arXiv:1802.09639v4 [math.OC] 16 Jan 2019

Learning for Constrained Optimization:
Identifying Optimal Active Constraint Sets

Sidhant Misra!, Line Roald?, and Yeesian Ng3

lsidhant@lanl.gov
2roald@wisc.edu
3yeesian@mit.edu

January 18, 2019

Abstract

In many engineered systems, optimization is used for decision making at time-scales ranging
from real-time operation to long-term planning. This process often involves solving similar
optimization problems over and over again with slightly modified input parameters, often under
tight latency requirements. We consider the problem of using the information available through
this repeated solution process to directly learn a model of the optimal solution as a function
of the input parameters, thus reducing the need to solve computationally expensive large-scale
parametric programs in real time. Our proposed method is based on learning relevant sets of
active constraints, from which the optimal solution can be obtained efficiently. Using active sets
as features preserves information about the physics of the system, enables interpretable models,
accounts for relevant safety constraints, and is easy to represent and encode. However, the total
number of active sets is also very large, as it grows exponentially with system size. The key
contribution of this paper is a streaming algorithm that learns the relevant active sets from
training samples consisting of the input parameters and the corresponding optimal solution,
without any assumptions on the problem structure. The algorithm comes with theoretical
performance guarantees, and is known to converge fast for problem instances with a small
number of relevant active sets. It can thus be used to establish the practicability of the learning
method. Through extensive experiments on the Optimal Power Flow problem, we observe
that often only a few active sets are relevant in practice, suggesting that the active sets is the
appropriate level of abstraction for a learning algorithm to target.

1 Introduction

The use of optimization methods to improve economic efficiency and enhance system perfor-
mance is growing rapidly in engineering applications. Examples include the operation and
planning of infrastructure like electric power grids, gas transmission systems, water and heating
networks and transportation networks. Many of these systems operate in highly variable condi-
tions, due to developments such as renewable energy integration in power systems and uncertain
demand-side behaviour. To maintain safe and efficient operations, new optimized set-points are
obtained by resolving the optimization problems as system conditions (and corresponding sys-
tem parameters) change. The optimization problems exhibit two key features:

1. There exists a mathematical model of the physical system, including objective function
and technical constraints. For optimization purposes, this model is assumed to be fully
known except for those input parameters whose values are obtained in real-time, giving
rise to parametric programming problems.

Predicted
—| Prediction method [—— x optimal
solution

Input
parameters

(a) Predicting optimal solution from input parameters.

obtain candidate solution
for each active set

predict — 2 N\ Predicted

A2 - ick best .
Input » optimal —— ¥ ——— & —— PEEOS . x optimal
parameters . solution '
active set(s) / solution
\\‘ s . 4 N
active sets candidate solutions

(b) Predicting optimal solution using active sets as an intermediate step.

Figure 1: An illustration of our approach. Figure depicts the general approach for predicting
optimal solutions from input parameters. Figure [Ib] depicts our approach using active sets as an
intermediate step.

2. Constraint satisfaction corresponds to enforcing operational safety limits and adhering to
physical laws, and is of paramount importance.

As the optimization problems are solved over and over again in response to changing conditions,
we build a rich history of input parameters and their corresponding optimal solutions. However,
solving these parametric programs in real-time for realistically sized systems can be prohibitively
difficult, owing to the combination of complex physical laws and tight latency requirements. This
limits the frequency with which the system set-points can be updated.

The goal of this paper is to develop a framework that uses machine learning methods to enable
these parametric programs to be solved more efficiently. An intuitive approach to apply machine
learning would be to use data from existing solutions, and directly learn the optimal solution
from the input data, as illustrated in Figure Previous literature on representing the mapping
from parameters to optimal solutions in parametric programs often used reinforcement learning
(RL), where the underlying physical constraints of the problem are assumed to be unknown.
We refer the reader to |Lillicrap et al| (2015), Mnih et al| (2015), Van Hasselt et al| (2016)
for examples of this approach using neural networks. However, the neural networks mostly
provide only an approximate model of the physical constraints, which may result in solutions
that violate important system constraints. This has prompted a literature on “safety problems”
(Amodei et al|[2016, |Garcia and Ferndndez|2015). Approaches to mitigate those safety concerns
include modifying the exploration procedure by restricting it to a set of safe policies

and Abbeel|2012), re-projecting the decisions made by the neural network into a known set of
safe decisions (Achiam et al|2017), or include an outer safety loop which overrides potentially

unsafe decisions by the neural net . Nonetheless, it remains difficult to enforce
guarantees on behavioral constraints in the resulting policy (Moldovan and Abbeel[2012}[Lu et al.|
[2017, [Achiam et al|[2017) and verify that the resulting neural network policy provides a safe
policy (Huang et al.|[2017). Approaches that restrict or limit the neural net also may produce
sub-optimal solutions.

