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Abstract

Two essential ingredients of modern mixed-integer programming (MIP)
solvers are diving heuristics that simulate a partial depth-first search in
a branch-and-bound search tree and conflict analysis of infeasible sub-
problems to learn valid constraints. So far, these techniques have mostly
been studied independently: primal heuristics under the aspect of finding
high-quality feasible solutions early during the solving process and conflict
analysis for fathoming nodes of the search tree and improving the dual
bound. Here, we combine both concepts in two different ways. First,
we develop a diving heuristic that targets the generation of valid conflict
constraints from the Farkas dual. We show that in the primal this is
equivalent to the optimistic strategy of diving towards the best bound with
respect to the objective function. Secondly, we use information derived
from conflict analysis to enhance the search of a diving heuristic akin
to classical coefficient diving. The computational performance of both
methods is evaluated using an implementation in the source-open MIP
solver SCIP. Experiments are carried out on publicly available test sets
including Miplib 2010 and Cor@l.

1 Introduction

The most commonly used method to solve mixed-integer programs (MIPs) is the
linear programming-based (LP-based) branch-and-bound algorithm (Dakin 1965,
Land and Doig 1960). In modern MIP solvers, this procedure is accelerated by
various extensions (see e.g., Bixby et al. 2000, Laundy et al. 2009). Two examples
of those extensions are primal heuristics (see e.g., Fischetti and Lodi 2010, Lodi
2013, Berthold 2014a) and conflict analysis (see e.g., Davey et al. 2002, Sandholm
and Shields 2006, Achterberg 2007a, Witzig et al. 2017). A primal heuristic is
an incomplete method without any guarantee of success, which is used to find
feasible and improving solutions. Computational studies indicate that within a
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MIP solver, disabling all primal heuristics would lead to a deterioration of solving
time by approximately 11% – 32% (Berthold 2014a) and 5% – 15% (Achterberg
and Wunderling 2013). Conflict analysis denotes a collection of techniques
to learn from infeasible subproblems encountered during the MIP solve. The
outcome of conflict analysis is a set of so-called conflict constraints that are used
in the remainder of the solving process, e.g., for propagation. As a consequence,
the proof of global optimality can be accelerated, mostly by reducing the number
of subproblems that need to be explored, according to the study of Achterberg
and Wunderling (2013) by as much as 28% on affected instances.

In this paper, we propose two complementary ways of combining both
concepts. Firstly, we develop a primal diving heuristic that explicitly aims
to generate conflict constraints. As we show by elementary calculations, this
amounts to an optimistic fixing of variables to their best bound with respect to
the objective function. Previous approaches that are targeted to gain additional
conflict information starting from a feasible subproblem are based on, for example,
an involved random sampling approach (Dickerson and Sandholm 2013) or
use a black-box solver to perform a hybrid constraint programming and MIP
search (Berthold et al. 2010, 2018). In contrast to that, our approach constitutes
a more direct method.

Secondly, we use the information obtained by conflict analysis in order to
guide the LP relaxation towards feasibility. To this end, we apply the concept of
variable locks to conflict constraints and show that this type of locks is richer on
information and yield a more dynamic criterion compared to variable locks as
known from the literature (Achterberg 2007b). We use this to develop a new
diving heuristic that harnesses variable locks implied by conflict constraints. Our
experiments indicate that this heuristic outperforms the well-known coefficient
diving heuristic (Berthold 2008).

To show how a MIP solver can benefit from the techniques presented in this
paper as supplementary features, we carry out a detailed computational study
for which both heuristics were implemented within the academic MIP solver
SCIP 6.0 (Gleixner et al. 2018). The heuristics presented in this paper are – to
the best of our knowledge – the first LP-based heuristics for MIP which explicitly
produce and exploit conflict constraints.

This paper is organized as follows. In Section 2 we give a brief overview of all
the background we need in the remainder of this paper: LP-based branch-and-
bound, diving heuristics, and conflict analysis. In Section 3 we discuss how a
diving heuristic can be used to generate additional conflict information explicitly.
Afterward, we present a modification and extension of the well-known diving
heuristic coefficient diving by using conflict information in Section 4. Finally,
an intense computational study of the individual impact of both presented
approaches is presented in Section 5. In Section 6 we conclude.
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2 Background

We consider MIPs of the form

min{cTx | Ax ≥ b, ` ≤ x ≤ u, xj ∈ Z∀j ∈ I}, (1)

with objective coefficient vector c ∈ Rn, constraint coefficient matrix A ∈ Rm×n,
constraint right-hand side b ∈ Rm, and variable bounds `, u ∈ Rn

, where
R := R ∪ {±∞}. Moreover, let I ⊆ N := {1, . . . , n} be the index set of integer
variables.

LP-based Branch-and-bound. Branch-and-bound (Dakin 1965, Land and
Doig 1960) is a divide-and-conquer method which splits the search space se-
quentially into smaller subproblems that are ideally easier to solve. For each
subproblem a lower bound is computed. To this end, the integrality requirements
are omitted and the LP relaxation

min{cTx | Ax ≥ b, ` ≤ x ≤ u, x ∈ Rn} (2)

is solved. On the other hand, an upper bound on the global problem is given by
the objective value of the incumbent solution, i.e., the best solution found so far,
if available.

During the branch-and-bound procedure subproblems are regularly fathomed,
either due to bounding or infeasibility. In the first case, subproblems whose lower
bound exceeds the global upper bound are disregarded because they cannot
contain an improving solution. Therefore, it is evident that branch-and-bound
algorithms benefit directly from finding good solutions as early as possible. These
solutions either originate directly from the LP relaxation when all variables fulfill
the integrality conditions in the LP solution, or are constructed by so-called
primal heuristics (Fischetti and Lodi 2010, Lodi 2013, Berthold 2014a). In the
second case, the infeasibility of a subproblem is either proven by contradicting
variable bound changes or by an infeasible LP relaxation. If a node is fathomed
due to infeasibility modern MIP solvers use conflict analysis (Davey et al. 2002,
Achterberg 2007b, Witzig et al. 2017) to “learn” from those subproblems. Note
that every subproblem fathomed due to bounding can be interpreted as an
infeasible subproblem after adding a cutoff constraint on the objective function
that restricts the feasible region to improving solutions.

