving GMRFs, as shown in ? and was incorporated in both

GMIA and rGMIA.

Suppose we have a sparse precision matrix, Q̄, corresponding to a GMRF, from which we want to compute

the conditional variances of the response of the GMRF. Without leveraging the sparsity of Q̄, one could take

the inverse of Q̄ and extract the required diagonal elements. However, this is expensive from both a memory

and computational standpoint.

Since Q̄ is symmetric and positive definite, Q̄ has an LDL factorization. That is, there exists a lower

triangular matrix, LQ̄, and a diagonal matrix, DQ̄, such that Q̄ = LQ̄DQ̄L>
Q̄

. The sparse nature of Q̄ implies

that LQ̄ is also relatively sparse (or can be transformed to be sparse after some number of column/row

permutations to reduce fill-in). Further detailed discussion can be found in ?. For the covariance matrix,

Σ = Q̄−1, from which we want to extract information, ? arrive at the following identity:

Σ = D−1
Q̄

L−1
Q̄

+ (I−L>Q̄)Σ (9)

In an LDL representation, LQ̄ has ones on its diagonal, which implies that I − L>
Q̄

is strictly upper

triangular, while D−1
Q̄

L−1
Q̄

is lower triangular. This, combined with the fact that Q̄ (and, therefore, Σ) is

constructed to be symmetric, and Equation (??), yields the following result, which can be used to compute

Σij , the element in the ith row and jth column of Σ:

Σij =−
∑
k>i

[LQ̄]kiΣkj , ∀i < j (10)

Σii = [DQ̄]−1
ii −

∑
k>i

[LQ̄]kiΣki, ∀i. (11)

Since both summations in Equations (??) and (??) only contain as many summand terms as there are nonzero

elements in the ith column of LQ̄, the number of necessary computations is greatly reduced. Notice that this

strongly justifies the use of permutations of Q̄ to reduce fill-in of LQ̄. The method above is implemented in

the PARDISO software package (?).

To illustrate this principle, consider a small example in which we are given an 8 × 8 sparse precision

matrix, Q̄, together with LQ̄ and DQ̄ corresponding to its LDL decomposition. From this matrix, we wish

to compute Σ44, that is, the element in the 4th row and 4th column in its inverse Σ. Suppose LQ̄ and DQ̄

have the sparsity patterns illustrated below, where a blank space represents the value 0 and a × represents

a potentially nonzero element in that position, which must be computed and stored in memory (× may be

0 as the result of computations and cancellations).
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LQ̄ =



×
×

× ×
× ×

× ×
× ×

× ×
× × × ×


DQ̄ =



×
×
×
×
×
×
×
×


Σ =



× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×
× × × × × × × ×


A direct approach would involve computing all elements in Σ, which is dense. However, using Equations

(??) and (??), we can generate the following set of equations:

Σ88 = [DQ̄]−1
88 Σ87 = Σ78 =−[LQ̄]87Σ88 Σ77 = [DQ̄]−1

77 − [LQ̄]87Σ87

Σ74 = Σ47 =−[LQ̄]74Σ77 Σ44 = [DQ̄]−1
44 − [LQ̄]74Σ74.

Therefore, due to the sparsity pattern of LQ̄, we only need to compute four additional elements of Σ.


