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Abstract

We study the family of problems of partitioning and covering a graph into/with a minimum number of
relaxed cliques. Relaxed cliques are subset of vertices of a graph for which a clique-defining property is
relaxed, e.g., the degree of the vertices, the distance between the vertices, the density of the edges, or
the connectivity between the vertices. These graph partitioning and covering problems have important
applications in many areas such as social network analysis, biology, and disease spread prevention. We
propose a unified framework based on branch-and-price techniques to compute optimal decompositions. For
this purpose, new effective pricing algorithms are developed and new branching schemes are invented. In
extensive computational studies, we compare several algorithmic designs, e.g., structure-preserving versus
dichotomous branching and their interplay with different pricing algorithms. The finally chosen setup for
the branch-and-price produces results that demonstrate the effectiveness of all components of the newly
developed framework and the validity of our approach when applied to social network instances.

Key words: Graph decomposition, clique relaxations, branch-and-price algorithm, social networks

1. Introduction

Given a graph G = (V,E), where V is the set vertices and E is the set of edges, we study the problem of
decomposing G into the minimum number of relaxed cliques (RCs). Cliques are subsets S ⊆ V that induce
subgraphs G[S] which are complete and therefore have the following structural properties: all vertices have
the maximum degree |S| − 1 in G[S], the distance between any two vertices is minimal (=1), G[S] has
maximum density (=1), and G[S] can not be disconnected by removing vertices. RCs are also subsets S
of vertices but one or several of the clique-defining properties are relaxed, i.e., the degree of the vertices,
the distance between the vertices, the density of the edges, or the connectivity between the vertices (see
Section 2 for a formal definition). RCs have been object of intense research in the last decade, see the recent
survey of Pattillo et al. (2013a). These families of clique relaxations are particularly important in social
network analysis where they have been used to identify (large) communities (Balasundaram et al., 2011).
RCs are also important in several other domains (see Fortunato, 2010, for a more detailed discussion), such
as in disease transmission analysis (Cook et al., 2007), to identify large protein interaction (Yu et al., 2006),
and in biology (Almeida and Carvalho, 2012). Other applications were mentioned in (Pattillo et al., 2013a;
Fortunato, 2010; Fortunato and Hric, 2016).

Decomposing a graph into the minimum number of cliques is the classical vertex coloring problem (VCP)
in the complement graph G of G, i.e., the problem of coloring the vertices using the minimum number of
colors in such a way that adjacent vertices of G receive different colors. Vertex coloring has applications
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including scheduling (Lotfi and Sarin, 1986), timetabling (de Werra, 1985), frequency assignment (Gamst,
1986), register allocation (Chow and Hennessy, 1990), and when designing communication networks Woo
et al. (2002) (see Malaguti and Toth (2010)). The VCP is very challenging from the computational viewpoint.
The most effective exact algorithms for VCP are based on set-partitioning formulations where variables are
associated to cliques of G. The recent VCP algorithms by Malaguti et al. (2011), Gualandi and Malucelli
(2012), and Held et al. (2012a) are all highly sophisticated implementations of branch-and-price algorithms.

In the present manuscript, we design an exact framework to effectively tackle new generalizations of
the VCP, i.e., the family of problems of decomposing a graph into the minimum number of RCs. These
problems arise naturally and directly in social network analysis and community detection. In the companion
paper (Gschwind et al., 2017), we have shown that decomposing a social network into RCs constitutes a valid
alternative to established community detection methods. Indeed, the usefulness of RC-based decompositions
has been validated in (Gschwind et al., 2017) via in-depth analyses of some very prominent real-world social
networks. These networks have been discussed and analyzed by dozens of researchers (see, e.g., Fortunato,
2010), because a true decomposition into communities is known in these cases, so that decompositions
produced by different community detection methods can be compared in the light of the true community
structures.

Our companion paper (Gschwind et al., 2017) presents compact formulations for identifying the mini-
mum number of RCs necessary to decompose a graph. Unfortunately, solving such compact formulations
with a MIP solver constitutes a viable approach only for rather small-sized graphs. As for the VCP, it is
straightforward to instead write down set-covering and set-partitioning formulations. Herein, each variable
represents feasible RC so that already for small graphs these models can only be solved using column-
generation techniques (Desaulniers et al., 2005). Both the set-covering and the set-partitioning formulations
bear advantages compared to the compact models used in (Gschwind et al., 2017) due to their tighter linear
relaxations and the fact that the inherent symmetries are eliminated. Finally, a major difference between
the VCP and our decomposition problems should be pointed out: covering and partitioning a graph are two
distinct problems in the case of non-hereditary RCs, i.e., when for an arbitrary RC S a subset S′ ⊂ S is not
necessarily a RC. In (Gschwind et al., 2017) it is also shown that additional connectivity constraints, which
seem rather natural for a meaningful community structure, can make connected RCs non-hereditary.

We design a unified branch-and-price framework to compute optimal solutions for the family of RC-
based decomposition problems. In particular, we discuss the most important ingredients of branch-and-price
algorithms which have to be tailored to the problem at hand, i.e., the efficient solution of pricing problems
and effective branching schemes. As branching decisions can destroy the structure of an original pricing
problem, we also discuss and evaluate these algorithmic components when used in combination.

The remainder of this paper is organized as follows: The short Section 2 provides an overview over
clique relaxations. The graph decomposition problems are formally stated and their classification into 17
families is provided in Section 3. Related to the branch-and-price solution approach, the pricing problems
are identified as maximum-weight RC problems in Section 4. We review the related literature and present
two new algorithms for solving specific pricing problems: The first is a new combinatorial branch-and-
bound algorithm for the maximum-cardinality and maximum-weight s-club problem. The second is an
adapted Russian-doll-search algorithm for hereditary RCs able to handle additional connectivity constraints
and negative coefficients in the objective function. In addition, a strengthened model for γ-quasi-cliques
is presented. Branching schemes are proposed in Section 5, where we compare branching decisions that
preserve the structure of the pricing problems with the classical Ryan-Foster branching scheme. Moreover,
a first branching scheme for proper set-covering formulations with non-hereditary subsets is presented. In
Section 6, an extensive computational analysis on instances from the literature as well as newly generated
networks demonstrates the effectiveness of all the new components of our branch-and-price framework. Final
conclusions and an outlook in Section 7 close the paper.

2. Relaxed Cliques

Following (Pattillo et al., 2013a; Gschwind et al., 2017), we briefly summarize the definitions of the
different families of RCs considered here. For any subset S ⊆ V , the vertex-induced subgraph of S is
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G[S] = (S,E ∩ (S × S)). A set S is a clique if G[S] is complete, i.e., all vertices are adjacent. Vertices
adjacent to a vertex i ∈ V are denoted by N(i). The vertex degree of i is |N(i)| and is denoted by degG(i).
The minimum vertex degree of G is δ(G) = mini∈V degG(i). For two vertices i, j ∈ V , distG(i, j) is the
minimum distance between i and j, i.e., the minimum length of an i-j-path in G (counting the number of
edges). Note that distG(i, j) =∞ if i and j are disconnected in G. The maximum distance is the diameter of
G given by diam(G) = maxi,j∈V distG(i, j). For any S ⊆ V , the edge set E(S) is the set of edges of G with

both endpoints in S. Moreover, the edge density of a subgraph G[S] is defined as ρ(G[S]) = |E(S)|/
(|S|

2

)
. A

set C ⊂ V is a vertex cut of a connected graph G = (V,E) if G[V \ C] is a disconnected graph. The vertex
connectivity κ(G) is the size of a minimum vertex cut.

Cliques S form extreme subsets, since all vertices have maximum degree |S| − 1, the distance between
any two vertices is 1, G[S] has the maximum density of 1, and G[S] has vertex connectivity κ(G[S]) =
|S| − 1. Relaxing one of these four properties, one obtains two families of clique relaxations each, either
based on degree (core and plex ), distance (clique and club), density (quasi-clique and defective clique),
and connectivity (block and bundle), respectively. In Table 1, we give the formal definitions of the eight
first-order families of RCs considered in this paper (higher-order RCs result from relaxing several properties
simultaneously, see Pattillo et al., 2013a). The defining parameters k ∈ N impose an absolute lower bound on
the degree or connectivity, parameters s ∈ N (also s = 0 for defective clique) bound the maximum distance
from above and bound degree, density, and connectivity relative to the size of S from below, and parameters
γ ∈ (0, 1] impose a lower bound on the density.

Type of relaxation Definition Based on Clique Hereditary Connected

k-core δ(G[S]) ≥ k Degree k = |S| − 1 no |S| ≤ 2k + 1
s-plex δ(G[S]) ≥ |S| − s Degree s = 1 yes |S| ≥ 2s− 1

s-clique distG(i, j) ≤ s (i, j ∈ S) Distance s = 1 yes, weakly s = 1
s-club diam(G[S]) ≤ s Distance s = 1 no always

γ-quasi-clique ρ(G[S]) ≥ γ Density γ = 1 no
⌈
γ
(|S|

2

)
−
(|S|−1

2

)⌉
≥ 1

s-defective clique |E(G[S])| ≥
(|S|

2

)
− s Density s = 0 yes |S| ≥ s+ 2

k-block κ(G[S]) ≥ k Connectivity k = |S| − 1 no always
s-bundle κ(G[S]) ≥ |S| − s Connectivity s = 1 yes |S| ≥ s+ 1

Table 1: Definition of different first-order clique relaxations, similar to Table 1 in (Gschwind et al., 2017)
Note: The last column gives sufficient conditions for connectivity (Pattillo et al., 2013a, p. 17).

The second last column of Table 1 refers to the hereditary graph property, which becomes important
when distinguishing between partitioning and covering solutions in the next section. A graph property Π is
hereditary on vertex induced subgraphs if for any S ⊆ V , where G[S] has property Π, it follows that also
G[S′] has property Π for any S′ ⊂ S, S′ 6= ∅. The literature distinguishes between “hereditary on induced
subgraphs” (in the proper sense) where the property Π can be directly tested on G[S] without knowing G,
and “weakly hereditary” where the property refers to the given graph G. We will use “hereditary” in the
comprehensive sense because there are no implications for the algorithmic components that we use in the
branch-and-price.