Diving Heuristics. A special type of primal heuristics are so-called diving
heuristics such as fractional-diving and pseudo-cost diving (Berthold 2008). The
principle idea of diving heuristics comes from the branch-and-bound procedure
itself. Starting from a feasible but fractional LP solution, diving heuristics
alternate between fixing some integer variables to a rounded value based on a
fractional LP solution and reoptimizing the LP relaxation. This procedure can
be viewed as a partial tree search along one path from the current subproblem
to a leaf. Diving heuristics use a special branching rule that usually tends
towards feasibility. By contrast, branching rules for complete tree search such as
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Algorithm 1: GenericDivingProcedure

Input : LP solution xLP , rounding function φ, score function ψ
Output : Solution candidate x̂ or NULL

1 x̂← NULL, x̃← xLP

2 D ← {j ∈ I | x̃j /∈ Z} // diving candidates

3 while x̂ == NULL and D 6= ∅ do
4 forall i ∈ D do

1. Determine rounding direction: dj ← φ(j)

2. Calculate variable score: sj ← ψ(j)

5 Select candidate xj with maximal score sj and current local bounds
`j and uj

6 Update D ← D \ j
7 if dj == up then `j ← dx̃je else uj ← bx̃jc
8 (optional) Propagate this bound change
9 Update D if propagation fixed some j ∈ D

10 if Infeasibility detected then
11 Analyze infeasibility, add conflict constraints, perform 1-level

backtrack
12 If D = ∅ goto 20 or 5 otherwise

13 (optional) Solve local LP relaxation
14 if Infeasibility detected then
15 Analyze infeasibility, add conflict constraints, perform 1-level

backtrack
16 If D = ∅ goto 20 or 5 otherwise

17 Update x̃ and D if LP was solved
18 if x̃j ∈ Z for all j ∈ I or D == ∅ then
19 x̂← x̃

20 return x̂

reliability branching (Achterberg et al. 2005) aim at a good subdivision of the
problem. In modern MIP solvers, the basic and simple idea of diving heuristics
(see Algorithm 1) is extended by constraint propagation (see Algorithm 1 Line 8)
and conflict analysis (see Algorithm 1 Line 11 and 15).

Conflict Analysis for Infeasible LP Relaxations. If the LP relaxation of
a subproblem of (1) with local bounds `′, u′ is proven to be infeasible there exists
a dual ray (y, s) ∈ Rm

+ × Rn by the Lemma of Farkas (Farkas 1902, Dinh and
Jeyakumar 2014) such that

yTA+ s = 0 (3)

yTb+ s{`′, u′} > 0, (4)
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where we use the notations{`′, u′} :=
∑

j∈N : sj>0 sj`
′
j+

∑
j∈N : sj<0 sju

′
j . There-

fore, the inequality

(yTA)x ≥ yTb (5)

is globally valid. We refer to (5) also as Farkas proof. Pólik (2015) and Witzig
et al. (2017) describe how these constraints can be collected, managed, and used
for constraint propagation to deduce tighter variable bounds in modern MIP
solvers.

3 Farkas Diving

Our first aim is the design of a diving procedure such that the dual solution
of the LP relaxation moves towards a valid Farkas proof, i.e., constraints (3)
and (4) are satisfied. Suppose x? is an optimal but fractional solution of a local
LP relaxation with respect to bounds `′ and u′. Let (y?, r?) be an optimal
solution of the dual LP

max{yTb+ r{`′, u′} | yTA+ r = c, y ∈ Rm
+ , r ∈ Rn}, (6)

where rj is the reduced cost of xj , for all j ∈ N . The dual solution (y?, r?) is not
feasible for (3) and (4) with (y, s) = (y?, r?), but note that (y, s) = (y?, r? − c)
fulfills (3).

In order to reduce the violation of (4), we need to increase the lower bound
`′j of xj if r?j − cj > 0 and decrease the upper bound u′j if r?j − cj < 0. By
complementary slackness, all integer variables with fractional LP solution value
have reduced costs zero, i.e., r?j = 0. Here, without loss of generality we assume
`′j , u

′
j ∈ Z for all j ∈ I. Hence, tightening the lower or upper bound of variable

j reduces the violation of (4) by |cj | · dj , where

dj :=

{
dx?je − `′j if cj < 0,

u′j − bx?jc if cj > 0.
(7)

Therefore, the rounding direction of a variable j is implied by the sign of the
objective coefficient cj , i.e., upwards if cj < 0, downwards if cj > 0.

The previous part of this section took a strictly dual point of view. When
switching the perspective to the primal side, the above rounding procedure can be
interpreted as follows. On variables with negative objective coefficients we always
tighten the lower bounds, i.e., the solution values of those variables are pushed
towards the upper bound, and vice versa. Since (1) is a minimization problem,
all variables are rounded into the best direction with respect to the objective
function c. If cj = 0 neither pushing to the lower nor upper bound has a direct
impact on the objective function. In that case, a natural choice for breaking
this tie is to consider the fractionality fj := x?j − bx?jc of the corresponding LP
solution value. This leads to the following diving heuristic, defined by a rounding
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function φF and scoring function ψF . For every variable j ∈ I, let

φF (j) :=

{
up if cj < 0 or cj = 0 ∧ fj ≥ 1

2 ,

down if cj > 0 or cj = 0 ∧ fj < 1
2 .

(8)

While we use the fractionality only for tie-breaking, other diving heuristics, e.g.,
fractionality diving (Achterberg 2007b), use this criterion solely to determining
the rounding directions.