A main drawback of these existing learning methods when applied in the context of engi-
neered systems is hence their inability to enforce the constraints in the optimization accurately.
One important reason for this drawback is that the methods are unable to leverage pre-existing
knowledge about the mathematical form of the optimization problem. For best results, the

learning methods used should exploit any known structure of the optimization problem in con-
sideration.

In this paper, we take a different approach to learning the optimal solution. Instead of di-
rectly learning the mapping from the input data to the optimal solution, we introduce the active
set as an intermediate step in our learning procedure. To the best of our knowledge, this has
never been explored before in the literature. The optimal active set in an optimization problem
corresponds to the set of constraints that are satisfied with equality in the corresponding opti-
mal solution. Learning the optimal active set arguably constitute the right level of abstraction
for applying machine learning algorithm to optimization problems for several reasons:

(i) From an optimization perspective, the optimal active set in an optimization problem con-
stitutes the minimal information required to recover the optimal solution. All optimization
algorithms such as interior point methods, active set methods, and the simplex algorithm
can see significant speed-up from the knowledge of the active set at optimality. In some
cases, such as in linear programming (LP), the knowledge of the optimal active set can
simplify the problem to the extent that it can be solved analytically, or in a single iteration.

(ii) From a machine learning perspective, using the active sets as features allows us to reduce
the dimension of the learning task. Instead of learning a complex multi-dimensional,
continuous-valued mapping from the input parameters to the optimal solution, the problem
is converted to the simpler task of learning the mapping between the input parameters
and a finite number of active sets, allowing us to exploit the known mathematical model
of the system. Thus, in contrast to the standard approach in reinforcement learning, we
spend no effort on learning the mathematical model itself.

(iii) From an application perspective, active sets often correspond to meaningful operational
patterns, allowing for interpretable models that can assist humans in decision-making.
This point is critical in some engineering applications, where owing to the high stakes
involved (such as avoiding black out in power grid), the final decision making is frequently
performed by experienced system operators.

(iv) Our intuition tells us that human engineered systems often admits just a few modes of
operation. This is borne out in the numerical experiments that we ran on the optimal
power flow (OPF) problem across a wide variety of transmission networks, which translates
into only a small number of active sets being relevant in practice. This offers significant
advantage for a machine learning approach to learn these active sets from data.

Therefore, a key contribution of this paper is to show that learning the active set is an efficient
and viable approach in many practical problems, with low number of relevant active sets. To
this end, we propose a statistical learning approach which provides probabilistic guarantees
for out-of-sample performance, and characterizes the complexity of the task in terms of the
number of active sets required to produce an optimal solution with high probability. The
input to the algorithm is a set of training samples consisting of the input parameters and
the corresponding optimal solution, without any assumptions on the problem structure. The
algorithm is designed to terminate when a sufficient number of optimal active sets have been
discovered. The algorithm also allows for the user to set termination criteria that provides
theoretical performance guarantees. In the worst case, the algorithm may require an exponential
number of samples. However, we prove that it will terminate fast for so-called low-complexity
systems where the number of optimal active sets is small. The algorithm thus simultaneously
identifies the optimal active sets and establishes the practicability of the active-set-based learning
method, which hinges on only a modest number of optimal active sets. As soon as the relevant
active sets are identified, we can use them to predict the optimal solution, as outlined in Figure
Anl

A related, but distinct field of study is explicit Model Predictive Control (MPC), which was
developed to improve solution times of MPC problems in an online setting with time-varying
parameters. For parametric programs with a convex quadratic objective and linear constraints,
the parameter space can be partitioned into a number of regions (corresponding to different
optimal active sets), where the optimal solution in each region is an affine function of the input
parameters. Explicit MPC approaches generally involve an offline procedure to identify the full

set of regions and corresponding optimal solutions (Borrelli et al.|2001, [Bemporad et al.[2002alb)).
They can then be stored in sophisticated data-structures to reduce memory storage requirements
(Fuchs et al|[2010, |Geyer et al.||2008| [Jafargholi et al[[2014)). There are also advances in fast
search algorithms for the “point location problem” of identifying the corresponding active set for
a given state point based on binary search trees (Tgndel et al.|2003| |Johansen and Grancharova)
2003, Bayat et al.||2012) and other data structures (Bayat et al||2011, Herceg et al||2013|
Zhang et al||2016] |Zhang and Xiu/[2018). Further, Karg and Lucia (2018) propose to design
a deep neural net to specifically captures the piece-wise affine structure of the MPC solution
manifold, and provides theoretical bounds on the number of neurons and layers to enable an
exact representation of the solution.

