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Abstract

We consider a class of min-max robust problems in which the functions that need to be

robustified can be decomposed as the sum of arbitrary functions. This class of problems

includes many practical problems such as the lot-sizing problem under demand uncertainty.

By considering a Lagrangian relaxation of the uncertainty set we derive a tractable ap-

proximation, called the dual Lagrangian approach, that we relate with both the classical

dualization approximation approach and an exact approach. Moreover we show that the

dual Lagrangian approach coincides with the affine decision rule approximation approach.

The dual Lagrangian approach is applied to a lot-sizing problem, where demands are

assumed to be uncertain and to belong to the uncertainty set with a budget constraint for

each time period.

Using the insights provided by the interpretation of the Lagrangian multipliers as penal-

ties in the proposed approach, two heuristic strategies, a new guided iterated local search

heuristic and a subgradient optimization method, are designed to solve more complex lot-

sizing problems where additional practical aspects, such as setup costs, are considered.

Computational results show the efficiency of the proposed heuristics which provide a good

compromise between the quality of the robust solutions and the running time required in

their computation.

Keywords:Lagrangian relaxation; robust optimization; lot-sizing; demand uncertainty; affine

approximation; budgeted uncertainty polytope

1 Introduction

Dealing with uncertainty is very important when solving practical problems where some

decisions need to be taken before the real data is revealed. This is the case of inventory man-

agement problems where some decisions, such as the quantities to be produced or ordered, need

to be taken without knowing the exact demands. A recent and popular approach to deal with

*Cite as: F. Rodrigues, A. Agra, C. Requejo, E. Delage. Lagrangian duality for robust problems with de-

composable functions: the case of a robust inventory problem. INFORMS Journal on Computing, 33 (2), Pages
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such uncertain optimization problems is Robust Optimization (RO). RO was first introduced

by Soyster (1973) who proposed a model for linear optimization where constraints had to be

satisfied for all possible data values.

Ben-Tal and Nemirovski (1999), El-Ghaoui and Lebret (1997), Bertsimas and Sim (2003,

2004) propose computationally tractable approaches to handle uncertainty and avoid excessive

conservatism. For a recent paper on a less conservative variant of RO see Roos and den Hertog

(2017). For general reviews on RO see Ben-Tal et al. (2009) and Bertsimas et al. (2011).

Although current research on RO is being very useful and different approaches have been

proposed, there is a large gap in the research devoted to applying those approaches to complex

mixed-integer problems. This is the case of many practical production planning problems with

demand uncertainty, which motivated our work. While deterministic production planning prob-

lems have been extensively studied both from a practical and a theoretical viewpoint (Pochet

and Wolsey 2006), robust applications are still scarce. Two seminal works on robust inventory

problems consists of i) the study of robust basestock levels, by Bienstock and Özbay (2008),

where a decomposition approach to solve the true min-max problem to optimality is proposed

(henceforward denoted by BO approach), and ii) the dualization approach introduced by Bertsi-

mas and Thiele (2006) (henceforward denoted by BT approach) to inventory problems adapted

from the general approach proposed by Bertsimas and Sim (2004). The two approaches have

been applied to more complex problems. The decomposition approach for the min-max prob-

lem using the budget polytope is investigated by Agra et al. (2016b) for a larger class of robust

optimization problems where the first-stage decisions can be represented by a permutation. The

general decomposition procedure, regarded as row-column generation, is described for general

robust optimization problems by Zeng and Zhao (2013). The BO approach is also used to solve

more complex inventory problems, for example, the robust maritime inventory problem (Agra

et al. 2018a), and a production and inventory problem with the option of remanufacturing (At-

tila et al. 2017). The dualization approach is also very popular since it often leads to tractable

models. Wei et al. (2011) extended the results presented by Bertsimas and Thiele (2006) to a

production and inventory problem with remanufacturing, where uncertainty is considered on

returns and demands. For the application of the dualization approach to a robust inventory

routing problem see Solyali et al. (2012).

Solving the true min-max problem to optimality, using for instance a decomposition algo-

rithm, can be impractical for many inventory problems, while the dualization approach may

produce solutions which are too conservative. In order to circumvent both the difficulty of

solving the min-max problem and the conservativeness of the dualization approach, other ap-

proaches, such as the use of affine decision rules (Ben-Tal et al. 2004, Chen and Zhang 2009)

have been proposed. The affine decision rules often lead to less conservative solutions than

the ones obtained with the dualization approach, and in some cases they can lead to optimal

solutions, see Bertsimas et al. (2011), Bertsimas and Goyal (2012), Kuhn et al. (2011), Iancu

et al. (2013). Furthermore, for special uncertainty sets the use of affine decision rules leads to

computationally tractable affinely adjustable robust counterpart (AARC) models. In particular,

when the uncertainty set is a polyhedron the resulting AARC model is linear, see Ben-Tal et al.

(2004). Georghiou et al. (2019) propose an approach that combines the affine decision rules

with the extreme point reformulation used in the exact decomposition methods.

Tractable AARC models can also be obtained for lot-sizing problems when the demands

are uncertain and belong to the uncertainty set with a budget constraint for each time period.

However, when additional aspects are included in the lot-sizing problems, such tractable models

can become computationally hard to solve even for small size instances. The results in this
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paper express how difficult can be to solve the AARC model when setup costs are considered

in the basic lot-sizing problem. Such results justify the need for developing simpler tractable

models as well as the use of approximation heuristic schemes. For a survey on adjustable

robust optimization see Yanikoglu et al. (2018). For a deeper discussion of other conservative

approximations for the min-max problem obtained through relaxations of the uncertainty set

we refer to Ardestani-Jaafari and Delage (2016) and Gorissen and den Hertog (2013).

For many practical production planning and inventory management problems some data,

such as demands, are not known in advance, and several decisions need to be taken before the

data is revealed. Frequently, such decisions are taken before the start of the planning horizon

and are not adjustable to the data when it is revealed. That is the case of decisions such

as the amount of each item to produce in each time period, when complex aspects such as

setups, sequence dependent changeovers, etc. are present (Pochet and Wolsey 2006). Adjusting

the production to the known demands can imply new setups, creating different sequences of

products that may not be implementable. Another example in inventory management occurs in

maritime transportation, where the distribution must be planned in advance and can hardly be

adjusted to the demands given the long transportation times. Motivated by such applications

we focus on robust problems in which the functions to be robustified can be decomposed as

the sum of arbitrary functions. This class of problems was also investigated by Delage et al.

(2018). The authors proposed a new robust formulation for generic uncertainty sets where it

is assumed that the functions to be robustified are decomposed into the sum of functions, each

one involving a different nonadjustable variable, which is not the case we consider in this paper.

Contributions

In this paper, for a class of RO problems with decomposable functions, we propose a refor-

mulation of the inner maximization subproblem occurring in a min-max model, known as ad-

versarial problem. This reformulation starts by creating copies of both the uncertain variables

and the uncertainty set in a way that the uncertainty set becomes constraint-wise independent.

Further, a set of additional constraints is imposed enforcing that all the copies take identical

values. By relaxing those constraints in the usual Lagrangian way, we obtain a mixed integer

linear model, called Lagrangian dual model, that permits to directly relate the min-max ap-

proach with the dualization approach (obtained when such constraints are ignored). With the

obtained model, it is possible to derive efficient heuristic approximation schemes that use the

information from the Lagrangian multipliers to obtain solutions with lower true cost.

Our main contributions are the following:

1. Exploit the Lagrangian relaxation of the uncertainty set to obtain a tractable model for

a class of RO min-max problems in which the function to be robustified is decomposable

in the sum of the maximum of affine functions.

2. Provide a better theoretical understanding of the relations between several approaches for

RO problems with decomposable functions. In particular we show that our Lagrangian

dual model coincides with the AARC model and that the classical dualization approach

results from the Lagrangian dual approach with all the Lagrangian multipliers null.

3. Provide computational results for the lot-sizing problem with setups showing the impact of

the setup costs on the several approaches considered. In particular, when the setup costs

increase, the quality of the solutions obtained by the BT approach deteriorates rapidly.

This behaviour was not observed when using the proposed Lagrangian dual model. For

large setup costs, the BT approach provides a bound that is up to 28% larger than the
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optimal solution provided by the BO approach, while an optimal choice of multipliers can

reduce it to near 6%. A similar reduction on the gap can be quickly achieved by solving

the Lagrangian dual model with the multipliers fixed to their optimal value in the linear

relaxation.

4. Design efficient heuristic schemes. We propose a new Guided Iterated Local Search heuris-

tic and a Subgradient Optimization method that explicitly uses the interpretation of the

Lagrangian multipliers as penalties. Comparing with other heuristics, for large size in-

stances, the Subgradient Optimization method runs in a shorter time, and finds solutions

with true costs that are i) strictly better for 91.8% of the instances used and ii) up to

18.4% better than those obtained by the BT approach.

The paper is organized as follows. In Section 2 a dual Lagrangian approach is presented

for RO problems with decomposable functions and its relation with the known approaches

is established. The dual Lagrangian approach is applied to the robust inventory problem in

Section 3. Heuristics based on the interpretation of the Lagrangian multipliers, including a

new Guided Iterated Local Search heuristic and a Subgradient Optimization method are also

presented in Section 3. Computational tests are reported in Section 4 and final conclusions are

given in Section 5.

2 Lagrangian duality for RO problems with decomposable functions

Consider the min-max robust model

R∗ = min
u∈U

R(u)

with

R(u) = g(u) + max
ξ∈Ω

∑
t∈T

ft(u, ξ)

where U is a feasible set, Ω ⊆ Rn is some compact uncertainty set, T = {1, . . . , n} and each

ft : U × Ω → R is an arbitrary continuous function. Variables u represent non-adjustable

decisions. The decision maker chooses a vector u while an adversary determines the uncertain

vector ξ ∈ Ω that is most unfavorable to the decision u ∈ U. Problem R(u) is known as the

adversarial problem (Bienstock and Özbay 2008) and it calculates what is called the true cost

for the vector u.

Problem R∗ can be rewritten as a two-stage robust problem by using adjustable variables

θt, such that θt(ξ) : Ω→ R, t ∈ T, as follows.

R∗ = min
u,θ(·)

max
ξ∈Ω

g(u) +
∑
t∈T

θt(ξ)

s.t. θt(ξ) ≥ ft(u, ξ), ∀ξ ∈ Ω, t ∈ T, (2.1)

u ∈ U.