In addition to the rounding direction φF , an order needs to be defined in
which the diving candidates are explored. As discussed before, the violation of
the dual infeasibility constraint (4) can be reduced by |cj | · dj when tightening
the lower or upper bound of variable j. From the primal point of view, the
potential change in the objective function depends on how much a variable can
be pushed until it reaches one of its bounds. This change can be approximated
by |cj | · frelj , where

frelj :=

{
1− fj if φF (j) = up,

fj if φF (j) = down,
(9)

is the relative fractionality of x?j , for all j ∈ I. This measure is used by, e.g.,
pseudo cost diving (Achterberg 2007b), to define an ordering in which the
variables are explored during diving.

Combining both criteria, let the score of j ∈ I be given by

ψF (j) := |cj | · dj · frelj . (10)

A higher score is preferred.
In the following, we refer to this diving heuristic as Farkas diving. Its rounding

procedure pushes all variable towards the so-called pseudo solution (Achterberg
2007b). In the pseudo solution, each variable takes the best bound with respect
to its objective coefficient as solution value. This relaxation solution is overly
optimistic and most of the time not feasible for the constraints Ax ≥ b. However,
if this strategy leads to a feasible solution, it may be expected to be very good.

4 Conflict Diving

We continue by exploring the complementary question of how conflict constraints
can be used to guide the search of a diving heuristic. First, consider the following
well-known concept.

Definition 1 (Variable Locks (Achterberg 2007b)). For a mixed integer program
of form (1), the number of down-locks and up-locks of variable j ∈ N is defined
as the number of positive coefficients per column ζ+

j := |{i | Aij > 0}| and the

number of negative coefficients per column ζ−j := |{i | Aij < 0}|, respectively.
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Starting at an LP solution x? satisfying Ax ≥ b, a variable j ∈ I with zero
down-locks ζ+

j (with zero up-locks ζ−j ) can always be set to its lower bound
(upper bound) without increasing the violation of any constraint. On the other
hand, if a variable has down-locks (up-locks), rounding the variable downwards
(upwards) might increase the violation of at least one constraint. If a constraint
down-locks variable j and is tight with respect to the LP solution candidate
x?, rounding x?j downwards will violate the constraint. Hence, the variable
locks measure the “risk” that rounding a variable leads to additional constraint
violations.

Usually, only variable locks that are implied by model constraints (short:
variable locks) are used during a MIP solve, e.g., during presolving, propagation,
or primal heuristics. A well-known diving heuristic that solely relies on variable
locks is coefficient diving (Berthold 2008). coefficient diving as implemented in
SCIP follows the diving scheme of Algorithm 1. For every variable the rounding
direction is determined based on the variable locks only. For a variable j that is
locked in both directions, i.e., ζ−j > 0 and ζ+

j > 0, coefficient diving prefers the
direction with less variable locks, i.e., the “safe” direction. The order to process
the variables during diving is given by the number of variable locks, too. Here,
variables with many variable locks on the chosen direction are preferred.

Processing variables first that tend to lead to infeasibilities is often called a
fail fast strategy. This strategy was introduced by Haralick and Elliott (1980) in
the context of artificial intelligence and constraint programming. Later, Berthold
(2014a) verified that taking the most critical decisions first is a good strategy for
MIP.

Variable locks are a very static criterion and include also model constraints
that either do not propagate frequently or are not tight at the current LP
relaxation. For this reason, we propose to consider also variable locks implied
only by conflict constraints (short: conflict locks), which can be defined analogous
to Definition 1. The following lemma shows that conflict locks can have the
effect of measuring the “risk” more accurately.

Lemma 2. Let (yTA)x ≥ yTb be a Farkas proof derived from an infeasible
LP and (y, r) a dual ray proving the infeasibility of this local subproblem. If
the conflict contributes to the conflict up-locks (conflict down-locks) of j, then,
there exists at least one model constraint that contributes to the variable up-locks
(variable down-locks) of j.

Proof. The coefficient of xj in the conflict constraint (yTA)x ≥ yTb is āj :=∑m
k=1 akj · yi. If āj < 0, i.e., the conflict up-locks xj then there must exist

at least one constraint k with akj < 0 because y ≥ 0. Hence, constraint k
contributes to the variable up-locks of xj . The analogous argument holds for
āj > 0.

This motivates the use of conflict locks: they measure the “risk” of violating
both model and conflict constraints but focus on constraints that have been
actively involved in pruning branch-and-bound nodes.

7



A similar concept which is used in SAT is VSIDS (variable state independent
decaying sum) (Moskewicz et al. 2001). The VSIDS score takes the contribution
of every variable (and its negated complement) into account. For every variable
the number of clauses (in MIP speaking: conflict constraints) the variable is part
of is counted. During continuing the search the VSIDS are periodically scaled by
a predefined constant. With this periodically scaling the weight of older clauses
is reduced over the time and more recent observation are weighted higher. In
contrast to VSIDS, conflict locks are not periodically scaled and only respect
conflict constraints that are part at the current subproblem. This is especially
interesting within a MIP solver that uses a pool-based approach to maintain the
conflict constraints (Witzig et al. 2017). Therefore, conflict locks give rise to the
current set of variables that are involved in conflict constraints, whereas VSIDS
also incorporate past conflict information.

While classical coefficient diving solely relies on variable locks, we exploit
Lemma 2 and use a combination of both variable and conflict locks. Given a
weight κ ∈ [0, 1], the up-weight ρ−j and down-weight ρ+

j of a variable j is given

as a convex combination of both lock types, i.e., ρ−j := κ · ξ−j + (1 − κ) · ζ−j
and ρ+

j := κ · ξ+
j + (1− κ) · ζ+

j , where ξ−j and ξ+
j denote the number of conflict

up-locks and conflict down-locks, respectively.
Furthermore, we revert the rounding strategy of coefficient diving: we use

a rounding function preferring the direction that is more likely to lead to
infeasibilities whenever variable j has locks in at most one direction,

φC(j) :=

{
up if ρ−j > ρ+

j or ρ−j = ρ+
j ∧ fj ≥ 1

2 ,

down if ρ+
j > ρ−j or ρ−j = ρ+

j ∧ fj < 1
2 ,

(11)

Here we may assume that all variables that have no locks at all, i.e., free variables,
are already set to their best bound with respect to their objective coefficient.
With this strategy we aim to guide the heuristic into parts of the search tree
that are usually not explored by other heuristics. The order in which the diving
candidates are explored is identical to the one used in coefficient diving,

ψC(j) :=

{
ρ−j if φC(j) = up,

ρ+
j if φC(j) = down.