By definition, s-club and k-block are always connected, while all other RCs are connected if the (sufficient)
connectivity condition, reported in the last column of Table 1, is satisfied. For example, an arbitrarily large
s-clique can be disconnected because the removal of the central vertex from a star graph induces an edgeless
graph, which is however a 2-clique and therefore also an s-clique for all s ≥ 2. Also, arbitrarily large
disconnected γ-quasi-cliques exist resulting from the addition of an isolated vertex to a clique. In contrast,
this phenomenon occurs only for small-sized S ⊂ V in case of s-plex, s-defective clique, and s-bundle (see
again the last column of Table 1). As a consequence, Gschwind et al. (2017) define two subclasses of families
of RCs: connected relaxed cliques for which the connectivity is required and general relaxed cliques for which
disconnected RCs are allowed. Formally, a RC S ⊆ V is connected if the induced subgraph G[S] is connected.
Note that for hereditary RCs (s-plex, s-clique, s-defective clique, and s-bundle) the connectivity requirement
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Connected General

Partitioning Covering Partitioning Covering with

17 interesting s-plex s-plex s-plex s ≥ 2

decomposition s-clique s-clique s ≥ 2
problems: s-club s-club s ≥ 2

γ-quasi-clique γ-quasi-clique γ-quasi-clique γ-quasi-clique 0 < γ < 1
s-defective clique s-defective clique s-defective clique s ≥ 1

s-bundle s-bundle s-bundle s ≥ 2

Table 2: Families of partitioning and covering problems with RCs, results according to classification presented in (Gschwind
et al., 2017, Section 3)

makes the resulting structures non-hereditary. For example, a path with three vertices forms a connected
1-defective clique, which becomes disconnected when the middle vertex is removed. This has important
consequences for the applicability of existing algorithms to find maximum-cardinality and maximum-weight
RCs, and we discuss this issue in Section 4.

3. Problem Definition and Formulation

We now formally define the family of graph decomposition problems addressed in this paper. Given a
graph G = (V,E), a specific type of RC (including the defining parameter s or γ), the task is to determine
a partitioning or a covering of the vertex set V with the minimum number of RCs. In the reminder of the
paper, we use the acronyms PGMRC and CGMRC (for Partitioning/Covering a Graph with a Minimum
number of RCs), respectively.
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Figure 1: Covering and partitioning into a minimum number of 5
6

-quasi-cliques

Covering is always a relaxation of partitioning and this relaxation is proper for non-hereditary structures.
The decomposition into 5

6 -quasi-cliques shown in Figure 1 is an example. The non-hereditary property of a
particular structure may either result from the property Π defining the type of RC or from the connectivity
requirement. When connectivity is not already ensured by the definition of the RC, the variants double and
we analyze variants with and without connectivity requirement. The companion paper (Gschwind et al.,
2017, Section 3) has identified 17 computationally interesting variants of PGMRC and CGMRC. Table 2
summarizes this classification. Gschwind et al. (2017) also provide additional non-trivial examples where
general and connected RCs lead to two different problems. Furthermore, they show that the decomposition
problems using k-core and k-block are not interesting: for k-core, some vertices may have a degree smaller
than k and cannot belong to any k-core; for k-block, the resulting problem is to determine the k-connected
components, for which efficient algorithms exist (Kammer and Täubig, 2005).

Problem Formulation. It has been proven that compact (Mixed) Integer linear Programming ((M)IP) formu-
lations for PGMRC and CGMRC are very weak, because the bound provided by their linear-programming
relaxation is always 1 (see Gschwind et al., 2017, Theorem 1). Accordingly, MIP solvers using these models
exhibit a rather poor computational performance, which is also due to the high degree of symmetry between
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feasible solutions. Applying a Dantzig-Wolfe reformulation and aggregation on the compact formulations
results in set-partitioning or set-covering formulations with an exponential number of variables, each asso-
ciated with a RC. Let the collection of all possible feasible RCs of a specific class (e.g., all feasible 3-clubs)
be

S = {S ⊆ V : S is a relaxed clique }.

For each S ∈ S the partitioning/covering formulations have a binary variable λS which takes value one if
and only if the RC S is part of the solution, and zero otherwise. The extensive formulations for PGMRC
and CGMRC read as follows:

min
∑
S∈S

λS (1a)

s.t.
∑

S∈S :i∈S

λS = 1 (or ≥ 1) i ∈ V (1b)

λS ∈ {0, 1} S ∈ S . (1c)

The objective function (1a) minimizes the number of RCs in the decomposition, (1b) are the partition-
ing/covering constraints, and (1c) define the domain of the variables.

Due to the large number of variables (in general exponential in the number of vertices of the graph),
already the linear relaxation of model (1) has to be solved via column-generation techniques (cf. Desaulniers
et al., 2005). The Restricted Master Problem (RMP) is (1a)-(1b) and λS ≥ 0 defined over a subset of the
variables. At each column-generation iteration, the RMP is solved and the dual prices πi (for all i ∈ V )
associated with constraints (1b) are computed. The pricing subproblem asks for a maximum-weight RCs
using the weights wi := πi for all i ∈ V . If a negative reduced-cost column is found, i.e., a set S ∈ S with
1 −

∑
i∈S πi < 0, the corresponding variable λS is added to the RMP, the RMP is re-optimized, and the

process is iterated. Typically, adding several reduced-cost columns in each iteration accelerates the solution
process. Eventually, the linear relaxation of (1) is solved to optimality when no more negative reduced-cost
columns exist.

In order to solve the integer model (1), column generation must be embedded into branch-and-bound
a.k.a. branch-and-price (Desaulniers et al., 2005; Barnhart et al., 1998). A branch-and-price algorithm is
not an out-of-the-box solver for MIPs with many variables, but an algorithmic principle that has to be
tailored to the type of problem at hand. The two fundamental components that need to be designed are the
subproblem solver (pricer, see next section) and the branching scheme (see Section 5). For the latter, we
present alternative branching schemes and discuss the general tradeoff between being structure-preserving
for the pricer and being effective in dividing the search space.

4. Pricing Algorithms

The pricing subproblems when solving formulation (1) with column-generation techniques are maximum-
weight RC problems. Generally, two types of exact approaches can be found for the solution of these problems
in the literature: MIP-based techniques and combinatorial branch-and-bound (CB&B) algorithms. In this
section, we detail on how they are solved in our branch-and-price by either pointing to the respective
literature whenever an existing algorithm is used or describing newly developed approaches in detail. Since it
is typically not clear which pricing algorithm is favorable if there is more than one available, we implemented
different pricing solvers for some of the RCs and compare the resulting branch-and-price algorithms in
Section 6.1.

Different MIP formulations for maximum-cardinality RCs have been suggested for all first-order RCs
presented in Table 1. In (Gschwind et al., 2017, Section 2.3), the most recent and successful formulations are
reviewed. All of them can straightforwardly be adapted to the maximum-weight case. In our branch-and-
price, we use the MIPs presented in (Balasundaram et al., 2011), (Veremyev and Boginski, 2012), (Gschwind
et al., 2017), and (Veremyev et al., 2015) for finding maximum-weight s-plexes, s-clubs, s-bundles, and γ-
quasi-cliques, respectively. Furthermore, for γ-quasi-cliques we derived a strengthened formulation which
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uses the fact that in an integer solution the number of edges in a γ-quasi-cliques is always integer. The new
formulation is presented in Section 4.1.

As discussed above, some types of RCs are not necessarily connected so that the addition of additional
constraints is necessary to impose connectivity (for details see Gschwind et al., 2017, Section 2.3.3). The
connectivity requirements complicate the MIP-based solution, since the additional constraints have to be
added in a cutting-plane fashion leading to a branch-and-cut algorithm.

The second type of approaches for maximum-cardinality/weight RCs are CB&B algorithms. The Russian
doll search (RDS) originally developed for the identification of maximal hereditary structures (Verfaillie et al.,
1996) is such an approach. The well-known cliquer algorithm for identifying maximum-weight cliques by
Österg̊ard (2002) follows the RDS principle without explicitly making the connection to RDS. Another
CB&B algorithm was presented in (Held et al., 2012b), where the authors use cliquer for relatively sparse
graphs and their own new algorithm for denser graphs in order to benefit from the better performance of
the respective algorithm. Trukhanov et al. (2013) present RDS algorithms for s-plex and s-defective clique.
Gschwind et al. (2018) revisit these RDS algorithms, suggest several techniques to accelerate the search, and
present a first exact algorithm for s-bundle. Overall, these algorithms cover the hereditary cases of s-clique,
s-plex, s-defective clique, and s-bundle. The extensive computational tests on 245 graphs from different
benchmarks, not only social networks, conducted in (Gschwind et al., 2018) have shown that our computer
implementations compare favorably with state-of-the-art methods.

The RDS principle was not designed to handle connectivity and may return a solution that is disconnected
(see Gschwind et al., 2017, Figure 1). Also, covering and partitioning with connected s-cliques for s ≥ 2
renders the indirect solution as a clique partitioning problem in the s-th power graph infeasible. In Section 4.2,
we therefore present a new adaptation of RDS, in the following referred to as modified RDS (mRDS), to
handle connected versions of s-clique, s-plex, s-defective clique, and s-bundle. Note further that negative
weights can arise in the partitioning case. Our mRDS is the first variant that has the ability to handle
arbitrary weights wi ∈ R for i ∈ V .