When particular functions θt(ξ) are considered, conservative approaches of R∗ are obtained. In

particular, the usual non-adjustable approach examines the case where θt(ξ) = θt, t ∈ T , that

is,

C∗ = min
u,θ

g(u) +
∑
t∈T

θt

s.t. θt ≥ ft(u, ξ), ∀ξ ∈ Ω, t ∈ T, (2.2)

u ∈ U.
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It is known (Bienstock and Özbay 2008) that the gap between the two approaches can be large.

However, there are cases with no gap between these approaches, that is, R∗ = C∗ (see Ben-Tal

et al. (2004), Marandi and den Hertog (2018) and El Housni and Goyal (2018)). In particular,

this equality holds when the uncertainty region Ω is the Cartesian product of sets Ξt (that is

Ω = Ξ1 × · · · × Ξn), and each function ft(u, ξ) in constraints (2.2) is only affected by the terms

of ξ which lie in Ξt:

R∗ = min
u∈U

max
ξ∈Ω

g(u) +
∑
t∈T

ft(u, ξt) = min
u∈U

g(u) +
∑
t∈T

max
ξt∈Ξt

ft(u, ξt) = C∗ .

Here we explore this property to derive a Lagrangian relaxation of the adversarial problem.

First, for each constraint t ∈ T, create a list of copies {ζt}t∈T of the variables ξ and a list of

respective uncertainty sets {Ωt}t∈T , such that each Ω ⊆ Ωt and ∩t∈TΩt = Ω (e.g. for simplicity

one can use Ωt := Ω). We further impose a set of constraints enforcing that all the copies must

be equal. This leads to the following exact reformulation of R(u):

R(u) = g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζt)

s.t. ζt = ζ1, ∀t ∈ {2, ..., n}, (2.3)

ζt ∈ Ωt, ∀t ∈ T.

Remark 1. In relation to the set of equalities (2.3), it is important to notice that one could

impose additional redundant equalities ζt = ζ` for t 6= ` or replace them with other equivalent

sets of equations. For all those cases, the process derived next still holds.

Attaching Lagrangian multipliers λt ∈ Rn to each constraint (2.3) and dualizing these con-

straints in the usual Lagrangian way, the following Lagrangian relaxation of R(u) is obtained

LR(u, λ) := g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζt)−
n∑
t=2

(λt)>(ζt − ζ1)

s.t. ζt ∈ Ωt, ∀t ∈ T.

The multipliers λ penalize the use of different uncertainty vectors for different constraints.

Imposing that λ1 := −
∑n
t=2 λ

t this model is equivalent to

LR(u, λ) := g(u) + max
ζ1,...,ζn

∑
t∈T

ft(u, ζt)−
∑
t∈T

(λt)>ζt

s.t. ζt ∈ Ωt, ∀t ∈ T.

By using the epigraph reformulation, model LR(u, λ) can be written as follows.

LR(u, λ) = g(u) + min
θ1,...,θn

∑
t∈T

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt, t ∈ T,

For a given u and λ, the minimization problem in LR(u, λ) can be separated into n inde-

pendent subproblems, one for each t ∈ T :

LRt(u, λt) = min
θt

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt

and LR(u, λ) = g(u) +
∑n
t=1 LRt(u, λt).
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The Lagrangian dual problem is DLR(u) = min
λ

LR(u, λ). Hence we have R(u) ≤ DLR(u).
Denoting by D the problem D = min

u∈U
DLR(u), the following relation holds

R∗ = min
u∈U

R(u) ≤ min
u∈U

DLR(u) = D.

The Lagrangian dual model D can be written as follows:

D = min
u,λ,θ

g(u) +
n∑
t=1

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt, t ∈ T,

λ1 = −
n∑
t=2

λt,

u ∈ U.

Define D(λ) = min
u∈U

LR(u, λ). Hence, D = min
λ

D(λ), and for given multipliers λ,

D(λ) =min
u,θ

g(u) +
n∑
t=1

θt

s.t. θt ≥ ft(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt, t ∈ T,

u ∈ U.

Noticing that C∗ is obtained with λ = 0 and Ωt = Ω, we have the following relation.

Theorem 2. When Ωt = Ω, we have R∗ ≤ D≤C∗.

Proof. Proof. R∗ = min
u∈U

R(u) ≤ min
u∈U

min
λ

LR(u, λ) = D = min
λ

D(λ) ≤ D(0) ≤ C∗.

Following the work of Ben-Tal et al. (2015), one can start identifying conditions under

which D becomes tractable. In particular, Section 2.3 will focus on the case where each ft(u, ξ)
captures the maximum of a finite set of affine functions and Ωt is a famous polyhedral budgeted

set.

Theorem 3. Given that g(u) is a convex function, that ft(u, ξ) is the maximum of K functions

htk(u, ξ) convex in u and concave in ξ, and that both U and each Ωt are compact convex sets,

then D can be reformulated as the following finite dimensional convex program:

D = min
u,λ,θ,v

g(u) +
n∑
t=1

θt (2.4)

s.t. θt ≥ δ∗(vtk|Ωt)− htk∗(u, vtk + λt) ∀k = 1, . . . ,K, t ∈ T,

λ1 = −
n∑
t=2

λt,

u ∈ U ,

where δ∗(v|Ωt) := supξ∈Ωt v>ξ is the support function for Ωt, while htk∗(u, v) := infξ{v>ξ −
htk(u, ξ)} is the partial concave conjugate of htk(u, ξ). Moreover, if the epigraph of functions

g(u), δ∗(v|Ωt), and htk∗(u, v) are polyhedral representable and set U is a polyhedron, then prob-

lem (2.4) can be reduced to a linear program.

The proof of this theorem is given in Appendix A.
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2.1 Dualization versus affine approximation

It is known that less conservative approaches than C∗ to approximate R∗ can be obtained

assuming that θt(ξ) is the affine approximation θt(ξ) = νt0 + (νt)>ξ, with νt0 ∈ R and νt ∈ Rn.

The resulting model, called Affinely Adjustable Robust Counterpart (AARC) model (Gorissen

and den Hertog 2013) is

AARC = min
u,ν0,ν,s

g(u) + s

s.t. s ≥
n∑
t=1

(
νt0 + (νt)>ξ

)
, ∀ξ ∈ Ω,

νt0 + (νt)>ξ ≥ ft(u, ξ), ∀ξ ∈ Ω, t ∈ T,

u ∈ U

and it holds R∗ ≤ AARC ≤ C∗.
Next we establish the main result of this section stating that the Lagrangian dual bound D

obtained with Ωt = Ω, t ∈ T coincides with the affine approximation AARC.

Theorem 4. When Ωt = Ω, t ∈ T we have that AARC = D.

Proof. Proof. When Ωt = Ω, model D can be obtained from model AARC by replacing νt0 with

θt and νt with λt, and adding the constraint
∑n
t=1 ν

t = 0, hence AARC ≤ D.
To prove that AARC ≥ D, we can show that given any feasible solution (ν0, ν) of AARC

that achieves a finite objective value, it is possible to construct a feasible solution for D that

achieves the same objective value. To do so, set m = maxξ∈Ω
∑n
t=1(νt)>ξ, λ1 = −

∑n
t=2 ν

t, and

θ1 = ν1
0 + m, and for each t ∈ {2, . . . , n} we define λt = νt, and θt = νt0. Clearly, the objective

value for D is the same as achieved in AARC:

g(u) +
n∑
t=1

νt0 + max
ξ∈Ω

n∑
t=1

(νt)>ξ = g(u) +
n∑
t=1

νt0 +m = g(u) +
n∑
t=1

θt,

and the solution (θ, λ) is feasible for D, since for the constraint t = 1 (the remaining constraints

are easily shown to be equivalent) and for each ξ ∈ Ω, we have

θ1 + (λ1)>ξ = ν1
0 +m−

n∑
t=2

(νt)>ξ ≥ ν1
0 + (ν1)>ξ ≥ f1(u, ξ)

where the first inequality follows from the definition of m since

m = max
ξ∈Ω

n∑
t=1

(λt)>ξ ≥
n∑
t=1

(λt)>ξ, ∀ξ ∈ Ω ⇒ m−
n∑
t=2

(λt)>ξ ≥ (λ1)>ξ, ∀ξ ∈ Ω,

and the second inequality follows from the feasibility of (ν0, ν) in AARC.

2.2 Extensions and related problems

Next we discuss three extensions of Theorem 4.

Two-stage robust linear programs with box uncertainty: First, we extended the result to

two-stage robust linear programs where the uncertainty set is the box uncertainty set. Let us

consider a two-stage robust linear program of the form

min
u∈U

max
ξ∈Ξ

min
y

g(u) + c>y (2.5)

s.t. Au+By ≤ Dξ.
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where A ∈ Rm×q, B ∈ Rm×p, D ∈ Rm×n and Ξ = {ξ ≥ 0 | ξ ≤ d}.
By dualizing model (2.5) over the second-stage variables y and then over the uncertain

variables ξ, Bertsimas and de Ruiter (2016) obtain the Dual Reformulation (DR) of model (2.5)

DR = min
u∈U

max
ζ∈Ω

min
z≥0

g(u) + ζ>Au+ d>z (2.6)

s.t. z ≥ −D>ζ.

where Ω = {ζ ≥ 0 | c + B>ζ = 0}. Bertsimas and de Ruiter (2016) proved that when affine

decisions rules are applied to both the primal model (2.5) and the dual model (2.6), the optimal

values of the resulting models coincide. The DR model (2.6) can easily be rewritten as an

instance of the general model R∗ defined in Section 2 as follows:

DR = min
u∈U,θ(·)

g(u) +
n∑
t=1

θt(ζ) (2.7)

s.t. θt(ζ) ≥ max(0, −dtD>:,tζ) + (1/n)ζ>Au ∀ζ ∈ Ω, t ∈ T ,

where D:,t refers to the t-th column of D (see Zhen et al. (2018) for elimination of the adap-

tive variables). We can therefore state the following result as a consequence of Theorem 2 in

Bertsimas and de Ruiter (2016).

Corollary 1. The optimal value of the Lagrangian dual model of the dual reformulation model (2.7)

coincides with the optimal value of the AARC applied either to the primal formulation (2.5)

(y(ξ) = y0 + V ξ) or to the dual formulation (2.6) (θt(ζ) = νt0 + (νt)>ζ).

