Submitted to INFORMS Journal on Computing
manuscript JOC-2019-07-OA-165.R1

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Rapid Discrete Optimization via Simulation with
Gaussian Markov Random Fields

Mark Semelhago, Barry L. Nelson

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, 60208
mark.semelhago@u.northwestern.edu, nelsonb@northwestern.edu

Funhye Song

Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, Pennsylvania,
16802, eus358Q@psu.edu

Andreas Wichter

Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, Illinois, 60208
andreas.waechter@northwestern.edu

Inference-based optimization via simulation, which substitutes Gaussian process (GP) learning for the struc-
tural properties exploited in mathematical programming, is a powerful paradigm that has been shown to be
remarkably effective in problems of modest feasible-region size and decision-variable dimension. The limita-

tion to ¢

‘modest” problems is a result of the computational overhead and numerical challenges encountered
in computing the GP conditional (posterior) distribution on each iteration. In this paper we substantially
expand the size of discrete-decision-variable optimization-via-simulation problems that can be attacked in
this way by exploiting a particular GP—discrete Gaussian Markov random fields—and carefully tailored
computational methods. The result is the rapid Gaussian Markov Improvement Algorithm (rGMIA), an
algorithm that delivers both a global convergence guarantee and finite-sample optimality-gap inference for
significantly larger problems. Between infrequent evaluations of the global conditional distribution, rGMIA
applies the full power of GP learning to rapidly search smaller sets of promising feasible solutions that need

not be spatially close. We carefully document the computational savings via complexity analysis and an

extensive empirical study.

Key words: design of experiments; efficiency; statistical analysis

History: Received July 2019; revisions received November 2019, February 2020.

1. Introduction
Stochastic simulation is a standard tool for designing complex systems that are subject to

uncertainty, where a natural goal is to optimize system performance with respect to con-

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
2 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

trollable decision variables. The focus of this paper is minimizing the expected value of a
stochastic simulation output of interest, which is often referred to as optimization via sim-
ulation (OvS). Within OvS, algorithms have been created that provide various theoretical
or practical guarantees. The algorithm we present in this paper has a global convergence
guarantee as well as finite-time optimality-gap inference for OvS problems whose deci-
sion variables assume integer-ordered values. Such discrete OvS (DOvS) problems appear
frequently in operations research when whole units of a resource (e.g., machines on an
assembly line, beds in a hospital, or agents in a call center) need to be allocated.

We are specifically interested in problems whose feasible solutions are defined on a finite
subset of the integer lattice, and the number of feasible solutions, combined with the
execution time of the simulation, implies that only a small fraction of the feasible solutions
can be simulated. Nevertheless, we desire strong finite-time global inference, such as that
provided by ranking and selection (R&S)—which simulates all feasible solutions—and a
global convergence guarantee in the limit, such as that provided by adaptive random search.

What we refer to as inference-based optimization represents the unknown objective func-
tion surface as a realization of a random (typically Gaussian) process, sequentially updates
the conditional (posterior) distribution of the objective function as the search progresses,
and uses the conditional distribution to guide the search and indicate when it is safe to stop
with some statistical guarantee on the optimality gap, which is the difference between the
mean of the chosen solution and the optimal solution. This remarkably effective approach
is usually credited to ?; in their setting the computer simulation was deterministic, but so
computationally expensive that only a small number of simulation runs could be completed
and therefore each one needed to be deployed as productively as possible. Inference-based
optimization strategies are a staple of the Bayesian optimization literature.

Inference-based optimization employs a more sophisticated and computationally expen-
sive search step than adaptive random search: updating the conditional distribution. The
computational overhead needed to provide this inference has sometimes been ignored
because the simulations were so computationally expensive that the time saved by not
simulating poor solutions overwhelmed the inference overhead. In our setting the output
is stochastic, and the number of feasible solutions is huge, but individual replications of

a solution may be relatively cheap compared to a deterministic computer experiment. In

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 3

combination, the computational overhead for inference is no longer negligible compared to
the simulation cost.

An example of the class of problems we consider is condition-based maintenance-policy
optimization, as studied in ?: The objective is to minimize the expected cost of operation
by assigning a condition number to each machine in a preventative maintenance (PM)
queue to avoid more expensive corrective action if it fails. Each machine has a degrading
health index of L (perfect health), L —1,...,0 (complete failure). The PM condition is
assigned based on the health index, and thus there are L — 1 feasible conditions for each
machine excluding 0 and L. For a system with d machines in total, the size of the feasible
solution space is (L — 1)¢, which explodes as the number of machines d increases. A single
simulation replication of this problem is relatively cheap (a few seconds), but has large
stochastic error variance, which makes it computationally impossible to apply R&S. The
computational cost of inference-based optimization also increases with d.

Obviously the effectiveness of inference-based optimization depends critically on how
well the chosen Gaussian process (GP) provides insight into the unknown objective func-
tion. A GP is defined by its mean function and most critically its covariance function (?). ?
showed that the continuous-decision-variable covariance functions that are often employed
in Bayesian optimization may fail spectacularly when applied to discrete-decision-variable
problems, particularly when used for optimality-gap inference. A discrete Gaussian Markov
random field (GMRF), on the other hand, provided excellent search guidance and stop-
ping inference. Qur primary contribution is to greatly extend the reach of GMRF-based
optimization by dramatically reducing the computational cost of inference.

We achieve our speed-up without resorting to any approximations, and therefore obtain
the full benefits of this powerful inference-based approach. Our rapid Gaussian Markov
Improvement Algorithm (rGMIA) combines infrequent evaluations of the full conditional
distribution for global inference, with rapid learning on a smaller, adaptive subset of
promising solutions. The fact that these small subsets need not be spatially close is key to
rGMIA making per-iteration search progress that is nearly the same as would be obtained
by computing the full conditional distribution on each iteration.

The remainder of the paper is structured as follows. In Section 77, we review the use of
GPs in DOvS algorithms. Section ?? provides the necessary background on GMRFs and

complete expected improvement, a functional of the conditional distribution of the GP that

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
4 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

guides the search. Section ?? restates GMIA as presented in ?. In Section 7?7, we introduce
rGMIA and delve into its computational details in Section ?7. In particular, we analyze the
computational complexity of rGMIA relative to GMIA, and prove its global convergence.
Section 77 shows numerical results, evaluating rGMIA against GMIA on carefully selected

test problems, and Section 77 contains concluding remarks.

2. Gaussian Processes in DOvS

GPs are stochastic processes with the property that any finite collection of the constituent
random variables are jointly normal. GPs are in common use in the design and analysis
of computer experiments to model an unknown response surface (7). Of interest to us is
their use in search algorithms where they play the role of known mathematical proper-
ties of the objective function surface. As feasible solutions are evaluated (deterministic
computer model) or simulated (stochastic simulation), the conditional distribution of the
GP is updated and employed to guide the search for improved solutions. Choosing the
covariance function of a GP is important as it implies certain properties of the objective
function surface it models, and this has consequences both on the validity of the statistical
learning and on the computations. Calculating the conditional distribution usually requires
inverting a large, dense, and sometimes ill-conditioned covariance matrix, and this is the
essential bottleneck for applying GP optimization to large-scale problems.

The use of GPs in OvS problems, with both continuous and discrete decision variables,
often results in algorithms that choose a solution to simulate x; at iteration ¢t where the
selection criterion is prescribed by the acquisition function a(p, X;). We use (p;, 3;) to
represent the posterior mean and variance, respectively, of the GP Y(-) that represents the
unknown surface y(-) at iteration t¢. This notation will be defined more precisely later. In
the following, we review GP methods devised for solving DOvS problems.

? consider a Bayesian R&S problem with independent normal responses and use a GP
model with correlation among alternatives as a prior on the mean values of the response.
They then treat the problem of finding the alternative with the smallest mean as a
dynamic programming problem to optimally allocate computer effort. Since this problem
is intractable, they myopically approximate an optimal allocation by simulating the alter-
native that maximizes the benefit received as if each iteration were the last iteration of

the dynamic program. They term this acquisition function the knowledge gradient (KG). ?

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 5

address the same setting where a multivariate normal prior is used to represent the means
of a finite number of alternatives. They extend the acquisition function found in ? by
considering pairwise sampling using common random numbers (CRN). Our GMRF-based
approach can be considered a form of Bayesian R&S where there is a prior distribution
exhibiting strong correlation among solutions, as in ?. Therefore, not all solutions need to
be simulated to make optimality-gap inference.

Employing a very different approach, ? model the simulation output at a solution, x,
as G(x) = M(x) + ¢(x) where M(x) is a stationary, mean-zero GP and €(x) is an error
term that models the stochastic noise in the simulation output. The “stochastic kriging”
model, G, is updated as the algorithm proceeds and used to construct a distribution from
which the next solution to simulate will be sampled. The use of a sampling distribution
as the acquisition function to guide the search distinguishes this method from the others
discussed above. None of the prior work cited above considers problems on the scale that

we address here in terms of the number of feasible solutions in a discrete space.

3. Optimization using GMRF's

Consider the global DOvS problem: minycxy y(x) = E[Y (x)], where the feasible region X’ is
a finite subset of the d-dimensional integer lattice Z¢; let n = |X’| be the number of feasible
solutions. In particular, we assume X is a d-dimensional hyperrectangle. At each feasible
solution x, the objective function y(x) is the unknown mean of the simulation output,
Y (x), which can be estimated via simulation. For any feasible solution x, we observe the
output Y;(x) = y(x) + €;(x) on replication j =1,2,..., where {¢;(x)} are assumed i.i.d.
normal with mean 0 and finite (unknown) variance o?(x) that may depend on x. In this
section, we present the underlying stochastic process for our inference-based optimization

procedure to solve the DOvS problem.

3.1. Gaussian Markov Random Fields
A GP-based optimization method for a finite feasible-solution space starts by modeling the

unknown objective function values y = [y(x1),y(x2),...,y(x,)]" as a multivariate normal
random vector Y = [Y;,Ys,...,Y,]" with mean g and covariance matrix . A GMRF, a
special case of GP, is a non-degenerate n x 1 Gaussian random vector Y that is associated
with an undirected and labeled graph G = (V,), where V denotes the set of nodes and

& denotes the set of edges; see 7. Each node in V is associated with a unique element

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
6 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

of Y. Two nodes in the graph are called neighbors if they are connected by an edge. As
described below, the graph G determines the structure of the precision matrix, Q, which
is the inverse of the covariance matrix 3 of Y.

In general, the diagonal entries Q;; of a precision matrix are such that Var(Y; | Yy\ ;) =
1/Qii, where Yy is the vector of values of the GMRF observed at the nodes in V'\
{i}. Thus, they are the reciprocals of the conditional variances. The off-diagonal ele-
ments are proportional to the conditional correlations; specifically Corr(Y;,Y; | Yy\(ij1) =
—Qij/\/QiiQ;;, where Yy ;3 is the vector of values of the GMRF observed only at the
nodes in V\ {4,;}.

The graph G determines the non-zero pattern of the precision matrix Q, and vice versa,
since for a GMRF Q;; # 0 if and only if {7, j} € £. Thus, the precision matrix is sparse if the
set of edges is small. GMRF's are “Markov” because they possess the local Markov property:
Yi L Yy unvyy | Yar for every i €V, where N(i) = {j: {i,j} € £}. This local Markovian
property incapsulates the prior belief that if all of the neighbors of a feasible solution have
been observed then there is little additional information about that solution remaining in
non-neighboring solutions; this regularity is often appropriate for DOvS problems that tend
to feature locally well-behaved objective functions. By contrast, the Gaussian covariance
function favored in Bayesian optimization implies an objective function that is infinitely

continuously differentiable, a much stronger condition.

3.2. Optimization

In a DOvVS problem with integer-ordered decision variables, the natural graph G = (V, &)
defines the nodes V to be X. Construction of £ requires a neighborhood. ? show that a
particularly effective choice is based on the ¢ distance, N'(x) ={x' € X: ||x — X/||, = 1},
which implies that the fraction of non-zero entries in the precision matrix Q is bounded
above by (2d+ 1) /n for hyperrectangular X', which makes Q very sparse for large n. This
allows faster computations than when a dense precision matrix is used.

We parameterize the entries of Q by 0 = [0y,01,...,04]". For the neighborhood N (x),
we let Q;; = 6o, if x; =x;, and Q;; = —000;, if |x; — x;| = e;, where x;,x; € X, e, is the
jth standard basis vector and |- | is the component-wise absolute value. In all other cases,
Qi; = 0. Thus, 6, is the conditional precision of each solution, and 6, is the conditional
correlation between solutions that differ by 1 in the jth coordinate direction, given their

neighbors. Under this parametrization Q = Q(0), but we omit 8 for notational simplicity.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 7

Solutions on the boundaries of the feasible region, or without neighbors in all coordinate
directions, would require adjusted parameters for the GMRF to be stationary. We have
chosen to ignore this, as the impact seems negligible and, therefore, treat our GMRF' as
non-stationary.

Since the conditional precisions must be positive, it follows that 6y > 0. We also want
neighbors to have non-negative conditional correlations, so 61,60,,...,6, are chosen to be
non-negative. Additionally, Q should be positive definite. With these conditions, Q is
a non-singular M-matrix so its inverse is nonnegative (7). In other words, there are no
negative (unconditional) correlations among nodes in the GMRF, a property that makes
sense in many DOvS problems as the objective-function values of neighboring solutions
should be similar to one another. Notice that even though we construct Q to be sparse,
its covariance matrix, ¥ = Q~!, is typically dense, as it should be.

Based on our GMRF model, the prior joint distribution of Y is N (u,Q™!). We adopt
non-informative constant prior mean g = ul, .1, where 1, is an n x 1 vector of 1s. In
total, we have d + 2 parameters to specify a GMRF for a d-dimensional decision variable
X.

Suppose that we simulate a subset of solutions in X. Let Y be an n x 1 vector such
that each element is either the sample mean of the associated feasible solution, if it has
been simulated, or y if it has not. Consistent with the output model, we represent Y as a
realization of the GMRF Y€ =Y + €, where the entries of € are jointly normally distributed,
if the corresponding solutions have been simulated, and 0s, otherwise. The composite prior
distribution of Y€ is N (i, (Q + Q¢)™'). We choose to simulate all solutions independently
(no CRN), which makes Q. a diagonal matrix so that the sparsity pattern of Q is preserved
for Q + Q.. If solution x has been simulated, the corresponding diagonal element of Q. is
estimated by r(x)/5?(x), where 7(x) is the number of replications that have been obtained
and S?(x) is the sample variance estimate of 0?(x); otherwise the corresponding element
in Qe is set to 0.

? prove that the conditional distribution of Y|Y¢ =Y is

N(p+Q'Q(Y-p),Q™), (1)

where Q = Q + Q. is the conditional precision matrix. Notice that computing the condi-

tional mean and variance requires Q !, and Q changes as we simulate additional feasible

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
8 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

solutions. Efficiently calculating quantities that depend on (??) for a large number of fea-
sible solutions is the principal topic of this paper. In practice, parameters such as 8 and u
are unknown, but are estimated via maximum likelihood after simulating an initial set of
feasible solutions. The intrinsic precision matrix, Q., on the other hand, is often directly
estimated from simulation output by using the sample variances at simulated solutions, as
described above.

Both the GMIA algorithm of ? and our rGMIA guide their search and (possibly) termina-
tion using complete expected improvement (CEI), which is defined in ?. At any iteration, the
estimated optimal solution is X = arg min ¢ v.,(x)>0} Y (x), where Y (x) is the component of
Y associated with solution x. The CEI of each candidate solution, x € X \ X, is the expected
improvement in the objective function offered by solution x compared to x, where the
expectation is with respect to the current conditional distribution of the GMRF. Thus, the
CEI of a candidate solution x relative to x, is CEI(x,x) = E [max (Y(x) — Y(x),0) [Y¢ = Y],
where the expectation is conditional on Y€ =Y, the simulation output that has been
collected. CEI is an extension of the EI acquisition function (?) tailored for stochastic sim-
ulation (?). The joint conditional distribution of Y(%X) and Y(x), X # x is bivariate normal
with parameters taken from the mean and the covariance matrix of (??) corresponding to
x and x. We denote the conditional mean and conditional variance at x as M (x) and V' (x),
respectively, and the conditional covariance between x and x as C'(X,x). For a given solu-
tion, x, the variance of the difference of Y(x) — Y(x) is V(%X,x) =V (x) + V(x) — 2C(%,x).