Several CB&B algorithms have been proposed for the maximum-cardinality s-club problem (Veremyev
and Boginski, 2012; Mahdavi Pajouh and Balasundaram, 2012; Shahinpour and Butenko, 2013; Wotzlaw,
2014). As s-club is not hereditary, negative vertex weights require a careful handling in bounding procedures
in the maximum-weight counterpart of the problem. For this purpose, we propose a new CB&B for maximum-
weight s-club in Section 4.3. Note that although our s-club pricing algorithm is designed for the general case
of weighted graphs, it outperforms the recent implementations listed above. The tests in Section 4.3 with
six of the nine networks used by all researchers, indicates that our algorithm is most of the time faster, in
some cases by more than factor 100.

In Table 7, we summarize the pricing algorithms used in our generic framework for solving PGMRC and
CGMRC (see Table 2). If two different approaches are listed for a RC, both algorithms are implemented
in our branch-and-price and their practical performance as pricing solver is analyzed and compared in
Section 6.1. The acronym MIP-CP refers to the case in which constraints imposing connectivity need to be
added to the corresponding MIP formulations.

General Connected

s-plex RDS (Gschwind et al., 2018) MIP (Balasundaram et al., 2011) mRDS (Sect. 4.2) MIP-CP

s-clique mRDS (Sect. 4.2)
s-club CB&B (Sect. 4.3) MIP (Veremyev and Boginski, 2012)

γ-quasi-clique MIP (Veremyev et al., 2015) MIP (Sect. 4.1) MIP-CP
s-defective clique RDS (Gschwind et al., 2018) mRDS (Sect. 4.2)

s-bundle RDS (Gschwind et al., 2018) MIP Gschwind et al. (2017) mRDS (Sect. 4.2) MIP-CP

Table 3: Alternative pricing approaches for the maximum weight RCs
CB&B=combinatorial branch-and-bound; MIP(-CP)=Mixed Integer Programming solver (with Cutting Plane algorithm);

(m)RDS=(modified) Russian Doll Search
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4.1. Strengthened Formulation for γ-Quasi-Clique

In the recent paper (Veremyev et al., 2015), four formulations for the γ-quasi-cliques are given and
compared against two older ones from (Pattillo et al., 2013b). For the sake of brevity, we present only
the one that was identified as giving the most consistent results and best bounds for maximum-cardinality
(Veremyev et al., 2015, p. 210ff). The associated formulation uses binary variables xi and yij to indicate if
vertex i ∈ V and edge {i, j} ∈ E, respectively, are part of the solution. Additional binary indicator variables
ts for s ∈ S := {1, 2, . . . , |V |} define the size of the γ-quasi-clique. The formulation of the maximum-
cardinality γ-quasi-clique problem is:

max
∑
i∈V

xi (2a)

s.t. yij ≤ xi, yij ≤ xj {i, j} ∈ E (2b)∑
e∈E

ye ≥ γ
∑
s∈S

s(s− 1)

2
ts (2c)∑

i∈V
xi =

∑
s∈S

sts (2d)∑
s∈S

ts = 1 (2e)

ts ≥ 0 s ∈ S (2f)

xi ∈ {0, 1} i ∈ V (2g)

ye ≥ 0 e ∈ E (2h)

Herein, the coupling between vertex and edge indicator variables is established via (2b), the γ-related
constraint on the number of edges in the induced graph is (2c), the coupling between the x- and t-variables
is given by (2d), and the unique cardinality of the induced graph is enforced via (2e). Veremyev et al. (2015)
show that a smaller formulation results from replacing the possible sizes S by {l, l+ 1, . . . , u} when a lower
bound l and an upper bound u is known.

Since the number of edges in a γ-quasi-clique is clearly integer, we propose the following strengthening
of the above formulation. For each s ∈ S, we define the number ∆s := dγs(s− 1)/2e − dγ(s− 1)(s− 2)/2e
of additional edges a γ-quasi-clique of size s must comprise compared to one of size s − 1. We use binary
variables t′s to indicate that the size of the resulting γ-quasi-clique is at least s ∈ S. The relationship to the
above size indicators ts of Veremyev et al. (2015) is

ts = t′s − t′s+1 for all s ∈ S \ {|V |}.

Then, the resulting polytope is given by the constraints:

(2b), (2g), and (2h) (3a)∑
e∈E

ye ≥
∑
s∈S

∆st
′
s (3b)∑

i∈V
xi =

∑
s∈S

t′s (3c)

t′s−1 ≥ t′s s ∈ S \ {1} (3d)

0 ≤ t′s ≤ 1 s ∈ S (3e)

The difference to (2) lies in the new formulation of constraints (2c)–(2e), where now constraints (3b) ensure
that sufficiently many edges are present in the induced subgraph, constraints (3c) couple the vertex selection
with the new indicator variables for the size, and constraints (3d) make the new t′-variables non-increasing
in s. The system (3) can be reduced if the ∆s-coefficients are non-decreasing (which is often fulfilled for
not too small γ-values). In this case, constraints (3d) are redundant. We use (3) without constraints (3d)
whenever possible.
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Algorithm 1: RDS for the Maximum-Weight
Π Problem

Input: G = (V,E,wi) with wi ∈ R+
0 ; Π

1 Order vertices (v1, v2, . . . , vn)
2 Set LB := 0 and S := ∅
3 for i := n, n− 1, . . . , 1 do
4 Set C := {vj : j > i, {vi, vj} satisfies Π}
5 Call FindMax(C, {vi})
6 LBi := LB

Output: S ⊆ V inducing a maximum-weight Π
subgraph G[S]

Algorithm 2: Modified RDS for the
Maximum-Weight Connected Π Problem

Input: G = (V,E,wi) with wi ∈ R, Π
1 Order vertices (v1, v2, . . . , vn)
2 Set LB := 0, LBc := 0, and S := ∅
3 for i := n, n− 1, . . . , 1 do
4 Set C := {vj : j > i, {vi, vj} satisfies Π}
5 Call FindMaxConnected(C, {vi})
6 LBi := LB

Output: S ⊆ V inducing a maximum-weight
connected Π subgraph G[S]

4.2. Handling Connectivity Constraints and Negative Weights in RDS

Recall from Section 4 that the RDS is an algorithm for finding maximum-weight RCs, which are defined
by a hereditary property Π. We now present the necessary modifications that allow us to find connected
RCs. The resulting structure of a connected RC is no longer hereditary, which implies that negative vertex
weights generate additional complications. Such negative vertex weights result from three facts: (i) the
weights (before branching) are equal to the dual prices of the constraints (1b) which can be negative in case
of partitioning, (ii) the implementation of separate-constraints imposes large negative weights on the vertices
(see Section 5.1.1), and (iii) dual prices of constraints that bound the number of vertex contacts from above
are non-positive summands of the weights (see Section 5.3). The modified RDS is applicable to s-clique,
s-plex, s-defective clique, and s-bundle. Our description of RDS follows the presentation of Trukhanov et al.
(2013) and Gschwind et al. (2018).

In standard RDS (Algorithm 1), the n vertices V are ordered into a sequence (v1, v2, . . . , vn). Instead of
one depth-first branch-and-bound search, n searches are performed in the main loop of RDS (Steps 3-6 of Al-
gorithm 2). Starting from i = n, the ith search determines a maximum-weight Π set for G[{vi, vi+1, . . . , vn}]
with the initial set S = {vi} by means of the recursion FindMax. In every iteration, i is decreased by 1
so that a sequence of lower bounds LBn, LBn−1, . . . , LB2, LB1 is computed, where LBi corresponds to the
value of a maximum-weight S ⊆ {vi, . . . , vn} fulfilling Π. The value of the best solution found so far is
retained in the overall lower bound LB. At each stage of the RDS search, the current solution P satisfies Π.
Moreover, a set of candidates C with P ∪{c} satisfies Π for all c ∈ C is maintained. Whenever P is enlarged,
C has to be adjusted, i.e., candidate vertices not compatible with the new set P are removed from C. We
use the shorthand notation w(P ) =

∑
v∈P wv and w+(P ) =

∑
v∈P w

+
v .

The modified RDS (Algorithm 2) uses two types of overall lower bounds instead of just one: LB is, as
in the standard RDS, the maximum weight of subset P ⊆ V fulfilling Π either connected or not. LBc is the
maximum weight of subset P ⊆ V fulfilling Π that is connected.

Furthermore, the pruning criteria of the standard RDS and the modified RDS differ. The standard
weight-based pruning (w(C)+w(P ) ≤ LB, Step 6 in Procedure FindMax) is adapted so that it takes possibly
negative weights into account and compares against the connected bound, i.e., w+(C) + w(P ) ≤ LBc in
Step 9 of Procedure FindMaxConnected. The RDS-specific pruning Step 11 of Procedure FindMaxConnected
compares LBi + w(P ) against LBc instead of LB. Note that LBi is the maximum weight of a general
(connected or not) P ⊆ {vi, . . . , vn} fulfilling Π. Both modified pruning steps are less effective compared to
the pruning steps of the standard RDS.

When the candidate set C becomes empty, the modified RDS does three things: First, the lower bound
LB is updated whenever P is improving (Steps 2 and 3 in Procedures FindMax and FindMaxConnected).
Second, the connected components R of G[P ] are computed. For s-plex, s-defective clique, and s-bundle, this
step is obsolete whenever |P | is sufficiently large (see Table 1), while for smaller |P | we use a straightforward
enumeration. For s-clique, the connected components are determined with an efficient union-find algorithm
(Cormen et al., 2009, Section 21.3). In all cases, the component P ∗ with largest weight w(P ∗) is determined.
Third, if w(P ∗) improves the connected lower bound LBc, a new improving connected RC is found and LBc

8



Procedure FindMax(C, P )

Input: Candidate set C, current set P
1 if C = ∅ then
2 if w(P ) ¿ LB then
3 Set LB := w(P ) and S := P

4 return

5 while C 6= ∅ do
6 if w(C) + w(P ) ≤ LB then return
7 Set i := min{j : vj ∈ C}
8 if LBi + w(P ) ≤ LB then return
9 Set C := C \ {vi} and P ′ := P ∪ {vi}

10 Set C′ := {v ∈ C : P ′ ∪ {v} satisfies Π}
11 Call FindMax(C′, P ′)

Procedure FindMaxConnected(C, P )

Input: Candidate set C, current set P
1 if C = ∅ then
2 if w(P ) ¿ LB then
3 Set LB := w(P )

4 Set P ∗ := argmax
R connected comp. of G[P ]

∑
r∈R wr

5 if w(P ∗) ¿ LBc then
6 Set LBc := w(P ∗) and S := P ∗

7 return

8 while C 6= ∅ do
9 if w+(C) + w(P ) ≤ LBc then return

10 Set i := min{j : vj ∈ C}
11 if LBi + w(P ) ≤ LBc then return
12 Set C := C \ {vi} and P ′ := P ∪ {vi}
13 Set C′ := {v ∈ C : P ′ ∪ {v} satisfies Π}
14 Call FindMaxConnected(C′, P ′)

15 Call FindMaxConnected(∅, P )

as well as S are updated.
Finally, the additional Step 15 of FindMaxConnected is required, since all candidates C may have a

negative weight so that the current set P without any vertex additions has the largest weight among all
subsets S with P ⊆ S ⊆ P ∪ C.