Quadratic decision rules: In a different direction, a similar result to the one proved in

Theorem 4 can be derived for the case of the quadratic decision rules. By defining for each

t ∈ T , θt(ξ) = µt0 +(µt)>ξ+ξ>Πtξ, with Πt ∈ Rn×n, the obtained Quadratic Adjustable Robust

Counterpart (QARC) model can be written as follows:

QARC = min
u,ν0,ν,Π,s

g(u) + s

s.t. s ≥
n∑
t=1

(
νt0 + (νt)>ξ + ξ>Πtξ

)
, ∀ξ ∈ Ω,

νt0 + (νt)>ξ + ξ>Πtξ ≥ ft(u, ξ), ∀ξ ∈ Ω, t ∈ T,

u ∈ U.

Following the idea of the proposed Lagrangian approach, in addition to the set of equality

constraints (2.3), let us consider in model R(u) the new set of equalities

ξt(ξt)> = ξ1(ξ1)>, t = 2, . . . , n (2.8)

Attaching a matrix Λt ∈ Rn×n of Lagrangian multipliers to each one of constraints (2.8), the

Lagrangian Dual Quadratic (DQ) model becomes

DQ = min
u,λ,Λθ

g(u) +
n∑
t=1

θt

s.t. θt ≥ ft(u, ξt)− (λt)>ξt − (ξt)>Λtξt, ∀ξt ∈ Ωt, t ∈ T,

λ1 = −
n∑
t=2

λt,Λ1 = −
n∑
t=2

Λt,

u ∈ U.

We can once again establish a connection between this dual model and the use of quadratic

decision rules.
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Theorem 5. When Ωt = Ω, for all t ∈ T , we have that QARC=DQ.

The proof of this result follows straightforwardly the steps of the proof of Theorem 3.

In particular, for showing that QARC≥DQ, one can define m = max
ξ∈Ω
{
∑n
t=1(vt)>ξ + ξ>Πtξ},

λ1 = −
∑n
t=2 ν

t, Λ1 = −
∑n
t=2 Πt, θ1 = ν1

0 +m and, for all t ∈ {2, . . . , n}, λt = νt, Λt = Πt, and

θt = νt0.

Distributionally robust optimization: Finally, the form of problem R∗ is not limited to

classical robust optimization but also emerges quite naturally when handling distributionally

robust optimization (DRO) problems. In particular, consider the following general moment-

based DRO problem:

min
u∈U

sup
F∈D(U)

EF [
∑
t

ft(u, ξ)] ,

where ξ is now considered to be drawn from a distribution F that lies in an ambiguity set D
defined as

D(U) :=
{
F

∣∣∣∣∣ ∃µ ∈ U , PF (ξ ∈ Ω) = 1
EF [hk(ξ)] = µk , ∀ k = 1, . . . ,K

}
,

with each hk(ξ) defining a moment function, and U ⊂ RK defining the set of possible mo-

ments. Exploiting a famous reformulation for moment problems, one can, under fairly general

conditions, reformulate the inner supremum as follows:

sup
F∈D(U)

EF [
∑
t

ft(u, ξ)] = sup
µ∈U

sup
F∈D({µ})

EF [
∑
t

ft(u, ξ)]

= sup
µ∈U

inf
q

sup
ξ∈Ω

∑
t

ft(u, ξ) +
K∑
k=1

qk(hk(ξ)− µk)

= inf
q

sup
µ∈U ,ξ∈Ω

∑
t

ft(u, ξ) +
K∑
k=1

qk(hk(ξ)− µk) .

where the first step assumes that strong semi-infinite conic duality holds (see Shapiro (2001)

for more details), followed by an application of Sion’s minimax theorem as long as U is convex

and bounded. This gives rise to the following reformulation of the DRO problem:

min
u∈U,q

sup
µ∈U ,ξ∈Ω

∑
t

ft(u, ξ) +
K∑
k=1

qk(hk(ξ)− µk) , (2.9)

One can directly see that this DRO reformulation takes the form of R∗. Theorem 4 therefore

applies to the DRO problem reformulation (2.9).

2.3 Duality for the B&T budgeted set and for the maximum of affine functions

Here we consider the particular case that motivated our work, where functions ft(u, ζt) are

given by the maximum of affine functions. We consider the uncertainty set used by Bertsimas

and Thiele (2006):

Ω = {ξ ∈ [−1, 1]n |
t∑

j=1
|ξj | ≤ Γt, t ∈ T},

where a budget constraint is imposed for each time period and we refer to this set as the B&T
budgeted set.

We assume that ft(u, ζt) = max
k∈K

f̂kt (u, ζt) where K is a finite set of indexes and

f̂kt (u, ζt) = Lkt (u) +
∑
j∈T

atkj ζ
t
j , ∀t ∈ T, k ∈ K,
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where atkj ∈ R and Lkt (u) : U → R is an affine function for all k ∈ K and j, t ∈ T .

When Ωt = Ω, the Lagrangian dual problem takes the form

min
u,θ,λ

g(u) +
n∑
t=1

θt

s.t. θt ≥ Lkt (u) +

∑
j∈T

atkj ζ
t
j −

∑
j∈T

ζtjλ
t
j

 , ∀ζt ∈ Ωt, k ∈ K, t ∈ T,

λ1 = −
n∑
t=2

λt,

u ∈ U.

The uncertainty sets Ωt are not sets of linear constraints due to the presence of the absolute

value function in constraints
∑j
`=1 |ζt`| ≤ Γj , j ∈ T. There are several ways of converting sets

Ωt into equivalent sets of linear constraints (see Ben-Tal et al. (2009)). Preliminary tests using

different forms of conversion indicate that the best results are obtained by replacing ζt with

ζt+ − ζt− such that (ζt+, ζt−) ∈ Ω̄t and

Ω̄t =
{

(ζt+j , ζt−j ) ∈ Rt × Rt |
j∑
`=1

(ζt+` + ζt−` ) ≤ Γj , j ∈ T, (2.10)

ζt+j + ζt−j ≤ 1, j ∈ T, (2.11)

ζt+j , ζt−j ≥ 0, j ∈ T } .

For practical reasons, to reduce the size of the resulting model, we assume henceforward that

ζtj = 0 for j > t, which implies that constraints (2.10) and (2.11) can be disregarded for j > t.

By considering the above linear transformation, one can apply linear programming duality to

reformulate each robust constraint and obtain the following linear program:

D = min
u,λ,θ,q,r

g(u) +
n∑
t=1

θt

s.t. θt ≥ Lkt (u) +
t∑

j=1
qtkj Γj +

t∑
j=1

rtkj , ∀t ∈ T, k ∈ K, (2.12)

t∑
`=j

qtk` + rtkj ≥ (−1)i(atkj − λtj), ∀j, t ∈ T : j ≤ t, k ∈ K, i ∈ {1, 2} (2.13)

qtkj , r
tk
j ≥ 0, ∀j, t ∈ T : j ≤ t, k ∈ K, (2.14)

λ1 = −
n∑
t=2

λt, (2.15)

u ∈ U. (2.16)

where the dual variables qtkj and rtkj are associated with constraints (2.10) and (2.11), respec-

tively. In practice, when T is reasonably small, it can be interesting to rewrite D in a lower

dimensional space by eliminating variables rtkj . The resulting model is called projected model

and is given in Appendix B. Alternatively, one might improve numerical efficiency, albeit at the

price of precision, by using a simpler set Ω̂t, such that Ωt ⊆ Ω̂t. In particular, the following

form is a natural choice (see Remark 6):

Ω̂t = {ζt ∈ [−1, 1]n |
t∑

j=1
|ζtj | ≤ Γt},

10



and leads to the following relation:

R∗ ≤ AARC = D ≤ D̂ ≤ D̂(0),

where D̂ and D̂(λ) denote, respectively, D and D(λ) when Ω̂t is considered instead of Ωt.

Observe that since constraints (2.10) in set Ω̄t were disregarded for j > t, the version of the

AARC approach equivalent to model D consists of using the affine policy θt(ξ) = νt0 + (νt)>ξ
with νtj = 0 for j > t.

Remark 6. In the case of the B&T budgeted set, the set of constraints in the adversarial problem

is given by {
(ζ1, . . . , ζn) ∈ [−1, 1]n | ζt = ζ`, t, ` ∈T, t 6= `, (2.17)

∑̀
j=1
|ζtj | ≤ Γt, t, ` ∈ T} (2.18)

where constraints (2.18) for ` < t are redundant in the presence of constraints (2.17). However,

when constraints (2.17) are relaxed, constraints (2.18) are no longer redundant for ` < t and

the corresponding Lagrangian relaxation may differ.

Proposition 7. Given any fixed λ such that
∑
t∈T λ

t = 0 and letting αtkj (λ) =| atkj − λtj | for all

j ∈ T, the value of D is bounded above by

D̂(λ) = min
u

g(u) +
n∑
t=1

θt

s.t. θt ≥ Lkt (u) +Akt (λ), ∀t ∈ T, k ∈ K,

u ∈ U,

where Akt (λ) =
∑bΓtc
`=1 α

tk
j(`)(λ)+(Γt−bΓtc)αtkj(dΓte)(λ) and αtkj(`)(λ) is the `th largest value among

the values αtk1 (λ), . . . , αtkn (λ).

The proof is similar to the proof of Proposition 1 in Bertsimas and Sim (2004) so it is

omitted.

Remark 8. All the approximation models for R∗ presented in this section overestimate the cost

associated with each first-stage solution u. Hence, those approaches may lead to poor bounds

based on good solutions and the following relation holds

R∗ = R(u∗) ≤ R(uJ) ≤ J,

where uJ denotes the first-stage solution obtained with model J, and J ∈ {D, D̂, D̂(λ)}.

3 The case of a robust inventory problem

In this section we particularize the results of the previous section for the case of the robust

inventory problem that motivated this study and relate them with those known from the lit-

erature. We consider lot-sizing problems defined over a finite time horizon of n periods and

define T = {1, . . . , n}. For each time period t ∈ T, consider the unit holding cost ht, the unit

backlogging cost bt and the unit production cost ct. The demand in time period t is given by

dt. Define xt as the inventory at the beginning of period t (x1 is the initial inventory level). In
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case xt is negative it indicates a shortage. Variables ut ≥ 0 indicate the quantity to produce in

time period t. When the demand dt is known and fixed we obtain a basic deterministic lot-sizing

problem that can be modelled as follows:

min
u,x

n∑
t=1

(ctut + max{htxt+1,−btxt+1})

s.t. xt+1 = x1 +
t∑

j=1
(uj − dj), ∀t ∈ T,

ut ≥ 0, ∀t ∈ T.

If xt+1 ≥ 0, then max{htxt+1,−btxt+1} gives the holding cost htxt+1, otherwise it gives the

backlogging cost −btxt+1 at the end of time period t.