(12)

i.e., variables that have a large number of locks on the chosen rounding direction
are preferred. With this scoring function we pursue a fail fast strategy in order
to reduce the time spent by this heuristic. We use a fail fast strategy that is
even more aggressive then coefficient diving since we already choose the critical
direction. As a result, the heuristic tries to process variables that tend to
infeasibility at the beginning of the diving path before the degree of freedom is
further reduced during the dive. In the following, we refer to this diving heuristic
as conflict diving.
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5 Computational Results

In order to investigate whether and how MIP solvers can benefit from the
methods presented in this paper, we carried out an extensive computational
study regarding the individual impact of each heuristic. For each heuristic,
we present computational results on its general performance impact, followed
by additional experiments that provide more detailed insights regarding their
particular properties.

In the first part of this section, we compare SCIP in its default configuration
(default) to SCIP extended by Farkas diving. We will refer to the latter setting
by farkdiving. In the second part of this section, we compare the individual
impact of coefficient diving and conflict diving, to which we will refer by coef-

diving and confdiving, respectively. As a baseline we use SCIP without both
lock-exploiting diving heuristics (nolockdiving).

All experiments were performed with the academic MIP solver SCIP (Gleixner
et al. 2018) (git hash bf6a486, based on SCIP 6.0), using SoPlex 4.0 as LP
solver. To evaluate the generated data the interactive performance evaluation
tool (IPET) (Hendel) was used. The experiments were run on a cluster of
identical machines equipped with Intel Xeon E5-2690 CPUs with 2.6 GHz and
128 GB of RAM; a time limit of 7200 seconds was set. To account for the effect of
performance variability (Danna 2008, Lodi and Tramontani 2013) all experiments
were performed with four different global random seeds. As test set we used a
union of Miplib 3 (Bixby et al. 1998), Miplib 2003 (Achterberg et al. 2006),
Miplib 2010 (Koch et al. 2011), and the Cor@l (Linderoth and Ralphs 2005)
benchmark set. After removing all duplicates and problems that are known
to be numerically unstable, the test set consists of 488 publicly available MIP
problems, which we will refer to as MMMC. Every pair of MIP problem and seed
is treated as an individual observation, effectively resulting in a test set of 1952
instances. We will use the term “instance” when referring to a problem-seed
combination.

Aggregated results over all random seeds are shown in Table 1 and Table 3.
Here, 5 and 11 instances, respectively, are excluded because at least one setting
finished with numerical violations. Besides the results on MMMC, the tables
state the impact on affected instances, i.e., instances for which the solving path
differs among settings. Further, the subset of affected instances is grouped into
a hierarchy of increasingly harder classes [k,tilim]. Class [k,tilim] contains all
instances for which all settings need at least k seconds and can be solved by
at least one setting within the time limit. As explained by Achterberg and
Wunderling (2013), this excludes instances that are “easy” for all settings in an
unbiased manner. Detailed tables with instance-wise computational results can
be found in the electronic supplement.

5.1 Farkas Diving

We first present computational experiments regarding the general impact of
Farkas diving as proposed in Section 3. In this setup, Farkas diving solved the
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Table 1: Aggregated computational results for Farkas diving on MMMC over four
different random seeds. Relative changes by at least 5% are highlighted in bold.

default farkdiving

# S T N Fvirt Ivirt S TQ NQ F I

all 1947 1401 183 3366 2.653 0.806 1408 0.982 0.947 3.725 0.335
Miplib 2010 348 305 349 6225 3.454 0.828 307 0.966 0.940 4.862 0.379

affected 706 686 66 1204 4.238 0.564 693 0.946 0.852 5.924 0.585
[10,tilim] 529 509 186 2420 5.168 0.733 516 0.918 0.808 6.112 0.573
[100,tilim] 297 277 697 4444 6.997 0.980 284 0.852 0.737 6.862 0.690
[1000,tilim] 127 107 2599 8072 11.764 1.291 114 0.837 0.715 10.803 1.150
afterroot 273 270 34 1095 9.747 0.689 272 0.879 0.783 15.319 1.513

LP relaxation at every diving node (cf. Line 13). Since this strategy is costly
compared to other diving heuristics in SCIP, Farkas diving was executed at local
nodes of the search tree, if the heuristic could already find a feasible solution at
the root node. Moreover, since Farkas diving relies on the objective function,
we executed the heuristic on instances with a nonzero objective function only.
In the second part, we discuss additional computational experiments used to
analyze the effect of the individual components of Farkas diving.

Overall Impact of Farkas Diving. Aggregated computational results com-
paring SCIP in its default configuration (default) and SCIP extended by Farkas
diving (farkdiving) on MMMC are shown in Table 1. Due to the restricted
execution strategy described above, farkdiving affected only 706 out of 1947
instances. However, on these 706 instances farkdiving led to a speed-up of
5.4 % (TQ) and reduced the tree size by 14.8 % (NQ).

On the subset of harder instances [100,tilim] the overall performance could
even be improved by 14.8 % and the size of the search tree could be reduced
by more than 25 %. The observed performance improvement is spread over
the complete group of affected instances. This becomes apparent also in the
performance profiles (Dolan and Moré 2002, Gould and Scott 2016) displayed in
Figure 1. For a time factor of 1.0 the respective amount of instances that could
be solved best with the respective setting is marked with a colored cross. In our
experiments, we observed that on the set of affected instances default performs
best on 369 instances, whereas farkdiving was marginal worse and performs
best on 365 affected instances. On this group of instances, both profiles cross
exactly once at time factor 1.021. Afterward, farkdiving is always superior to
default. This fact indicates that farkdiving is especially superior to default

on harder instances and is confirmed by the performance profiles over instances
where both settings need at least 10, 100 or 1000 settings. On these groups of
affected instances, farkdiving is clearly superior to default. For a time factor
of 1.0 farkdiving performs best the harder the instances are. On the group of
affected instances for which both settings need at least 10 seconds 248 can be
solved best by default, whereas farkdiving performs best on 281 instances.
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These results indicate that Farkas diving is expensive on easy instances compared
to default, but superior on harder instances.