? show that the CEI of x can be expressed as

- - M(x) — M (x) — M(x) — M (x)
CEl(x,x)=(M(x) — M(x))P Vix,x , (2
(5.x) = (M(%) <>><m>+\/< >¢<m>)

where ¢ and ® are the density and cumulative distribution functions, respectively, of a

standard normal random variable. Both GMIA and rGMIA use CEI for search guidance—
simulate next the solution with the largest CEI-—and as a stopping criterion—stop when
maxXye x\x CEL(X,x) < §, where 0 is user-specified acceptable optimality gap. CEI has been
shown to have desirable properties. For instance, ? prove that under simplified conditions
(R&S with independent and normally distributed simulation output with known variances),
CEI satisfies the conditions found in ? that ensure that the probability of incorrect selection

converges to zero at the fastest possible exponential rate as the total simulation budget

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 9

increases to infinity. Such asymptotic properties, along with the impressive empirical per-
formance shown in ?, argue that CEI is a good acquisition function for inference-based
optimization.

Let M(xx) = [M(x1), M(x3),...,M(x,)]", V(xx) = [V(x1),V(x2),...,V(x,)]", and
C(x,xy) = [C(x,%1),C(X,%3),...,0(x,x,)]". From a computational point of view, to
obtain V(%,x),Vx € X, we need to compute the diagonal of Q! to obtain V(xy) and
the column of Q! corresponding to x for C(x,xy). The latter operation requires solving
the linear system Qz = ex for z, where e is an n-dimensional basis vector consisting of
zeroes, except for a 1 in the position corresponding to x. The former is more expensive
to compute; a naive approach is to compute the full inverse Q' and extract its diagonal.
Both operations require factorizing Q at every iteration. Although sparsity of Q helps, it
is increasingly expensive for large n. Such computational challenges serve as our motiva-
tion to substantially extend GMIA’s reach to larger numbers of feasible solutions in higher
dimensions.

? introduced a multi-resolution framework in which the feasible solution space is divided
into non-overlapping regions. Each region is represented by a solution-level GMRF, and the
average objective function values of the regions are represented by a region-level GMRF.
Their approach provides global and local search guidance as well as stopping inference
while reducing the size of the solution-level GMRF's. Of course, any such multi-resolution
approach will eventually be limited by the largest solution-level GMRF it can handle.
Thus, we concentrate on extending the solution-level algorithm in this paper.

? propose an efficient way to compute the diagonal elements of Q! without full inver-
sion when Q is sparse. PARDISO (?), a linear solver specialized for parallel computation
using state-of-the-art algorithms, was employed to perform this calculation. However, the
? algorithm still requires factorizing Q on every iteration. Our approach not only avoids
fully updating Q~', but also factorizing Q on every iteration, and it employs exact, rapidly

computed CEIs on all iterations.

4. Gaussian Markov Improvement Algorithm
In this section, we provide a quick review of GMIA. As presented in Algorithm 77, GMIA
begins by simulating a small number, ng, of well-placed initial design points (feasible

solutions) and uses the outputs to compute the maximum likelihood estimators (MLEs)

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
10 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

of p and 6. Then, it updates the conditional distribution in (??) given the simulation
outputs from the initial design and computes the CEIs of all solutions in X'. While the
stopping criterion is not satisfied, GMIA simulates the current sample-best solution, X,
and the solution with the largest CEI, x“FL, at each iteration. If Y (x) is discrete-valued,

then argmingcy.,os0 ¥ (x) and argmax, .y ; CEI(X,x) may be sets of size greater than

CEI

1. When this occurs, we randomly select a single solution in the set to be x and x~*,

respectively.

There are two stopping paradigms in OvS: fixed-precision and fixed-budget (?). For the
former, the algorithm terminates when the inferred optimality gap of the current best solu-
tion falls below a user-defined ¢§. Using CEI to terminate, as discussed in Section ?7, is an
example of a fixed-precision approach. In this paradigm, the performance of an algorithm is
evaluated by whether it actually achieves the inferred optimality gap at termination, as well
as the computational effort required to terminate. On the other hand, for a fixed-budget
paradigm an algorithm terminates when a predefined computational budget is expended
and the performance of the algorithm is evaluated by how small the achieved optimality
gap is at termination. Typically for a R&S procedure the computational budget is specified
as the allowable number of simulation replications, since other computational overhead is
negligible when the number of feasible solutions is small. For large-scale, inferential opti-
mization, however, the budget should encompass both simulation time and non-simulation

time.
Algorithm 1: GMIA

1 Choose ny < n initial design points. Simulate r replications for each design point
and use the simulation output to compute MLEs for the GMRF parameters
(1,0). Construct Q=Q + Q. and Y;

while Stopping criterion not reached do

Find x = argmingc v, x>0} Y_(x);

Compute Cholesky factor of Q: Lg;

Compute V(xy)=diag(Q '), using Lg;

Compute C(x,xx) = Q 'ex, using Lg;

Compute M(xx) = p + Q'Q.(Y — u), using Lqg;

Calculate CEI(x,x),Vx € X;

Find x“' = arg max, . y ;s CEI(X,%);

10 Simulate at x and x®®!. Update Y, Q., and Q by incorporating the new

simulation outputs;

© 000 N O ok W N

11 end
12 Return x = arg ming,c y..(x)>0} Y (x) as the estimated optimal solution;

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 11

In Algorithm ??, Steps 4 and 5 are the most expensive in terms of non-simulation
overhead. As mentioned in the previous section, 7 propose extracting the diagonal elements
of Q7! without computing the inverse entirely. Although this approach greatly reduces
the cost of Step 5, Step 4 remains a bottleneck. Due to the sparsity of Q, the cost of
the Cholesky factorization is much cheaper than it is for a dense matrix. Nonetheless, it
still becomes costly when the problem size is large, limiting the scope of GMIA. In GP-
based optimization algorithms, a common trick is to update the conditional distribution
efficiently using the Sherman-Morrison-Woodbury (SMW) formula to avoid factorizing Q
every iteration. In the Online Supplement (Appendix ?7?), we show that this approach

results in greater computational burden than our rGMIA.

5. Overview of rGMIA

Computing the CEIs for all feasible solutions enables GMIA to exploit global optimality-
gap inference, but it comes at a computational cost. Moreover, when X is large, most
solutions’ CEls are largely unaffected by the new simulation outputs at X and x“F!. If we
knew that a much smaller subset of solutions would contain those with the largest CEls
over the next, say, p — 1 iterations, then we could update the CEIls for only those solu-
tions in the subset. Of course, we do not know such a subset, but this insight motivates
restricting CEI computation to a small subset of promising solutions for several iterations.
Since we only require the diagonal elements of Q! corresponding to those solutions in
the subset, this strategy will greatly reduce the computational overhead in Step 5 of Algo-
rithm ?7?. Furthermore, as shown in the following sections, this scheme avoids an expensive
factorization in Step 4 by replacing it with much cheaper, lower-dimensional linear alge-
bra. Accomplishing this in a way that significantly reduces computation without hampering
search progress is our key contribution.

Algorithm 77 illustrates the steps of rGMIA including the necessary computation
required at each step. We defer discussion of the derivation of these results to Section 77
and provide a high-level description here: There are three stages to rGMIA: initialization,
rapid search and global search. In the initialization stage, rGMIA estimates the GMRF
parameters and updates its conditional distribution. Then, it proceeds to Step 77 of global

search.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
12 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

rGMIA alternates between many rapid-search iterations and a single global-search iter-
ation, as long as the global-search termination criterion is not met. For a fixed-budget set-
ting, this would be the constraint on the algorithm run-time. For a fixed-precision setting,
the CEI stopping criterion, maxyeax\x CEI(X,x) <6, is used. At each global-search iteration
(Steps 7?7-?7), rGMIA partitions the feasible region into a search set S C X and a fized set
F=X\S. The former contains the best simulated solution, X = argming,c v.,(x)>0} Y (%),
and promising candidate solutions that need not be spatially close. The intermediate matri-
ces, A and B, and vector, a, required for fast linear algebra during the rapid-search itera-
tions are also computed. Then, rGMIA proceeds to rapid search (Steps ?7-?7), checking
the rapid-search termination criterion along the way, which allows the algorithm to escape
from simulating the solutions in S and return to a global-search iteration when the ben-
efit from additional rapid search is marginal. We discuss candidates for the rapid-search
termination criterion in Section ??7. During rapid-search iterations, rGMIA computes the
CElIls of solutions in § exactly and selects the next solution to simulate within S. In the
following global-search iteration, & and F are updated reflecting cumulative simulation
results.

We let M(xs), V(xs) and C(X,xs) represent the vectors of conditional means, condi-
tional variances, and conditional covariances with respect to x, respectively, of solutions in
S; M(xx), V(xz) and C(X,xx) are defined similarly for . During rapid-search iterations,
we choose X to be the best simulated solution within S, i.e., X = argmingcs. x>0} Y (x).
This ensures that we only need to update the conditional distribution of solutions in &
during the rapid-search iterations. Because CEI is relative to the current sample-best solu-
tion, if we allowed X to be in F, then we would need a full conditional-distribution update
to compute the exact CEIs. We do a full update only on a global-search iteration.

Computational savings per iteration for rGMIA come largely from |S| < |F| =~ |X|. That
is, the relatively small cardinality of S is the key factor. However, effective search, which
is per-iteration progress toward the optimal solution, depends on the content of §. Our
proposal is to select solutions with the largest CEIs with respect to x at each global-search
iteration. This is based on the premise that the CEIs of solutions change incrementally in
subsequent iterations unless they are very close to a solution chosen for simulation. Other
choices are possible. There is no computational advantage for the solutions in S to be

close to each other in X', which allows the rapid search to remain global even though only

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 13

considering a subset of solutions. We have observed that the resulting S includes solutions

near X, other solutions with favorable sample means, as well as solutions in unexplored

regions of X'. However, savings in the form of per-iteration computational overhead do not

depend on this choice of S.

The idea of restricting inference to a smaller subset to reduce computational cost appears

in other work as well. For instance, for their GP-based search 7 propose forming a smaller

set of candidate solutions in some randomized fashion or applying a local gradient search

on the KG surface by relaxing the integrality condition. Unlike our approach, these subsets

or local search perimeters are altered and the GP conditional distribution is updated for a

different set of solutions at every iteration. By contrast, concentrating on the same S for

several rapid-search iterations allows rGMIA to exploit the savings from cheap computa-

tional linear algebra to a greater extent.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
14 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Algorithm 2: rGMIA

1 Choose ny < n initial solutions. Simulate at each solution and compute MLEs for
the GMRF parameters (u,8). Construct Q = Q + Qq;

2 Find x =argmingcy..(x)>0} Y (x);

3 Compute Cholesky factor of Q: Lq

4 Compute V(xy) = diag(Q™1), C(x XX) =Q lex, M(xx)=p+Q'Q (Y —),

using Lq. Go to Step ?77;

5 while global-search termmation criterion not reached do

6 while rapid-search termination criterion not reached do

7 Simulate at %, x“®. Update simulation information by updating ¥ (x),

(CEI) Qe, Q QSS;
Find x = arg ming,cs.,(x)>0} Y (x);

9 Compute V(xs), C(X,xs) by computing Xss = (Qss —B)™";
10 Compute M(xs) = ps + Xss([Qclss (Y (xs) — ps) — a);
11 Calculate CEI(x,x),Vx € S ;
12 Find x°' = arg max, . 5\ ; CEI(X, x);
13 end B B
14 Simulate at x, x“Fl. Update simulation information by updating Y (%), Y (x“!),
Qe, Q Q337 _
15 Find x = arg mingec v., (x>0} Y (x);

16 Compute V(xs) from Xss = (Qss —B)™

17 Compute M(xs) = pts + XLss([Qe)ss(Y (x) Ms) —a);

18 Compute V(xz) = dlag(Q;;) + 1ag(A255A), using Lq, ,;

19 Compute M(xx) = ;Lf—i—Qf]:[Qe] F(Y(x7) — pr) — A(M(xs) — ps), using
Lqss;

20 if x€ S then

21 Compute C(x,%xs) = [Xss]x;

22 Compute C(x,x7) = —A[Xss]x;

23 else

24 Compute C(x,x5) = —Xss[A "] x;

25 Compute C(X,x7) = Qrex + AXss[AT] z, using Lg, .
26 end

27 Calculate CEI(%,x),Vx € X’;

28 Find x°™ = argmax, . y\x CEI(X X);

29 Construct {F,S} partition of Q into Qrz, Qrs, Qss;

30 Compute Cholesky factor of Qrx: LQ . B

31 Compute A = Q7>Qzs, using Lg,,, B=QJsA, a=AT([Q]rr(Y(x5) — nr));
32 end

3 Retu“}{éﬁﬁ*ﬁ E;tlhe estimated optimal solution;

w

Hnktialization
sexaatch

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 15

6. Properties of rGMIA

In this section we provide computational complexity analysis of rGMIA. We analyze the
computational costs of rapid search and global search in Sections 7?7 and 77, respectively.
Section 7?7 then compares rGMIA to GMIA and proves global convergence.

Partitioning Q into block matrices corresponding to F and S as

Q- Qrr Qrs
Qs Qss

we obtain the following expression for 3 via standard block-matrix inversion:

. Srr Xrs Qrr + Q7 QrsZssQrsQrr —QrrQrsZss)

Yrs Bss —2ssQrsQrr Yiss |

where Sss = (Qss — Q}SQ}}Q 7s) ! is the covariance matrix of the search set. Our focus
is on X ss during the rapid-search iterations. Recall that before beginning rapid search,
rGMIA computes intermediate matrices A and B. These contain information to compute
V(xs) and C(X,xs) during rapid-search iterations without updating V(xx) and C(X,xx).
Since only solutions in & are simulated, B = QLsQ7»Qrs remains unchanged during
rapid search and needs to be computed only once at the end of the previous global-search
iteration. In addition, we retain the Cholesky factor of Qrz (that is, Lq,, such that
Qrr = LfoLg;f)v as well as A = Q}}Q;S since they are needed to update the exact
conditional means and variances of the solutions in F efficiently in the next global iteration.

Like the conditional covariance matrix, we partition the conditional mean vector M (xy):

-1

M(xy) = 1% N Qrr Qrs Qe 77 Ongxnsr Y (x5) ez | W

Hs Q_—}[S QSS On}-xns [Qe]sg Y(XS) Hs
where ng = |S|,nr = |F|,[Qdr7 and [Q.]ss are block matrices of Q. corresponding to F

and S, and {Y (x7),Y(xs)} and {pr, ps} are subvectors of Y and u, respectively. Thus,

M(xs) = ps + Xss ([Qe]ss(Y(Xs) — ps) — AT[Qrr(Y (xF) — Mf)) . (5)

During the rapid search, only [Q.]ss and Y (xs) change, while a = AT[Q.r#(Y (x5) —
pr) remains unchanged; A,B, Lg, . and a are intermediate matrices that we store in
memory at the end of each global-search iteration. In the following sections, we discuss the

computational details of rapid-search and global-search iterations.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
16 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

6.1. Rapid Search

During the rapid-search iterations we replace sparse-matrix inversions of very large Q with
dense inversions of very small ¥ss. From (??), Xss5 = (Qss — B) ™!, which is performed
in Step 9 of Algorithm ??. By construction, Qss is a sparse matrix, but B may be dense.
Hence, the floating point operation (flop) count of computing ¥ss is O(n3). Following
directly from (??), Step 10 computes M(xs) by multiplying the dense ng x ns matrix Xgss
by a vector, which costs O(n%). Thus, the overall cost of a single rapid-search iteration
is O(n%). Compared to a single iteration of GMIA, this can be made much cheaper by
choosing the size of the search set nsg < n. Later we consider ng ranging from 50 to 200.

Rapid-search iterations continue until the termination criterion is reached in Step 6. We
propose two candidate termination criteria and evaluate their performance empirically in
Section ?7. The first is to employ a fixed p — 1 iterations of rapid search, implying that
global search is repeated every p iterations. There is a trade-off between large versus small
p. The former brings greater computational savings for inference by restricting the search
to be within S longer; however, effectiveness of the search will diminish if p is so large that
there is not much information left to gain from this set. Determining the best value of p
is difficult without complete knowledge of the response surface of the problem as well as
the stochastic error variance at the solutions. Also the best p may be different late in the
search as opposed to earlier. We show later that p =ngs is often a reasonable choice.