Here we consider the case where the demands dt are defined by dt := µt + δtzt, for each

t ∈ T, where µt and δt are the nominal demand and the maximum allowed deviation in period

t, respectively, and the uncertain variables zt belong to the B&T budgeted set:

Ω = {z ∈ [−1, 1]n |
t∑

j=1
|zj | ≤ Γt, t ∈ T}.

and assume that 0 ≤ Γ1 ≤ Γ2 ≤ · · · ≤ Γn, Γt ≤ Γt−1 + 1 and 1 < t ≤ n.
The results presented in this section can easily be extended to accommodate other practical

aspects such as setup costs and/or other production constraints. In that case, the objective

function is

min
u,y

n∑
t=1

(ctut + Styt + max{htxt+1,−btxt+1}) (3.1)

where yt is the setup variable indicating whether there is a production setup in time period t,

and St is the setup cost in time period t. A new set of constraints is also considered

ut ≤ Ptyt, yt ∈ {0, 1}, ∀t ∈ T, (3.2)

where Pt is an upper bound on the production quantity at period t. In order to keep the notation

easy, and since all the theoretical results presented hold for both cases (with and without setups)

hereafter in the derivation of the theoretical results, we consider only the simplest case where no

setup costs (and no setup variables) are considered. For the computational aspects (Sections 3.3

and 4) the more general case with setups is considered.

3.1 The Bienstock and Özbay and the Bertsimas and Thiele approaches

First, we review two of the main approaches for robust inventory problems: the decom-

position approach introduced by Bienstock and Özbay (2008) to solve the problem written as

a min-max problem (BO approach) and the dualization approach employed by Bertsimas and

Thiele (2006) (BT approach). Bienstock and Özbay (2008) consider the robust inventory prob-

lem as a min-max problem where, for a given production vector u, the demand dt is picked by

an adversary problem. The min-max formulation is the following:

R∗ = min
u≥0

R(u)

12



where

R(u) = max
x,z

n∑
t=1

(ctut + max{htxt+1,−btxt+1}) (3.3)

s.t. xt+1 = x1 +
t∑

j=1
(uj − µj − δjzj), ∀t ∈ T,

t∑
j=1
|zj | ≤ Γt, ∀t ∈ T,

zt ∈ [−1, 1], ∀t ∈ T.

Problem (3.3) corresponds to the general adversarial problem introduced in Section 2.3 with

K = {1, 2}, L1
t (u) = ht

(
x1 +

∑t
j=1(uj − µj)

)
, L2

t (u) = −bt
(
x1 +

∑t
j=1(uj − µj)

)
, g(u) =∑

t∈T ctut and U = Rn+.
Bienstock and Özbay (2008) solve the min-max problem using a decomposition approach

where, in the master problem, a production planning problem is solved for a subset of demand

scenarios, while in the subproblem (adversarial problem) the worst-case scenario is found for

the current production plan and added to the master problem. A FPTAS is proposed in Agra

et al. (2016b) where a similar decomposition approach is used and the adversarial problem is

solved by dynamic programming.

The dualization approach introduced by Bertsimas and Sim (2004) was developed for the

robust inventory problem by Bertsimas and Thiele (2006). The formulation is as follows

Ĉ∗ = min
u,z

n∑
t=1

(ctut + θt) (3.4)

s.t. θt ≥ ht

x1 +
t∑

j=1
(uj − µj) +At

 , ∀t ∈ T,

θt ≥ −bt

x1 +
t∑

j=1
(uj − µj)−At

 , ∀t ∈ T,

ut ≥ 0, ∀t ∈ T,

where, for all t ∈ T,

At = max
z


t∑

j=1
δjzj |

t∑
j=1
|zj | ≤ Γt, zt ∈ [−1, 1]

 .
Notice that this approach is based on the supersets Ω̂t, t ∈ T .

3.2 Lagrangian relaxation based approaches

To derive the Lagrangian relaxation of the adversarial problem (3.3) consider, for each time

period t ∈ T, a copy vtj of each variable zj with j ≤ t. That is, consider new variables vtj ∈ [−1, 1]
which account for the deviation in period j affecting period t, t ≥ j, and impose the constraints

vtt = vjt , ∀j, t ∈ T, t < j. (3.5)

With this set of equalities, constraints
∑t
j=1 |zj | ≤ Γt, t ∈ T are replaced by constraints∑`

j=1 |vtj | ≤ Γ`, 1 ≤ ` ≤ t ≤ n and the following approximation for the problem R∗ is obtained.
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Theorem 9. Model D defined below is a tractable approximation for the problem R∗.

D = min
u,λ,θ,q,p,r,s

∑
t∈T

(ctut + θt) (3.6)

s.t. θt ≥ L1
t (u) + ht

 t∑
j=1

qt1j Γj +
t∑

j=1
rt1j

 , ∀t ∈ T, (3.7)

θt ≥ L2
t (u) + bt

 t∑
j=1

qt2j Γj +
t∑

j=1
rt2j

 , ∀t ∈ T, (3.8)

qt1t + rt1t ≥ (−1)i
δt +

n∑
j=t+1

λjt
ht

 , ∀i ∈ {1, 2}, t ∈ T, (3.9)

t∑
`=j

qt1` + rt1j ≥ (−1)i
(
δj −

λtj
ht

)
, ∀i ∈ {1, 2}, j, t ∈ T : j < t, (3.10)

qt2t + rt2t ≥ (−1)i
 n∑
j=t+1

λjt
bt
− δt

 , ∀i ∈ {1, 2}, t ∈ T, (3.11)

t∑
`=j

qt2` + rt2j ≥ (−1)i
(
λtj
bt

+ δj

)
, ∀i ∈ {1, 2}, j, t ∈ T : j < t, (3.12)

qt1j , r
t1
j , q

t2
j , r

t2
j ≥ 0, ∀j, t ∈ T : j < t. (3.13)

The proof of this theorem is given in Appendix C and it directly follows from the application

of the process described in Section 2 to the robust inventory problem. By replacing the sets Ωt

with the supersets Ω̂t we obtain model D̂, which is used in the heuristics proposed in Section 3.3.

Model D̂ corresponds to model D by setting variables qtkj = 0 for all k ∈ {1, 2}, j, t ∈ T : j < t.

Remark 10. The Bertsimas and Thiele model (3.4) is a model having the form of model C∗

where Ω is replaced in each constraint (2.2) by Ω̂t. Hence, we have the relations D ≤ C∗ ≤ Ĉ∗

and D̂ ≤ D̂(0) ≤ Ĉ∗.

The projected version of model D in a lower dimension space can be written as follows:

D = min
u,λ,θ,q,p

∑
t∈T

(ctut + θt) (3.14)

s.t. θt ≥ L1
t (u) + ht

 t∑
j=1

qt1j Γj −
t∑

j=1
|πtj |

t∑
`=j

qt1` +
t−1∑
j=1

πtj

(
δj −

λtj
ht

)
+ πtt

δt +
n∑

j=t+1

λjt
ht

 ,
∀πti ∈ {−1, 0, 1}, 1 ≤ i ≤ t, t ∈ T, (3.15)

θt ≥ L2
t (u) + bt

 t∑
j=1

qt2j Γj −
t∑

j=1
|πtj |

t∑
`=j

qt2` +
t−1∑
j=1

πtj

(
δj +

λtj
bt

)
+ πtt

δt − n∑
j=t+1

λjt
bt

 ,
∀πti ∈ {−1, 0, 1}, 1 ≤ i ≤ t, t ∈ T, (3.16)

qt1j , q
t2
j ≥ 0, ∀j, t ∈ T : j ≤ t. (3.17)

Remark 11. The BT model can be obtained through the projected model (3.14)–(3.17) by setting

λ = 0, qt1j = qt2j = 0, j, t ∈ T : j < t and qt1t = qt2t .

Although the number of constraints (3.15) and (3.16) in the projected model increases

exponentially with the number n of time periods, most of these inequalities are redundant.
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In fact, for each k ∈ {1, . . . , t} such that
∑t
j=1 |πtj | = k, only one inequality (3.15) and one

inequality (3.16) are non dominated for each t ∈ T. The projected model can be solved using

a Benders decomposition approach together with a separation algorithm for the constraints

(3.15) and (3.16) that can easily work by inspection. However, preliminary results reported in

Section 4.1 show that many of such constraints need to be included.

The next proposition provides an efficient way to solve model D̂ when multipliers are fixed.

Such result will be used in the next section to design efficient heuristics to find solutions with

lower true cost.

Proposition 12. For fixed multipliers λ, D̂(λ) is given as follows

D̂(λ) = min
u

n∑
t=1

(ctut + θt)

s.t. θt ≥ ht

x1 +
t∑

j=1
(uj − µj)

+A1
t (λ), ∀t ∈ T,

θt ≥ −bt

x1 +
t∑

j=1
(uj − µj)

+A2
t (λ), ∀t ∈ T,

ut ≥ 0, ∀t ∈ T,

with

A1
t (λ) =

bΓtc∑
`=1

αtj(`) + (Γt − bΓtc)αtj(dΓte) and A2
t (λ) =

bΓtc∑
`=1

βtj(`) + (Γt − bΓtc)βtj(dΓte),

where αtj =| −htδj +λtj | for 1 ≤ j < t, αtt =| −htδt−
∑n
j=t+1 λ

j
t |, βtj =| btδj +λtj | for 1 ≤ j < t,

and βtt =| btδt −
∑n
j=t+1 λ

j
t |, where αtj(`) is the `th largest value among αt1, . . . , α

t
t and βtj(`) is

the `th largest value among βt1, . . . , β
t
t .

The proof is a direct application of Proposition 7 so it will be omitted.

3.3 Heuristic schemes to improve the quality of solutions

Among all the models considered in this paper, model D, corresponding to the AARC ap-

proach, is the one that provides bounds closer to R∗. Another important concern is related with

obtaining solutions u such that R(u) is close to R∗, that is, solutions with the best possible true

cost. From a practical perspective, obtaining such solutions ū is more relevant than obtaining

good bounds. Taking into account this more practical orientation, in this section, we develop

iterative heuristic solution approaches, based on the interpretation of the Lagrangian multipliers

as penalties associated with constraints violation, to obtain solutions with a lower true cost.

With that purpose, for a given vector of multipliers, the value of the uncertain variables vjt ,

1 ≤ t ≤ j ≤ n, must be computed at each iteration. Since such computation can easily be

done by inspection in model D̂ but not in model D, we use model D̂ rather than model D.