An important difference to our approach is that explicit MPC searches through the full
parameter space, and is hence limited to low dimensional systems, whereas our method uses
information about the distribution over the input parameters to only investigate the practically
relevant parts of the input space. Further, our approach is more general — explicit MPC is focused
on solving convex quadratic programs, whereas the type of problems under consideration in this
paper belong to a more general class of problems, sometimes including non-convex or integer
constraints.

In the following we lay down the foundations for a statistical learning approach which pro-
vides probabilistic guarantees for out-of-sample performance, and characterizes the complexity
of the task in terms of the number of active sets required to produce an optimal solution with
high probability. Our main contributions in this paper are as follows:

(i) Establishing active sets as a natural and effective means to learn solutions to general para-
metric optimization problems. To the best of our knowledge, this has never been explored before
in the literature.

(ii) Developing a streaming algorithm termed DiscoverMass with rigorous performance guar-
antees to discover the collection of relevant active sets, without any a priori assumptions on
problem structure. The algorithm serves a dual purpose, as it both learns the relevant active
sets and provides evidence of whether the suggested active-set-based learning method is appli-
cable to a given problem instance.

(iii) Establishing the viability of the active-set approach on a practical problem. We employ Dis-
coverMass on a set of Optimal Power Flow benchmarks representative of optimization problems
solved in operation of electric transmission grids to demonstrate that the number of relevant
active sets is indeed small and learning them is highly efficient in terms of the number of samples
required.

We emphasize that this paper does not provide a full end-to-end learning framework based on
learning the active set. While we provide examples for how the discovered collection of active sets
can be used to recover the optimal solution for a new realization of the input parameters using
an ensemble policy or classification, the development of those frameworks will be considered in
future work. In this paper, we lay the foundation for this future work by showing that methods
based on learning the active sets are viable for practical problems.

The remainder of the paper is organized as follows. We first describe the main idea behind
learning active sets in Section We then develop a learning algorithm to identify a collection of
active sets from training samples in Section [3|and establish theoretical performance guarantees.
We demonstrate the effectiveness of our method using an application to power systems control
in Section[5] Section [f] concludes the paper.

2 Active Set Learning for Optimization

The aim of this paper is to learn decision policies 2*(w) which returns the optimal solution x*
for parametric programs of the form

z*(w) € argmin f(z,w) (1)
zeX(w)

where x denotes the decision variables, w represent the uncertain input parameters, and

X(w) = {z € R": g(z,0) <0 Vj € [m]} (2)

defines the set of feasible solutions, and f,g1,...,gm are functions in x for all w. We restrict
ourselves to a set of parameters w € €1, for which the optimization problem is actually feasible:

Q = {w: X(w) #0}. (3)

For any given solution z € X(w), we define the active set corresponding to z as the set of
constraints A that are binding at . For a given parameter realization w, we define the optimal
active set A*(w) as the active set at the optimal solution z*(w) EI
If we know the optimal set A* for a given w € 2, we can solve the following optimization
problem
Ty (w) € argmin f(z,w) (4)
zeX g* (w)

based on the reduced set of constraints A*
Xar (@) = {2 € R™ 5 gyla,w) <O V)€ A} (5)

The solution to will be feasible and optimal for the original problem , but is easier to
obtain since we typically have that | A*| < m. If we have a method to map the uncertain
parameters w to the corresponding optimal active set A*, we are thus able to obtain a the
optimal solution efficiently.

Consider the case where we draw a new sample w and do not know the optimal active set
A* but have a collection of possible candidates A, ..., Anx. Then, it is possible to obtain the
optimal solution by solving the reduced problem for each active set and check the resulting
solutions for feasibility. Since each reduced problem is a relaxation of , the solutions will
either be optimal or infeasible for the original problem.

2.1 Learning the collection of relevant active sets

While the collection of all possible active sets is finite, it is also exponential in the problem size,
making it a potentially complex learning task with high sample complexity. However, in many
applications such as infrastructure systems that were engineered to accommodate particular
modes of operation, only a few active sets are relevant in practice. The learning task at hand
thus becomes to identify those important active sets.