Note that it is sufficient to consider only the connected components of G[P ] instead of all connected
subsets of P in Steps 4-6 of the recursion. The reason is that for given sets P and C the RDS enumerates all
subsets of P∪C as long as no pruning occurs. Indeed, the modified pruning Step 11 guarantees that no subset
of P ∪C fulfilling Π (connected or not) and therefore no connected subset of P ∪C fulfilling Π is excluded.
Thus, connected subsets of P that are not connected components of G[P ] are found as connected components
of the induced subgraph of a different current set P ′ in another iteration of Procedure FindMaxConnected.

4.3. New Combinatorial Branch-and-Bound for Maximum-Weight s-Club

We developed a new CB&B algorithm for maximum-weight s-club which is able to handle arbitrary
vertex weights wi ∈ R. Since s-club is non-hereditary, we have to cope with negative weights. As before, we
assume that a simple graph G = (V,E) with vertex weights (wi = π∗i ), i ∈ V is given together with some
s ≥ 2.

Throughout the branch-and-bound, we partition the vertices V into three sets, the included vertices I
with xi = 1 for all i ∈ I, the free vertices F with xi ∈ {0, 1} for all i ∈ F , and the excluded vertices X with
xi = 0 for all i ∈ X. The algorithm is initialized with F = V and I = X = ∅. All partitions with F 6= ∅
are partial solutions, while those with F = ∅ are complete solutions. We always assume that the partition
V = I + F +X must admit that a subset S of the admissible vertices I ∪ F is a feasible s-club with S ⊇ I.
In particular, the distance between all admissible vertices i ∈ F ∪ I and the included vertices j ∈ I must
not exceed s, i.e., distG[I∪F ](i, j) ≤ s, meaning that I ∪{j} is an s-clique for all j ∈ F . This is similar to the
branch-and-bound algorithm by Mahdavi Pajouh and Balasundaram (2012). However, our approach differs
in the computation of upper and lower bounds and it has an additional component for fixing vertices and
detecting infeasible partial solutions.

Upper Bounds. A straightforward upper bound is

ub1(I + F ) = π(I) + π+(F ) =
∑
i∈I

wi +
∑
i∈F

w+
i

9



with the standard shorthand notation w+
i := max{0, wi} for referring to the positive part.

In the course of the algorithm, the induced graph G[I ∪ F ] can become disconnected with compo-
nents C1, . . . , Cp. Since every s-club is connected, the component with the largest weight provides a tighter
bound in this case:

ub2(I + F ) = min
j=1,...,p

ub1(Cj).

A third upper bound results from the fact that every s-club is also an s-clique. This is a (1-)clique in
the sth power graph Gs. Therefore,

ub3(I + F ) = w(I) + z(w,Gs[F ]),

where z(w,Gs[F ]) is the maximum weight of a clique that can be found in the induced subgraph by F in
Gs. Any algorithm for computing maximum-weight cliques can be used to compute z(w,Gs[F ]) (or any
algorithm for maximum-weight independent sets in the complement graph of Gs). We used the publicly
available code from the paper Held et al. (2012b).

Lower Bounds. For computing an initial lower bound, we adapt the Constellation heuristic of Bourjolly
et al. (2002). Constellation first determines a start vertex i with maximum value wi +

∑
j∈N(i) w

+
j . The

start solution is S = {i} ∪ {j ∈ N(i) : wj ≥ 0}. Then, s − 2 times additional vertices are added. For all
vertices j ∈ S, one with maximum

∑
i∈N(j)\S w

+
i is determined and all vertices N(j) \ S are added to S.

Note that this step increases the diameter of G[S] by at most one so that after s− 2 iterations the diameter
of S cannot exceed s, i.e., G[S] is an s-club. Since no computation of distances in induced subgraphs is
needed, the Constellation heuristic provides a lower bound very quickly. Preliminary test revealed that
the Drop heuristic of Bourjolly et al. (2002) is in many cases too time consuming, and we do not use it.

The only primal heuristic that we employ at every branch-and-bound node is the check whether or not
I ∪ F induces a feasible s-club. It requires the computation of a distance matrix for G[I ∪ F ] (with unit
costs), which is implemented as a straightforward breadth-first-search (BFS). It requires not more than
O (nI∪F ·mI∪F ) time, where nI∪F = |I ∪ F | is the number of vertices and mI∪F is the number of edges of
G[I ∪ F ].

Vertex Fixation and Infeasibility Detection. In the branch-and-bound algorithm, branches result from the
inclusion or exclusion of a free vertex, i.e., we select a free vertex v ∈ F , remove it from F , and add it to
either I or X. Obviously, the inclusion of a free vertex does not change distances in G[I ∪ F ]. In contrast,
the exclusion of a free vertex requires the re-computation of the distances in the graph G[I ∪F ] using BFS.
For the sake of brevity, let dij be the short notation for distG[F∪I](i, j). The following cases are interesting:

1. If dij > s for i, j ∈ I then the partial solution is infeasible.

2. If dij > s for i ∈ I, j ∈ F then vertex j can be excluded, i.e., X ′ = X ∪ {j} and F ′ = F \ {j}.
3. If dij = s for i, j ∈ I and there exists a 0 < d < s and a unique vertex k ∈ F with dik = d and
dkj = s− d, then vertex k can be included, i.e., I ′ = I ∪ {j} and F ′ = F \ {j}.

If case 2 applies, distances need to be recalculated. If one of the cases 2 or 3 applies, the variable fixation
and infeasibility detection procedure is repeated. This can create a longer sequence of fixations.

Branching. None of the bounding procedures can cope precisely with negative weights, and therefore we
start branching by first selecting a free vertex v ∈ F with smallest negative weight wv < 0 (if any). Then, at
the second level, the selection of a vertex for branching is based on the idea of choosing a highly influential
free vertex v ∈ F . It is a vertex v maximizing the number of included vertices to which the distance is
exactly s. Formally, the vertex v ∈ F maximizes |{i ∈ I : div = s}| and ties are broken by preferring larger
weights wv. Finally, the overall branching strategy is depth-first, where the branch in which the free vertex
is included is inspected before the branch in which the free vertex is excluded.

The overall branch-and-bound is summarized in Algorithm 3 and the recursion in Procedure Recursion.
We briefly compare our new algorithm with the fastest algorithms from the literature. Wotzlaw (2014)

presents two MAX-SAT formulations that are solved by a state-of-the-art SAT solver (clasp 2.1.3). His
10



Algorithm 3: Combinatorial B&B Algorithm

1 Input: Graph G = (V,E), vertex weights w = (wi)
2 SET lb := Constellation(G,w), ub :=∞, I = ∅, F = V , and X = ∅
3 Recursion(I, F,X)
4 Output: maximum-weight s-club S∗ with weight lb

Procedure Recursion(I, F,X)

1 if lb > ub1(I ∪ F ) or lb > ub2(I ∪ F ) or lb > ub3(I ∪ F ) then RETURN
2 if I ∪ F induces s-club and w(I ∪ F ) > lb then SET lb := w(I ∪ F )
3 Select branching vertex j ∈ F
4 for branches (I ∪ {j}, F \ {j}, X) and (I, F \ {j}, X ∪ {j}) do
5 DETECT infeasibility, FIX additional vertices with result (I ′, F ′, X ′)
6 if infeasible then RETURN
7 if F ′ = ∅ then
8 if w(I ′) > lb then SET lb = w(I ′) and S∗ := I ′

9 RETURN

10 Recursion(I ′, F ′, X ′)

comparison shows that these implementations often outperform the older algorithms presented in Veremyev
and Boginski (2012); Mahdavi Pajouh and Balasundaram (2012); Shahinpour and Butenko (2013). Table 4
shows the computation times for computing a maximum-cardinality s-club for s ∈ {2, 3, 4}. For the sake of
brevity, column Other is the shortest runtime obtained with any of the algorithms compared in Wotzlaw
(2014), while New is our computation time (computed on different machines of comparable performance).
It seems that our implementation is competitive, in particular, it scales well for larger instances and s > 2.

Time in seconds

s = 2 s = 3 s = 4

Instance |V | |E| Other New Other New Other New

adjnoun 112 425 0.010 0.003 0.020 0.059 0.340 0.017
football 115 613 0.020 0.015 0.320 4.118 0.001 0.003
jazz 198 2742 0.060 0.005 1.050 0.125 8.870 0.075
celegansneutral 297 2148 0.430 1.060 1.060 1.058 45.300 0.435
email 1133 5451 16.100 0.037 TL TL TL TL
polblogs 1490 16715 46.900 0.086 TL TL TL TL

Table 4: Computation times of s-club algorithms
Note: Computation time is limited to TL = 600 seconds.