Besides, there are two more reasons to use model D̂ instead of model D. First, model D̂ is

computationally easier to solve when the multipliers are fixed (see Proposition 12) and second,

the results presented in the computational section for the instances solved to optimality suggest

that there are no significant differences between the true cost of the solutions provided by both

models D̂ and D.

Given that model D̂ (and also model D) is a pure linear model, one would expect to solve

it to optimality even for large size instances. However, when other aspects are included, the
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model can quickly become very large and the direct use of such model can be prohibitive. In

order to take advantage of model D̂ we derive heuristic schemes that iteratively fix the value

of the new variables (multipliers) leading to easier subproblems. The proposed heuristics are

tested using the inventory problem when production setup costs are considered, that is, when

the objective function is given by (3.1) and the set of constraints (3.2) is added.

3.3.1 Guided Iterated Local Search algorithm

The first heuristic approach that we propose is called Guided Iterated Local Search (GILS).

The GILS heuristic can easily be used to solve other complex problems and it is inspired in the

classical Iterated Local Search (ILS) heuristic based on the local branching scheme proposed by

Fischetti and Lodi (2003). ILS heuristics have performed well in complex inventory problems

with uncertainty, such as the Maritime Inventory Routing problem (Agra et al. 2016a, 2018a)

and the Production Inventory problem (Agra et al. 2018b).

The main idea of the ILS heuristic is to restrict the search space of some integer variables

(setup variables in our case) to a neighbourhood of a given solution. For a given positive integer

parameter ρ, define the neighborhood N (ȳ, ρ) of ȳ as the set of feasible solutions of the model

D̂ satisfying the additional local branching constraint (see Fischetti and Lodi (2003)):∑
t∈T |yt=0

yt +
∑

t∈T |yt=1
(1− yt) ≤ ρ. (3.18)

The neighborhood N (ȳ, ρ) is the set of solutions that differ from the current solution ȳ by a

maximum number of ρ values of the yt variables. The linear constraint (3.18) limits to ρ the

total number of binary variables yt flipping their value with respect to the solution ȳ, either

from 1 to 0 or from 0 to 1.

The GILS heuristic is a modified version of the ILS heuristic and can be seen as an improved

version in which the search space is even more reduced through the inclusion of new constraints

on the Lagrangian multipliers. Motivated by the fact that the Lagrangian multipliers are used to

penalize the deviations between the copies of the uncertain variables of the adversarial problem,

we impose, at each iteration, two types of constraints to guide the value of the multipliers as

follows.

Type I: Constraint λjt ≤ 0 if vtt − v
j
t < 0 or constraint λjt ≥ 0 if vtt − v

j
t > 0.

Type II: Constraint λjt ≤ λ
j
t if vtt − v

j
t < 0 or constraint λjt ≥ λ

j
t if vtt − v

j
t > 0.

At each iteration, the current value of the uncertain variables vjt and the current value of the

Lagrangian multipliers are denoted by vjt and λ
j
t , for all 1 ≤ t ≤ j ≤ n, respectively.

To start the GILS heuristic, an initial solution is required. Such solution can be found by

solving the model D̂ and fixing the Lagrangian multipliers to their value in the linear relaxation

of model D̂. The full algorithm is described in Algorithm 1.
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Algorithm 1 Guided Iterated Local Search

1: Solve the linear relaxation of model D̂

2: Solve the integer model D̂, with the Lagrangian multipliers fixed to their values in the linear

relaxation of model D̂

3: Save the solution y obtained in the previous step

4: repeat

5: for all t, j ∈ T such that t ≤ j do

6: Compute the value of the uncertainty variables vjt and add either constraints of type I

or of type II to the model according to a predefined rule

7: end for

8: Add constraint (3.18) to the model D̂ and solve it for γ seconds

9: Update the solution y

10: Remove all the constraints added

11: until the time limit of β seconds or a maximum number of iterations is reached

Steps 5 to 7 are used to guide the values of the Lagrangian multipliers as penalties for

variable deviations. By ignoring Steps 5 to 7, Algorithm 1 becomes the classic ILS heuristic,

that will be also tested in the computational section. In Step 6, several specific rules can be

used to choose in each iteration the type of constraints added to the problem. Some of those

rules will be discussed in the computational section. It is important to notice that the purpose

of Steps 5 to 7 is not to accelerate the algorithm. Additionally, we may also expect to obtain

worse bounds (based on the value of model D̂) using the GILS heuristic than using the ILS

heuristic since we are restricting the search space. By penalizing the differences between the

copies of the uncertain variables, we aim to force the choice of a neighbor solution based on an

estimation of the cost closer to the true one. With this technique we expect to obtain better

quality solutions (with true cost close to the cost of the optimal solution).

3.3.2 Subgradient Optimization method

Since model D̂ is based on a Lagrangian relaxation, we adapt the subgradient method,

frequently used to solve the dual problem of a Lagrangian relaxation, to solve model D̂ heuris-

tically. The Subgradient Optimization (SO) method that we propose depends on two given a

priori parameters, parameter ItLim and parameter φ, and uses the following additional func-

tions:

� R(u) : computes the true cost of a given production policy u.

� Cdeviations(λ) : given a vector λ , computes the value v̄ of the deviation variables v.

The SO method starts by solving the linear relaxation of model D̂ to obtain the initial values

for the Lagrangian multipliers λ. The optimal value of the linear relaxation is used to define

a lower bound to the problem. In the loop (step 4 to step 28 of the Algorithm 2), model D̂

is solved with updated information and the corresponding bound as well as the true cost of

the production policy are computed and compared with the current best values. The value of

the Lagrangian multipliers is updated in steps 21 to 25 according to the interpretation of the

multipliers as penalties associated with the violation of constraints (3.5), taking into account

the value of the variables vjt and vtt.

At each iteration, model D̂ is solved with the Lagrangian multipliers fixed and all the

remaining variables free, however, whenever a limit number of iteration (ItLim) is reached
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without a better bound or a better solution (solution with lower true cost) is obtained, the

multipliers are left free and the setup variables are fixed. This strategy is used to escape from

local minimums and hence explore new feasible regions of the search space.

Algorithm 2 Subgradient Optimization method

1: Initialization: NoImprove := 0, Bestbound :=∞, Bestvalue :=∞
2: Solve the linear relaxation of model D̂ and store the multipliers λ

3: Set LB equal to the objective function value of the linear relaxation

4: repeat

5: if NoImprove < ItLim then

6: Impose constraints λjt = λ
j
t and make all the remaining variables free

7: else

8: Impose constraints yt = yt and make the Lagrangian multipliers free

9: NoImprove ← 0
10: end if

11: Solve the integer model D̂ with the imposed constraints

12: Set Bound equal to the objective function value of model D̂

13: if Bound < Bestbound then

14: Update Bestbound

15: NoImprove ← 0
16: end if

17: if R(u) < Bestvalue then

18: Update Bestvalue

19: NoImprove ← 0
20: end if

21: Compute vjt , the value of the deviation variables vjt , for all t, j ∈ T such that t ≤ j using

function Cdeviations(λ)
22: Compute the subgradient sjt := vtt − v

j
t for all t, j ∈ T such that t < j

23: Compute norm :=
∑T
t=1

∑T
j=t+1(sjt )2

24: Define stepsize := φBound−LBnorm

25: Update multipliers λ
j
t ← λ

j
t + stepsize × sjt

26: Remove all the added constraints

27: NoImprove ← NoImprove + 1
28: until A time limit of β minutes is reached

4 Computational experiments

This section reports the computational experiments carried out to compare the BO approach,

the BT approach, the Lagrangian Dual approach based on model D̂ (that is named by LD), and

the approach based on model D. Since we have proved that this last approach coincides with

the affinely adjustable robust counterpart approach, hereafter, it is denoted by AARC approach.

A model equivalent to the AARC can be obtained by considering the dual reformulated model

proposed in Bertsimas and de Ruiter (2016) solved through affine decision rules. However,

preliminary results not reported here showed that it is not beneficial in our case to use such

reformulation, since the computational times associated with this model are higher than the

ones obtained by using the AARC model.

In Section 4.1 we report the results for medium size lot-sizing instances with 30 time periods,
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for which all the optimal solutions can be obtained, while in Section 4.2 larger size instances

with at most 100 time periods are considered.

Table 1 displays the total number of constraints and the total number of non integer vari-

ables of model D with 30 and 100 time periods. The reported results correspond to the cases

where the setup costs are either considered or not (column Setup), and the cases where the La-

grangian multipliers are either free or fixed (column #Multipliers). In the column #Variables,

the numbers in parenthesis indicate the total number of integer variables in model D associ-

ated with the use of setup costs. Notice that the number of constraints for model D̂ is exactly

the same as for model D and the number of variables is approximately 2/3 of the number of

variables in model D.

Table 1: Total number of variables and constraints of model D.
n Setup #Multipliers #Constraints #V ariables

No fix 2850 990

30 free 2850 1425

Yes fix 2910 990 (+30)

free 2910 1425 (+30)

No fix 31100 10500

100 free 31100 15550

Yes fix 31300 10500 (+100)

free 31300 15550 (+100)

The computational experiments use instances generated as follows. For each time period

t ∈ T , the nominal demand µt and the maximum allowed deviation δt are randomly generated in

[0, 50] and [0, 0.2µt], respectively. The maximum number of deviations in period t is computed

using the relation Γt = Γt−1+τ , with τ varying in {0, 1} and Γ0 is assumed to be zero. The initial

stock level at the producer, x1, is randomly generated between 0 and 30 and the production

capacity Pt is constant and equal to
∑n
t=1 µt. The production, holding and backlog costs are

the same as those used by Bertsimas and Thiele (2006), i.e., ct = 1, ht = 4, bt = 6, respectively,

for all t ∈ T . Throughout this section, we consider two variants of the robust inventory problem

(with and without setup costs). The production setup costs occur in many practical inventory

problems. However, the main goal of using instances with setup costs is to get harder instances,

since the inclusion of integer setup variables results in a non linear model.

In order to compute the true cost R(u) of a given solution u, preliminary tests were conducted

using four approaches: the dynamic program proposed by Bienstock and Özbay (2008), the

dynamic program proposed by Agra et al. (2016b), the mixed integer formulation with big-

M constraints presented by Gorissen and den Hertog (2013), and the decomposition approach

proposed by Bienstock and Özbay (2008). The dynamic program proposed by Bienstock and

Özbay (2008) provided, in general, better results and solved all the adversarial problems in less

than one second for instances with 100 time periods. Hereafter, for all the approaches considered

in the computational experiments, the true cost of a solution is computed using the dynamic

program proposed by Bienstock and Özbay (2008).