In our approach, the important active sets are the active sets that have the highest probability
of being optimal, under a given probability distribution over the uncertain input parameters w.
Our procedure to discover the active sets is illustrated in Figure[2] We first draw i.i.d. training
samples w; from the probability distribution over w. For each sample, we solve the optimization
problem to obtain the corresponding optimal solution and active set A;, which is now marked
as an observed active set (in color in Figure . The collection of all active sets Az, ..., An that
were observed during the first w;, ...,wy samples form the set of observed active sets. The still
unobserved active sets, marked in grey in Figure [2] are the active sets which were not optimal
for any of our i.i.d. samples w;.

2.2 From active sets to the optimal solution

The knowledge of the relevant active sets can be used to more efficiently obtain the optimal
solution. We describe two possible approaches.

Ensemble policy The ensemble policy obtains the optimal solution by solving the reduced
problem in parallel for each relevant active set A, and then verifying the resulting solution
for feasibility in . This method is described in detail in Ng et al.| (2018]), and illustrated in

Figure

I'When there are multiple optimal solutions, the degeneracy can be handled by using any consistent tie-breaking
rule, such that the same realization w will always be mapped to the same optimal active set.

Collection of
° observed active sets
o
. L[]
.o — (7 2
3 A3 Oy ={A", A% ..., }
o o
B
w1
--- level sets of probability distribution all possible active sets
® samples of input parameters color: discovered active sets
(colors encode corresponding active set) grey: undiscovered active sets

Figure 2: Learning procedure. Starting from samples (left), we discover the optimal active sets
among the set of all possible active sets (middle). This provides a collection of important active
sets, corresponding to those that are likely to be optimal (right).

w;
new i . Lo *
e o . COHeCt'mT of x; Optimal solution if A} € Oy,
sample w; important active sets
e S — >
Oy = {A", A ..., } ximf Infeasible solution if A] & Oy
w1

Figure 3: Prediction procedure. For a new realization w (left), we evaluate a candidate solution
for one or more observed actives sets (middle). If the optimal active set for w corresponds to one
of the observed actives sets, we recover the true optimal solution. If not, we will may end with an
infeasible solution (right).

Classification This approach is based on training a classifier to learn the mapping from the
parameter w to the corresponding optimal active set. The number of classes in this classifier is
same as the number of relevant active sets. Once the optimal active set is obtained, the optimal
solution can be obtained by solving the reduced optimization problem in .

Both the above approaches are simpler and more efficient when the number of potential
active sets is small. In this paper we utilize the ensemble policy in our experiments to test the
performance of our method, and leave classification as a topic for future research.

We envision any learning approach based on learning active sets to rely on combining a new
realization w with one or more observed active sets, as illustrated in Figure [3] If the optimal
active set corresponds to one of the observed active sets, then the optimal solution lies within
the set of optimal solutions to the corresponding collection of relaxed problems . On the other
hand, if the optimal active set of the new sample was previously unobserved, the solutions to the
all relaxed problems with A;, ..., Ay may be infeasible. Since this is an undesirable outcome,
we would like to bound the probability of these outcomes. A main contribution of this paper is to
provide a learning algorithm which guarantees that the probability of encountering a previously
unobserved optimal active set falls below a pre-specified level. We develop a streaming algorithm
which draws new samples and observes new optimal active sets until the desired performance
level can be guaranteed. This helps us distinguish between cases where we have discovered
active sets which cover a smaller or larger portion of the feasible space, as illustrated in Figure
[The algorithm is formalized in Section

---- level sets of unknown probability distribution for the input parameters

(a) The samples can come from different probability distributions.

w;, ¢ w- 4

> ()4 > (g

DG Parameter space corresponding G Parameter space corresponding
[to discovered active sets to undiscovered active set

(b) Observed active sets can cover a larger or smaller part of the parameter space.

Figure 4: Our method makes no assumptions about the structure of the problem or the probability
distribution we sample from, and it is hence very general. Figure [da] shows how the samples can
arise from different probability distributions. Figure shows how the active sets we discovered
may cover a smaller or larger region of the parameter space. In general, we do not know whether
what we have observed so far corresponds to a small region (left) or a large region (right), and how
much of the probability mass is included in the discovered areas. Therefore, an essential part of our
learning algorithm is to identify when we have discovered “enough” active sets, i.e. active sets that
cover a sufficient portion of the probability mass in parameter space. Note that the active sets may
have an arbitrary shape in general, as we make no assumptions on the problem structure.