Success in Generating Conflicts. Farkas diving is motivated by the idea of
explicitly diving towards a valid Farkas proof. To analyze how successful Farkas
diving is in generating conflict constraints we considered all affected instances
where Farkas diving was allowed to run after the root node, i.e., instances
where Farkas diving was able to find a feasible solution at the root node. This
subset contains 273 instances and is displayed in line “afterroot” of Table 1.
On this subset of instances, Farkas diving was able to find 7.3 % more conflict
constraint than the “virtual best diving heuristic” in this regard. Here, the
virtual best diving heuristic is determined by taking, for each instance run with
default settings, the diving heuristic that generated the largest number of
conflict constraints. Hence, Farkas diving indeed succeeded in generating an
above-average number of conflict constraints. Figure 2 provides a more detailed
comparison of the number of generated conflict constraints for increasingly hard
subgroups of afterroot. The box plots (McGill et al. 1978) show for every setting
and instance group the 1st and 3rd quartile (shaded box) as well as the median
(dashed line). All observations below the 1st or above the 3rd quartile are
marked with shaded diamonds. On all four groups of instances, Farkas diving
led to more conflict constraints in the median and 3rd quartile than the virtual
best diving heuristic in this regard. On instances where both settings needed
at least 1000 seconds, Farkas diving produced on 50 % of the instances more
conflict constraints than the virtual best diving heuristic of SCIP with default

settings on 75 % did. These results indicate that the strategy of diving towards
a valid Farkas proof as performed by Farkas diving leads to additional conflict
information and succeeds over the whole set where this strategy is pursued.
Note that our analysis is conservative. The virtual best diving heuristic strictly
overestimates every single diving heuristic, hence the number of additionally
generated conflict constraints would only increase when comparing to each diving
heuristic individually.

Success in Generating Solution. Usually, the number of solutions found
by diving heuristics is quite small (Khalil et al. 2017). From a primal viewpoint,
Farkas diving follows a rounding strategy which leads to overly optimistic
solutions that are expected to be infeasible most of the time. However, if this
strategy succeeds, the solutions can be expected to be very good. A more detailed
look into the success rate of Farkas diving with respect to finding primal solutions
answers the question about the impact of these overly optimistic solutions on the
overall MIP solver. In our experiments over several seeds, we could observe that
on affected instances Farkas diving was able to find 39.7 % more feasible solutions
(F) and 3.7 % more improving solutions (I) than the virtual best diving heuristic
(Fvirt and Ivirt) of SCIP with default settings. Here, the virtual best diving
heuristic is determined as above, for each instance selecting the heuristic with the
largest number of feasible and improving solutions, respectively. Again, both F
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Figure 1: Performance profiles of default and farkdiving for four hierarchical groups
of increasingly hard, affected instances.
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Figure 2: Box plot showing the number of generated conflicts by Farkas diving when
running with farkdiving and the virtual best diving heuristic when running with
default on increasingly hard subgroups of afterroot.

virt and Ivirt overestimate every single diving heuristic in default setting. Note
that this evaluation is conservative also in the sense that it includes instances
for which Farkas diving was not allowed to run at local nodes of the tree, i.e.,
instances where Farkas diving did not find a solution at the root node, and,
therefore, did not find a solution at all in these instances.

On the group of instances where Farkas diving was allowed to run within the
tree (afterroot), the results are even more pronounced. Farkas diving was able
to find 57.2 % more feasible solutions and more than twice as many improving
solutions than the virtual best diving heuristic in default setting. Figure 3 plots
the relation of feasible and improving solutions found by Farkas diving and the
virtual best diving heuristic of default on increasingly hard groups of afterroot.
The box plots show for every setting and instance group the 1st and 3rd quartile
of all numbers of feasible and improving solutions, respectively, (shaded box)
as well the median (dashed line). All observations below the 1st or above the
3rd quartile are marked with shaded diamonds. On all four groups of instances,
Farkas diving was able to find 10 or more feasible solution on at least 25 % of the
instances (observations above the 3rd quartile), whereas the 3rd quartile of the
virtual best diving heuristic in this regard is always 1 for affected and [10,tilim].
On hard instances for which both setting need at least 1000 seconds the 1st
and 3rd quartiles of both default and farkdiving are identical. Note, the set
afterroot only contains instances for which Farkas diving was able to find at
least one feasible solution at the root node. Thus, this set of instances is slightly
biased; hence, it is not suitable to conclude that Farkas diving finds more feasible
solutions than the virtual best diving heuristic in general. However, the results
on this set of instances indicate that the rule we used to decide whether Farkas
diving is allowed to run within the tree succeeds. On the complementary set
consisting of 1562 instances that could be solved by at least one setting, i.e., those
for which Farkas diving was not able to find a solution root node, farkdiving
succeeded with respect to finding at least one feasible solution within the tree
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Figure 3: Box plots showing the number of feasible and improving solutions found
by Farkas diving when running with farkdiving and the virtual best diving heuristic
when running with default.

14



Table 2: farkdiving with and without adding feasible solutions and generated conflict
constraints, respectively.

# S T N TQ NQ

default 273 270 33.82 1095 1.000 1.000
farkdiving 273 272 29.75 857 0.879 0.783
farkdiving-noconfs 273 266 31.79 976 0.940 0.891
farkdiving-nosols 273 269 32.73 1045 0.968 0.954

on only 0.019 % of the instances. Considering the improving solutions found by
the virtual best diving heuristic when running SCIP with default settings and
Farkas diving indicates that whenever Farkas diving was allowed to run within
the tree, i.e., it founds a feasible solution at the root node, Farkas diving yields
at least one improving solution on 75 % (all observations above the 1st quartile)
of the instances of afterroot, [10,tilim], and [100,tilim]. By contrast, the 1st
and 3rd quartile of the virtual best diving heuristic are 0 and 1, respectively.
Consequently, we can conclude that on instances that are cumbersome for the
established diving heuristics of SCIP 6.0 with respect to finding solutions, Farkas
diving can easily find both feasible and improving solutions if it is allowed to
run within the tree.