All tests were run using a computer with an Intel Core i7-4750HQ 2.00 GHz processor and

8 GB of RAM, and were conducted using the Xpress-Optimizer 28.01.04 solver with the default

options.
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4.1 Computational experiments for medium size instances

In this subsection all the reported results are based on instances with 30 time periods.

Preliminary experiments on a set of 10 instances were conducted to compare the performance

of model (3.6)–(3.13) against the projected model (3.14)–(3.17). The second model is solved

through a Benders decomposition procedure, having a separation scheme for constraints (3.15)

and (3.16). The average running time was 721 seconds and the required average number of

iterations was 552. Using the model (3.6)–(3.13) the average running time was lower than 1

second. Note that model D could also be solved using the decomposition procedure proposed by

Ardestani-Jaafari and Delage (2018). However preliminary experiments indicate that its perfor-

mance is similar to the one observed when Benders decomposition is used to solve the projected

model (3.14)–(3.17), since a large number of iterations is needed. Therefore, henceforward, we

consider only model (3.6)–(3.13).

Now we analyse the impact of the setup cost in the presented approaches. Figures 1 to 4

report average results obtained for 16 different setup costs with values in {0, 10, . . . , 150}. For

each setup cost, one hundred instances were randomly generated considering different samples

of the nominal demand values. All obtained results are presented through their average values,

therefore Mann-Whitney hypothesis tests are applied to find significant differences between the

approaches. A significance level of 1% is used in all tests.

Figure 1 displays the average cost of the solutions obtained by the BO approach (optimal

value) and the average objective function values corresponding to the LD, AARC and BT

approaches (which are upper bounds for the value of the BO solution). The points marked with

squares (LD(uBT )) represent the average cost of the solutions obtained by the LD approach

for the production policy obtained by the BT approach, i.e., after obtaining the solution of the

BT approach, the value of the production variables ut, t ∈ T , is fixed and model D̂ is solved.

The obtained results suggest that the BT approach is too conservative, since the quality of the
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Figure 1: Cost of the solutions obtained by the different approaches in terms of the setup cost.

upper bound provided by this approach degrades rapidly as the setup cost increases. This is

not the case of both LD and AARC approaches where the obtained upper bounds are close to

the cost of the solution obtained by the BO approach, even when the setup cost increases. In

fact, for large setup costs, the BT approach provides an optimal bound that is up to 28% larger

than the true cost of the solutions provided by the BO approach while the gaps associated to

both the LD and AARC approach are up to 6% and 3%, respectively, for all the setup costs
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tested.

When comparing the displayed lines associated with LD(uBT ) and BT we observe that, in

general, there is a gap (that is up to 6%) between the corresponding bounds. This means that

the optimal value of the Lagrangian multipliers for the production policy obtained by the BT

approach is usually different from zero (as considered in the BT approach). Hence, a better

choice of the Lagrangian multipliers can be used to improve the quality of the upper bound

provided by the BT approach.

A prevailing conclusion for all the setup costs tested is that the LD, the AARC and the

BT approaches lead to solutions with average upper bounds significantly higher than the

optimal value provided by the BO approach. Further, the average upper bounds obtained by

the BT approach are significantly higher than the ones obtained by both the LD and the AARC

approaches for setup costs greater than 10, and significantly greater than the ones obtained by

the LD(uBT ) approach for high setup costs (greater than 110).

Figure 2 reports the average computational time in seconds required by each approach to

find the solution, in terms of the setup cost.
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Figure 2: Average computational time associated to each approach in terms of the setup cost.

The computational time of the BT approach is always lower than one second. It can be

observed that the exact BO approach is on average twice as faster as the LD approach. The

computational time required by the AARC approach is approximately twice the computational

time required by the LD approach. The average time required by the BO approach to solve

each master problem ranges from 0 to 12 seconds while the computational time required to solve

each adversarial problem is always lower than one second.

Figure 3 displays the average true cost of the production policy determined by the approaches

LD (R(uLD)), AARC (R(uAARC)), BT (R(uBT )), and compare them with the cost of the

optimal production policy obtained by the BO approach. Note that these values are not the

upper bounds obtained by the LD, AARC and BT approaches directly. They are the true

costs obtained by solving the adversarial problem for each solution obtained with the indicated

approach. The behavior of the true cost of the production policy obtained by the LD, AARC

and BT approaches resembles the trend observed for the upper bounds. However, when the

setup costs are not considered, the true cost of the production policy obtained by the BT

approach is, in general, lower than the one obtained by both the LD and AARC approaches.

It is interesting to note that the true cost of the solutions determined by both the LD and

AARC approaches are very close. In fact, the Mann-Whitney hypothesis tests reveal that, in
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Figure 3: True average cost of the solution obtained by both the LD and the BT approaches

compared with the cost of the optimal production policy obtained by the BO approach.

terms of the true cost of the production policy, the differences between both approaches are

not significant. Moreover, the average true costs of the production policies determined by both

LD and AARC approaches are not significantly different from the average costs of the optimal

production policies. However, the average true cost of the production policies determined by

the BT approach is significantly greater than the one determined by the LD and the AARC

approaches for setup costs greater than 30.

A key conclusion from Figure 3 is that in the case where the setup costs are not considered,

the true average cost from the solutions obtained using the BT approach may give a fair approx-

imation on the optimal value. However, when setup costs are high the BT approach can give

poor bounds and, beyond that, it can also produce bad solutions (with costs up to 16% larger

than the optimal true costs). This may indicate that for more complex inventory problems the

overestimation of costs obtained by the BT approach may lead to poor decisions.

Figure 4 displays the average number of production periods associated with the production

policy determined by the BO, the LD, the AARC and the BT approaches.

22



Setup Cost
0 50 100 150

N
um

be
r 

of
 P

or
du

ct
io

n 
P

er
io

ds

5

10

15

20

25

30

BO LD AARC BT

Figure 4: Average number of production periods in the production policies obtained by the

different approaches in terms of the setup cost.

This figure can help to explain the results displayed in Figures 1 and 3, since the average

numbers of production periods in the LD, AARC and BO approaches are similar. Notice

that even when the setup cost is high, the number of production periods in the BT approach

remains high, which may be justified by the fact that the BT approach tends to overestimate

the contribution of the inventory costs in the objective function. The differences between the

average number of production periods in the LD, AARC and BO approaches are not significant

for any setup costs used while such differences between the BT and BO approaches are significant

for all the setup cost tested.

We also analyse the performance of the LD, the AARC and the BT approaches regarding the

maximum number of deviations Γn in the last time period. The obtained results are reported

in Appendix D.

4.2 Computational experiments for large size instances

In this section we report the computational results for large size instances with up to 100

time periods. For these instances the exact BO approach cannot be solved to optimality within

a reasonable time limit. Preliminary results showed that even for a small number of scenarios

the master problem cannot be solved within eight hours. Similar difficulties were observed for

a related lot-sizing problem in Attila et al. (2017). Furthermore, when the setup costs increase,

model D (the one used in the AARC approach) becomes computationally harder to solve to

optimality. For the instances with 100 time periods and setup costs greater than 70 we are not

able to solve model D within a time limit of eight hours. Table 2 reports the average optimality

gaps obtained with model D over a set of 10 instances with 100 time periods considering a time

limit of two hours, for four different setup costs.

Table 2: Average optimality gaps obtained with model D with a time limit of two hours.
Setup Cost 50 150 450 750

Gap (%) 0.14 1.39 3.61 5.51
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Figure 5: Average upper bound values obtained by the LD and AARC approaches considering

the optimal Lagrangian multipliers of the linear relaxation of models D̂ and D, respectively, for

different setup costs.

Table 2 shows that the instances become more difficult to solve when the setup cost increases.

Results not reported here allow us to conclude that the optimal solution of the LD approach

can be obtained in less than 2 hours for problem instances with up to 55 time periods while

for the AARC approach only problem instances with up to 40 time periods can be solved to

optimality within 2 hours. Hence, the main goal of this section is to test heuristic approaches

that can be used on large size inventory models to obtain tight upper bounds as well as good

solutions (with true cost close to the optimal value).

When the Lagrangian multipliers are fixed, models D and D̂ can be quickly solved, even

if setup costs are considered. In particular, model D̂ with the multipliers fixed to zero, that

corresponds to the BT approach, can be solved in less than 5 seconds. An initial value for

the Lagrangian multipliers can easily be obtained by solving the linear relaxation of models D

and D̂, respectively. Figure 5 displays, for each setup cost in {0, 10, ..., 150}, the average upper

bound values over 100 randomly generated instances with 100 time periods obtained by both

LD and AARC approaches when all the multipliers are fixed to their values in the optimal linear

relaxations of models D̂ and D, respectively. The average upper bound values obtained by the

BT approach are also displayed. Figure 5 shows opposite behavior of both LD and AARC

approaches, when the Lagrangian multipliers are fixed to their values in the linear relaxation,

comparing with the BT approach. While the gap between the lines associated with the AARC

and the BT approaches tend to decrease as the setup cost increases, the gap between the lines

associated with the LD and BT approaches tends to increase as the setup cost increases. The

first gap varies between 2.6% and 3.0% while the second varies between 0.7% and 6.4%.

These results show that, when the value of the setup cost increases, tighter upper bounds

can be obtained by considering the Lagrangian multipliers fixed to their values in the linear

relaxation of model D̂ in the LD approach instead of considering all the multipliers equal to zero

(as in the case of the BT approach). Furthermore, the difference between the computational

time required to compute the upper bounds in both cases corresponds to the computational

time required to solve the linear relaxation of model D̂, which is always lower than 7 seconds

for all the tested instances. This means that, in general, for large size instances, a better bound
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than the one obtained by the BT approach can be quickly obtained by considering the optimal

multipliers of the linear relaxation of model D̂.

From the theoretical study we know that the upper bound corresponding to the optimal

solution of the AARC approach is lower than or equal to the upper bound obtained by the LD

approach. Moreover, the value of the linear relaxation is lower in the AARC approach than

in the LD approach. Nevertheless, Figure 5 shows that when the multipliers are fixed to their

value in the linear relaxation, the upper bounds provided by the LD approach tend to be better

than the ones obtained with the AARC approach, when the value of the setup cost increases.

4.2.1 Evaluation of the proposed heuristics

In this section we analyse the performance of both the GILS heuristic and the SO method

presented in Section 3.3. It is important to remind that these two heuristics were specifically

designed to generate better solutions and not necessarily better bounds resulting from the

objective function values of the considered models. As reference methods we use the heuristic

that consists on solving the full model D with a time limit of one hour, and the ILS heuristic.