3 Algorithm to learn relevant active sets

In this section, we describe a streaming algorithm that enables us to learn a collection of active
sets whose combined probability mass exceeds a user-defined safety level. The algorithm draws
random samples of the uncertain input parameters w; from the distribution Py (.), solves the
optimization problem to obtain the corresponding active set A; and uses a stopping criterion
to ensure that sufficiently many active sets have been discovered. We provide details of the
algorithm, and theoretical guarantees on its performance below.

Let B denote the finite set of all possible active sets, which is exponential in the number of
constraints in the problem. We define observed and unobserved active sets in the following way.

Definition 1. Let wi,...,wn be M i.i.d. samples drawn from the uncertainty distribution and
A1, ..., An denote the optimal active sets corresponding to each w;. We call Opn = Uij\il{Ai}

the set of observed active sets, and Uy = B\ O the set of unobserved active sets.

In Figure Owum and Ups correspond to the colored and white regions respectively. The
streaming algorithm iteratively increases the number of samples M until the observed set Onr
contains most of the important active sets. A crucial aspect of the algorithm is that knowledge of
neither the shape and number of the active sets (colored regions) nor the number of samples M
is required a-priori, but is decided on-the-fly. The algorithm therefore is guaranteed to converge
for any system if enough samples are available, but can also be stopped at any time before
termination with a lower safety guarantee.

In the following, we use the notion that the importance of an active set or a collection of
active sets corresponds to the mass contained in it.

Definition 2. The mass of an active set is defined as the probability that it is optimal for
under the distribution Py (.) on w. For A € B,

m(A) = Pu(A = A" (w)) (6)

For any subset S C B, we define the mass of S as n(S) =3 4.5 7(A).

After drawing M samples and observing a collection of active sets Opr, we compute the
rate of discovery. The rate of discovery quantifies the fraction of samples that correspond to
observing an active set that was not observed among the first M samples, and is formally defined
below.

Definition 3. Let W be a positive integer denoting the window size. Let wi,...,wpm+w be
M+ W id.d. samples drawn from the uncertainty distribution and let A; denote the optimal
active set for w;. We denote by X, the random variable that encodes whether a “new active
set”, i.e., an active set not observed within the first M samples, was observed in the (M + i)t
sample, i.e.

(7)

0, otherwise.

X, — {17 if Avips € {AF U U{AM Y,
Then the rate of discovery over the window of size W is given by Ryv,w and is defined as

LW
Ruw = W Z Xi. (8)
i=1

The rate of discovery Ras,w is directly related to the mass of the undiscovered set Uns of
active sets. Intuitively, if we have already discovered the active sets that contain most of the
mass, then the rate of discovery is expected to be low since most of the time we are likely to
observe one of the active sets we have already observed so far. The following theorem makes
this notion rigorous.

Theorem 1. Let {w;}{2; be a sequence of i.i.d. observations and define the unobserved set and
rate of discovery as in Definition [and[J respectively. Then the following statements hold. Let
the probability mass in the unobserved set be denoted by w(Unr) and let the window size be such
that

W = Wa > cmax{log M, log M }. (9)

Then we can bound the probability mass in the undiscovered set by

»

o] 1 _

The proof is deferred to Section Theorem [1] forms the basis of the stopping criterion of
our streaming algorithm. In the following subsection, we present this algorithm and provide
rigorous guarantees on its performance based on the rate of discovery criterion.

3.1 Streaming Algorithm for Learning Important Active Sets

We present the following algorithm called DiscoverMass which takes in as input parameters
the quantities o, €,6 > 0. Here, a represents the limit on the undiscovered mass and requires
that the algorithm returns a set of active sets of mass at least a. The quantity e represents the
difference between the undiscovered mass and the rate of discovery, and 1— ¢ represents the con-
fidence. We can also choose the hyperparameter v. We have explicitly left the dependence on all
the parameters in the algorithm description so that interested readers can choose the values that
may be suitable for their application. We specify the concrete set of chosen values along with a
brief analysis of the effect of tuning the hyperparameters in the numerical experiment section.

Data: «a,€,6,y

1

1

_ 2 — Y Y=,
Compute ¢ = 2y/e* and M =1+ (5“,1)) ;

Initialize M = 1 and O = 0);
repeat
Calculate window size Wy = cmax{log M,log M} ;
Draw 1 + Wy — Was—1 additional samples from P, to obtain a total of M + W, samples ;
Solve optimization problem for each new sample;
Add the newly observed active sets to O ;
Compute R, w,, as given in ;
Update M = M+1;
until Ryw,, < a—¢
return O, M, Ry w,,

Algorithm 1: DiscoverMass
DiscoverMass terminates with a set of observed active sets O that has at least 1 — « of the
mass with high probability. The following theorem guarantees that with the stopping criterion
described above, DiscoverMass indeed succeeds in meeting the requirements imposed by the
input parameters.