The second criterion is to stop simulating within the current search set & based on
optimality-gap inference. Consider the following thought experiment: If we also knew the
CElIs of solutions in the fixed set F at every rapid-search iteration, then we would escape
from S when all of the CEIs of solutions xg fall below the maximum CEI in xr. As
an approximation of this ideal choice, we instead escape & when maxycs\x CEI(X,x) <7,
where 7 is a small positive number. In words, we stop searching within & when the CEls
of solutions within § fall below a threshold, ~, as it implies that only marginal reduction
in the optimality gap is expected by further exploring S. We refer to this criterion as the
adaptive scheme. A sensible choice for v is the maximum CEI of the solutions in F at the
last global-search iteration. Other choices of 7 are possible, but our results (Lemma 1 and
Theorem 1) were developed with this choice in mind. Clearly, this is not the same as the
true maximum CEI of the solutions in F, as it does not reflect the new simulation results

obtained during the rapid-search iterations, and it is calculated with respect to the best

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 17

solution at the time of the last global iteration, which may have changed. Nevertheless, this
threshold is a strong indicator that greater improvement might be obtained by exploring

solutions in F.

6.2. Global Search
When the rapid-search termination criterion is met, rGMIA switches to global search, first
selecting x among all simulated solutions in A" in Step 15, then proceeding to compute the
CElIs for all solutions. Although one might be tempted to compute CEIls of all solutions
as in Steps 3-4 in the initialization phase of rtGMIA, this involves factorizing Q and com-
puting diag(Q~'). Then, after choosing S and F, we would once again need to factorize
Qrr and diag(Q}}) to set up the rapid-search iterations. To avoid doing these expen-
sive computations twice, rtGMIA computes the CEIs of all solutions without factorizing
Q, but using the matrices computed in the previous global-search iteration and the last
rapid-search iteration. In the following, we explain this scheme in detail.

Steps 16 and 17 compute V(xs) and M(xs) in the same way as in Steps 9 and 10 of
rapid search. Steps 18 and 19 compute V(xz) and M(xx), respectively. From (?77),

Srr=Qrr+A(Qss — QrsA) AT = QL+ AXssAT. (6)

Because V(xr) = diag(Xr7), we have V(xr) = diag (Q7») +diag (AX55A). Recall that
A= Q}}Q 7s is computed and saved from the previous global-search iteration. Further,
diag (Q;—}_-) can be computed by performing a selected inverse, as discussed in ?, using
the Cholesky factor of Qzr saved from the previous iteration. Moreover, diag (AZSSAT)
can be obtained efficiently without computing the entire matrix by exploiting that the ith
diagonal element of AXssAT is equal to the sum of squared elements of the ith column
vector of ALy, where Ly, is the lower Cholesky factor of ¥ss. This operation costs

O(n3) flops, whereas fully computing AXssA T requires O(n%n). From (77)

M(x5) = pr + Qrr[Qdrr(Y (x5) — pr) — A(M(xs) — ps). (7)

Notice that Q7%[Qc]r7(Y(x7) — pr) can be computed efficiently by solving Qrrz =
Q77 (Y (x7) — pr) for z using the Cholesky factor of Qz#. Thus, the only remaining
pieces needed for CEI computation are the covariance vectors.

Since x is selected globally in the global-search iteration, X can be in either S or F.

This does not affect the way conditional variances and conditional means are calculated;

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
18 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

however, it does affect the way the covariance vectors, C(x,xs) and C(X,xz), are com-
puted. When x € S, C(X,xs) is simply [¥ss]x, the column of ¥ss corresponding to X.

Also, from (?77)
Yrs = —QrrQrs(Qss — QrsA) ' = —Q7rQrsTss = —AZss.

Therefore, C(x,x7) = —A[X¥ss].x. These are computed in Steps 21 and 22.

When x € F, C(X,xs) is a column of X5z corresponding to X. Since Xsr = —XssA ',
C(x,xs) = —Xss[A "] z. Similarly, C(X,x5) is a column of ¥z corresponding to X.
From (??), C(X,xr) = Qzrex + AXss[AT] z. Again, Qzrex can be computed efficiently
by solving Qrrz = e for z. Steps 24 and 25 perform these computations.

Combining these pieces, rGMIA computes the CEIs for all solutions in X and constructs
a new {F,S} partition in Steps 28 and 29. Finally, the intermediate matrices are recom-
puted according to the new partition and stored for the next global-search iteration.

The most expensive calculations during a global-search iteration are the Cholesky fac-
torization of Qrz, performing a selected inverse to compute diag (Q}}) and solving a
linear system of equations with Qzz. We use the PARDISO software (?) to perform these
calculations, which improves their efficiency by pre-processing large matrices such as Qrr.
Unfortunately, this makes it difficult to characterize the flops required by these calcula-
tions. Therefore, we conducted timing experiments to estimate how the computation times
scale as the number of feasible solutions and problem dimension grow; see the Online
Supplement (Appendix ??) for the results.

Despite the lack of explicit flop counts for PARDISO calculations, we can still charac-
terize the computational savings attained by rGMIA compared to GMIA by parameter-
izing the flop counts for computing Lq ., the Cholesky factor of Qrr, for performing a
selected inverse to obtain diag(Qz%) given Lg, ., and for solving a single-column right-
hand-side linear system involving Qz# given Lq,,; we denote these by Cr = Cr(Gr),
C;=C[(GF) and Cf, = CL(Gx), respectively. Note that G is the induced graph of solutions
in F associated with the GMRF that uniquely specifies the sparsity pattern of Qzr and
thus determines the cost of performing these matrix operations.

As previously characterized for rapid-search iterations, computing V(xs) and M(xs)
costs O(n%) flops. To compute V(xz), it costs C; for diag (Q7%) and O(n%) flops for

diag (AEgéAT). For M(xz), it costs Cp for solving a system of linear equations and

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 19

O(ngn) for the matrix-vector multiplication in (??). The cost for covariance vector com-
putation depends on whether x is selected in S or JF; the latter case is the most expen-
sive, costing Cp + O(nsn) flops. In our numerical experiments we observed that & tends
to remain in S in later iterations. Finally, computing the intermediate matrices requires
Cr+nsCr+ O(nkn).

To summarize, a single global-search iteration incurs a cost of Cr + C; + (ns + 2)Cp, +

O(n%n) flops. See the Online Supplement (Appendix ??) for a more detailed analysis.

6.3. rGMIA vs. GMIA

To illustrate the computational savings of rGMIA, we analyze how the number of flops
grows for both GMIA and rGMIA as n increases. Recall that GMIA factorizes Q at
every iteration to compute diag(Q ') and M(xy). Thus, per-iteration cost of GMIA is
O(Cr(G)+ Cr(G) +CL(G) +n), where O(n) comes from computing Q.(Y —) in Step 7 of
Algorithm ??. Although Cr(Gr) # Cr(G), their difference is negligible as F includes most
of the solutions in X.

In rGMIA, for a cycle of p — 1 rapid-search iterations and one global-search iteration,
the per-iteration cost grows as O (n% + (Cr + C; +nsCr +n%n)/p). Recall that ns is small
by construction of S and Cr, Cy, C; and n are relatively large. In fact, Cr, C; and C},
grow at a rate at least as fast as, and often faster than, n (see the Online Supplement,
Appendix ??, for evidence), suggesting that p should be chosen large to mitigate the per-
iteration cost. Immediately we see that performing p — 1 rapid-search iterations amortizes
the cost of performing the expensive operations during the global-search iteration. As the
problem size grows, if we allow p to grow as quickly as Cr, C; and C}, grow, then we can
control the cost of expensive matrix operations in global-search iterations by performing
many rapid-search iterations cheaply. No such control is available in GMIA and the number
of flops simply grows without bound. From a computational standpoint, this explains the
power of rGMIA.

To give a sense of the relative time cost of rapid-search vs. global-search computations,
consider Q associated with a two-dimensional DOvS problem having a 1000 x 1000 feasible
region, and a randomly selected search set & with ng = 100. The global calculations of
matrix factorization, selected inverse to obtain the diagonal elements, and solving a single-
column right-hand-side linear system, performed by PARDISO over 100 trials, took on
average 31.17 seconds (0.16 seconds), 44.55 seconds (0.27 seconds) and 1.09 seconds (0.02

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
20 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

seconds), respectively, with standard errors in parentheses. Compare this to the rapid-
search operation of computing the inverse of a dense ns x ng matrix. Using MATLAB,
with ng = 100, such an operation took on average 0.2203 seconds (0.0087 seconds) over
100 trials. Clearly global-search operations are the bottleneck, and they become even more
significant as problem size and dimension increases. More results demonstrating this are
found in the Online Supplement (Appendix 77?).

? show that GMIA without a stopping criterion simulates each solution x € X infinitely
often with probability 1 as the number of iterations goes to infinity. This establishes global
convergence via the strong law of large numbers. Here we show that with far superior
computational efficiency—demonstrated empirically in Section ?7?7—rGMIA still achieves
global convergence for either the fixed-p or adaptive schemes; see the Online Supplement,

Appendix 77, for the proofs. To begin, we introduce the following lemma:

LEMMA 1. At any iteration of GMIA or global-search iteration of rGMIA, CEI(X,x) >
0,Vx € X\ x with probability 1.

This lemma guarantees that, in the adaptive scheme, our choice of ¥ = maxye r CEI;(X, x)
will be positive with probability 1 after any finite number of iterations of rGMIA. With the
aid of Lemma 7?7, we establish global convergence of rGMIA using only the assumptions

presented in 7 to prove convergence of GMIA as stated below.

THEOREM 1. Assume: (i) y(x) > —o0,Vx € X, (ii) 0 < Var]Y (x)] < co,Vx € X and (iii)
the nitially estimated Q(é) s positive definite and not updated, where 0 are parame-
ter estimates. Given assumptions (i)-(iii), rGMIA, implemented with either the adaptive
or fixed-p < oo scheme and without a stopping condition, simulates each solution x € X

infinitely often with probability 1 as the number of iterations goes to infinity.

7. Empirical Evaluation

We use three test problems to evaluate different aspects of the performance of rGMIA.
The first is an (s,.5) inventory optimization problem from ?, which has characteristics
of a practical DOvS problem and has already been used to test the behavior of GMRF-
based optimization algorithms in 7. The objective function is the expected average cost
per period of the inventory system over 30 periods. To obtain a rectangular feasible region,

we choose the decision variables to be s and S — s. We test two different sized feasible

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 21

regions: inventory_100 covering solutions s x (S —s)=1[1,2,...,100] x [1,2,...,100], and
inventory_150 covering solutions s X (S —s) =[1,2,...,150] x [1,2,...,150]. The optimal
solution in both cases is s =17 and S — s = 36 with an estimated expected average cost
per period of $106.14 based on 500,000 replications at each feasible solution.

The second problem is based on a modified Griewank function; see ? for a description.
The Griewank function is a popular test problem due to its many local minima. We slightly
modified the parameters of this function to make the range larger and the global minimum
more distinguishable. We chose the domain of the Griewank function to be [—5,5] X [=5, 5]
in which it has 5 local minima (colored in blue) with the global minimum at (0,0). The
range of the function is [0,2.5490]. The 4 local minima have response values of 0.6828,
compared to 0 for the global minimum. To create DOvS problems based on this surface we
project it onto lattices of varying resolution, resulting in four problems with feasible regions
of increasing size: griewank 101 (101 x 101 = 10,201 solutions), griewank 201 (201 x
201 = 40,401 solutions), griewank 301 (301 x 301 = 90,601 solutions) and griewank 401
(401 x 401 = 160,801 solutions). To make it stochastic, we added independent N(0,10~%)
simulation noise to the response function, mimicking the behavior of a DOvS problem.
Much of the variability in this problem is driven by the nature of the surface rather than
that of the stochastic simulation noise.

The third problem is “restaurant seating” modified from a problem available in the
SimOpt.org library (?): Suppose a restaurant has the objective of maximizing profit (or
minimizing negative profit). There are d different sizes of tables, s;,i=1,2,...,d, and we
are to decide how many of each size of table to make available, z,. Customers arrive in
groups that range in size from 1 to s; and are seated instantly at the smallest available
table that can seat the entire group. Successfully seating a group results in revenue r,
in $1000s, per person. Groups that find no available table upon arrival leave without
waiting. Keeping a size-s; table costs ¢, X $1000/hour. The restaurant runs continuously
for T hours. We consider three different problems, restaurant_125, restaurant_25 and
restaurant_5, each having 15,625 feasible solutions, but of different dimensions: d = 2,
3 and 6, respectively. Table ?? in the Online Supplement (Appendix ?7) outlines the
parameters used for each problem.

For all experiments, 10 replications were obtained at each simulated solution on first

visit, and 2 additional replications on subsequent visits. MLEs of the GMRF parameters

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
22 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

were estimated using a Latin hypercube sample of 10d feasible solutions, where d is the
problem dimension. Experiments were run using a high-performance computing cluster
(HPCC) consisting of three compute nodes, each with 40 cores and 256GB of RAM, and
a head node that has 20 cores and 256GB of RAM. For each experiment, we ran 30
macro-replications, setting different random number streams for each run and assigning a
single core for each macro-replication with sufficient memory to successfully perform the

experiment.

7.1. Comparing rGMIA to GMIA

We compare the performance of rGMIA to GMIA considering both fixed-precision and
fixed-budget paradigms. The version of GMIA used for comparison adopts the smart sparse
linear algebra techniques discussed in 7. We use the inventory and restaurant problems in
the former setting, where we evaluate the time until termination and the resulting achieved
optimality gap of the estimated optimal solution given desired gaps of § =0.1,0.05,0.01.
We use the Griewank problem in the fixed-budget setting with a time budget of 1 hour,
comparing the achieved optimality gap after the budget has been exhausted for problems
of increasing size. To simplify the comparisons, we ran rGMIA for a fixed search set size
ns =50 with p =10, 25, 50, 100, 200 rapid-search iterations per global-search iteration, and
the adaptive scheme. Results in Tables ?7-?? indicate that p = 50 performs especially
well. For (favorable) comparisons of the GMIA approach with other Bayesian optimization
algorithms see ?. The focus of this paper is providing a computationally superior way to

achieve the same search progress and inference.