However, the pure amount of feasible and improving solutions alone is not
meaningful enough to conclude whether the solutions found by Farkas diving
have a positive impact on the overall MIP solver. Therefore, we consider also the
primal integral (Berthold 2013), which measures the progress of the primal bound
towards the optimal solution. Compared to default, farkdiving improved
the primal integral by 12.3 %. This exhibits, maybe surprisingly so, that the
optimistic strategy of Farkas diving is also very successful on the primal side
and, thus, a valuable extension to the portfolio of primal heuristics.

Impact of Primal Solutions and Generated Conflicts. The previous
results indicate that Farkas diving both produces an over-average number of
solutions and conflict constraints if it is allowed to run within the tree, but do
not finally answer which component is more relevant for performance. We tried
to quantify this by testing two modified versions of Farkas diving: one that
disables conflict analysis (farkdiving-noconfs) and one that discards feasible
solutions found by Farkas diving (farkdiving-nosols). The aggregated results
are reported in Table 2. For this experiment, we used the subset of 273 instances
where Farkas diving was allowed to be executed after the root node when running
Farkas diving, i.e., afterroot.

Both settings solve fewer instances than default. This result is not surprising
since both farkdiving-noconfs and farkdiving-nosols spend computational
time for running Farkas diving. As we have already discussed, Farkas diving is
much more expensive than other diving heuristics in SCIP since it solves the LP
at every node during diving. Consequently, by not performing conflict analysis
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or not adding feasible solutions during Farkas diving one of the key ingredients is
missing. Thus, on a few instances, Farkas diving needs the impact of both found
solutions and generated conflict constraints to compensate the computational
overhead compared to default.

When disabling conflict analysis (farkdiving-noconfs) the performance
improvement compared to default decreased from 12.1 % to 6 %. The number
of nodes explored during the tree search also increased (compared to fark-

diving) but is still 10.9 % smaller than SCIP with default settings. Disabling
the addition of primal solutions found by Farkas diving to the main search (fark-
diving-nosols) reduced the performance improvement compared to default

from 12.1 % to 3.2 %, which corresponds to a slowdown by 9.2 % compared
to farkdiving. Interestingly, the tree increased by 17.9 % compared to fark-

diving. However, farkdiving-nosols still led to 4.6 % smaller trees than SCIP

with default settings.
In hindsight, it is not very surprising that disabling the addition of solutions

has a larger impact than disabling conflict analysis during Farkas diving. With
the very optimistic rounding strategy, Farkas diving was able to find 3.2 times
as many best solutions1 as all remaining diving heuristics together. Overall,
on afterroot, 5.7 % of all best solutions were found by Farkas diving. The
only heuristic that was even more effective on this set of instances is the large
neighborhood search heuristic Rens (Berthold 2014b), which contributed 7.9 %
of all best solutions. Thus, Farkas diving has a remarkable success rate, which
leads to a not negligible impact on the primal side. As mentioned above, this is
also reflected by the primal integral (Berthold 2013), which improved by 12.3 %
when running Farkas diving during the tree search (afterroot).

These results make clear that both the primal and dual aspects of Farkas
diving contributes to the improved performance, but that the solutions found
with the strategy of Farkas diving seem to be the main driver of the heuristic.
This may come as a surprise because our initial motivation for the design of
Farkas diving was the targeted generation of conflict constraints.

Impact of LP Frequency. By default, all diving heuristics in SCIP are
configured to solve the LP dependent on the number of found bound deductions
during constraint propagation over all variables. An LP solve is triggered
whenever the number of bound changes since the last LP solve exceeds 0.15 times
the number of variables. By contrast, Farkas diving solves the LP at every diving
node. One motivation for this high LP frequency is to “pull” the variable
assignments back towards the feasible region in order to counteract the very
optimistic rounding strategy of Farkas diving, which tends to “push” the variable
assignments out of the feasible region.

Within SCIP, every LP solution found during diving is automatically rounded
to a solution satisfying all integrality requirements of the variables. If this
solution also satisfies all constraints, i.e., is feasible for the entire MIP, the

1A solution is called ’best’ if it is an optimal solution or the best-known solution when
reaching the time limit.

16



solution is added to the solution storage, whereby the diving heuristic that
performs the current dive is credited for finding the feasible solution. Thus,
Farkas diving may have a slight advantage over all other diving heuristics since
it solves the LP relaxation more frequently. This fact might be one reason why
Farkas diving was able to find more than 40 % more solutions than the virtual
best (Fvirt), see Table 1. Hence, in a final control experiment, we configured
Farkas diving identically to all remaining diving heuristics in order to measure
the impact of the increased LP frequency. We will refer to this configuration by
farkdiving-lp.

On the set of affected instances for which our criteria for running Farkas
diving within the tree is satisfied (afterroot), farkdiving-lp performed almost
as “poorly” as farkdiving-nosols (see Table 2) with respect to solving time,
nodes, and number of solved instances. Thus, when using farkdiving-lp the
solving time could be improved by only 3.5 % compared to default. Note, on
the same set of instances farkdiving led to a speed-up of 12.1 %. Compared
to farkdiving, the amount of feasible solutions found by farkdiving-lp was
reduced by 90 %.

These results show that solving the LP relaxation frequently gives an im-
portant boost to the degree by how much Farkas diving improves performance.
However, also Farkas diving with less LP solves, i.e., configured identically to all
remaining diving heuristics, outperforms the default settings. Consequently,
the fact that Farkas diving works indeed seems to be a result of its specific choice
of rounding function φF and scoring function ψF .