Theorem 2. If the algorithm DiscoverMass is employed with input parameters a,e€,d,y, then
with probability at least 1 — 0 the algorithm will terminate having discovered active sets with
mass at least 7(O) > 1 — a.

The proof of Theorem [2| can be found in Section A key advantage of DiscoverMass
supported by Theorem [2| is that it makes absolutely no a priori assumption regarding the
underlying distribution of active sets in the system. This makes DiscoverMass a rigorous tool
to quantify the unknown underlying distribution.

3.2 Low-complexity systems

Although Theorem [2] guarantees that the algorithm DiscoverMass will almost always succeed
in finding the desired amount of mass, it gives no guarantees on the number of steps M the
algorithm needs to discover this mass. In fact, the number of steps is highly dependent on the
properties of the system and can vary significantly across systems. For example in a system
where there are 2V active sets all of which are equally probable, i.e. P, (A;) = 27" for all ¢ €
[27], then it is clear that discovering (1—a) fraction of the mass requires at least M > (1 —a)2V
samples. However, for some systems, which we refer to as low-complexity systems, it is possible
to discover a large fraction of the mass quickly. Fortunately, many practical systems fall within
this category. In Section [5] we have found that many practical systems can be described as
low-complexity as it is possible to discover a large fraction of the mass quickly. We quantify this
intuition with the following definition.

Definition 4. We say that a system is a low-complexity system with parameters oo and
Ky if there are at most Ko active sets that contain at least 1 — o fraction of the mass. More
precisely, there exists active sets A, ... ,AiKO such that Z;iol m (Aij) >1—ap.

The next theorem guarantees that for low-complexity systems the algorithm terminates
within a few iterations.

Theorem 3. Suppose that we run the algorithm DiscoverMass(a,€,d,7) on a low-complezity
system with parameters (co, Ko) with a > ao. Then with probability at least 1 — § — do the
algorithm terminates in less iterations than M = a%ao (Kolog2 +log1/do).

The proof of Theorem [3] is found in the next section. From Theorem [3] we see that the
sample complexity of discovering active sets with sufficient mass for low-complexity systems
scales at most linearly with the number of underlying important active sets Ko.

4 Proofs

In this section, we provide the proofs of the three theorems stated in Section [3]

4.1 Proof of Theorem [1]

We first prove part (a). For any M we can bound the probability that the rate of discovery is
far from the mass of the unobserved set by

P(w(Un) — Rar,w > €)
= ZP(W(UM) —Rmw > €| Un = w)P(Un = u)

Wy,

_Z[[”(w(u)—ZZWIMXZ >6|L{M—u> PUnr = u), (11)

where the random variables X; are defined in and conditioned on Up; = w are i.i.d. Bernoulli
random variables with mean 7(u). Using standard large deviation inequalities, we can bound
the probability in as

P(r(Unm) — Ruw > €) < Ze_WM€2/2]I”(UM =u)
= e WMe/2, (12)
Therefore,

PEM>1 st w(Um)— Rmw >¢€)

< Z P(r(Unt) — Ru,w > €)

M=1
oo
+ > P(r(Un) — Rarw > €) (13)
M=M
M o
< Z o—Clog Me /2_|_ Z e—clogM62/2 (14)
M=1 M=M
- 1 ~ 1
< + < .
Mcffl MZ: et T y—1(M-1)t

10

4.2 Proof of Theorem 2

Let E be the event that the algorithm terminates after having discovered smaller than € fraction
of the mass. Then

PE)<PEM >1|Ruw <e—067Un) > ¢€) (15)
<P@EM >1|7Um) — Ruw > €) (16)
(a
<) o 1 @ d, (17)

y=1(M -1t

where the last inequality (a) follows from Theorem (1} and (b) follows from the value of M in
the initialization step in DiscoverMass.