23

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

(2) (8¢8) (66ST) (129) (L89) (979) (192) (ce) (0L8) (g7v1) (2voe) (8¢8) (0v9) (081) suoljyeIs)] jo
826 60002 88189 8ECTE 86991 9G€0T ITeT LET1T GL90€ 888991 TSVE8 98ETE 86481 €482 Joquun N UWeaAl
. . e e o o . oo o N den
T-dE]89 #-HO00'S #HO0S ¥HO0S FHLZ9 FHL89 T-HES9 | T-UE]R9 T-HU688 FHU688 FHOR8 FHERYS FH68S ¢-HTTT AypewnydQ XeIN
(zasey) (¢avoe) (¢He6e) (¢-aL9e) (6-dL9€) (¢-ap9e) (e-d9re) | (c-d08e) (4-H06'F) (9-HleT) (4He6T) (¢HIve) (S-H90°6) (G-H00°9) dep
gH0L6 PHL0C FEYT VHG0'C BHLST P96'G GHELTV | ¢H98°9 00 VH0SG FrH6F T PILT pHSLE F69'€ | Ayrewryd(Q uesynl
VIND aandepy ogog=d oor=d 0g=d ge=d or=d VIND @eandepy gog=d o01=d o¢=d go=d or=d w1103y
T0¥ uemarad 10g uemarad we[qoid
(g6) (9961) (1629) (9918) (evec) (029) (192) (c18) (zge) (v6¥8) (80c0z) (69ge) (88€0) (8¢8) suorjeIoy] jo
Lv6¥ L690%C 188707 80€8€T 9LGGTT 6026¢ 92TL1 9691¢ LTL0V PSI6LCT ¥EET08 1T8C8¥ EEVRST 92096 IoquInN Uesjy
. . . den
€-H00°C 0 0 0 0 eHdIeT €dIeT 0 0 0 0 0 0 0 AnrewdQ xepy
(gmL06) (0) (0) (0) (0) (g¢Hoes) (¢-aoL2L) (0) (0) (0) (0) (0) (0) (0) dep
7-H¥9'S 0 0 0 0 P-H09'C VHLTE 0 0 0 0 0 0 0 AyrewrydQ ueay
VIND @andepy oog=d o001=d 05=d gg=d 0r=42a VIND andepy gog=d 001=d 05=4d gg=d or=d w103y
10Z uemorad 10T uemo1ad we[qoig
*sasayjualed
ul papinoid aie senjea ueaw Jo sioaid piepuelg “1@8pnq awil noy T e uanI8 ‘swsjqoid Ty queMal3 pue [Qgyuemals ‘TQg uemans
‘10T uemaus ayy o1 paydde yAD pue (05 =|S|) VIWDA Jo suonedijdai-osdew (¢ wouj paSesane synsai 198png-paxi4 Z ?d19el
"4,4, UOTY09G Ul
pourerdxe 10y}anj ST SIY T, ‘POAOWAL UOIIRII[dOI-0I0RW IDI[INO YIIM UOIeII[dOI-0I0RW G SSOI0R PoFelsAe SI 0G T~ AI0JUSAUIL 10]) nsal pejrodoy
(092) (evL) (zese) (6971) (z69) (e12) (292) | (162) (z08) (6L08) (eFsr) (L22) (68L) (@6L) | (918) (#08) (sree) (¥@91) (€08) (¢08) (018) suoryeIa) jo
22961 €166 L9geL 81.9¢ GLL6T TGE61 LSE6T | TLGGT 9FSST OLPE9 FSLIE 66191 GTSST 00SST | TEOPT GEIPT LLPSS GEE6T OLLFT G90FT GOOVI | IequnN uesly
d
79°0 61°0 00 €70 S0 FTO0 610 | L0 €10 IO 6F0 TLO 080 0€0 | ©90 79°0 IO €0 PI0 080 ST0 b__as_wmu xepq
(zoo) (1000) (000) (10°0) (10°0) (10°0) (10°0) | (20°0) (10°0) (T0°0) (20°0) (€0°0) (20'0) (20°0) | (€00) (e000) (1000) (10°0) (10°0) (€0°0) (10°0) den
90°0 £0°0 100 200 €00 F00 00 | 600 200 €00 900 800 800 L00 | &0 210 €00 00 SO0 gI'0 $00 | AnrewndQ ueepy
G G (el G Ci G Geg G Amv UoReuULIaL,
89001 9.9 796 969 €89 6SIT LOTT | 0956 619 226 289 89¢ 8GOT S6SI | 0956 16¢ 668 89 98s €96 SO0RT | Lo oy xepy
(61¢) (92) (ce) (ve) (61) (ge) (99) | (92¢) (92) (ve) (re) (02) (9g) (99) | (cee) (92) (ve) (¢cg) (02) (9g) (29) | (s) woryeuruway,
GLEL G6F 7L %S TP 188 T6ST | T06S 9¢¥ 886 0SF 98¢ ¥99 SIEL | 92€S €07 07% CIV gSe €09 L0GT | [I3Un SwLy, WedAl
VIND oandepy oog=d 001=d 0¢=d gg=d 01=d | VIND °andepy oog=d 001=d 0¢=d ¢g=d 01=0d | VIND °andepy oog=d 001=d 0¢=d g¢g=d o1=d w03y
100 500 10 0
0G T A10juaAur we[qoig
(6L2) (192) (66L) (v6e) (ve) (292) (cog) | (9ge) (re2) (cL8) (evh) (6ze) (¢ge) (eve) | (s€e) (9¢2) (vo6) (zgp) (oge) (9g2) (9¢€¢) suoljesa)] Jo
86701 7666 T9SPE STSLT €6G0T ¥Hg0T 0LEOT | T6SL 0€SL 89T0E 8€GST 898L 98FL GICL | GGl9 60L9 886LC FEOPT OFTL 8699 ¥899 | JIoqunN Ueoly
d
0€°0 £6°0 o €0 TI'0 €0 €0 | €60 £6°0 €10 6F0 €0 €0 Tg0 | 2.0 80T €U0 PO ¥90 GL0 €€0 bzai_wﬁmu -
(t00) (z00) (000) (100) (1000) (1000) (10°0) | (PO'0) (20°0) (10°0) (200) (10°0) (20°0) (10°0) | (€0°0) (6000) (100) (100) (20°0) (€00) (20°0) den
50°0 90°0 G000 800 €00 ¥00 €00 | 910 80°0 €00 600 F00 L0 900 | €10 730 FO0 200 800 110 600 |AypewnydQ uesy
(s) uorjeuruiay,
<G0€eT € 09¢ 002 SLT TS¢C 069 TrLI ¥0¢ Ve €81 a1 08T ey 8191 16T (4544 LI g L91 01¥ U SuILY, XeA
(v) ¥) (9) ¥) ¥ (o () | () () (9) () & ® D | (@) (9) (9)) (¥ () (1D | (s) vonpeuruay,
2081 281 £1% 68T OFT I8T g8¢ | €€€l 291 981 PEL oIl Gel LLg | 98II 0¥l £L1 ¥l g0l Tgl Lpg | [1Un owiL], ueoy
VIND oandepy oog=d 001=4 05=4 gg=d 01=d|VIND 2andepy oog=d 001=4 0¢=d g¢g=d 01=d| VIND 2ndepy oog=2 001=d 0¢=d Gg=d o1=d wy)LI0S[VY
100 50°0 10 0
001 AI10juaAur we[qoig

0G 1 A103uanul pue g1 A10juanul ayl o3 paydde yIAND pue YINDA Jo suonedijdai-onew (f wody paSelane synsal uoisidasd-paxi4

*sasayjuased ul papinosd aie sanjea ueaw Jo si1044d piepuelg ‘swdjqoad

T 3lqeL

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
24 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Table 7?7 contains the results of fixed-precision GMIA and rGMIA applied to the inven-
tory problem. In each subtable, we record the mean and maximum run times, mean and
maximum achieved optimality gaps, and mean number of iterations until stopping across
30 macro-replications. “Optimality gap” here refers to the difference between the true
response at the estimated optimal solution and the true minimum of the response surface.
Each column specifies an algorithm and the desired acceptable optimality gap, 6. The
inventory problems are low-dimensional and have smaller numbers of solutions compared
to other test problems. However, even in this setting with relatively cheap computational
overhead, Table 7?7 shows that GMIA’s mean run time is almost an order of magnitude
greater than rGMIA across every choice of p or the adaptive scheme. Such differences
in mean run time become larger as the problem size increases (see inventory_100 vs.
inventory_150). Consider the scenario where a user wishes to solve the inventory_150
problem to fixed precision given § =0.01 and must purchase processor time on an HPCC
at an hourly rate. The user of GMIA would potentially be required to purchase almost 3
hours of run time, corresponding to the maximum observed run time in our experiment
(10068.06s). Whereas, for rtGMIA with p = 50, the maximum observed run time is under 11
minutes; 16 times faster than GMIA. An outlier macro-replication was removed from the
inventory_150 results. The design points placed in this run resulted in MLEs that mis-
characterized the surface, highlighting a challenge in initial parameter estimation for both
GMIA and rGMIA; they completed only a single iteration before attaining a maximum
CEI < 0.05, terminating with an achieved optimality gap of 8.51.

Table 7?7 highlights the advantage rGMIA has in a fixed-budget setting using the
Griewank problems. For each problem and algorithm, we examine the achieved optimal-
ity gap at termination and number of iterations that are performed across 30 macro-
replications after the 1 hour time budget has been exhausted. Keeping dimension fixed
(d = 2), as the number of solutions increases, it becomes more difficult to find the optimum,
because 1) more simulations are required as there are more feasible solutions and 2) com-
putational overhead for inference at each iteration increases. However, the latter affects
GMIA far more than rGMIA. For example, the mean number of iterations GMIA performs
within 1 hour in griewank_401 is 1/23 of that in griewank_101. The impact is far milder
for rtGMIA; for example, the mean number of iterations of rGMIA with p =200 decreases

by 1/2 comparing griewank 401 and griewank_101. Performing more iterations given a

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 25

time budget means more simulations are made, which ultimately manifests in the optimal-
ity gap of the solution returned at termination. Even though griewank 401 was a difficult
problem to solve for all algorithms tested, we note that GMIA had a mean optimality gap
that was two orders of magnitude larger than that of most settings of rGMIA.

To test the effect of increasing dimensions, we ran GMIA and rGMIA on the restaurant
problems under the fixed-precision setting. Table 7?7 contains three subtables correspond-
ing to restaurant_125, restaurant_25 and restaurant_5 problems. Recall that all three
problems have 15,625 solutions, but have dimensions d = 2, 3,6, respectively. This affects
both simulation time as well as computational overhead. To ensure that optimal solutions
are located in the interior of the feasible region, arrival rates were chosen to be different
for each problem; see Table 7?7 in the Online Supplement, Appendix 7?7, for details. As
a result, the simulation time per replication generally increases as the problem dimen-
sion decreases. On the other hand, the computational overhead increases as the precision
matrix becomes denser in higher dimensions. GMIA spent 50.52%, 8.53% and 0.18% of its
run time for simulations in restaurant_125, restaurant_25 and restaurant_5, respec-
tively. This reflects that as the problem’s dimension increases the precision matrix becomes
denser and the linear algebra in GMIA becomes more costly. For the restaurant_125
problem, Table 7?7 shows that GMIA actually outperforms rGMIA by terminating sooner.
In this case, the simulation is relatively more expensive than the linear algebra, thus it
is more important to select good solutions to simulate at each iteration from the entire
solution space than reducing the cost of linear algebra by restricting the search. For the
restaurant_25 experiments, however, the mean time until termination of GMIA increases
compared to the restaurant_125 experiments, whereas that of rGMIA decreases. This is
because the simulation is now cheaper and linear algebra is more expensive, thus rapid
search of rGMIA pays off. Recall that this combination of large computational overhead
and relatively smaller simulation effort is the setting for which rGMIA was proposed.
Finally, the restaurant_5 problem is higher dimensional to push the limits of what GMIA
can solve. With a mean run time of over 2 days across 30 macro-replications for § = 0.1,
GMIA effectively was unable to terminate. rGMIA was able to return an estimated optimal

solution within d = 0.1 in 2 hours on average.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

26

"VIIND 4Aq paafos aq 03 o[qeun swaqoid aA[os 01 A[Iqe s, YOI S91RIISOI[T STY) N ‘PIjITWO dI9M SINSII [[NJ ‘UOSLAI SIYY I0] "IY| <

sem uoljeUIULI®) [1jun pesders

duWII) URSW Y} JRYJ [ONS SoWI) UNI SUO[pey g juedne)sal uo YD Sutuuni jo suorjedijder-oroewr Auejy

V/N (9g01) (82%) (v¥er) (gerr) (6S01) (861T) V/N (verr) (8or) (vive) (1911) (8911) (2LIT) v/N (g66) (8¥FF) (9612) (2201) (€F0T) (8001)| suolyetd)y jo
L9TLT 8FGS9 TSISE 9902C 66F0% €9T61 86G8 89G8¢ 8OFST T1S6 €688 2928 0EFS FI9S% 8€9GT 6919 086S 69LS | Ioqunp Uedly
. den
V/N 610 200 800 II0 ST0 GI'0 | V/N S1°0 o S0 ¥I0 g0 L10 | V/N 1€°0 €0 0 T80 TE0 TE0 | goende ey
v/N (100) (0000) (0000) (000) (10°0) (00°0) V/N (100) (0000) (1000) (10°0) (10°0) (10°0) V/N (too) (100) (100) (1000) (1000) (10°0) den
90°0 €00 €00 FO0 S00 ¥0°0 L0°0 G000 900 S00 SO0 9070 L0°0 900 L0000 L00 900 | AyewndQ weejy
(s) uoryeuruiay,
TEY < LGETR PZO0E 98OZE GOCLE 9E8R6 TOVEST | TS TP6Z9 66S9T GLOVEG G9ERT PGOLE ATGUOT | TSP < OTLGE 0GVEZ GETTZ LELST OTEGP SE0Z6 | m sumy xepy
gy < 9866) (Tve) - (9zo1) (809T) (Rve) (66LL) | on o (e8V) (av0z) (996T) (907T) (TzPP) (4¥78) | o0 (9g88) (g102) (0921) (992T) (eg6e) (¢6cL)| (S) womeuyuiiay,
1869 09€L% GEVST LES6G 0L98L 86LETT 0L66c 06891 GL0ST LSFIT G6EEE 0GL6S G600c LILTT Ig01 1ge. 993 669€F | [19un owiL], Ueall
VIND oandepy 00z=d 001=d 05=d ¢g=d 01=d | VIND @andepy oog=d 001=d 05=d Gg=d 01=d | vIND oandepy 00g=d 001=d 05=d ¢g=d o1=d wyyL0S Y
10°0 00 10 ¢
g juRINE)SaI wa[qoid
(ove1) (e18e) (L1ee) (aL¥1) (c9cn) (eeer) (e6e1) | (e98) (9g2) (owee) (1191) (¥18) (628) (618) | (¢08) (618) (09¥e) (0zL1) (198) (2e8) (¢18) suorjeayy jo
G86ST 9S6T T9T0S T868% €€66T LOTST GEI9T | TO9L PIES SFSPE FOELT 9PL8 T808 T96L | T609 FGE9 80€9% FLOST 69F9 0SG9 689 | IoquinN e
. - - . den
€10 8T°0 600 gl'0 ST0 gl'0 gl'0 | 610 61°0 6T°0 610 610 610 610 | 6I0 61°0 610 610 610 610 610 | coordo xemn
(t00) (100) (000) (100) (1000) (10°0) (10°0) | (T0°0) (10°0) (10°0) (10°0) (10°0) (10°0) (10°0) | (TO°0) (10°0) (10°0) (10°0) (10°0) (10°0) (10°0) den
90°0 L0°0 ¥00 G000 S00 ¥0'0 900 | 00 L0°0 600 L00 900 800 00 | 800 L0°0 900 L0000 800 900 |AyrewydQ ueejy
. (s) uoryeururiay,
0L9FF GELGT 1088 T6IG 9¥eF 6E€L EELIT | 6998C €TLF 6269 L96€ 88LG 8EEF GPGY | €609¢ SIER 9829 €89 FOST FO6E TESS | i sy xepy
(68¢z) (pLe) (e9e) (ree) (¢12) (vep) (8gL) |(g991) (10€) (oLp) (692) (es1) (vie) (uLp) | (18¢1) (vee) (809) (88¢) (261) (e1€) (LLF) | (S) uworpeurmaay,
G0SLG Thas 80zL GIFF 86GE P6SS LGG8 | BS6ET 890€ €TIS €68c G061 980& G6SP | 9SETT 99€g 998¢ 6T LPPT L9EG 8T9¢ | [13UN SWIL, UdIN
VIND oandepy gog=d 001=d 05=d gg=d (o1=d | yIND oandepy oog=d 001=d 0¢=d Gg=d o1=d | yIND @andepy o0z=d 001=d o¢=d ¢g=d o1=d wyyLIo3 Yy
10°0 G0°0 10 ¢
GZ jueanejsada E@T&Ohm
(Lver) (veve) (ozow) (eere) (ceer) (oser) (gger) | (ce6) (6992) (6e6e) (L961) (c66) (cv6) (6e6) | (198) (1¥8) (929¢) (0281) (016) (2¢8) (T98) SsuoIyeIa)y Jo
8088 99681 TF90E FOL9T €IT0T 0906 €988 | 9GLG 9656 F6GFE PEIGT 6819 8%8S €8.G | 891¢ SPIS Peegc ISTIT 169G 82e& 618 | JIequmN ueay
. den
1€°0 1€°0 €0 160 I€0 180 I€0 | FFO 70 w0 o ¥0 PO FF0 FPO0 | ¥F0 770 W0 P F0 W0 T | gneingde e
(100) (100) (100) (100) (100) (100) (100) | (20°0) (20°0) (20°0) (20°0) (20°0) (z00) (200) | (c00) (200) (200) (200) (200) (20°0) (20°0) den
80°0 80°0 900 900 00 L00 800 | IT0 110 L00 800 600 600 010 | 0T0 [4§0] 600 010 Tro 010 010 |AyewndQ uesjy
.))) , 5 | (s) wonjeuruiay,
€GE0T SEPET L9GPT TROTT S6€0T 60SOT O09ETT | FEI8 SEPET T€EET FPEOT OF68 9868 G196 | G8GL 0108 8GPZT PEGG L8ER 1SR PO | Ly qumr wepy
(gz8) (99L) (891T) (926) (828) (¥6%) (686) | (989) (608) (9e11) (016) (262) (282) (zes) | (629) (o12) (gvor) (ge8) (0os) (912) (26L) | (s) uoryeurmaag,
808% 1L7L 6688 LL0L F0£9 QLT ¥6S9 | 1ok €09¢S ¥O0L 0295 TL9F 6¥8F LF0S | 918€ 8eet €0F9 892 60€F 96€F 96GF | [1UN owiLy, uea
VIND oandepy gog=d 001=d 05=d gGg=d (o1=d | VIND oandepy 00g=d 001=d 0¢=d g¢g=d 01=d | vIND @andepy ooz=d 001=d 0¢=d ¢g=d o1=d wyjLIos Y
10°0 00 10 ¢
Gz jueane)sad we[qoid
*sasayjualed ul papinoid aie sanjeAa ueaw Jo SI04Id piepuel§ ‘swid|qoid g juesnelsas pue Ggoiueanelsal
‘GgT ueanejsas ayy 01 paydde yiN9 pue (0S =|S|) VIND4 Jo suonedijdai-osdew g woiy paSesane s3ynsai uoisidaid-paxi4 € ?|qe]

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 27

7.2. rGMIA’s Performance Sensitivity to ns and p

In this section, we investigate how rGMIA’s performance is affected by the search set size.
In the previous section, all experiments used search set size ng = 50, and p = 50 rapid-
search iterations showed good performance across all problems. We now vary the search
set size as ns = 50,100,200 and evaluate the performance of different choices for p, as well
as the adaptive scheme, under the fixed-precision setting. We provide complete results for
all of the test problems in the Online Supplement (Tables 7?-?7 of Appendix 77?), and
summarize our findings here.