The first heuristic will be called Full Model heuristic (FM heuristic).

Tuning of the parameters

We consider two variants of the ILS heuristic, one based on model D̂ and other based on

model D, denoted by ILSD̂ and ILSD, respectively. Both heuristics correspond to Algorithm 1

described in Section 3.3.1 without steps 5 to 8. However, instead of imposing a time limit or

a maximum number of iterations, the algorithm stops when no improvement in the objective

function value is observed. In both heuristics, the parameter ρ was set to 2 since with this

parameter for the instances with 100 time periods, almost all the problems arising in each

iteration of the ILS heuristics were solved to optimality in less than 150 seconds (the time limit

imposed in each iteration).

For both the GILS heuristic and the SO method, a set of 20 randomly generated instances

with 30 time periods was used to tune the values of the parameters. Since in the GILS heuristic

we are imposing additional constraints on the Lagrangian multipliers, the value of the objective

function in a given iteration can be worse than the one obtained in the previous iteration. So

it does not make sense to stop the algorithm when there is no improvement in the objective

function value. Hence, the stopping criteria for the GILS heuristic is defined using the number

of iterations (that is limited to 15). Three rules were tested to choose the type of constraints

added to the problem in each iteration: i) add only constraints of type I; ii) add only constraints

of type II and iii) successively add constraints of type I k times and then add constraints of type

II k times (with k = 1, 2, 3). Taking into account both the upper bounds and the true cost of

the solutions, the best results were obtained when the third rule was used with k = 2, so this is

the strategy used henceforward. To compare the GILS with both variants of the ILS heuristics

we use the same time limit in each iteration (150 seconds) and also ρ = 2.

For the SO method, different values {0.25, 0.5, 1, 1.5, 2} of φ and different values {5, 10,

15, 20} of parameter ItLim were tested. The best results where obtained when the values φ = 1
and ItLim = 10 were used. The time limit imposed in the SO method is 600 seconds.

Comparing upper bounds and true costs

Here we compare the performance of the heuristics in terms of the setup cost (for instances

with 100 time periods) and also in terms of the number of periods (for instances with a setup

cost equal to 150). Tables 3 and 4 present the average upper bounds obtained for each heuristic

tested as well as the corresponding average computational time in seconds. Each line of the
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tables reports average values obtained for a set of 10 instances. The best average upper bounds

obtained for each set of instances are marked in bold. Furthermore, the numbers in parenthesis

next to the bounds indicate the number of best bounds obtained by the corresponding heuristic.

Table 3: Average upper bounds obtained for the heuristics tested for instances with 100 time

periods and setup costs varying from 25 to 150.
FM ILSD ILSD̂ GILS SO

Setup Cost Bound Sec. Bound Sec. Bound Sec. Bound Sec. Bound Sec.

25 92365(2) 3600 92338(8) 1364 94583 655 94620 525 94710 600

50 92756(5) 3600 92776(5) 1264 94943 762 95001 718 95097 600

75 93178(2) 3600 93120(8) 1206 95269 781 95365 801 95889 600

100 93474(4) 3600 93445(6) 1295 95594 836 95770 917 95893 600

125 93733(7) 3600 93789(3) 1011 95891 736 96080 1051 96188 600

150 94155(5) 3600 94131(5) 1032 96183 786 96286 1089 96592 600

Table 4: Average upper bounds obtained for the heuristics tested for instances with setup cost

equal to 150 and time periods varying from 20 to 100.
FM ILSD ILSD̂ GILS SO

n Bound Sec. Bound Sec. Bound Sec. Bound Sec. Bound Sec.

20 5380(10) 18 5385(6) 8 5526(1) 4 5539(1) 13 5524(1) 600

40 16673(9) 2309 16728(3) 58 17259 23 17294 52 17231 600

60 37273(4) 3600 37287(6) 192 38191 116 38258 188 38246 600

80 59383(1) 3600 59261(9) 644 61425 425 61606 774 61548 600

100 94155(5) 3600 94131(5) 1032 96183 786 96286 1089 96592 600

The results presented in Tables 3 and 4 reveal that best upper bounds are obtained with both

the FM and the ILSD heuristics. These results agree with what was stated in the theoretical

study since the best upper bounds are obtained by the heuristics based on model D. All the

instances with 20 time periods and almost all the instances with 40 time periods are solved

to optimality by the FM heuristic . This justifies that the best results for the instances with

these time periods are obtained with the FM heuristic. However, when the number of periods

increases, best upper bounds are in general obtained by the ILSD heuristic.

In Tables 5 and 6 we compare the heuristics in terms of the true cost of the obtained solutions.

As in the previous tables, the best average results are marked in bold and the number of best

solutions (with the best true cost) appears in parenthesis.

At each iteration of the ILS heuristics, GILS heuristic and SO method, the true cost of the

current solution is obtained and the best obtained value is reported. In the FM heuristic the

true cost of all integer solutions found during the Branch-and-Bound process is computed and

the best true cost is reported.

Table 5: Average true cost of the solutions obtained for the heuristics tested for instances with

100 time periods and setup costs varying from 25 to 150.
Setup Cost FM ILSD ILSD̂ GILS SO

25 91875 92016 92445 92343 90729(10)

50 92223(2) 92428 92732 92582 91004(8)

75 92567(1) 92736 93012 92666 91320(9)

100 92890 93089 93299 92768 91223(10)

125 93147 93414 93520 92929 91607(10)

150 93479 93725 93829 93203 91840(10)
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Table 6: Average true cost of the solutions obtained for the heuristics tested for instances with

setup cost equal to 150 and time periods varying from 20 to 100.
n FM ILSD ILSD̂ GILS SO

20 5319(3) 5353(1) 5359(1) 5354(1) 5301(5)

40 16534(1) 16619 16661(1) 16521 16155(9)

60 36988 37118 37210 36971 36066(10)

80 59061 59060 59518 59038 57728(10)

100 93479 93725 93829 93203 91840(10)

The results presented in Tables 5 and 6 clearly suggest that the best average true costs are in

general obtained by the SO method. Only for 9 out of the 110 instances presented in these two

tables the best solutions were not found by the SO method. Furthermore, the computational

time of the SO method (600 seconds) is much lower than the one required by the remaining

heuristics. The SO method allows us to obtain solutions with true costs that are, on average,

1.8% lower than the ones obtained with the FM heuristic (which is the heuristic closer to the

AARC approach). Hence, among all the heuristic solutions tested, the SO method is the most

efficient heuristic to obtain good solutions (with low true costs).

As expected, the upper bound values obtained by both ILS heuristics are better than the ones

obtained by the GILS heuristic. However, in terms of the true cost of the obtained production

policies, the best results are in general obtained using the GILS heuristic. In fact, among all

the 60 instances with 100 time periods considered in Table 5, 45 of the best solutions were

found by the GILS heuristic while 9 and 6 were found by the ILSD and the ILSD̂ heuristics,

respectively. Among all the 50 instances with a setup cost equal to 150 considered in Table 6,

38 best solutions were found by the GILS heuristic while 9 and 3 were found by the ILSD and

the ILSD̂ heuristics, respectively.

Looking deeper to the SO method

Since the true cost of the solutions obtained with the BT approach is much higher than

those obtained by all the heuristics tested, such results were not reported the Tables 5 and 6.

However, in Table 7 we report some gaps showing the improvements on the true cost of the

solutions obtained by the SO method compared to the true cost of the solutions obtained by

the BT approach. Columns 2 to 7 refer to the instances presented in Table 5, those with 100

time periods and setup costs varying between 25 and 150, while columns 8 to 12 refer to the

instances presented in Table 6, the ones with a setup cost equal to 100 and time periods varying

between 20 and 100. Remember that the SO method starts from the solution obtained with

model D̂ with the multipliers fixed to their value in the linear relaxation of such model. Hence,

the line Initial Solution reports the average gaps associated with the true cost of the initial

solution used in the SO method comparing with the true cost of the solution obtained by the

BT approach. The line Best Solution reports the average gaps associated with the true cost of

the best solution found by the SO method comparing with the true cost of the solution obtained

by the BT approach.

Table 7: Average gaps (in percentage) between the SO method and the BT approach in terms

of the true cost of the solutions.
Instances from Table 5 Instances from Table 6

Setup Cost/Time periods 25 50 75 100 125 150 20 40 60 80 100

Initial Solution 0.3 1.2 2.2 2.8 3.3 3.8 7.3 5.1 4.5 4.2 3.8

Best Solution 2.4 3.8 5.1 6.5 7.3 7.9 18.4 15.4 11.8 9.9 7.9
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We observe in Table 7 that the gap between the SO method and the BT approach, in terms

of the true cost of the solutions, increases as the setup cost increases and decreases as the

number of periods increases. For the hardest instances, the ones with 100 time periods and

setup cost equal to 150, the BT approach provides solutions with true costs that are 7.9% larger

than those obtained by the SO method.

Finally, in order to compare the quality of the solutions generated by the SO method with

those resulting from the AARC method solved to optimality, we report in Table 8 the average

optimality gaps associated with both the SO method and the AARC approach in terms of the

true cost of the solutions, for instances with n = {10, 20, 30, 40} time periods (those instances

where the AARC method can be solved to optimality within reasonable amount of time). For

each number n, 25 instances were used. The numbers in parenthesis next to the gaps indicate

the number of best solutions obtained by the corresponding method. The average gaps, in

percentage, were computed according to the formula:

Gap = R(uJ)−R(u∗)
R(u∗) × 100,

where u∗ is the optimal solution (obtained by the BO approach) and uJ is the solution obtained

by approach J , with J = AARC or J = SO. Table 8 suggests that for the instances solved

to optimality the best solutions are on average obtained by the SO method since the gaps

associated with this approach are lower than the ones associated with the AARC.

Table 8: Average optimality gaps associated to both the SO method and the AARC approach.
n 10 20 30 40

SO 0.46(15) 0.68(23) 1.07(18) 1.03(23)

AARC 0.80(10) 1.43(2) 2.06(7) 1.82(2)

Furthermore, the number of best solutions found is greater in the SO method than in the

AARC approach.

5 Conclusion

In this paper we consider RO min-max problems with decomposable functions. Based on

the dual Lagrangian problem resulting from a Lagrangian relaxation of the reformulation of

the adversarial problem, we provide a compact formulation to approximate the true min-max

problem and show that the Bertsimas and Thiele dualization approach is a particular case of

this approach with the multipliers equal to zero. Additionally, we show that the new dual

Lagrangian formulation coincides with an affine approximation.