5. Branching Schemes

The design of a branching scheme is crucial for the performance of a branch-and-price algorithm (Van-
derbeck, 2011). First and foremost, it must ensure that integrality can be imposed in all cases. The perfect
branching scheme would be one that lets the algorithm find and prove an optimal solution quickly, i.e., it
creates a small search tree, allows a fast solution of each node, and does not require modifications neither
on the master problem nor on the subproblem algorithm. The latter means that branching should not alter
the structure of the respective pricing problem (structure-preserving) so that the best performing algorithm
can be applied during the entire search. Such a perfect branching scheme does not exist for partitioning and
covering a graph into RCs as we explain next. We present competing branching schemes that are generic and
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Figure 2: Partitioning with (possibly disconnected) 2-plexes. Example shows (a) the graph G, (b) the fractional solution
λ{1,2,3,4} = 1 and λ{5,6} = λ{5,7} = λ{6,7} = 0.5, (c) the support graph having binary fλij for all {i, j} ∈ E

applicable to all 17 variants allowing us to reuse all pricing algorithms presented in the previous section. We
first discuss two alternative branching rules for partitioning before we reuse some of the results to introduce
branching schemes for covering.

Let λ be a solution of the RMP. The support graph of λ is the weighted undirected graph Gλ = (V,Eλ)
defined by Eλ := {{i, j} : i, j ∈ V, i 6= j, fλij > 0} with fλij :=

∑
S∈Ω:i,j∈S λS . It follows fλij ≥ 0 and, for

partitioning, also fλij ≤ 1.

5.1. Ryan-Foster Branching for Relaxed Clique Partitioning

Ryan-Foster branching has been proven as one of the most effective branching rules when solving set-
partitioning problems with LP-based branch-and-bound Ryan and Foster (1981): When λ is a fractional
solution to the LP-relaxation Aλ = 1,λ ≥ 0 (with binary matrix A = (aik)), then there exist at least
two rows of A, say i and j, such that 0 <

∑
k:aik=ajk=1 λk < 1. In any integer solution, however, this

value is 0 or 1. For any i-j-pair with fractional value, two branches can be created, the so-called together-
branch forcing variables λk with aik + ajk = 1 to zero, and the separate-branch forcing variables λk with
aik = ajk = 1 to zero. The fractional values fλij allow the direct detection of branching opportunities, where

the together-branch results in fλij = 1 and the separate-branch in fλij = 0.
For the extensive formulation (1), the subproblems must then respect xi = xj and xi + xj ≤ 1, re-

spectively. Such constraints are simple to enforce if the subproblem is solved with a MIP solver. Moreover,
instead of considering every possible i-j-pair, Ryan-Foster branching can be implemented by using only
edges {i, j} ∈ E in case of connected RCs. Figure 2 shows that the connectivity requirement is crucial. The
validity of this statement is straightforward to prove.

Section 5.1.1 shows how to apply it in situations where it is impossible or inconvenient to directly modify
pricing algorithms such as CB&B. However, Ryan-Foster branching is not structure-preserving, but it is
complete and generic in the sense that it can be used for all types of RCs.

5.1.1. Generic Handling of Together- and Separate-Constraints in Pricing

For vertex coloring (clique partitioning of the complement graph), the Ryan-Foster constraints can be
imposed solely by graph modifications. In the together-branch, the vertices i and j are merged, while in the
separate-branch the new edge {i, j} is added (Mehrotra and Trick, 1998; Held et al., 2012b). However, for
RCs, such graph modifications generally change distance, density, and connectivity on many subsets S and,
therefore, do not reproduce the original situation with the separate/together constraint added.
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A single separate-constraint can be implemented by solving two different subproblems, since the removal
of one vertex, either i or j, ensures that the two vertices never occur together in a RC. A removal of vertex i
is equivalent to assigning a huge negative weight wi = −M (using a big-M). Also a single together-constraint
for i and j can be realized by solving two different subproblems, where in one subproblem both vertices are
removed, while in the other one both are enforced by assigning a huge positive weight wi = wj = M .

Although this approach seems appealing, it has the drawback that when q Ryan-Foster constraints are
active up to 2q different subproblems have to be solved. In order to mitigate this explosion, we propose the
following branch-and-bound algorithm. At its root node, no constraints are active. At each node, the relaxed
subproblem is solved and if infeasible, a single separate- or together-constraint creates two new branches. A
depth-first node selection is applied in order to have lower bounds available at an early stage. Note that this
branch-and-bound approach is truly generic as it can be used in combination with any of the subproblem
algorithms (see Section 4).

5.2. Generic Branching Rule for Relaxed Clique Partitioning

The here proposed generic branching rule (GBR) is a subproblem-structure preserving rule applicable
when partitioning with RC variants. The rule is straightforward to implement because it suffices to remove
edges from the given graph G. It does neither impose additional constraints nor require a repeated solution
of the subproblem, and can be shown to be a complete branching rule for hereditary Π in the presence of
connectivity constraints.

Let P1, P2, . . . , Pp be the vertices inducing the connected components of Gλ, that is, Gλ = Gλ[P1] ∪
Gλ[P2] ∪ · · · ∪ Gλ[Pp]. When all vertex-induced subgraphs G[Pq] for q = 1, . . . , p fulfill Π no branching is
required, since a feasible partition into p RCs has been found. Moreover, when connectivity is required the
master problem has objective

∑
S∈S λS = p. Figure 2 shows that, for solutions with disconnected structures,

λ can be fractional although all component G[Pq] are feasible. In this case,
∑
S∈S λS < p, and the GBR

fails.
We now assume that at least one of the sets P = Pq does not induce a feasible RC. We exclude the

occurrence of the component Gλ[P ] via branching by removing its edges one by one. This creates |E(Gλ[P ])|
branches, where in each branch just one edge is removed from G. The following property is helpful for
drastically reducing the number of branches.

Property 1. Let Π be hereditary and connectivity be required. Given a subset P ⊆ V such that G[P ] does
not fulfill Π, let T = (P,ET ) be an arbitrary tree spanning P . Then, any feasible solution (λS)S∈S to (1)
fulfills ∑

S∈S

|E(S) ∩ ET |λS ≤ |P | − 2.

Proof. Since the tree contains exactly |P | − 1 edges, the constraint
∑
S∈S |E(S) ∩ ET |λS ≤ |P | − 2 means

that at least one of the tree edges is not present in the solution. Otherwise, the simultaneous presence of all
edges e ∈ ET would imply that there exists a RC P ′ in the solution with P ′ ⊇ P . Due to the heredity of Π
this is impossible.

If Π is hereditary and connectivity is required, this gives rise to the GBR formalized in Algorithm 7,
which guarantees that after a finite number of branchings the solution of the RMP is integral.

Proposition 1. The GBR is a complete rule for partitioning into RCs with hereditary Π and connectivity
constraints.

Proof. The requirement of Gλ[P ] to be connected ensures that a spanning tree exists. Thus, by construction,
the value fλij is strictly positive for the tree edges, cutting off the current solution λ in each of the resulting
branches. Branching can be repeated only up to |E| times because each branch eliminates one edge from G,
finally leading to an edgeless graph. Consequently, solutions λ must eventually become integral.
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Algorithm 4: Generic Branching Rule (GBR)

Input : Support graph Gλ and weights fλij
1 Determine the connected components P1, P2, . . . , Pp of Gλ.
2 Identify one component P for which G[P ] does not fulfill Π.
3 If no such component exists, then stop (the solution is already a union of feasible RCs).
4 (Optional) Replace P by one of its subsets such that

(a) G[P ] does not fulfill Π, (b) Gλ[P ] is connected, and (c) |P | is minimal.

5 Determine a maximum-weight spanning tree T = (P,E(T )) of Gλ[P ] using the weights fλij .

Output : E(T ), the set of edges to eliminate one by one

GBR is a non-binary branching scheme because generally the tree T contains more than two edges. The
optional Step 4 reduces the number of branches that are created. The computation of the spanning tree in
Step 5 is computationally cheap (using Prim’s or Kruskal’s algorithm). The selection of maximum-weight
edges is intended to produce branches that improve the lower bounds as much as possible.

The reduction problem in Step 4 is the following: Given a property Π, a graph H = (S,E(S)) not fulfilling
Π, and a connected subgraph (S,E′) spanning S, find a set S? ⊂ S of minimum cardinality such that G′[S?]
is connected and G[S?] does not fulfill Π. (Note that the connected subgraph (S,E′) takes the role of Gλ[S]
in GBR.) We suspect that the reduction problem is NP -hard for arbitrary RCs and, thus, propose the
following simple greedy procedure for its resolution: The greedy procedure is inspired by Prim’s algorithm
for computing a minimum spanning tree. In a first step, the vertices are sorted by increasing degree. Second,
we chose a vertices i ∈ S with smallest vertex degree and set S? = {i}. Iteratively, in the order of increasing
degree, vertices j ∈ S \ S? are tested whether or not j is adjacent to S? in (S,E′). The first vertex j which
fulfills the condition is added to S?. The greedy algorithm stops with the solution S? as soon as H[S?] does
not fulfill Π.

The Non-Hereditary Case. A prerequisite of GBR as presented in Algorithm 7 is that Π is hereditary.
However, even for non-hereditary Π a modified version of GBR can be used. Note that heredity of Π has
only been exploited in order to ensure that no superset P ′ ) P is a feasible RC. If P has no such superset
and the optional reduction in Step 4 of GBR is skipped, branching on the edges of the tree spanning Gλ[P ]
is valid.