Tables ?77-77 show that for a given search set size ns, p = ns is the best choice. We
confirmed that in many cases when p = ng all solutions in S are simulated at the end
of each rapid search. We speculate that this is because the spatial diversity among the
solutions in the search set overwhelms the stochastic error at each solution, which causes
CEI to rank not-yet-visited solutions higher than already-simulated solutions. As a result,
rGMIA tends to include many unvisited solutions in the search set at each global-search
iteration, and then explores all of them rather than revisiting a solution multiple times.
Therefore, when p < ngs we do not fully exploit the computational benefit of rapid-search
iterations because there is still value in simulating the remaining unvisited solutions in §.
On the other hand, when p > ng, rGMIA is forced to simulate the same solutions in S
more than once instead of exploring new solutions. Thus, the adaptive scheme does not
outperform p =ng.

Nonetheless, we speculate the adaptive scheme may be useful when ¢ is small. For
example, we can observe in Table 7?7 that for smaller J, the relative performance difference
between the adaptive scheme and p = ng becomes smaller. This is because for smaller ¢,
rGMIA must evaluate more solutions to achieve the smaller acceptable optimality gap, and
later iterations tend to explore solutions with poor conditional means and high uncertainty.
Once some of these solutions are simulated during the rapid-search iterations, rGMIA may
realize that these are in fact bad solutions and it is sensible to break out of the search set
early. On the other hand, when the search set contains very good solutions then it may
be worth exploiting the search set for more than p iterations to confirm a small achieved
optimality gap. This situation will also favor using the adaptive scheme over a fixed p.

From the experiment results, the best choice of ng appears problem specific. Never-
theless, the run times indicate the performance is not sensitive to the choice of ns. This

suggests that there is little penalty in choosing a suboptimal ng, given that p =ng.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
28 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

8. Conclusions

A lingering barrier to large-scale DOvVS is the inability to exploit strong problem struc-
ture to efficiently dispense with large portions of the space of feasible solutions. Inferential
optimization is promising in characterizing DOvS structure statistically and thereby deem-
phasizing large portions of the space of feasible solutions with high confidence. While the
DOvS problems that can be addressed in this way are still small in dimension and num-
ber of feasible solutions relative to mathematical programming, gains thus far have been
substantial.

GMIA (?) is the current state-of-the-art in inferential optimization for DOvS. The focus
of 7 was identifying and parameterizing an advantageous GP—the discrete GMRFs—
and creating an acquisition function suitable for stochastic simulation—CEI. The focus
of this paper is improved computational efficiency via smart computational linear algebra
to greatly extend the reach of GMIA without degrading the inference. The result is a
specific algorithm, rGMIA. However, the central idea of partitioning a feasible region into a
search set and fixed set, and updating the conditional distributions efficiently, is generally
applicable to DOvVS problems that use the GP conditional distribution for inference.

To realize the full potential of inferential optimization, future work will need to address
some open questions. Clearly, we need an effective strategy for allocating simulation effort
(i.e., replications) to solutions. More specifically, rGMIA simulates two solutions, X and
xCFL on each iteration, so we need to specify the number of replications to be obtained to
promote search progress without wasting effort. This problem is challenging as neither EI
nor CEI account for the cost of simulation or the downstream progress of the search. And
while the alternative KG acquisition function does look ahead, it is only one step ahead
and it does not provide optimality-gap inference.

We have thus far constructed the search set & by simply selecting x and the solutions
with the ng — 1 largest CEI values. While this method seems to be effective, there is
potential for alternative constructions that might be better. This is a topic of ongoing
research.

Presently, GMIA and rGMIA both assume a sequential search; that is, simulation repli-
cations are obtained sequentially on a single processor. With the proliferation of parallel
computation, it is natural to extend both algorithms to a parallel paradigm where multi-

ple solutions or replications can be simulated simultaneously. This involves deciding which

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 29

solutions to simulate in parallel, and how to efficiently update relevant statistics and CEI
values once the solutions have been simulated.

Finally, at the present state of development high dimension is more challenging than
number of feasible solutions: Q becomes less sparse with dimension d. ? consider projecting
less-active dimensions onto active dimensions, and while this seems promising, creative

ideas for addressing large d are clearly needed.

Acknowledgments
This research was supported by National Science Foundation Grant Number DMS-1854562. The authors
thank the Area Editor, Associate Editor and two referees for their valuable and timely feedback.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 1

Online Supplement

Appendix A: rGMIA Convergence Proof

In this appendix we provide the proofs of Lemma 1 and Theorem 1. We do not introduce any additional
assumptions beyond those already presented in 7, which we restate here:

1. y(x) > —o0,Vx e X.

2. 0 < Var[Y(x)] < oo,Vx € X.

3. The initially estimated Q = Q(é) is positive definite and not updated, where 6 are parameter estimates.

As in ? we have implicitly assumed that Y (x) is continuous-valued, in which case the assumptions above
imply that Q is always positive definite: Q = Q + Q., Q is positive definite by Assumption 3, and Q. is a
diagonal matrix with finite, non-negative elements on its diagonal with probability 1. However, it is possible
that Y (x) is discrete-valued, in which case there is a positive probability that S%(x) =0 for some x € X
during some iterations. Therefore, when the output Y (x) is discrete-valued, we set the diagonal elements of
Q. to r(x)/ max{S?(x),n}, for some very small > 0, whenever r(x) > 0.

An immediate consequence is that V' (%X,x) > 0 and finite for all x € X. Furthermore, Assumptions 1 and
2 imply that co < Y(x) < oo0,Vx € X with probability 1, so the conditional means are also finite, —oo <
M (x) < 00,Vx € X, with probability 1. We use these insights in the proof that follows.

LEMMA 1. At any finite iteration of GMIA or finite global-search iteration of rGMIA, CEI(X,x) > 0,Vx €
X\ x with probability 1.

Proof Recall from Equation (77?),

. _ M) — M(x) _ M(x) — M(x)
CEI(%,x) = (M (%) — M(x))® | —2—""1 VE,x) ¢ | — 22—)
(5,) = (M (%) = M(x) (¢waw>+¢< >¢< N)

To show that this expression is positive with probability 1 is equivalent to proving the following inequality
holds with probability 1:

—Mﬂ@—M@»<¢Cﬁ%ﬁf>

V(x,%) & <1u(x)_M(x)) ' (8)

VG
First, we need to show that (—M (%) — M(x))/1/V(X,x) < 00,V¥x € X, with probability 1. This follows
immediately from the fact that V(%,x) >0 and —oco < M (x) < 00, Vx € X, with probability 1.
Next, recall that X is chosen as the solution with the smallest sample mean. Therefore, it is possible that:
(i) M(x) — M (x) >0 or (ii) M(x)— M(x) <0. Assume (i); then it is clear that (??) holds with probability
1 since for any finite argument both ¢(-) >0 and ®(-) > 0. Now assume (ii); then

Qb M (x)—M(x) ¢ —(M(x)—M (x))
v V(x,x) . vV (x,x)

) M (%) —M(x) B 1_® —(M(%)—M(x))
V() VG
(M(x) — M(x))

=E

Z|Z>—

] , where Z ~N(0,1)

(I M)
V(x,x)

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
2 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

The last inequality follows since —(M (X) — M (x))/+/V (X,x) < oo, with probability 1. O

We next prove Theorem 1:

THEOREM 1. rGMIA, implemented with either the adaptive or fized-p < oo scheme, without a stopping
condition simulates each solution x € X infinitely often with probability 1 as the number of iterations goes to

mnfinity.

Proof In proving Theorem 1, we draw on Theorem 2 from ? which proves an identical result for the
GMIA algorithm, which we restate here:

GMIA without a stopping condition simulates each solution x € X infinitely often with probability 1 as

the number of iterations goes to infinity.

To prove Theorem 1, we consider rGMIA when p is fixed and finite and for our adaptive scheme.

Fized p : When we fix p < co it means that rGMIA will cycle between p — 1 rapid-search iterations
and a single global-search iteration until termination is reached. Global-search iterations are simply GMIA
iterations, for which convergence has already by proven in Theorem 2 of ?. The p — 1 rapid-search iterations
simply force more solutions to be simulated more often than GMIA would, and therefore do not change the
convergence result.

Adaptive : Proving convergence in the adaptive scheme requires proving that the number of rapid-
search iterations between global-search iterations is finite with probability 1. Recall that ~y is the threshold
such that whenever max,cs CEI(X,x) < v the rapid-search iterations end. In the adaptive scheme, v =
max,cr CEL (X, x), where CEL; (X, x) are the CEI values computed during preceding global-search iteration,
t. With this choice of v, Lemma 1 implies that for finite ¢t we are guaranteed that ~ > 0.

When the search set S is constructed, the subgraph it induces is itself a GMRF for which we define

X =argmin, g Y (x) and x“F!

= argmax, s z CEI(X,x) to execute rapid-search iterations of rtGMIA. These
iterations on S are GMIA iterations restricted to the induced subgraph, which means that Theorem 2 from
? yields the same convergence guarantee on the subgraph. This means that if we restrict the search to rapid-
search iterations then CEI,(X,x) — 0 as the number of rapid-search iterations ¢t — oo for all x € S, with
probability 1. This further implies that for each sample path w € Q, there exists t*(w) such that for ¢ > t*(w),
CEL(x,X) < 7, for any v > 0 and for all x € S. Therefore, we will attain termination of rapid search in a

finite number of iterations with probability 1. O
Appendix B: Analysis of Computational Effort in rGMIA

We analyze the number of flops required to implement rGMIA, in Algorithm ?7?, by breaking the algorithm
into three sections: initialization, rapid search and global search, analyzing the matrix computations of each
section separately. Recall that we make the approximation nr ~ n, since S is constructed to be small. We
use C'r, C; and C}, to represent the flop count to perform a matrix factorization, selected inverse of diagonal
elements and single-column right-hand-side system solve involving matrices of size n x n and nr X nx. In
Appendix ??, we time these three operations performed by PARDISO on Q corresponding to problems with
varying feasible region sizes and dimension to estimate how expensive these operations are to implement

from a timing standpoint.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 3

B.1. Initialization

=

Choose ng < n initial solutions. Simulate at each solution and compute MLEs for the GMRF
parameters (u Q). Construct Q =Q + Q.;
Find x = argming, c v., x>0y Y (x);
Compute Cholesky factor of Q: Lqg ~ ~ ~
Cé)mpute V(xx) =diag(Q1), C(x XX) =Q lex, M(xx)=p+Q'Q.(Y — p), using Lg. Go to
tep 27;

N

W

Initialization in rGMIA is a one-time sequence of steps that allows us to set up global and rapid search
by constructing F and S. Step 3 costs Cr flops to compute the Cholesky factor. Step 4 costs C;, C, and
C't + 3n flops to compute the conditional variances, covariances and means, respectively.

Therefore, the total flop count for initialization in rtGMIA is Cp + C; +2C}, + 3n.
B.2. Rapid Search

7 Simulate at x, x“Fl. Update simulation information by updating Y (%), Y (x°®!), Q., Q, Qss;
8 Find x =argmin , cs.. x>0 Y (x);
9 Compute V(xs), C(X,Xs) by computing Xss = (Qss —B)™};

10 Compute M(xs) = ps + Zss([Qc]ss (Y (xs) — ps) —a);

11 Calculate CEI(%,x),Vx € S;

12 Find xF = argmax, ¢\ 5 CEI(X X);

Within the rapid-search steps, only Steps 9 and 10 are computationally intensive. Step 9 computes X3z,
a dense matrix. This involves subtracting two dense ngs X ns matrices, computing the Cholesky factorization

and performing a forward and backward substitution to solve the resulting systems. Note that since |S] is

3 .3
s Ns

small, and we require the diagonal elements of 3 ss, we compute Xss in its entirety. This costs n%, én
and n? flops, respectively. Step 10 requires one ns X ns diagonal matrix-vector multiplication and three ng x 1
vector addition/subtractions, which cost ns flops each, and a dense ns X ng matrix-vector multiplication,
which costs 2n% flops.

Therefore, the total flop count for a single rapid-search iteration is %ng +3n% +4ns.

B.3. Global Search

14 Simulate at %, xCFL. Update simulation information by updating Y (%), Y (x°®!), Q., Q, Qss;

15 Find X = argmin ¢ v.,(x)>0 Y(_x);

16 Compute V(xs) from Y55 =(Qss —B)™%;

17 Compute M(xs) = s + Ess([Q |ss(Y(xs) — Hs) —a);

18 Compute V(xz) = dlag(QF;) +diag(AXssA "), using L, ,;

19 Compute M(x7) = pr + Q77 [Qcr+(Y (x7) — pr) — A(M(xs) — ps), using Lasr;

20 if x€ S then

21 L Compute C(X,Xs) = [Zss] %
else

22 Compute C 5{ Xr)= s)%

23

24 Compute C(x,xs) = —Ess[T

25 Compute C(X,x7) = Qrrex + AXss[AT] x, using Lg, .
26 end

27 Calculate CEI(x,x),Vx € X;

28 Find x“¥' = argmax, .z CEI(X, x);

29 Construct {F,S} partition of Q into Qrz, Qrs, Qss;
30 Compute Cholesky factor of Qrz: L fo, -

s1 Compute A = Q5 Qrs, using Lq,,. B= QLA a=AT([Qrr(Y(xr) - ur));

To compute Xss in Step 16, we incur a cost of n% + %ng flops, identical to Step 9 in the rapid-search

iterations. However, to compute C(X,Xx), we either incur 2ngn flops if x € S or C, + 4nZ + 2nns flops if

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
4 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

x € F. In computing V(xx), we pay a cost of C; flops to evaluate diag(Qx») and in3 +2nZn+nsn flops to
compute diag(AXssAT). To implement the latter computation, we first compute the Cholesky factorization
of Xss and premultiply A to the resulting factor. Finally, we compute the squared norm of each of the
columns of the resulting product. The squared norm of the ith column gives the ith diagonal element in
AXYssAT. Since S is small and we only require the diagonal elements, this is more efficient than computing
AXssAT, which would cost 4nZn flops. To compute M(xx), we incur Cy, + 4n + bngs + 2nsn + 2n2 flops.
Finally, we incur a flop cost of Cr to factorize Qz# in Step 30 and a cost of nsCy, 2n3n and 2n + 2ngn to
compute A, B and a, respectively in Step 31.