4.3 Proof of Theorem [3]

Let 1" = {Ai;,..., Ay } denote the set of Ko active sets defined in Definition {4f that contain
at least 1 — ap of the mass. For any M > 1 recall that Uy denotes the set of unobserved active
sets as in Definition We define the sets Unr,. = Uy N I* and Unrp, = Un N I* where I*
denotes the complement of the ensemble I, i.e., the set of active sets that are not a part of I*.
It follows that Uy = Un,. U, and m(Un) = T(Untps) + TI'(Z/{MI—*). We compute

P(r(Om) < 1—a)=P(rlUn) > o)
=P(rUnrp) + 7Uniz.) > @)
< P(r(Unspn) > o — o)

= Z P(Z’{MI* = ’LL)]]-{W(u)>a—a0}

uCI*
<> (A—(a—a)™
uel*
(a)
S2K€7(O¢70¢O)M 2 8o, (18)

where (a) follows from the choice of M in the theorem. The proof follows by combining
with Theorem [l

5 Numerical results

We test our learning framework on the DC Optimal Power Flow (OPF) problem, an optimiza-
tion problem widely used in electricity market clearing as well as operation and planning of
electric transmission grids. For real time operation, the reaction of generators to fluctuations in
renewable energy must be calculated reliably within a short period of time, so it is an example
with high practical relevance that is subject to stringent limits on computational time. A simple
version of the DC OPF can be stated as follows

p(w) € argmin ¢’ p (19a)
peRn

st.e' (p—d+w)=0 (19b)

P <p < p™ (190

™ < M(Hp —d 4 w) < f™ (19d)

Here, decisions p € R™ are made on the active power generation at each generator. The aim is
to provide power at minimum generation cost ¢’ p to a set of loads d € R? with random real-
time variations w. The solution is subject to a total power balance constraint , as well as
limits both on the minimum and maximum power generation p™®, p™®* € R™ at each generator
(19¢), and the minimum and maximum admissible flow f™® ™% ¢ R™ on transmission lines
. The topology of the network is encoded in the matrix H € R”*"™ mapping the power

11

Normal distribution Uniform distribution

Kum M War Ruw P(p") Kwm M W Ruw P(p")
Low-Complexity
case3_lmbd 1 1 13’259 0.0 1.0 1 1 13’259 0.0 1.0
caseb_pjm 1 1 13’259 0.0 1.0 1 1 13’259 0.0 1.0
casel4_ieee 1 1 13’259 0.0 1.0 1 1 13’259 0.0 1.0
case30_ieee 1 1 13’259 0.0 1.0 1 1 13’259 0.0 1.0
case39_epri 2 2 13’259 0.0 1.0 2 2 13’259 0.0008 0.9998
casell8_ieee 2 33 13’259 0.0 1.0 2 4 13’259 0.0019 0.9984
caseb7_ieee 2 2 13’259 0.0003 0.9997 3 46 13’259 0.0 1.0
casel888_rte 3 [13’259 0.0 1.0 3 10 13’259 0.0 1.0
casel951_rte 5 47 13’259 0.0069 0.9943 11 63 13’259 0.0084 0.9901
casel62_ieee_dtc 7 91 13’259 0.0054 0.9925 17 192 13’259 0.0085 0.9926
case24_ieee_rts 10 1456 18’209 0.0 1.0 11 64 13’259 0.0047 0.9941
High-Complexity
caseT3_ieee_rts 19 1258 17'844 0.0087 0.9931 130 22’000 24’977 0.0136 -
case300-ieee 24 1257 17'842 0.0073 0.9919 293 9095 22’789 0.0099 0.9897
case200_pserc 174 4649 21’112 0.0099 0.9909 236 6741 22’040 0.0099 0.9901
case240_pserc 2993 22’000 24’997 0.0795 - 2993 22000 24’997 0.0795 -

Table 1: Outcome of the learning algorithm for different systems for normal and uniformly dis-
tributed parameters, sorted by the number of discovered active sets. The number in the case name
indicates the number of buses in the system. Kj;: Number of active sets. M: Number of samples
until termination. Wj,: Window size. R w: Rate of discovery. P(p*): Probability of obtaining
the optimal solution.

from each generator to their corresponding bus, and the matrix of power transfer distribution
factors M € R™>? (Christie et al.|[2000). Here e is the vector of ones.

5.1 Test set-up

We test our algorithm by running extensive simulations across a variety of networks (Li and
[Bo|[2010} [Lesieutre et al|2011} [Grigg et al|[1999, [Birchfield et al.|2017 [Price and Goodin|[2011)
from the IEEE PES PGLib-OPF v17.08 benchmark library (IEEE PES Task Force|[2017). We
report general results for 15 different test cases, varying in size from 3 to 1951 buses.