However, two drawbacks have to be pointed out: On the one hand, the average number of branches
created with GBR can be expected to be larger due to the skipped reduction step. On the other hand, for
non-hereditary Π, GBR may not be applicable and, thus, it is incomplete. This happens if all connected com-
ponents which do not fulfill Π have a superset satisfying Π. Figure 3 provides an example when partitioning
with 2/3-quasi-cliques.
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Figure 3: Partitioning with 2/3-quasi-cliques. (a) the graph G, (b) the factional solution λ{6,7,8,9,10,11} = 1 and λ{1,2,3} =
λ{2,3,4} = λ{3,4,5} = λ{1,4,5} = λ{1,2,5} = 1/3, (c) the support graph in which the component P = {1, 2, 3, 4, 5} is no
2/3-quasi-clique, but P ′ = P ∪ {6} = {1, 2, 3, 4, 5, 6} is a 2/3-quasi-clique
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For s-club, we can derive a simple branching rule creating exactly s + 1 branches in each step: If a
component P is infeasible, there must exist two vertices i, j ∈ V with distG[P ](i, j) = s+ 1. If these vertices
also fulfill distG(i, j) = s + 1 (recall that generally distG[P ](i, j) ≥ distG(i, j) holds), then P can be chosen
as the vertices of the path with length s+ 1 connecting i with j in G. It remains an open question whether
this variant of the GBR is complete. During our experiments, we never found an example (as the one for
quasi-clique shown in Figure 3) for s-club and any s ≥ 2.

The column Partitioning of Table 5 summarizes the possible branching schemes presented in this section.

Partitioning Covering

Branching P1: P2: P3: C1–C3:
scheme | 1. Ryan Foster | 1. GBR | 1. GBR | 1. Vertex contacts fractional

| 2. Ryan Foster | 2. Vertex contacts fixation
| 3. P1 or P2 or P3 on V=1

| 4. Vertex duplication

Applicable s-plex s-plex, connected s-plex, general all variants
to s-clique s-clique, connected s-clique, general

s-club s-defective clique, connected s-club‡

γ-quasi-clique s-bundle, connected γ-quasi-clique
s-defective clique s-defective clique, general
s-bundle s-bundle, general

Table 5: Branching schemes
Branching schemes C1, C2, and C3 for covering results from the use of appropriate branching rules P1, P2, and P3, respectively,

at level 3 of the scheme. ‡: If GBR is a complete branching rule for s-club, P2 is applicable instead of P3.

5.3. Generic Branching Rules for Relaxed Clique Covering

For covering with RCs, we propose a multi-level branching scheme, where the first two levels decide
on so-called vertex contacts and the lower levels assure integrality and apply branching rules known for
partitioning, i.e., Ryan-Foster branching or the GBR.

For any subset T ⊆ V , the number of vertex contacts is defined as g(T ) =
∑
S∈S |T ∩ S|λS . In order

to distinguish between variables and values, we write g(T ) for the sum of the variables and gλ(T ) for the
resulting value. For the sake of convenience, we also define gi = g({i}) and gλi = gλ({i}) for vertices i ∈ V .
Branching on the number of vertex contacts preserves the structure of the subproblem. Indeed, enforcing
g(T ) ≤ bgλ(T )c or g(T ) ≥ dgλ(T )e only changes the weights wi, i ∈ T in the subproblem’s objective according
to the dual price of the constraint. In case of less-or-equal inequalities, weights can become negative.

It may happen that all vertices i ∈ V have integer vertex contacts gλi , but the solution λ is still fractional.
Such a situation is certainly not unusual because in the set-partitioning case all vertex contacts are equal
to one and fractional solutions are predominant. Therefore, additional branching actions need to be taken
(in the following referred to as vertex contact fixation). The intention of our higher-level branching is to fix,
for a large subset P ⊆ V , the vertex contacts to its minimum, i.e., g(P ) = |P |, in order to then treat this
subset as in the partitioning case. Beside fixation, an alternative branch g(P ) ≥ |P | + 1 must be created,
too. Deeper in the tree, branches g(P ) = |P | + 1 and g(P ) ≥ |P | + 2, and generally g(P ) = |P | + p and
g(P ) ≥ |P |+ p+ 1 are created. Note that g(P ) ≥ |V |+ 1 is certainly suboptimal so that this process always
stops.

If g(P ) is fixed as well as all vertex contacts of vertices in P , i.e., all gi for all i ∈ P are fixed to
specific values, then one can proceed as follows. All vertices with their vertex contacts fixed to 1 form
the set V=1 = {i ∈ V : gi is fixed to 1}. Ryan-Foster branching or the GBR can be applied to V=1 for
which the smaller support graph Gλ[V=1] must be considered. If no branching is possible, a final graph
modification procedure can always be applied (referred to as vertex duplication). The remaining vertices
V>1 = {i ∈ V : gi is fixed to a value > 1} are replaced by exactly gi clones i1, . . . , igi . The clones are
adjacent to exactly the same vertices as i. Moreover, the additional separate-constraints that no two clones
ik and i` for k 6= ` occur together in a RC are imposed. In all experiments, it was never necessary to apply
vertex duplication, since solutions were already integral.
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The column Covering of Table 5 summarizes the branching schemes for the covering variants.

6. Computational Results

The results reported in this section were obtained using a single thread of a standard PC with an Intel(R)
Core(TM) i7-4790 3.6 GHz processor and 8 GB of main memory. The algorithms were coded in C++ and
compiled with MS Visual Studio 2010. The callable library of CPLEX 12.5 was used for solving all LPs and
MIPs.

According to Table 2, there exist 17 variants of partitioning and covering problems. These decomposition
problems must be parameterized with values for s or γ. Similar to previous works (e.g., Veremyev and
Boginski, 2012; Trukhanov et al., 2013; Pattillo et al., 2013b), we use values s ∈ {2, 3, 4, 5} (for defective
clique we use s−1) and γ = {.95, .9, .85, .8, .75}. Since the number of combinations is large (13·4+4·5 = 72),
we have restricted our computational analysis to the nine networks from the 10th DIMACS challenge with
less than 300 vertices (available at http://dimacs.rutgers.edu/Challenges/). This gives rise to an overall
of 648 instances.

Table 6 lists the nine networks G = (V,E) and their characteristics: edge density ρ(G), minimum
degree δ(G), maximum independent set size α(G), maximum clique size ω(G), chromatic number χ(G)
and chromatic number of the complement graph χ(Ḡ). Note that unlike for maximum-cardinality RCs, no
graph reduction by a peeling procedure (cf. Abello et al., 1999) is possible when decomposing the entire
network. For all experiments, the computation time is limited to 600 seconds.

G = (V,E) —V— —E— ρ(G) δ(G) α(G) ω(G) χ(G) χ(Ḡ)

karate 34 78 0.1390 1 20 5 5 20
chesapeake 39 170 0.2294 3 17 5 5 17
dolphins 62 159 0.0841 1 28 5 5 28
lesmis 77 254 0.0868 1 35 10 10 35
polbooks 105 441 0.0808 2 43 6 6 43
adjnoun 112 425 0.0684 1 53 5 5 55
football 115 613 0.0935 7 21 9 9 22
jazz 198 2742 0.1406 1 40 30 30 40
celegansneural 297 2148 0.0489 1 110 8 [8,9] 115

Table 6: Instance features

Recall that for hereditary Π (not necessarily connected), partitioning and covering are equivalent. Hence,
we solve a set-covering master program in which the dual values are more stable and we post-process
the solution to obtain a feasible partitioning. In order to stabilize the column-generation process also in
the proper partitioning cases, we replace partitioning by covering constraints (1b) and add the additional
constraint that the number of vertex contacts must not exceed n = |V |, i.e.,

∑
S∈S |S|λS ≤ n, to the master

program (1). The effect is that all dual prices πi for i ∈ V are non-negative. The resulting weight for vertex
i ∈ V is then wi := πi + µ, where µ is the (non-positive) dual price of the additional constraint.

Moreover, we use a multi-column pricing strategy: For MIPs, all integer feasible solutions with negative
reduced cost found by CPLEX are added to the master. Similarly, all different solutions found in the main
loop of (m)RDS are added. For s-club, we use a different acceleration strategy, i.e., the CB&B prematurely
stops as soon as a solution with reduced cost smaller than −0.1 is found.

6.1. Linear Relaxation Results

In a first series of experiments, we analyze the performance of alternative pricing algorithms (see Sec-
tion 4). For s-plex, we compare the IP formulation of Balasundaram et al. (2011) with the (m)RDS (see
Section 4.2). For s-club, we compare the IP formulation of Veremyev and Boginski (2012) with our CB&B pre-
sented in Section 4.3. For s-bundle, we compare our MIP formulation presented in the companion manuscript
Gschwind et al. (2017) with the (m)RDS. Finally, for γ-quasi-clique, we compare the MIP formulation of
Veremyev et al. (2015) with the strengthened one presented in Section 4.1.
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Table 7 presents aggregated results over all nine benchmark networks. The numbers are ratios of the
average times that a single pricing iteration consumes. Whenever the linear relaxation of (1) is not completely
solved within the time limit, the average is taken over the iterations solved up to this point. For s-bundle,
CPLEX is only able to solve the pricing problem for the two smallest instances karate and chesapeake

(the others caused an out-of-memory exception). When comparing MIP with CB&B, a ratio tMIP
PP /tCB&B

PP

of more than 1 indicates that CPLEX needs more time than the respective CB&B, while for γ-quasi-clique
a ratio tV erPP /t

Own
PP greater than 1 means that CPLEX takes longer for solving the MIP of Veremyev et al.

(2015) (Ver) than for the strengthened MIP (Own).

s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 405.5 150.1 35.4 4.3
Covering Connected 319.5 103.6 26.0 6.3

Part./Cover. General 269.7 36.4 4.0 0.6

s-club Partitioning General 57.3 124.1 153.7 215.6
Covering General 45.9 79.4 116.8 326.8

s-bundle Partitioning Connected 525425.1 89556.1 18944.2 2772.4
Covering Connected 1374606.2 154631.5 15714.0 3112.4

Part./Cover. General 390207.8 124293.4 14491.8 2169.8

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 1.9 2.0 2.0 1.8 3.1
clique Covering Connected 1.8 1.9 1.1 1.8 3.2

Partitioning General 1.8 1.9 2.6 1.9 2.1
Covering General 2.0 2.0 2.1 2.4 2.7

Table 7: Comparison of pricing algorithms
Note: Factors are the average ratios tMIP

PP /tCB&B
PP and tV erPP /t

Own
PP

Overall, the CB&B algorithms perform better than the MIPs and with increasing s the effect becomes less
pronounced for s-plex and s-bundle. In contrast, the results for s-club show that the MIP-based approach
becomes less attractive when s increases. For γ-quasi-clique, the strengthened formulation of Section 4.1
consistently outperforms the MIP of Veremyev et al. (2015). The results also seem to indicate that for
general s-plex and s ≥ 5 pricing with MIP is superior to RDS. For consistency among different s values,
however, all following results are computed with RDS.