If we assume a worst-case cost, where X € F, we incur a total cost of Cp + C; + (ns +2)Cp, + 4nin +

Tnsn+6n+ $n3 + 7nZ + 5ns flops in a single global-search iteration.

B.4. Analysis of PARDISO Operations

Figures 7?7, 77 and ?7 are log-log plots of the times to compute the Cholesky factorization, selected inverse
and solving a single-column right-hand-side linear system in PARDISO for Q, with the structure as described
in Section ?7?, for problems of dimension d =2,3,...,7. For each dimension, d, we perform a linear regression
on the points corresponding to operations that took longer than 0.25s to run (to mitigate effects of overhead
on the trend). The slope of each regression allows us to estimate the power term corresponding to how these
operations scale in time (i.e., a slope of m on the log-log plot indicates the operation scales O(n™)), where
n is the number of feasible solutions.

We then plot these slopes in Figure 7?7 from which we can estimate how factorizing, performing a selected
inverse and solving a linear system grow in time. Factorizing grows approximately linearly until d = 6

implying growth of (O (n0-253d+0-931)

until the problem becomes high-dimensional at which point the matrices
lose much of their sparsity. Solving a linear system with PARDISO given the Cholesky factorization of the

matrix remains relatively constant as dimension is increased meaning the growth scales O(n'). Performing

a selected inverse, however, is more difficult to characterize but varies between O(n'!33) and O(n'-592).

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 5

PARDISO Factorization Times vs Number of Feasible Solutions Log-Log Scaled

~Nouhk WN

Qo000

Logm(Time)

1 | | | | 1 J
5 5.5 6 6.5 7

3 35 3 as

LoglO(Number of Feasible Solutions)

Figure 1 Log-log plot of times to compute Cholesky factorizations of Q for problems of different dimension, d,

and number of feasible solutions, n.

PARDISO Selected Inverse Times vs Number of Feasible Solutions Log-Log Scaled

LoglO(Time)

5 ! ! ! ! ! |
4 45 5 55 6 6.5 7

LoglO(Number of Feasible Solutions)

Figure 2 Log-log plot of times to compute selected inverse of Q for problems of different dimension, d, and

number of feasible solutions, n.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
6 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

PARDISO Solve Times vs Number of Feasible Solutions Log-Log Scaled

1
~NoubhwN

=

0
ocoooQQ
]

Logm(Time)

| | | | | J
1 2 3 4 5 3 7

LoglO(Number of Feasible Solutions)

Figure 3 Log-log plot of times to solve a single-column right-hand-side vector system with Q for problems of

different dimension, d, and number of feasible solutions, n.

Log-Log Slopes of PARDISO Operations

24— _ = = .
+ Factorization
* Inverse
+ Solve %
22
5l
/
a
Q18—
o
7]
>
<1
a *
s
I~ L]
-
e [

Figure 4 Slopes of log-log linear regression of PARDISO operations times vs. number of feasible solutions as a

function of dimension, d.

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 7

Appendix C: Sherman-Morrison-Woodbury Update for GMIA

At each iteration of GMIA, exactly two solutions are simulated resulting in a rank-2 update for Q. Thus, we
may apply the Sherman-Morrison-Woodbury (SMW) formula to efficiently update Q! without factorizing
and inverting Q at every iteration. Suppose we factorized Q and computed the entire Q' in the previous
iteration. These operations cost Cr and nCp, respectively. After simulating x and x°®!, Q is updated to
(3 =Q + Azeze] + Axcmexcmeicm, where Az and A,cer are some scalars reflecting the change in Q.

CEI

corresponding to x and x“~™, respectively. Then, the SMW formula gives

Q' =Q" - Q7B(L.+E'QA) AT,
(%)

where E = [e;(, excm] and A = [A,-(e;(, Axcmexcm]. Notice that () is a product of n x 2 matrix Q 'E and
2 x n matrix (Inxo +ETQ*1A)71 ATQ™!. The former is simply a matrix of two column vectors of Q!

CEI

corresponding to x and x~*', which is available for free from the previous iteration.

Further, ETQ'A is a 2 x 2 diagonal matrix, where the diagonal elements are the products of the

CEIand Ay and A,cer, respectively; this costs only

diagonal elements of Q' corresponding to X and x
two flops. Since Inyo + ETQ 'A is a diagonal matrix, its inverse only costs two flops to compute and
(Loxo +ETQ*1A)71 ATQ™! is simply rescaling the columns of ETQ~!, which costs 2n flops. Finally, the
product of n x 2 and 2 x n matrices costs O(n?) (for (x)) and so does subtracting () from Q1.

The conditional means of solutions can be computed from (??) using the updated Q, which costs O(n?2).
Notice that for this computation, we perform a matrix-vector multiplication instead of solving a linear system
of equations since we did not factorize é

Overall, the SMW scheme costs C +nC}, for computing Q' for one iteration, then costs O(n?) for each
iteration thereafter. This is certainly cheaper than directly updating the conditional distribution as expressed
n (??), but it still requires all elements of the inverse precision matrix to be updated at each iteration. This
forces us to recompute Q! periodically which diminishes the computational gain.

We refer to this version of GMIA that uses the SMW formula to quickly update the conditional distribution
as SMW _GMIA and present it in Algorithm ??7. The primary difference between GMIA and SMW_GMIA
is that instead of refactorizing, inverting and solving a system with (3 from scratch at each iteration, we
compute, in full, and update at each iteration Q~'. We use the notation P = Q' to make explicit that
computing an expression such as Px, for an appropriately sized x, results in a matrix-vector multiplication
and not a system solve.

SMW_GMIA has the advantage of not requiring Q to be factorized each iteration saving computational
overhead, but by computing all elements of Q ', it loses the savings generated by using sparse linear algebra
computations. Refer to Table ?? for the results comparing SMW_GMIA to rGMIA (with |S| =50, p =50)
and GMIA, all applied to the inventory_100 problem. We see that SMW_GMIA results in mean runtimes
that are well over an order of magnitude larger than corresponding runtimes rGMIA and are even much
larger than corresponding runtimes of GMIA applied to the same problem.

Additionally, the inventory_100 problem with a 100 x 100 integer lattice feasible region was the largest
problem that could be solved via SMW_GMIA with the memory resources available to us. To make this

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
8 Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

point concrete, the inventory_100 problem results in Q and P matrices that are both of size 10000 x 10000.
However, since the former is sparse, in MATLAB, it requires about 0.874 MB to store, while the latter
requires 800 MB. Therefore, for most users, this memory requirement results in a very strict constraint in
problem size that can be solved.

Algorithm 3: SMW_GMIA

1 Choose ng < n initial solutions. Simulate at each solution and compute MLEs for the GMRF
parameters (u,0). Construct Q =Q + Q,;

2 Find x=argming, cx.,(s0; ¥ (X);

3 Compute Cholesky factorization of Q: Lq;

4 Compute P=Q™', using Lg; B B B

5 Extract V(xx)=diag (Q7!), C(X,xx) =Q 'ex and compute M(xx) =p+ Q'Q.(Y — u), using
Q:

6 Calculate CEI(x,xx);

7 while Termination criterion not reached do B ~

8 Simulate at x, x“El. Update simulation information by updating Y (x), Y (x°%!), Q.;

9 Construct E = [ex, excri| and A =[Azex, Ajcriecr|;

10 Update Q+ Q+EAT;

11 Update P« P —PE(L,,o + ETPA)'ATP;

12 Find x =argmin, . y.,)0 Y (X); B

13 Extract V(xy) =diag(P), C(X,xx) = [P] and compute M(xx) =pu+PQ.(Y — p);
14 Calculate CEI(X,Xx);

15 Find x* = argmax, .\ ; CEI(X, x);
16 Let Q + Q;
17 end

Table 4 Fixed-precision results averaged from 30 macro-replications of SMW_GMIA, rGMIA (|S| =50, p = 50)
and GMIA applied to the inventory_100 problem. Standard errors of mean values are provided in parentheses.

Algorithm SMW_GMIA rGMIA (|S| =50, p =50) GMIA

1 0.1 0.05 | 0.01 0.1 0.05 0.01 0.1 0.05 | 0.01
Mean Time 4840 | 5434 | 7338 102 112 140 1186 | 1333 | 1802
Elapsed (s) | (296) | (317) | (398) | (4) | (4) (4) 42) | (41) | (47)

Max Time 8379 | 9029 | 10845 | 144 | 154 178 1618 | 1744 | 2305
Elapsed (s)

Mean 013 | 0.16 | 0.05 | 0.08 | 0.04 0.03 013 | 0.16 | 0.05
Optimality Gap | (0.03) | (0.04) | (0.01) | (0.02) | (0.01) | (0.01) | (0.03) | (0.04) | (0.01)

Max
Optimality Gap 0.77 | 0.93 | 0.30 | 0.64 | 0.23 0.12 0.77 | 0.93 | 0.30

Mean Number | 6722 | 7592 | 10498 | 7146 | 7868 | 10233 | 6722 | 7592 | 10498
of Tterations | (238) | (236) | (279) | (230) | (229) | (247) | (238) | (236) | (279)

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Appendix D: Additional Results Evaluating rGMIA

Complete tables for all of our experiments are found in this appendix.

Table 5 Parameters used in the restaurant problem.
Problem H restaurant_125 \ restaurant_25 \ restaurant_5
Feasible Region 125 x 125 25 % 25 x 25 H5XHXHXHXHXD
Table Sizes Available (s) [13] [135] [1357911]
Time (T) 1 1 1
Arrival Rate ()\) 250 50 10
Service Rate (u) 10 10 10
Revenue/person
in $1000s (r) 0.01 0.01 0.01
Cost of Table/hr
in $1000s (c) [0.005 0.015] | [0.005 0.015 0.025] | [0.005 0.015 0.025 0.035 0.045 0.055]

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

10

(gev) (eLz) (e9z) (6ve) | (e¥e) (eoc) (see) (1¢e) | (1ve) (912) (62c) (€€q) suorjeIol] Jo
79601 T9L0T T9E0T 9LTOT | 1S9 8078 TL9L 8IGL £089 TPLL 7889 60L9 JaqUINN UedJA]
gro 710 ¥I'0 610 160 9¢°0 LS50 TED c0'T LT0 160 670 | dep LAiewnndQ xe
(100) (100) (100) (100)| (€00) (200) (go0) (100)| (v00) (100) (€0°0) (20°0) den
€00 €00 €00 700 110 L0°0 600 S0°0 gro 90°0 gro 200 AyrewrydQ ues
esg c9¢ jdis LS¥ jdd 681 0£% ere 105 191 181 69¢ | (s) pesdery sy, Xen
(1) (e1) (c1) (€1) (9) () (8) (8) () (¥) (9) (2) (s) posdery
135 €81 605 968 Gs1 971 Gr1 L0g LET €11 9z1 81 oWILY, UBDIA]
aandepy 00g=d 001=d 0g=d |aandepy 00g=d 001=d ¢=d |aandepy gog=d 001=d 05=d w03y
10°0 500 10 ¢
00T N
(¢8¢) (¥8%) (8ve) (862) | (eve) (vow) (vie) (eeo) | (Leo) (eov) (v1g) (0€%) suorjeIoly Jo
6FT0T 88¢8T FFPOT 8TIG0T | ¥9SL T8GGT ¥808 8GGL GTL9 VEPVT PSEL FSL9 I9QUUIN N UWEdJA]
710 €1°0 710 €10 4l] €10 860 T30 4] 2870 670 080 | dep LAyewnndQ xen
(too) (t00) (t00) (1000) | (10°0) (10°0) (20°0) (10°0) | (€0°0) (200) (20°0) (€0°0) den
500 200 €00 700 90°0 €00 800 00 €10 90°0 010 &Io AyrewrydQ uedq
g% 9€% €61 9.3 981 661 9¢T 181 0LT 181 jad! pL1 | (s) pesdey awily, Xe\
() (L) (g) (2) (¥) () (%) () (¥) (¢) (¥) (¢) (s) posdery
6971 191 ! 881 071 9¢1 VIl 7T 971 9g1 coT1 9g1 ouWILY, UBdIA]
aandepy 0og=d 001=d 0g=d |asndepy oog=d 001=d 0¢=d |aandepy 0og=d 001=d 05=4d w03y
10°0 500 10 ¢
001 N
(t9z) (662) (v6¢) (L¥e) | (L62) (cL8) (evw) (65e) | (9g2) (06) (2sv) (0€T) suorjeIoly Jo
7666 19G7€ SISLT €€50T | 08SL 89T0E 8ECGST 898L 609 886.C FEOFPT 9FIL J9qUINN UEdJA]
€50 110 €20 TI0 €90 €10 670 €20 80°C €1°0 vI0 $90 | dep LrewndQ xey
(zoo) (000) (1000) (1000) | (2000) (100) (z0'0) (10°0) | (60°0) (10°0) (10°0) (20°0) den
90°0 20’0 600 €00 80°0 €00 600 700 750 70°0 L00 800 AyrewnydQ uedq
€33 09% 00% 8LT 70% e €81 491 161 (454 VLT PP1 | (s) pesdery awiy, Xe\l
¥) (9) () (¥) (¢) (9) (%) (¥) (s) (9) (¥) (¥) (s) pesdery
81 €1g GST1 071 2! 981 vel (411 071 €L1 7ol 01 oWILY, UBdIA]
oandepy 00z =d 001 =d (0G=d |aandepy oog=d 001=d 0¢=d |aandepy 00g=d 00T1=d 05=4d w103y
10°0 500 10 ¢
0g N
sasayjuased ul papinoad
2Je SAN|EA ueaw Jo si1044d piepuels “wajqoid g1 A10juaaul syl 03 paljdde yND pue YIIND4 JO suoiledijdai-oidew (¢ woly paSesane s3nsas uoisidaid-paxi4 9 ?|qe]

11

*§,4, UO10ag ur paure[dxa IaY}Ing sI SIY,J, ‘Paaowal uolyedrjdes-ordewr I81[4no yirm uorjestjdar-ordeuw gg ssolde paSelase s1 G~ AJIOJUDAUL 10J S}NSaI parioday]

Rapid Discrete Optimization via Simulation with GMRFs

(orz) (06%) (069) (zor) | (es) (eo2) (z22) (162) | (22L) (gwL) (¥8L) (€08) suorjeIoy] Jo
GOV6T €920T TTV6T €LT6T | SP9ST 6T0LT 9VLGT STCGST | L9ZPT TP9ST S6CFT 6L0VI IaquinN UedA
11°0 R0 €10 TE0 €20 09T 680 670 Pel 10°1 80 250 | den AyrewnndQ xen
(to00) (100) (1000) (1000)| (1000) (20°0) (g00) (z00)| (s00) (¥00) (z00) (£00) den
€0°0 z0°0 €00 ¥0°0 L0°0 11°0 800 900 zro ¥1°0 900 110 AyrewipdQ ueeAl
ce9 GGG 9.8 0S¥ 765 10G 878 09€T GoG 89¥ g8 Lge1 | (s) pesdely owly, XeN
(¥e) (e1) (e2) (ev) (¢2) (1) (L2) (6¥) (¢2) L) (e) (09) (s) posdery
GLY 677 zs9 9.0 0¥ 99¢ 116 68 L9¢ ege 86T 13 OWILY, UBSIA[
oandepy 00z=d 001=d (05=d |oandepy (opog=d 001=d 0¢=d |oandepy oz=d 001=d 05=d WY JLIOS[Y
10°0 600 10 9
00T S|
(2eL) (over) (#99) (869) | (082) (u8v1) (6vL) (¥2L) | (€62) (pG1) (89L) (L6L) suolyela)] Jo
07261 ¥80L& 09961 76561 | 0SSST 1622€ 6EP9T 809ST | 6SIFI TFS6T €S0ST 6VIFI IaquInN UedIA
€10 61°0 €10 Teo 280 €20 ¥I'0 090 16°0 €50 080 080 | den AjrewnydQ xeN
(100) (100) (100) (20°0)| (go0) (100) (100) (200)| (v00) (zo0) (€0°0) (¥0°0) den
z0°0 70°0 20’0 900 90°0 c0'0 700 600 710 800 .00 ZI0 AyrewydQ ueanl
686G 90. 1es €8 IS LS9 967 sl 016 g9 16 €8 | (s) pesdery ewiL], XeAl
(€c) (61) (¢1) (L2 (€2) (o) (L1) (82) (€2) (te) (81) (82) (s) posdery
63V 0S¥ 91¥ 869 oLe 91 7€ 026 7 €8¢ 8I¢ 0L¥ SWILY, UBSIA[
aanydepy 00z=d 001=d 0g=d |eandepy oog=d 001=d 05=d|aandepy 00z=d 001=d 05=d wWYILI03[Y
10°0 G0°0 10 9
00T N
(gv2) (zese) (69v1) (269) | (zog) (6L0€) (evsr) (L22) | (yO8) (g1ee) (v291) (€08) suorjeIoy] jo
€TE6T 29¢7L. ST1.9¢ GLL6T | OFSST OLFE9 FSLIE 66191 | TTIFT LLFSS GET6T OLLYI JoqUINN UedJA[
610 L0°0 ¢1'0 S30 €10 71°0 6V'0 7.0 79°0 71°0 ¢c’0 ¥1°0 | dep ArewnndQ xe
(t00) (000) (100) (10°0) | (10°0) (10°0) (%0°0) (€0°0) | (€00) (100) (100) (10°0) den
€0°0 10°0 z0'0 €00 G0°0 €0°0 900 800 zro €0°0 G0°0 S0°0 AyrewydQ uesAl
9.9 796 969 €e9 619 76 zs9 896 166 668 829 GeG | (s) pesdelqg ewry, XeN
(92) (ze) (re) (61) (92) (ve) (¥e) (0g) (92) (¥¢) (¢z) (02) (s) posdery
G6V 7.9 zes 1Ly 9¢¥ 886 0S¥ 98¢ 0] 0¥S 454 zse owIL, UedIA[
oandepy 00g=d 001 =d 0g=d |aandepy 0og=d 001=d 0¢=d |oandepy 0ogz=d 001=d 05=d WYJLIOZ[Y
10°0 G0°0 10 9
0g S|