The theoretical results are applied to the robust inventory problem where the demands are

uncertain and the uncertain variables belong to the B&T budgeted set. Computational results

have shown that when other complicating aspects such as setup costs are present, by overes-

timating the costs, the classical dualization approach from Bertsimas and Thiele (2006) can

provide poor bounds and poor solutions. The dual Lagrangian formulation, which coincides

with an affine approximation model, leads to bounds closer to the true min-max value even for

those instances where the dualization from Bertsimas and Thiele (2006) provide worst bounds.

However, although the dual Lagrangian formulation leads to tractable models, their size can be

too large to be solved to optimality for real size instances. Taking advantage of regarding such

models from the perspective of Lagrangian duality theory, we propose heuristics approaches that
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consider the new multipliers as penalties for violation of the constraints of the adversarial prob-

lem. Thus, such penalties penalize the overestimation of the true cost of each feasible solution.

Using such idea, we introduce a Guided Iterated Local Search heuristic and a Subgradient Op-

timization method to solve large size inventory models. The Subgradient Optimization method

proved to be efficient to obtain better solutions than those obtained using other approximation

approaches including the dual Lagrangian formulation.
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Appendices

Appendix A. Proof of Theorem 3

Here we provide the proof of Theorem 3 presented in Section 2.

Proof. Proof. To obtain problem (2.4), we focus on reformulating each of the robust constraints

indexed by t ∈ T :

θt ≥ max
k=1,...,K

htk(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt ,

where we replaced ft(u, ξ) := maxk=1,...,K htk(u, ξ). One can easily verify that this constraint is

equivalent to:

θt ≥ htk(u, ζt)− (λt)>ζt, ∀ζt ∈ Ωt, k = 1, . . . ,K .

Based on the work of Ben-Tal et al. (2015), we derive the Fenchel robust counterpart of this

robust constraint to obtain the equivalent reformulation:

θt ≥ δ∗(vtk|Ωt)− sup
ζt
{v>tkζt − htk(u, ζt) + (λt)>ζt}, ∀k = 1, . . . ,K ,

where for all t ∈ T, k = 1, . . . ,K, vtk ∈ Rn, and which can be simplified to

θt ≥ δ∗(vtk|Ωt)− htk∗(u, vtk + λt), ∀k = 1, . . . ,K .

Appendix B. Projected Model

Here we present the projected version of model D mention in Section 2.3 as well as the steps

followed in its derivation.

Proposition 13. Projecting out variables rtkj , j, t ∈ T : j ≤ t, k ∈ K model D can be written as

follows.

D = min
u,λ,θ,q,r

g(u) +
n∑
t=1

θt

s.t. θt ≥ Lkt (u) +
t∑

j=1
qtkj Γj −

t∑
j=1
|πtj |

t∑
`=j

qtk` +
t∑

j=1
πtj(atkj − λtj),

∀πti ∈ {−1, 0, 1}, t ∈ T, k ∈ K, (5.1)

qtkj ≥ 0, ∀j, t ∈ T : j ≤ t, k ∈ K.

Proof. Proof.Using Fourier-Motzkin elimination, we first project out variables rtkt . For each

k ∈ K, we have from (2.13) and (2.14),

rtkt ≥ −qtkt + atkt − λtt,

rtkt ≥ −qtkt − atkt + λtt,

rtkt ≥ 0.

Combining (2.12) with these inequalities we obtain

θt ≥ Lkt (u) +
t∑

j=1
qtkj Γj +

t−1∑
j=1

rtkj − |πtt|qtkt + πtt(atkt − λtt), ∀πtt ∈ {−1, 0, 1}, t ∈ T, k ∈ K.

By iteratively eliminating rtkj from j = t − 1 until j = 1 and by using (2.13) and (2.14) we

obtain (5.1).
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Appendix C. Proof of Theorem 9

Here we provide the proof of Theorem 9 presented in Section 3.2.

Proof. Proof.

We start by writing model R(u) with the new variables vtj , for j, t ∈ T : j ≤ t as follows:

R(u) = max
x,v

n∑
t=1

(ctut + max{htxt+1,−btxt+1})

s.t. xt+1 = x1 +
t∑

j=1
(uj − µj − δjvtj), ∀t ∈ T,

∑̀
j=1
|vtj | ≤ Γ`, ∀`, t ∈ T : ` ≤ t,

vjt = vtt, ∀t, j ∈ T : t < j, (5.2)

vjt ∈ [−1, 1], ∀t, j ∈ T : t ≤ j.

Following the process described in Section 2, we attach a Lagrangian multiplier λjt to each

constraint (5.2) for 1 ≤ t < j ≤ n, and dualize these constraints in the usual Lagrangian way.

This leads to the following relaxed problem

LR(u, λ) = max
x,v

n∑
t=1

ctut + max{htxt+1,−btxt+1} −
n∑

j=t+1
λjt (vtt − v

j
t )


s.t. xt+1 = x1 +

t∑
j=1

(uj − µj − δjvtj), ∀t ∈ T,

∑̀
j=1
|vtj | ≤ Γ`, ∀`, t ∈ T : ` ≤ t,

vjt ∈ [−1, 1], ∀t, j ∈ T : t ≤ j.

Rearranging the terms in the objective function by noticing that
n∑
t=1

n∑
j=t+1

λjtv
j
t =

n∑
t=2

t−1∑
j=1

λtjv
t
j ,

and eliminating variables xt, t > 1, the relaxed problem can be written as follows

LR(u, λ) = max
v

n∑
t=1

ctut + max

L1
t (u)− ht

t∑
j=1

δjv
t
j , L

2
t (u) + bt

t∑
j=1

δjv
t
j

− vtt
n∑

j=t+1
λjt +

t−1∑
j=1

λtjv
t
j


s.t.

∑̀
j=1
|vtj | ≤ Γ`, ∀`, t ∈ T : ` ≤ t,

vtj ∈ [−1, 1], ∀j, t ∈ T : j ≤ t.

where L1
t (u) = ht

x1 +
t∑

j=1
(uj − µj)

 and L2
t (u) = −bt

x1 +
t∑

j=1
(uj − µj)

 .
For a given u and λ, the problem LR(u, λ) can be separated into n independent subproblems,

one for each time period. Hence, for a fixed time period t ∈ T , the corresponding subproblem
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can be written as follows

LRt(u, λt) = min
θt

ctut + θt

s.t. θt ≥ L1
t (u) + max

vt∈Ωt

−ht
t∑

j=1
δjv

t
j − vtt

n∑
j=t+1

λjt +
t−1∑
j=1

λtjv
t
j

 ,
θt ≥ L2

t (u) + max
vt∈Ωt

bt
t∑

j=1
δjv

t
j − vtt

n∑
j=t+1

λjt +
t−1∑
j=1

λtjv
t
j

 ,
where Ωt = {vt ∈ [−1, 1]t |

∑j
`=1 |vt`| ≤ Γj , 1 ≤ j ≤ t}.

Linearizing LRt(u, λt) by writing variables vtj as vtj = vt+j − v
t−
j , for all j, t ∈ T, j ≤ t and

rearranging the terms in the set of constraints, model LRt(u, λt) becomes

LRt(u, λt) = min
θt

ctut + θt

s.t. θt ≥ L1
t (u) + ht max

(vt+
j ,vt−

j )∈Ω̄t

−
δt +

n∑
j=t+1

λjt
ht

 (vt+t − vt−t ) +
t−1∑
j=1

(
λtj
ht
− δj

)
(vt+j − v

t−
j )

 ,
(5.3)

θt ≥ L2
t (u) + bt max

(vt+
j ,vt−

j )∈Ω̄t


δt − n∑

j=t+1

λjt
bt

 (vt+t − vt−t ) +
t−1∑
j=1

(
λtj
bt

+ δj

)
(vt+j − v

t−
j )

 ,
(5.4)

where

Ω̄t :=

(vt+j , vt−j ) ∈ Rt × Rt |
j∑
`=1

(vt+` + vt−` ) ≤ Γj ; vt+j + vt−j ≤ 1; vt+j , vt−j ≥ 0; 1 ≤ j ≤ t

 .
Associating the dual variables qt1j and rt1j to the constraints of the inner problem in the RHS

of constraints (5.3) and the dual variables qt2j and rt2j to the constraints of the inner problem in

the RHS of constraints (5.4) we obtain model D.

Appendix D. Computational results with respect to Γn

Here we analyse the performance of the LD, the AARC and the BT approaches regarding

the maximum number of deviations Γn in the last time period (see section 4.1). The maximum

number of deviations in the previous periods is taken as follows. Given a value k ∈ {1, . . . ,Γn},
the time periods t ∈ T such that Γt = k are the ones in the range

t = q(k − 1) +
k−1∑
`=1

α` + 1, . . . , qk +
k∑
`=1

α`,

where q =
⌊
n

Γn

⌋
, and α` = 1 if ` ≤ n− qΓn and α` = 0, otherwise. This rule ensures that given

two values k1, k2 ∈ {1, . . . ,Γn} the difference between the number of periods having at most k1

and k2 deviations is either zero or one.

Figures 6 and 7 display the results for the case where Γ30 ranges from 0 (nominal case) to

30 (box-constrained case). For each value of Γ30, we consider 100 randomly generated instances

and the average gap

Gap = UB −BO
BO

× 100
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is displayed, where UB is a given upper bound and BO is the optimal value obtained by using

the BO approach.The lines associated with LD, AARC and BT represent the average gap cor-

responding to the upper bounds obtained by the LD, AARC and BT approaches, respectively.

The lines associated with R(uLD), R(uAARC) and R(uBT ) represent the average gap corre-

sponding to the true cost of the solutions obtained by the LD, AARC and the BT approaches,

respectively. In Figure 6 the setup costs are not considered, while in Figure 7 a setup cost of

value 150 is considered.
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Figure 6: Average gaps in terms of the maximum number of deviations considering no setup

costs.
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Figure 7: Average gaps in terms of the maximum number of deviations considering a setup cost

equal to 150.

For both cases, the average gap associated with the LD and AARC approaches is always lower

than 10% and 7%, respectively, while for the BT approach such gap can reach 28%. In particular,

in our experiments, for the box-constrained case, there is no gap associated with the upper

bounds obtained by both the LD and AARC approaches. In general, the average gap associated

with the true cost of the solutions determined by both LD and AARC approaches tends to

decrease as the number of deviations increases and it is zero for the box-constrained case.
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