In Table 8, we present absolute computation times for solving the linear relaxations of (1). Numbers is
brackets show the number of instances for which the linear relaxation is solved within the time limit; (*)
means that all nine instances are solved. If an instance is not solved, it contributes to the presented average
with 600 seconds. In all cases, pricing consumes more than 99% of the computation time.

The column-generation algorithm for covering with s-club is able to solve all 36 linear relaxations. For the
other problem variants, the algorithms are not able to solve all instances for all values of s or γ. The hardest
variants are those for γ-quasi-clique and partitioning with connected s-cliques, while for the hereditary
structures almost all instances are solved with s = 2 and s = 3. Larger values of s and smaller values of γ
lead to harder to solve pricing problems, larger generated RCs, more degenerate master programs typically
requiring more iterations, and thereby to longer computation times for the linear relaxation. An exception
are the distance-based relaxations s-clique and s-club, where for larger s the decomposition becomes trivial
because the given graph is already an s-clique/club. Among the other hereditary structures, the linear
relaxation for s-defective clique is solved faster than for s-plex and s-bundle, which seem to be similar.
The latter result is somewhat unexpected when comparing with the results of Gschwind et al. (2018) where
maximum-cardinality s-bundle was harder than s-plex.

The only variants for which partitioning is much more time consuming than covering are connected
s-clique and s-club: the presence of some negative weights seems to substantially complicate the pricing.
We observe that single instances of the pricing problem require significantly more time than the average.
The results for the other variants show that covering is slightly easier than partitioning, but the differences
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s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 0.7 (*) 47.8 (*) 168.3 (7) 360.4 (4)
Covering Connected 0.5 (*) 39.9 (*) 161.6 (7) 351.3 (4)

Part./Cover. General 0.5 (*) 38.9 (*) 168.2 (7) 350.9 (4)

s-clique Partitioning Connected 267.1 (5) 375.0 (4) 400.0 (3) 339.1 (4)
Covering Connected 67.4 (8) 66.9 (8) 0.1 (*) 0.1 (*)

s-club Partitioning General 214.1 (7) 372.8 (5) 335.7 (4) 95.9 (8)
Covering General 3.5 (*) 8.7 (*) 0.1 (*) 0.1 (*)

(s− 1)-defective Partitioning Connected 0.5 (*) 3.1 (*) 41.3 (*) 86.2 (8)
clique Covering Connected 0.4 (*) 2.2 (*) 39.4 (*) 76.2 (8)

Part./Cover. General 0.4 (*) 2.4 (*) 32.0 (*) 78.9 (8)

s-bundle Partitioning Connected 0.8 (*) 53.7 (*) 175.3 (7) 362.7 (4)
Covering Connected 0.6 (*) 43.4 (*) 172.4 (7) 347.5 (4)

Part./Cover. General 0.6 (*) 40.4 (*) 166.2 (7) 355.9 (4)

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 215.6 (6) 222.1 (6) 223.4 (6) 228.9 (6) 296.7 (5)
clique Covering Connected 215.3 (6) 220.9 (6) 220.2 (6) 227.9 (6) 291.8 (5)

Partitioning General 223.4 (6) 227.8 (6) 232.9 (6) 243.6 (6) 232.7 (6)
Covering General 218.3 (6) 232.8 (6) 228.9 (6) 252.5 (6) 260.1 (6)

Table 8: Linear programming relaxation average computation times

are not substantial. We also observe that pricing consumes more time for partitioning due to some negative
weights, but the multiple-pricing strategy at the same time produces more RCs leading to a comparable
number of pricing iterations. Comparing covering with connected RCs and decomposing with general RCs
(both formulated as a set-covering master) shows that computation times are strongly correlated.

6.2. Integer Results

For s-plex, s-club, s-bundle, and γ-quasi-clique we tried to decompose the networks using the compact
formulation presented in the companion manuscript Gschwind et al. (2017), but the results were disappoint-
ing. Only the very smallest networks could be decomposed for some of the RCs even after providing the
optimal number rc(G) of necessary relaxed cliques. The poor performance can be attributed to the weak
lower bound provided by the linear relaxation (see Gschwind et al., 2017, Theorem 1) and the inherent
symmetry of the compact formulation. Another study with more networks is presented in Section 6.3.

We next analyze the performance of the branching rules of Section 5 for partitioning into RCs. Depending
on the problem variant, we compare P1 (Ryan Foster) against P2 (GBR) or P3 (GBR followed by Ryan
Foster). The node-selection strategy is depth-first in order to find upper bounds early in the search.

Table 9 shows average computation times for solving the integer model. As before, numbers in brackets
indicate the number of instances solved to proven optimality. Furthermore, for those instances solved to
optimality with both branching schemes, Table 10 gives the size of the branch-and-bound tree (minimum,
average, and maximum over the instances).

It can be seen from Tables 9 and 10 that the pure Ryan-Foster branching compares favorably: Average
computation times of P1 are always smaller than those of P2 and P3. There are, however, a few instances for
which P1 takes longer. Scheme P1 is superior also with respect to the number of optima. All instances solved
with P2 or P3 are also solved with P1. An explanation for this outcome is that GBR-based rules create, with
a few exceptions, many more branches than the pure Ryan-Foster rule, see Table 10. Analyzing times and
tree sizes together reveals that for GBR-based rules a single branch-and-bound node is solved faster. This
is intuitive because GBR is a structure-preserving rule as opposed to the Ryan-Foster rule which requires
the use of less effective pricing algorithms (see Section 5.1.1).

Based on these findings, the final series of experiments applies branching scheme P1 for partitioning and
the corresponding scheme C1 for covering problems. Since linear-relaxation bounds are generally tight, the
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s = 2 s = 3 s = 4 s = 5

P1 P2/P3 P1 P2/P3 P1 P2/P3 P1 P2/P3

s-plex Connected 133.8 (7) 210.4 (6) 230.1 (6) 357.5 (4) 344.7 (4) 541.5 (1) 443.2 (3) 546.2 (2)
General 133.9 (7) 200.2 (6) 217.7 (6) 297.0 (5) 345.7 (4) 413.8 (3) 473.4 (2) 475.4 (2)

s-clique Connected 347.1 (4) 477.1 (2) 452.9 (3) 533.3 (1) 400.0 (3) 400.0 (3) 339.0 (4) 338.7 (4)

s-club General 335.5 (4) 337.9 (4) 401.3 (3) 401.3 (3) 335.6 (4) 335.6 (4) 94.6 (8) 94.7 (8)

(s− 1)-defective Connected 76.3 (8) 335.0 (4) 155.0 (7) 268.0 (5) 214.7 (6) 400.8 (3) 278.7 (5) 351.4 (4)
clique General 72.7 (8) 218.1 (6) 169.8 (7) 268.7 (5) 219.4 (6) 339.6 (4) 241.0 (6) 412.2 (3)

s-bundle Connected 133.8 (7) 210.9 (6) 184.0 (7) 401.2 (3) 347.7 (4) 472.9 (2) 444.7 (3) 521.4 (2)
General 133.9 (7) 200.3 (6) 258.4 (6) 336.5 (4) 358.2 (4) 419.0 (3) 477.3 (2) 498.8 (2)

Table 9: Comparison of branching schemes for RC partitioning: Average computation time and number of optimal solutions

s = 2 s = 3 s = 4 s = 5

P1 P2/P3 P1 P2/P3 P1 P2/P3 P1 P2/P3

s-plex Connected 5/11/31 3/1007/5701 1/12/19 1/972/3345 19/19/19 537/537/537 10/15/20 256/729/1201
General 1/9/20 1/16/37 9/17/22 7/491/2359 9/17/21 13/468/1343 23/25/26 63/81/99

s-clique Connected 106/237/367 5/5/5 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1

s-club General 1/2/2 1/34/48 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1

(s− 1)-defective Connected 5/12/18 8/1086/4241 2/6/9 2/109/365 5/523/1550 27/121/294 5/14/25 4/758/2675
clique General 11/3059/18151 32/2275/11734 7/17/24 11/62/217 4/16/21 20/51/79 11/22/39 38/46/51

s-bundle Connected 5/11/31 3/1007/5701 1/4/6 1/29/83 15/17/18 214/259/304 20/21/22 291/333/375
General 1/9/20 1/16/37 7/13/26 2/115/423 21/28/42 41/61/91 14/20/26 48/91/133

Table 10: Comparison of branching schemes for RC partitioning: Tree size (min/avg/max)

overall performance of our algorithms very much depends on the ability to find good feasible decompositions
(upper bounds) fast. Therefore, we solve the master program as an integer model with CPLEX at every
branch-and-bound node. Pre-tests have shown that such a heuristic is particularly helpful for covering
variants which often require massive branching before reaching an integer solution. In order to avoid long
MIP runs, CPLEX is limited to 10 seconds. Moreover, we change the node-selection rule in our branch-and-
price algorithms to best-first search.

Table 11 is organized as Table 9 and displays the average computation times and the number of optima
for the branch-and-price. With the help of the upper bounds provided by CPLEX, 429 instances are solved
to proven optimality compared to only 405 optima without using the upper bounds. The upper bounds seem
to be particularly helpful for larger values of s. This is also true for variants with intricate subproblems such
as s-bundle and γ-quasi-cliques. Overall, computation times are also slightly reduced.

In summary, decomposing into RCs is a computationally challenging problem. The difference is more
between different types of RCs than between partitioning and covering and between general and connected
RCs. A main indicator for the hardness of the decomposition is the hardness of the corresponding pricing
problem. It is therefore not surprising that the decomposition with s-clique and s-defective clique works
better than with s-bundle.