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

sasayjuased ul papinoad

2Je SaN|EeA ueaw Jo si1044d piepuels “wajqoid G A10juanul ayl 03 paljdde yND pue YIINDA JO suoiledijdai-oidew gg woly paSesane s3nsad uoisidaid-paxi4

Lajqel

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

12

t49) (te) (61 (61) (sv) (cv) () (sp) | (cor) (e61) (ge1) (SaT) suorjealy jo
9996 7966 8196 8656 9%65 101L 7009 8685 At 7£9e 1193 99E% JoquINN UedJA[
000 00°0 100 000 000 000 100 000 00°0 000 100 000 | dep LAyewndQ xe
(000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000) (000) den
000 000 000 000 000 000 000 000 00°0 000 000 000 AyewrydQ ueeA
13¢ G681 29z I8¢ L6 L6 601 681 29 65 29 601 | (s) pesde[y owly, XeN
(@) (1) (@) (€) (1) (2) (1) (@) (2) (2) (2) (¥) (s) pesdery
112 VLI 9T 19¢ I8 GL 6 161 8¢ 8¢ eF 99 OWILY, UBDIA[
oandepy 00z=d 001=d (05=d |oandepy (opog=d 001=d 0¢=d |oandepy oz=d 001=d 05=d WYILI03[Y
10°0 500 10 0
00T S|
(0z) (9¢) (81) (61) (9v) (18) (%) (ep) | (901) (g9e) (g81) (1€1) suorjeiol] jo
1296 76961 1¥S6 1096 706G S0SET $999 S¥6S 9G¥z 1989 8GIE 66T IdqUINN UedJA]
000 00°0 000 000 000 000 000 000 000 000 000 000 | dep AyrewrydQ xeN
(0000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000 (000) den
000 000 000 000 000 000 000 000 00°0 000 000 000 AyewrydQ uesA
€1 6£1 0TT GLT 8 €8 89 €01 s s eF LG | (s) pesdery sy, XeAl
(1) (1) (1) (1) (1) (1) (1) (1) (2) (2) (2) (2) (s) pesdery
611 Ie1 01 891 1. 9 19 76 e 9¢ 1€ |54 OWILY, UBDIA[
aanydepy 00z=d 001=d 0g=d |eandepy oog=d 001=d 05=d|aandepy 00z=d 001=d 05=d wWYILI03[Y
10°0 500 10 0
00T N
(61) (L) (8e) (61) (¥p) (1) (88) (g¢v) | (ger) (099) (1€8) (991) suorjeIoy] jo
L196 PSP6E T1TL6T 1986 668G 12952 T0SZI 90%9 6££T T09TT FELS T.8C IDqUINN UedJA]
000 00°0 000 000 000 000 000 000 000 00°0 000 000 | dep AyrewnydQ xeN
(000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000) (000) den
000 000 000 000 000 000 000 000 00°0 000 000 000 AyewrydQ uesA
eet 9L1 ev1 0z1 98 GI1 16 08 £g 69 4 8% | (s) posde[y awiL], XeJAl
(¢) ¥) (¢) (1) (1) (€) (1) (1) (¢) (2) (2) (2) (s) posdery
L1T Vel 8Tl er1 GL 18 08 1L e 8¢ L8 eg OWILY, UBSIA[
oandepy 00g=d 001 =d 0g=d |aandepy 0og=d 001=d 0¢=d |oandepy 0ogz=d 001=d 05=d WYJLIOZ[Y
10°0 500 10 0
05 S|
sasayjuased ul papinoad
9Je san|eA ueaw Jo si0449 paepuels ‘wajqoid oI quemanss ayl o1 paldde yND pue YIND4 Jo suonedijdai-oidew (O woly paSesane s3nsas uoisidaid-paxi4 g 9|qe]

13

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

(LL) (02) (6r) (cL) (cLr) (rer) (891) (v21) | (oew) (¥69) (geq) (€c9) suorjeIol] Jo
PE08E T898E 886LE 8G6LE | OTPEC 196SC FRI9ET €LEET | 1886 7Pl 1S66 6FF6 JoquINN UedJA[
000 000 000 000 000 000 000 000 000 000 000 000 | dep AyrewydQ xeN
(000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000) (000) den
000 000 000 000 00°0 000 000 000 000 00°0 000 000 AyrewydQ uesql
L1861 6961 TLIT 0Seg 0£eT GTOL 68ST $€8¢ 7. 625 0£L G0€1 | (s) posdely awiL], Xen
(e€) (61) (¥8) (€9 (12) (1) (08) (19) (0¢) (61) (22) (zp) (s) posdery
L691 T6IT @881 6E0% ¢80T L08 el L10% 8¢e¥ 1ge 66¥ 8¥8 ouwIL], URdIA]
aandepy 00g=d 001 =d 0¢=d |aandepy poz=d 001=d 0g=d |aandepy 00g=d 001=d 05=4d WYILI03[Y
10°0 500 10 ¢
00T N
(¥L) (ev1) (g2) (c) | (e21) (see) (991) (oL1) | (g8p) (98¢1) (€¥9) (929) suolyela)] Jo
F00SE TPTLL ST98E 896LE | €68€C 8TIOS TP0SE €TSeT | 0896 ¥6.TC ISEIT 6996 IdqUINN UedJA]
000 000 000 000 00°0 000 000 000 000 000 000 000 | dep AyrewrydQ xeN
(000) (000) (000) (00°0) | (000) (000) (000) (000)| (000) (0000) (000) (000) den
000 000 000 000 000 000 000 000 000 000 000 000 AyrewiydQ uesnl
L1181 0L8T Tl¥T 16C¢ Cr4d! PCIT €00T 9691 91 759 785 L16 | (s) posdery swi], Xex
(€43, (1) () () (12) (1) L D (ce) (ge) (e2) (38) (s) posdery
6091 90ST 6I¥T 63cg Gg01 8001 96 8SST (954 SHY 0T¥ €9 OWILY, UBDIA[
aandepy 0og=d 001=d 0g=d |asndepy oog=d 001=d 0¢=d |aandepy 0og=d 001=d 05=4d w03y
10°0 500 10 ¢
001 N
(L) (e6g) (9v1) (€2) (1) (e89) (eve) (eL1) | (gog) (11€2) (PSTT) (089) suorjeIoly Jo
98T8¢ TPGGST T9LLL 6L88€ | LEVEC V1986 FIS6Y 1S9%G | 66V6 FLOSY 8PSIG 6901 IDqUINN UedJA]
000 000 000 000 00°0 000 000 000 000 00°0 000 000 | dep AyrewnydQ xeN
(000) (000) (000) (000)| (000) (000 (000) (000)| (000) (000) (000) (000) den
000 000 000 000 000 000 000 000 000 000 000 000 AyrewydQ ueeAl
a8e% I8¢ TITG 9861 6£ST LEST 6981 98Tl Ge8 928) P1L | (s) pesde[y awiLy, XeN
(2¢) (ov) (¥e) (82) (¢z) (92) (ce) (02) (ge) (g€) (62) (82) (s) posdery
9%0g gl €161 GISI 44! ISET G0TI 92T 15 189 GIG L8¥ OWILY, UBSIA[
oandepy 00z =d 001 =d 0¢=d |aandepy oog=d 001=d 0g=d |asndepy ooz=d 001=d 05=d WIY9LI03[Y
10°0 500 10 ¢
0g N
sasayjuased ul papinoad
9Je sanjeA ueaw jJo si0449 paepuel§ ‘wajqoid oz quemanis ayl o3 paydde yND pue YIND4 Jo suonedijdai-oidew (O woly paSesane s3nsas uoisidaid-paxi4 6 219el

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

14

(901) (¥6) (vor) (901) | (696) (og2) (9gL) (ost1) | (160) (6ev) (g9¢) (6v€) suorjer9dy Jo
78998 FEGL8 86598 T1LG98 | 0£96F VLVES FEE0S T08€6F | 92I0T TZITT 86FL E1IL IaquInN ueoyA
00°0 000 0000 000 00°0 000 0000 000 00°0 000 000 000 | den ArewnydQ XeN
(000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000) (000) den
00°0 000 0000 000 0070 000 000 000 00°0 000 000 000 AyrewriydQ uesIAl
7195 8LEL 9ZTET 69961 | ¥98¢ €887 SF0S LGLET L8 80FT TTST 091z | (S) pesdelq owly, Xe
(12) (66) (062) (eve) | (88) (¢9) (g61) (198) (81) (¢2) (6e) (€9) (s) posdery
G0ES 1,86 6296 LPIST | LLE€ 698 TL9S L¥T6 V1G 68. GzL V61I ouIL], UBSAL
oanndepy 00z=d 001=d (0g=d|oandepy 0oz=d 00I1=d (G=d |oandepy og=d 001=d 05=d WY HI0S[Y
10°0 600 10 9
002 S|
(cot) (g61) (6) (vor) | (0€2) (Log1) (¥gL) (29L) | (o0se) (g28) (v1¥) (L87) suolyela)] Jo
7LL98 FEPGLT 8ELL8 €698 | 000G FSOVOT TPEZS T1900S | L0S8 SO06LT 8888 ¥ThL JaquInN Ueo
00°0 000 0000 000 00°0 000 000 000 00°0 000 000 000 | den LArewrnydQg Xen
(0000) (000) (000) (000)| (000) (000) (000 (000)| (000) (000) (000) (000) den
00°0 000 000 000 00°0 000 000 000 00°0 000 000 000 AyrewrrydQ uesAl
z808 G6VL 90T8 GOEET | €8LG 9L8F 0T¥S L¥ER 1901 €86T LLPT €91 | (s) pesdelq owLy, XeN
(¢61) (68) (s91) (o¥e) | (0¥1) (¢9) (ggr) (61) | (62) (¢e) (om) (27) (s) posdery
120L €929 LF09 OL¥6 | T1¥F GGEF 8L8E LE6S 619 189 019 o8 SuIL], UBSAL
oandepy 00z =d 001=d 0¢=d |oandepy poz=d 001=d 0g=d |aandepy ooz=d 001=d 0s=d w08y
10°0 G0°0 10 9
00T S|
(or) (s¢tv) (802) (eor) | (6¥2) (vpre) (vaG1) (282) | (vae) (eLvr) (gel) (€0€) suorjeroy] Jo
LTVLS S068SE 8969LT FLFPSS | FIE0S 888L0C 126801 €L61G | 896L ¥6T2¢ FI09T T1€6L Joqun UesIAl
00°0 000 000 000 00°0 000 000 000 00°0 000 000 000 | den AyrewrnydQ xe
(000) (000) (000) (000)| (000) (000) (000) (000)| (000) (000) (000) (000) den
00°0 000 000 000 000 000 000 000 00°0 000 000 000 AyrewydQ uesA[
9.6 TGS8 IPL0T 0L98 | GT29 209G €799 T66S 96z 1 0667 8FLT 8zgl | (s) pesdelqy awLy, XeA
(e¢1) (19) (e12) (26) (971) (e8) (es1) (60T) (2¢) (ve) (ee) (ce) (s) pesderg
996 80T8 T€6L SPL9 1687 VESY GESY L0OF G99 9.9 0% 295 ouIL], UBSAL
oandepy 00g=d 001=d 0g=d |oandepy poz=d 001=d (0g=d |aandepy gog=d 001=9d 05=d WY HI03[Y
10°0 G0°0 10 9
0% S|

sasayjuased ul papinoad

9Je SaNjeA ueaw Jo Si1044d piepuelg ‘wajqoid Qg juemans ayl o1 paydde yIND pue YND4 JO suonedijdai-osdew (¢ wodj paSesane synsal uoisidaad-paxi4

0T ai1qelL

15

Rapid Discrete Optimization via Simulation with GMRFs

‘SIUTRIISUOD AIOWOW USAIS UOLI9ILIO UOIJRUITLI9) o) AJsijes 0} ySnous Suo| sjuewiiodxe TOF JUuemarid (0T ‘0¢ = Su UNI 0} 9[(RUN 9IoM I\

(es1) (21) (g81) (g81) | (eser) (60e1) (6621) (¥eer)| (219) (299) (219) (969) suorjers)] jo
VSLEGT F66PST SPIEST €E9ECT | TTL8S FS0E6 19068 €8¥SS | €9GLT FISLT FPSET 890ET JoquInN UedIA
00°0 000 000 000 00°0 000 000 000 00°0 000 000 000 | den AyrewrnydQ xe
(000) (000) (000) (000) | (000) (00°0) (000) (000)| (000) (000) (000) (000) den
00°0 000 000 000 00°0 000 000 000 00°0 000 000 000 AqyrewrydQ uesyAl
Gzz9z 0991¢ STIOTF 99509 | S8STI9T T6EPL 0TEST I886E | VeV 918 €FLF FSFS | (S) pesdelqy ewLy, XeN
(169) (6L2) (pLe1) (cq9) | (69%) (219) (¥18) (2€9) | (8a1) (cor) (¥e1) (20%) (s) pesderg
I86LT 0T6ST 0TPST €I8GS | TLSGTT OFIOT 6€TLT LS6TE | FTLLI T8LT 1TVT 69EF ouIL], URSIAl
oandepy 00g=d 001=d 0g=d |aandepy 00g=d 001=d 0g=d |[aandepy Qoz=d 001=d 05=d Wy LI03[Y
10°0 G0°0 10 9
00T S|

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

sasayjuased ul papinoad

9Je SaNjeA ueaw Jo Si1044d piepuelg ‘wajqoid Ty juemans ayl o1 paydde yIND pue YND4 JO suonedijdai-osdew (¢ wodj paSesane synsal uoisidaad-paxi4