5.2 Conflict Diving

The new conflict diving is closely related to the existing coefficient diving in
the sense that they both exploit lock information and follow the same diving
framework of Algorithm 1. Hence, we chose to include both in the computational
analysis and compare their impact individually to SCIP without any of these
lock-exploiting diving heuristics. In the following, we will refer to the latter
setting by nolockdiving. We will refer to SCIP with conflict diving and with
coefficient diving activated by confdiving and coefdiving, respectively. We
first present computational experiments to quantify the general performance
impact, followed by further computational results to analyze the impact of
individual components in more detail.

Overall Impact of Conflict Diving. In our computational setup, conflict
diving used the same parameter settings as coefficient diving, e.g., frequency of
execution and LP solve frequency. The parameter to weight variable and conflict
locks within conflict diving was set to κ = 0.75, i.e., conflict locks dominate by
a factor of 3. Aggregated computational results of all three configurations on
MMMC are shown in Table 3.

While coefdiving only showed minimally improved performance compared
to nolockdiving, the setting confdiving was clearly superior. Conflict diving
increased the number of solved instances by 16 (S), led to an overall speed-up
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Table 3: Aggregated computational results for coefficient and conflict diving on MMMC
over four different random seeds. Relative changes by at least 5% are highlighted in
bold.

nolockdiving coefdiving confdiving

# S T N S TQ NQ C S TQ NQ C

all 1941 1372 216 3108 1381 0.998 1.003 1386.4 1388 0.978 0.972 1364.4
Miplib 2010 347 297 425 5788 299 1.008 1.015 374.9 300 0.986 0.975 343.6

affected 861 822 186 4259 831 0.998 1.014 686.2 838 0.952 0.945 892.2
[10,tilim] 775 736 287 5356 745 0.998 1.018 760.9 752 0.948 0.941 990.0
[100,tilim] 542 503 707 7982 512 0.988 1.000 1045.2 519 0.932 0.923 1377.9
[1000,tilim] 246 207 2365 19538 216 0.984 0.981 2068.5 223 0.874 0.882 2820.5

of 4.8 % (TQ), and reduced the tree size by 5.5 % (NQ) on affected instances.
On the subset of affected instances, confdiving needed 4.6 % less solving time
and up to 6.8 % fewer nodes compared to coefdiving. The node reduction on
the affected instances may be explained by the increased number of generated
conflict constraints (C).

Concerning the number of solutions, we observed that confdiving was
only slightly more successful: confdiving found 11.1 % more feasible solutions
and 4.7 % more improving solutions than coefdiving. The impact of these
additional solutions is reflected by the primal integral, which decreased by 4.7 %
compared to coefdiving and by 4.9 % compared to nolockdiving. However,
both heuristics had a small success rate with respect to finding solutions: 0.037
(conflict diving) and 0.035 (coefficient diving) solutions per dive.

Finally, the performance profiles in Figure 4 show that the overall performance
improvement was not caused by few instances but was spread over the complete
group of affected instances: confdiving dominates coefdiving on all four
groups of increasingly hard instances. For a time factor of 1.0 the respective
percentage of instances that could be solved fastest with the respective setting
is marked with a colored cross. On all four groups of instances, confdiving
is clearly superior to coefdiving in the sense that the profiles do not cross.
Between 52.0 % and 54.8 % of the instances in the respective group were solved
fastest by confdiving, whereas only between 44.8 % and 46.5 % of the instances
were solved fastest by default.

Length of Diving Paths. Both the rounding and scoring functions used by
conflict diving aim for a fail fast strategy (Haralick and Elliott 1980, Berthold
2014a). In order to analyze whether conflict diving indeed achieves this design
goal, we additionally measured the average length of diving paths for coefdiving
and confdiving. On average, confdiving exhibits 30.2 % shorter diving paths
than coefdiving on affected instances.

The distribution of the length of diving paths over the subsets of affected
instances can be seen in Figure 5. The box plots show for every setting and
instance group the 1st and 3rd quartile of all diving path lengths (shaded box)

18



2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time factor

coefdiving confdiving

(a) affected

2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time factor

(b) [10,tilim]

2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time factor

(c) [100,tilim]

2 4 6 8 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Time factor

(d) [1000,tilim]

Figure 4: Performance profiles of coefdiving and confdiving for four hierarchical
groups of increasingly hard affected instances.
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Figure 5: Box plots showing the average depth of diving paths generated coefficient
diving with coefdiving and conflict diving with confdiving on the set of affected
instances.

as well the median (dashed line). All observations below the 1st or above the
3rd quartile are marked with shaded diamonds. For all four instance groups, the
1st and 3rd quartile corresponding to conflict diving are smaller than for coef-

diving. The same observation holds for the median in all cases. For example,
on [100,tilim] the 3rd quartile (149) of coefficient diving is 69.3 % larger than
the 3rd quartile (87) of conflict diving. On the same group of instances, the
observed median path length of conflict diving is 23.6 % shorter than the one of
coefficient diving.

As we already discussed, both coefficient diving and conflict diving showed
only a small number of found solutions per diving path, which is a good proxy
for the number of successful paths, i.e., paths without backtracking due to
infeasibility (cf. Line 11 and 15). Thus, these statistics confirm that conflict
diving succeeds better in implementing a fail fast strategy and aborting the
many “unsuccessful” dives not leading to a feasible solution early.

Moreover, this does not come at the expense of learning less conflict con-
straints. As can be seen in column C of Table 3, confdiving created 30.0 %
more conflict constraints.

Impact of Conflict Locks. In order to investigate whether conflict diving
outperforms coefficient diving because of the inclusion of conflict locks or merely
because of the difference in the rounding and scoring function, we conducted
two further control experiments with

• a modified rounding function within conflict diving and

• different weights κ.

For the first control experiment we modified conflict diving to use the same
rounding function as coefdiving and κ = 0.5 for the scoring function. The
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resulting diving heuristic conf-like-coefdiving behaves the same as coefficient
diving except for using a convex combination of variable and conflict locks in
the variable selection score.