6.3. Scalability Analysis on Randomly Generated Networks

The nine real-world social networks that we considered in the previous experiments do not allow state-
ments about how our algorithms scale. In order to analyze the impact of network size and density, we have
created a larger instance set with the help the social-network generator of Lancichinetti and Fortunato
(2009). The generator allows to configure the network and its desired characteristics by specifying the num-
ber of vertices, the distribution of the vertex degrees and the community size, and the percentage of internal
edges. We vary the number n of vertices between 100 and 1,000 in steps of 100 and fix the community size
to 25. Moreover, the vertex degree is fixed using values between 5 and 25 in steps of size 5. This implicitly
determines the density ρ(G) of the network G which cannot be specified directly in the instance generator.
The proportion of inner and outer community edges is set to 90 % and 10 %, respectively. For each parameter
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s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 136.9 (7) 233.2 (6) 328.8 (5) 395.4 (4)
Covering Connected 133.5 (7) 333.6 (4) 289.1 (5) 348.1 (4)

Part./Cover. General 133.4 (7) 139.1 (7) 219.0 (6) 452.5 (3)

s-clique Partitioning Connected 414,1 (3) 476,3 (2) 400 (3) 338,2 (4)
Covering Connected 67.2 (8) 66.8 (8) 0.1 (*) 0.1 (*)

s-club Partitioning General 336.4 (4) 401.4 (3) 335.8 (4) 97.6 (8)
Covering General 85.2 (8) 9.9 (*) 0.1 (*) 0.1 (*)

(s− 1)-defective Partitioning Connected 145.3 (7) 135.1 (7) 201.0 (6) 154.4 (7)
clique Covering Connected 179.4 (7) 133.7 (7) 137.0 (7) 141.7 (7)

Part./Cover. General 136.5 (7) 136.0 (8) 200.8 (6) 78.7 (8)

s-bundle Partitioning Connected 136.9 (7) 180.7 (7) 285.5 (5) 435.9 (3)
Covering Connected 133.5 (7) 335.0 (5) 232.6 (7) 403.8 (3)

Part./Cover. General 133.4 (7) 247.6 (6) 280.7 (5) 350.3 (4)

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 215.8 (6) 222.2 (6) 225.5 (6) 235.7 (6) 296.9 (5)
clique Covering Connected 215.3 (6) 220.8 (6) 220.4 (6) 348.1 (4) 290.3 (5)

Partitioning General 223.5 (6) 227.8 (6) 237.4 (6) 254.0 (6) 233.7 (6)
Covering General 217.9 (6) 232.5 (6) 229.4 (6) 365.9 (4) 269.9 (6)

Table 11: Branch-and-price average computation time and number of optimal solutions found

set, ten networks are randomly generated. Note that instances with similar characteristics were also used by
Girvan and Newman (2002).

We conduct experiments with partitioning/covering the networks with s-plexes for s = 2 and 3. One
reason for this choice is that s-plex clique relaxations have been widely used in SNA. Moreover, the presented
results of the Sections 6.1 and 6.2 clearly show that the RDS-based subproblem solver is sufficiently mature
so that larger networks can be tested.

The computational results of a first series of experiments are depicted in Figure 4. It shows for s = 2 and
s = 3, respectively, the impact of the size n and the average vertex degree degavg on average computation
times for the linear relaxation. As expected, with increasing size n of the network the computation times
grow. For a fixed set of parameters, computation times are very comparable so that either all or none of the
ten instances were solved. In the latter case there is no data point in the figure. The only exception is for
s = 3, n = 300, 400, 600, and degavg = 25 where one of the ten instances could not be solved, and for s = 3,
n = 700, and degavg = 25 where two could not be solved. Generally, instances with smaller average vertex
degree are easier to solve. An exception is the case when the average degree equals the community size 25.
Our interpretation is that these networks have a rather pronounced community structure making it easier
to find the correct communities in the very first column-generation iterations. Summarizing, for s-plex and
s = 2, 3 our column-generation algorithms provide lower bounds reasonably fast.

Recall that the linear-relaxation bounds of the compact MIP formulation (see Gschwind et al. (2017))
for s-plex is 1. It is however known that modern MIP solvers can generally improve such dual bounds by
adding various types of valid inequalities. Therefore, we analyze the root node lower bound provided by
CPLEX. In order to reduce redundancy from the compact MIP formulation (see Gschwind et al. (2017)), we
set r̄c(G) to the best known solution for the respective instance. Nevertheless, for most instances that could
be solved (the compact model becomes huge when rc(G) is large causing an “out of memory” exception),
the root node lower bound is 1. Some exceptions occur for s = 3, where the best bound is 1.97 compared to
rc(G) = 4 or 5. This shows that a direct solution of our graph decomposition problems using a MIP solver
is impossible for the networks we generated.

In the next series of experiments, we analyze the strength of the column-generation lower bounds, which
are the linear-relaxation bounds and the tree bounds. Since a reliable statement about the gap is only possible
for instances solved to optimality, we extended the time limit to 1 hour (3,600 seconds) for the branch-and-
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Figure 4: Scalability analysis, computation time for linear relaxation of extensive model: (left) 2-plex partitioning, (right) 3-plex
partitioning

price algorithm. As a result, 38 and 103 instances (out of 500 each) were solved to proven optimality for
s = 2 and 3, respectively. For these instances, the absolute optimality gap opt − lb and relative optimality
gap 100 %(opt − lb)/opt is 1.17 and 7 % for the linear-relaxation bound lb in case of s = 2. The respective
numbers for s = 3 are 0.53 and 3 %.

Finally, we also analyze absolute gaps gap = ub − lbtree where ub is the best known integer solution
and lbtree is the tree lower bound resulting from branch-and-price. Also here, the maximum computation
time is extended to 1 hour. Figure 5 summarizes the results: The comparison of the left and right figure
reveals that partitioning into a minimum number of 3-plexes is easier than in 2-plexes. This results comes
unexpectedly because computation times for solving the linear relaxation (see Figure 4) are opposed to this.
The explanation for this behavior is that on average optimality gaps for s = 3 are smaller than for s = 2.
Note that the large-scale instances which can be solved with a small integrality gap are those with average
vertex degree degavg = 25. These instances have a very clear community structure so that very good integer
solutions can be found quickly. We also see that for the other instances the larger gap results from missing
or inferior primal solutions.

Concluding, the branch-and-price algorithm for partitioning into a minimum number of s-plexes scales
reasonably well with acceptable precision.

7. Conclusions

Decomposing a graph into RCs is a computationally challenging family of problems that are generaliza-
tions of the classical VCP in the complement graph. We designed a unified framework based on branch-and-
price techniques for their solution. The column-generation pricing problems of our approach are maximum-
weight RCs. While for some types of RCs effective pricing algorithms were available from the literature, we
derived new and effective pricing algorithms for several other RCs, namely a strengthened MIP formulation
for γ-quasi-clique, a CB&B algorithm for s-club, and a modified version of RDS for hereditary RCs that
is able to handle connectivity and negative weights. For branching, we proposed different schemes based
on Ryan-Foster branching and/or a newly developed structure-preserving branching rule applicable to all
considered variants of RCs. In extensive computational results, we identified the preferred pricing algorithms
for the different RCs whenever there was more then one available. Moreover, a comparison of the branch-
ing schemes revealed that Ryan-Foster branching is superior although it is not structure-preserving for the
pricing problem. Overall, we showed that our exact framework is capable of solving to proven optimality
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Figure 5: Precision analysis, integer solutions using branch-and-price with a maximum computation time of 1 hour: (left) 2-plex
partitioning, (right) 3-plex partitioning

real-world instances with up to 300 vertices and it is able to effectively tackle randomly generated social
networks with up to 1000 vertices.

We can identify several lines of future research: For all variants, the pricing problem is a maximum-
weight RC problem which is NP -hard and also computationally challenging. Effective (meta)heuristics for
the solution of these problems are not available in the literature. The integration of such algorithms would
certainly accelerate the column-generation process and, as a consequence, the overall performance of the
proposed framework. Finally, the performance could also be improved by the design of new and effective
primal heuristic to determine a good-quality heuristic partitioning or covering of the vertex set with the
minimum number of relaxed cliques.
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Österg̊ard, P. R. (2002). A fast algorithm for the maximum clique problem. Discrete Applied Mathematics, 120(1-3), 197–207.
Pattillo, J., Youssef, N., and Butenko, S. (2013a). On clique relaxation models in network analysis. European Journal of

Operational Research, 226(1), 9–18.
Pattillo, J., Veremyev, A., Butenko, S., and Boginski, V. (2013b). On the maximum quasi-clique problem. Discrete Applied

Mathematics, 161(1–2), 244–257.
Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In A. Wren, editor, Computer Scheduling of

Public Transport: Urban Passenger Vehicle and Crew Scheduling, chapter 17, pages 269–280. Elsevier, North-Holland.
Shahinpour, S. and Butenko, S. (2013). Algorithms for the maximum k-club problem in graphs. Journal of Combinatorial

Optimization, 26(3), 520–554.
Trukhanov, S., Balasubramaniam, C., Balasundaram, B., and Butenko, S. (2013). Algorithms for detecting optimal hereditary

structures in graphs, with application to clique relaxations. Computational Optimization and Applications, 56(1), 113–130.
Vanderbeck, F. (2011). Branching in branch-and-price: a generic scheme. Mathematical Programming, 130(2), 249–294.
Veremyev, A. and Boginski, V. (2012). Identifying large robust network clusters via new compact formulations of maximum
k-club problems. European Journal of Operational Research, 218(2), 316–326.

Veremyev, A., Prokopyev, O. A., Butenko, S., and Pasiliao, E. L. (2015). Exact MIP-based approaches for finding maximum
quasi-cliques and dense subgraphs. Computational Optimization and Applications, 64(1), 177–214.
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