1T @19eL

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

16

(96191) (69¢1) (1921) (9121) | (60101) (L001) (226) (916) | (0€8) (1g6) (298) (298) suorjer9dy Jo
6619¢ 8¢ECl FOTIT 9TS0T | LIGLI PSIL 8.6 €8F9 9F¥G 1929 1.9S 66SS JoquUnN Ul
€0 €0 €0 T1€0 710 770 W0 FPO0 770 710 7o ¥r0o | dep AyrewnydQ xeN
(coo) (t00) (100) (100) | (200) (00) (200) (200)| (z0'0) (200) (200) (20°0) den
80°0 90°0 00 900 0T°0 60°0 010 600 zro () Zro 110 AyrewydQ ueoA
TLGG9 S69TT 6SCIT L09TT | €E06F G686 60¥V6 €16 9£G8 1106 1988 €616 | (s) posdery awiry, XeN
(cove) (ze8) (2e8) (g98) | (1tesr) (g22) (gg2) (0LL) | (G89) (ov2) (60L) (¥cL) (s) pesdery
GTE0T 80FL F60L F6EL 89¢9 028S TIIS 29Ts 4N LESY €6SF €0LY OWILT, UBSIA[
oanndepy 00z=d 001=d 0¢=d |oanydepy (ogz=d 00I1=d 0G=d |oandepy og=d 001=d (05=d w3103y
10°0 G0°0 10 0
002 S|
(1tv01) (¢10%) (€601) (8zer) | (109%) (9e61) (LL6) (L16) | (e#8) (¥es1) (0T6) (L98) suorjeIoly Jo
TOLFZ FEIST SGPIT FLS0T | €SCTT TTLET 1269 €8%9 GTSs 19031 TS09 6£9¢ JoquInN Ul
1€°0 1£°0 1€°0 1€°0 770 770 Y70 ¥F0 770 770 P70 ¥p0 | den ArewnydQ xen
(t00) (100) (100) (100) | (c00) (200) (g0'0) (200)| (co0) (g00) (20°0) (20°0) dep
80°0 90°0 000 900 I1°0 80°0 010 110 zro 0T°0 Zro €10 AyrewrydQ uesN
6IP8F 90LET T6PIT OFEIT | 99¥E€F 06921 CF96 T¥¥6 G698 0£0gT ¢Se6 6106 | (s) pesdely ewiL], XeA
(8t61) (9¢01) (ce8) (198) | (e6ev1) (6%01) (gL2) (9L) | (169) (066) (282) (1€2) (s) pesderyg
L616 9688 960L ¥Tel 1909 €00L LGS 61€S 89T¥ TEE9 LY 8LV OWILT, UdIA[
oandepy 00z =d 001=d 05=d [oandepy 00z=d 001=d 0¢=d |oandepy oz=d 001=d 05=d w08y
10°0 G0°0 10 0
00T S|
(gee1) (0628) (600T) (6¥cr)| (969T) (ge8e) (6061) (896) | (ve8) (¥19¢) (6081) (¥06) suorjeIoly Jo
9£0ZT TISEE TI86LT 890TT | 8T08 890.% S0SET TS89 GOVS 19LC T6SIT 9¥6S JoquINN UedAl
1€°0 1€°0 1€0 1I€0 Al Al o 0 Al Al o ¥po | dep ALrewndQ Xen
(too) (100) (1000 (100) | (200) (2o0) (zoo) (zoo)| (200) (zo0) (z00) (200) den
80°0 90°0 900 900 0T°0 L0°0 80°0 600 €10 60°0 010 210 AyrewydQ uesN
980T L9Z¥T TFOIT 86801 | ST96 TEEET PPEOT OF68 0L98 8SFGT ¥£66 L8e8 | (s) posdely awiLy, XeJAl
(222) (0601) (298) (zLL) | (192) (g601) (¢28) (2zL) | (gor) (ggor) (¥¥8) (639) (s) pesderg
9089 L6S6 829L 1TL9 6£16G 079L FL09 ¥€0S | L¥Th 96L9 795G 8ESy oWILY, UedIAl
oandepy 00g=d 001=d 0¢=d |aandepy opz=9d 001=d 0g=d |aandepy gog=d 001=9d 05=4d WY HI03[Y
10°0 c0°0 10 0
0% S|

san|eA ueaw jJo sioud piepuelg ‘wajqosd Gz Iueinelsas ayy o} paidde yiND pue yiND4 Jo suoijedijdai-osdew (¢ wouj pasSesane s3nsad uoisidaad-paxi4

‘sasayjuased ui papinoid aue

¢l @lqel

17

Rapid Discrete Optimization via Simulation with GMRFs

(evry) (eLe1) (8L01) (9ga1) | (16L) (crr) (88L) (L08) (0L8) (928) (¥28) suorjer9dy Jo
9L12¢ 100€C T1¥F90Z F¥9.61 | 8966 82€6 F0S8 L9€9 8799 8879 €979 JaquINN] UeaAl
zro zro 910 IT0 6T°0 61°0 61°0 61°0 6T°0 610 610 | dep AyrewnydQ xen
(000) (t00) (100) (000) | (100) (1000) (10°0) (t00) (100) (1000) (10°0) den
€00 500 00 SO0 L0°0 90°0 90°0 90°0 L0°0 800 800 AyrewriydQ uesIAl
0T0€T 8ELG TLPS 1€89 L9SE 09€¢ 965G€ £9G¢ 166 89z¢ SFLe | (s) posdery oLy, XeN
(c1e) (¥e) (#¥c) (sve) | (g61) (018) (g¢€2) (¢92) (L62) (8ve) (88¢) (s) pasdery
685 GeTh 9TFF LG0S V8LT LSVZ 8L¥T €661 €6L1 €8T T91T OWILT, UBSIA[
oanndepy 00z=d 001=d 0¢=d |oanydepy (ogz=d 00I1=d 0G=d |oandepy og=d 001=d (05=d WY HI0S[Y
10°0 G0°0 10 0
002 S|
(c691) (ges1) (2611) (6121) | (699) (9191) (¥18) (¥18) (geL1) (€98) (€e8) suorjeay jo
896LT T¥L6C 1013 STE6T | 0798 FEPLT ¥8.8 2329 10T€T SSF9 ¥S29 JoquInN Ul
91°0 010 ¢1o 01°0 61°0 61°0 030 130 61°0 920 610 | den ALrewrrydp xen
(t00) (000) (1000) (1000) | (1000) (1000) (10°0) (100) (100) (1000) (10°0) dep
90°0 700 600 SO0 90°0 90°0 L0°0 60°0 L0°0 00 200 AyrewrrydQ uesAl
£8¢. 0£T9 IP8S T86S 9¢6¢ VOFF 6TS¢ £99¢ IOV 602 65€¢ | (s) pesdely awiL], XeA
(981) (o) (eve) (s0g) | (g€a) (e0g) (L2o) (€92) (618) (192) (L92) (s) pesderyg
zeey COLY L6TF L6ST 1963 081¢ SGLET 2961 G0¥Z TOST ¥20% SWILT, UBSIA[
oanndepy 00z =d 001=d 05=d |aandepy oog=d 001=d 0g=d |eandepy 0oz=d 001=d 05=4d wy 08y
10°0 G0°0 10 0
00T S|
(e18¢) (2192) (aLv1) (g9g1) | (9¢L) (ovee) (1191) (618) (097¢) (ozL1) (198) suorjeIoly Jo
9GE6T TI9TOS T868C €E66T | TIE8 SFPSFE FOLLI ¥29 S0£9Z TLOST 69%9 JoquINN UedAl
8T°0 60°0 ¢ro ST 61°0 61°0 61°0 61°0 61°0 610 610 | dep LrewndQ xey
(100) (000) (t00) (100)| (1000 (100) (100) (t00) (100) (100) (10°0) den
L0°0 700 00 SO0 L0°0 G0°0 L0°0 L0°0 90°0 00 200 AyrewydQ uesA[
GELTT T0g8 T6IS 9FTh eTLy 6269 L96¢ GIEY G8Z9 €898 $0Sg | (s) pesdery owiL], XeJAl
(vLe) (g9¢) (122) (c12) | (108) (927) (69%) (vee) (80¢) (882) (61) (s) pesderg
Tres 807. SI¥F 86aE 890€ €IS €68C G9€g 998¢ F61C L¥VI oWILT, UBSIA[
oandepy 00g=d 001=d 0¢=d |aandepy opz=9d 001=d 0g=d |aandepy gog=d 001=9d 05=4d WY HI03[Y
10°0 c0°0 10 0
0% S|

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

sasayjuased ul papinoad

9Je S9N|BA uEdW JO SI0449 piepuel§ “wajqoid Gg-lueanelsas ayl ol paldde yAD pue YIND4 Jo suonedijdai-onew (O woly paSesane synsal uoisidasd-paxi4

€1 31qelL

Rapid Discrete Optimization via Simulation with GMRFs

Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

Semelhago, Nelson, Song and Wéichter:

18

(¢88) (9s) (e1e) (e601) | (060T) (9901) (20T1) (2 11)| (L0OT) (8%OT) (9¥01) (6€0T) suorjeIaly jo
6LLLT FSEST T9SPT 8G8IZ | V0S8 FLFOT 8086 €768 675G 1989 TP09 €L6S Joqun] UedAl
zro 9T°0 ero 910 V10 vZ'0 610 10 €0 1£°0 1€0 1¢0 | den AyrewnydQ xeN
(to00) (r00) (o00) (t00)| (10000 (100) (1000) (1000) | (1000) (10°0) (10°0) (10°0) den
500 70°0 700 S00 90°0 90°0 900 500 L0°0 L0°0 L0000 AyewydQ uesN
67860 £TTTT T668€ SPSI9 | 6FOFPZ Z800T GST6T S0L9E | S660T 2898 90¥9T L06IE | (s) pesderqy swiLy, XeAl
(zogt) (Lvg) (0e6) (8892) | (98¢1) (geL) (ewer) (gose)| (81¢1) (e1L) (L¥er) (¥8¥C) (s) pesderg
12861 68SST GL98C STOTSG | T90TT 2S69 OISTT €TEIT | €508 0L8F STIL G6TVIL QWILY, UBDIA[
aandepy 00z=d 001=d 0¢=d |oanydepy (opog=d 001=d (05=d |oeandepy oz=d 001=d 0c=d w103y
10°0 500 10 9
00T S|
(068) (ove) (28¢) (ootr)| (9¢11) (Sgoe) (wit1) (@8T1)| (086) (1¢TE) (G901) (8¥OT) suorjyeIdyy Jo
GLLLT 8VS9¢ 8LSPT €8LIT | LET8 SSL6T FG66 6868 ¥8YS PGLZT FSI9 9709 JoquunN UeaJA
€10 110 ¢T0 110 91°0 v1°0 L10 %10 1€°0 1€°0 €0 1€0 | dep AnrewnndQ XeN
(t00) (000) (t00) (000)| (t00) (t00) (1000) (10°0) | (100) (10°0) (10°0) (10°0) den
70°0 €0°0 600 700 900 90°0 90'0 500 80°0 80°0 80°0 800 AyewrydQ uesN
0IE6F €L9ST TELTE L8GSS | L0T6E TIGLT FTOLT FLSTE | 61678 L9GST €OEPI 8gclg | (S) pesderq owily, XeIN
(g612) (oov) (0sL) (18e€e) | (€69z) (88e1) (¢rer) (19¢e) | (¥8ve) (ogel) (6211) (992c) (s) pesderyg
TOTEE 0ITIC TL99Z S98S¥ | OP6LT TI6EIT SOS0T ¥ST6I | PSTel T0EL TSS9 LG0ET oWILY, UBSA[
oandepy 00z=d 001=d 05=d [oandepy 00z=d 001=d 05=d |oandepy ooz=d 001=d 0¢=d w3103y
10°0 500 10 9
00T S|
(9g01) (8L¥) (¥wer) (gerr)| (verr) (o) (vive) (1911)| (g66) (8¥¥F) (9612) (2L0T) SuoIjeI0Y] JO
L9TLT 8PTS9 TSTSE 990TT | 8EG8 8968¢ SOFST TTS6 08FS VI9ST 8€9ZT 6919 JoquIn N UedJA[
61°0 2070 80°0 11°0 G1°0 1T°0 ST°0 71°0 1€°0 1€°0 1€°0 1£'0 | dep AyewrnydQ xejn
(t00) (000) (000) (000)| (1000) (000) (10°0) (10°0) | (10°0) (10°0) (10°0) (10°0) den
90°0 €0°0 €00 700 L0°0 G0°0 90'0 500 L0°0 90°0 L00 200 AyewrydQ uesN
LGET8 FT90€ GROTE 69TLE | IF6T9 66S9C 6L6VC 69EST | OTLSS 0SPET GEITE L€LG1 | (s) pesdelq ewiLy, XeIN
(9e6¢) (1v¢) (9201) (8091) | (z8ey) (Lvoz) (9961) (90v1) | (9g8e) (¢102) (09L1) (992T) (s) posdery
I869¢ 09£LT GEPST LES6T | 0L66T 06891 GLOST LSPIT | S600% LTLTIT GIGOT 1&gl QWILY, UBSA[
aandepy 00gz=d 001=d 0¢=d |aandepy 0og=d 001=d (05=d |oandepy oog=d 001=d 0c=d Wy }LI03[Y
10°0 500 10 9
0% S|

ueaw Jo sioud paepuelg ‘wajqosd g-jueanesas ayy 01 paijdde yND pue (0¢ =|9|) VINDA Jo suonedidai-osoew (¢ woiy paSesane sjnsal uoisidaid-paxi4

*sasayjuased ui papinoad ase sanjen

V1 alqel

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1 19

Appendix E: Leveraging Sparsity of Q

This appendix restates the smart sparse linear algebra techniques outlined in ? with corrections made to the
example that was presented previously. GMIA was enhanced to tackle problems with larger feasible regions
by using sparse linear algebra techniques to compute CEI values more efficiently. Proposed in ?, this strategy
leverages the sparsity pattern of Q to compute the diagonal elements of its inverse, X, which proved to be
particularly fruitful for use in computations involving GMRFs, as shown in ? and was incorporated in both
GMIA and rGMIA.

Suppose we have a sparse precision matrix, Q, corresponding to a GMRF, from which we want to compute
the conditional variances of the response of the GMRF. Without leveraging the sparsity of Q, one could take
the inverse of Q and extract the required diagonal elements. However, this is expensive from both a memory
and computational standpoint.

Since Q is symmetric and positive definite, Q has an LDL factorization. That is, there exists a lower
triangular matrix, Lg, and a diagonal matrix, Dg, such that Q = LQDQLg. The sparse nature of Q implies
that Lg is also relatively sparse (or can be transformed to be sparse after some number of column/row
permutations to reduce fill-in). Further detailed discussion can be found in ?. For the covariance matrix,

3 =Q !, from which we want to extract information, ? arrive at the following identity:
T =Dg'Ly' +(I-LL)X (9)

In an LDL representation, Lg has ones on its diagonal, which implies that I — Lg is strictly upper
triangular, while DalLél is lower triangular. This, combined with the fact that Q (and, therefore, X) is
constructed to be symmetric, and Equation (?7?), yields the following result, which can be used to compute

3,;, the element in the ith row and jth column of 3:

k>i
¥i=[Dgli' =) [LaluZu, Vi (11)
k>1i

Since both summations in Equations (??) and (?7?) only contain as many summand terms as there are nonzero
elements in the ith column of Lg, the number of necessary computations is greatly reduced. Notice that this
strongly justifies the use of permutations of Q to reduce fill-in of Lg. The method above is implemented in
the PARDISO software package (7).

To illustrate this principle, consider a small example in which we are given an 8 x 8 sparse precision
matrix, Q, together with Lg and Dg corresponding to its LDL decomposition. From this matrix, we wish
to compute 344, that is, the element in the 4th row and 4th column in its inverse X. Suppose Lg and Dg
have the sparsity patterns illustrated below, where a blank space represents the value 0 and a x represents
a potentially nonzero element in that position, which must be computed and stored in memory (x may be

0 as the result of computations and cancellations).

20

Semelhago, Nelson, Song and Wéachter: Rapid Discrete Optimization via Simulation with GMRFs
Article submitted to INFORMS Journal on Computing; manuscript no. JOC-2019-07-OA-165.R1

X

Pall
Il

X

X X X X X X X X
X X X X X X X X
X X X X X X X X

< [x]x x[x]x x x

X X X X X X X X
X X X X X X X X

EXXXXXX

X X X X X X X

JEIEY]

A direct approach would involve computing all elements in X, which is dense. However, using Equations

X
X

(?7?) and (?7), we can generate the following set of equations:

Yss = [Dalss Ygr =Y = —[Lqlsr¥ss Y77 = [Dgl7 — [LalsrSsr

Y7y =347 =—[LglraXqr = [DQ]LE —[Lgl7aX74.

Therefore, due to the sparsity pattern of Lg, we only need to compute four additional elements of 3.