In our experiment conf-like-coefdiving was superior to coefdiving and
led to a performance improvement of 2.3 % on the set of affected instances. At
the same time, the tree size could be reduced by 3.6 % and four more instances
could be solved. Similar to the actual version of conflict diving evaluated at the
beginning of this section, conflict diving with conf-like-coefdiving settings
generated more than twice as many conflict constraints and found 8 % more
improving solutions than coefficient diving. The performance profiles in Figure 6
show that conflict diving with the same rounding function like coefficient diving
performs better the harder the instance, i.e., whenever many conflict constraints
and therefore reliable conflict locks can be expected. It is not surprising that for
a time factor of 1.0 coefdiving solves more instances best when easy instances
are considered, too, since the number of conflict constraints can be expected to
be small and, thus, the information gained by conflict locks might not be reliable
enough. Even though the profiles are close to each other, they do not cross if
both settings need at least 10, 100, or 1000 seconds. This result indicates that
it is the inclusion of conflict locks in general that helps to guide diving better
than pure variable locks.

For the second control experiment we varied the weights κ ∈ {0, 0.25, 0.5, 0.75, 1}
in confdiving in order to quantify the importance of conflict locks. The results
indicate that the reduced length of diving paths is independent of the weighting
of variable and conflict locks. For every choice of κ the average length of diving
paths was reduced by 18 % to 34 %. Hence, the length of the diving paths seems
to mainly depend on the rounding function φC , which always prefers rounding
into the “risky” direction, i.e., the direction with more locks. We also confirmed
that confdiving is superior to coefdiving on the affected instances for every
evaluated κ.

Moreover, we observed that on instances with zero objective function a
smaller conflict weight κ yields superior performance, while for instances with
nonzero objective function a larger weight κ for conflict information seems to
be the better choice. This observation may be related to how and when the
decisions of conflict diving align with SCIP’s default branching rule and when
they complement it. To make this clear, further background information is
necessary. For branching variable selection, SCIP combines reliability pseudocost-
branching (Achterberg et al. 2005), which estimates dual bound improvement,
and hybrid branching (Achterberg and Berthold 2009), which includes conflict
information via VSIDS (Moskewicz et al. 2001). Both VSIDS and conflict locks
approximate the set of variables that frequently appear in conflict constraints.
On problems with nonzero objective function typically the first, objective-based
score dominates SCIP’s branching decisions, while on pure feasibility problems
the latter, conflict-based score has more impact. This explains that on feasibility
problems a larger κ might align the decisions of conflict diving unfavorably with
the overall tree search and create redundancy; on the majority of problems with
nonzero objective, where conflict information is underweighted in the branching
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Figure 6: Performance profiles of coefdiving and the conflict diving modification conf-

like-coefdiving for four hierarchical groups of increasingly hard affected instances.
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Table 4: confdiving with and without adding feasible solutions and generated conflict
constraints, respectively, on the set of affected instances.

# S T N TQ NQ

nolockdiving 861 822 185.62 4235 1.000 1.000
coefdiving 861 831 185.25 4290 0.998 1.013
confdiving 861 838 176.57 3999 0.951 0.944
confdiving-noconfs 861 825 181.99 4131 0.980 0.976
confdiving-nosols 861 838 177.64 4006 0.957 0.946

rule, a larger κ enables conflict diving to contribute more complementary infor-
mation to the search. This suggests a further refinement of conflict diving by
adapting the weight κ dynamically to the problem at hand.

Impact of Primal Solutions and Generated Conflicts. Finally, we an-
alyzed the importance of found solutions and generated conflict constraints
by comparing confdiving to two artificially modified versions of conflict div-
ing: one that does not apply conflict analysis (confdiving-noconfs) and one
that discards feasible solutions found by conflict diving (confdiving-nosols).
Aggregated results on the set of affected instances are shown in Table 4.

Both variants confdiving-noconfs and confdiving-nosols are superior
to coefdiving with respect to solving time and number of nodes. Whereas
confdiving-nosols solved the same amount of instances as confdiving, dis-
abling conflict analysis led to solving 13 instances less than confdiving. Hence,
disabling the addition of feasible solutions found by conflict diving only has a
marginal impact compared to standard conflict diving. By contrast, disabling
conflict analysis during conflict diving leads to a slowdown of 3 % compared to
confdiving. Thus, the conflict constraints generated during conflict diving seem
to be the main driver of the heuristic. This also aligns with our observations
regarding the dual integral (Berthold 2013). The dual integral measures the
progress of the dual bound towards the optimal objective value. This measure
increased by 3.1 % on average when disabling conflict analysis, which indicates
that the increased number of conflict constraints helps to accelerate convergence
of the proof of optimality.

6 Conclusion

In this paper, we presented two new ways how conflict analysis and primal
heuristics can be combined to improve the performance of a MIP solver. We
presented a primal heuristic, called Farkas diving, that simultaneously aims to
construct valid Farkas proofs and feasible solutions. By design, Farkas diving is
more expensive than previous diving heuristics in SCIP. Therefore, the heuristic
is called conservatively, whereby the decision to keep the heuristic enabled for
the remainder of the search is based on its success during the root node. On the
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set of instances where Farkas diving was executed after the root node, it proved
to be very successful in generating improving solutions and conflict constraints.
Regarding both metrics, Farkas diving outperforms the virtual best of all other
diving heuristics on this set of instances. Moreover, the overall solving time
could be improved by 5.4 % and the tree size could be reduced by 14.8 % on the
set of affected instances.

Furthermore, we applied the concept of variable locks to conflict constraints
and used this additional information to guide the search of a second diving
heuristic, called conflict diving. In addition, conflict diving pursues an aggressive
fail fast strategy to prevent fruitless consumption of running time. This new
diving heuristic is an extension and modification of the well-known coefficient
diving heuristic. Our computational results indicate that this mix of variable and
conflict locks in combination with an aggressive fail fast strategy outperforms
coefficient diving on our complete test set. Conflict diving reduces the overall
solving time and tree size on affected instances by 4.8 % and 5.5 %, respectively.

The two ways of combining primal heuristics and conflict analysis presented
in this paper have highlighted that primal and dual solving techniques within a
general-purpose MIP solver are not independent and that they can not only in-
teract randomly and create performance variability, but be combined beneficially
in a targeted manner.
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