For each system, we consider two different distributions for the uncertain load deviations w.
First, we assume a multivariate normal distribution, where w is defined as random vector of
independent, zero mean variables with standard deviations ¢ = 0.03d and zero correlation
between loads. Second, we assume that each entry w; follows a wuniform distribution with
support w; € [—30,+30] = [-0.09d,0.09d]. The uniform distribution is intentionally designed
to spread the probability mass more evenly across a larger region, thus enabling us to compare
cases with a different number of relevant active sets and different probability mass in each active
set. Note that our method is able to handle any distribution, as long as a sufficient number of
training samples is available.

The algorithm DiscoverMass has four input parameters, a, J, €, 7. We set the maximum mass
of the undiscovered bases o = 0.05 and the confidence level § = 0.01. The remaining parameters
are set to € = 0.04 and v = 2. Note that € and y are hyperparameters that can be tuned, leading
to different minimum window size and M. For details about the choice of parameters and their
effects, we refer the reader to supplementary material. We run the algorithm until termination,
or until M = 22'000. The procedure is implemented in Julia v0.6 (Bezanson et al|[2012), using
JuMP v0.17 (Dunning et al.|[2017)), PowerModels.jl v0.5 (Coffrin et al.[2017) and OPFRecourse.jl

(Ng et al|[2018).

12

5.2 Parameter choices in experiments

Varying the hyper-parameter -y results in different values for the window size W) and minimum
M, while changing e influences both the stopping criterion Rar,w and the size of the window
W. We note that there is a trade-off in the choice of both of those parameters. If v is chosen
such that M is low, the initial window size is smaller, but will rapidly start increasing as soon
as M > M. For e a lower value implies a steep increase in the window size, but also reduces the
requirements on the rate of discovery.

The difference between the probability mass of the undiscovered bases and the rate of dis-
covery Ry,w in the window W are set to € = 0.04, while we choose the hyperparameter
v = 2. Together, this implies the stopping criterion Ry,w < 0.01. The minimum window size
Wi > 13/259 samples, and remains constant as long as M < M = 201 samples. We run the
algorithm until termination, or until M = 22’000. To assess how accurately we capture the
probability of the undiscovered active sets, we run an out-of-sample test with 20’000 samples.

5.3 Numerical results

Table [1] lists the simulation results for the 15 different networks with sizes ranging from 3 to
1951 nodes. For each network, we report the number of samples to termination M, the number
of active sets K discovered within the first M samples and the window size Wy required
to guarantee a confidence of @ < 0.05. In addition, we list the rate of discovery Rarw at
termination. All results are included for both the normal and uniform distributed parameters,
and the system is sorted based on the number of active sets. Note that the choice of input
parameters leads to a minimum window size Wi > 13/259 samples, and remains constant as
long as M < M = 201 samples.

Low-complexity systems We observe that for most systems, the learning algorithm per-
forms well. Most systems have a relatively low number of relevant active sets (< 10), and
terminate after less than 200 samples while the window size is still War = Wasr min = 13/259.
System size is not a determining factor for the number of relevant active sets, with even the
largest systems casel888_rte and casel951_rte exhibiting a low number of relevant active sets.
This validates the intuition that many engineered systems (at least arising in the power sys-
tems benchmarks we’ve looked at) can be considered low-complezity as defined in Section
Comparing M and K in Table |1} we see a strong correlation between the number of active
sets with majority of the mass and the samples till termination M. This is in agreement with
the sample complexity derived in Theorem [3] The fact that most systems are low-complexity
suggests that our proposed method for parameterizing and learning an optimal policy based on
active sets might be effective in a wide variety of settings arising in engineered systems.

‘We observe that the primary factor affecting the number of samples till termination is not the
number of important active sets, but the existence of active sets with small but not insignificant
probability mass (typically in the range 0.001-0.01). Due to their low probability mass, those ac-
tive sets require a large number of samples for discovery, while the cumulative probability of the
still undiscovered active sets is still high enough to exceed the stopping criterion Ryr,w < 0.01.

High-complexity systems The outliers in this analysis are cases such as case24_ieee_rts,
case73_ieee_rts, case200_pserc and case240_pserc. For case73_ieee_rts (uniform) and case240_pserc
(normal and uniform), the algorithm does not terminate until we reach the upper limit of
M = 22'000. For case240_pserc, the rate of discovery remains above Ras,w > 0.07 even after
the discovery of 2993 active sets. We believe that this performance deficiency is due to atypi-
cal system characteristics. The two systems case200_pserc and case240_pserc, are the result of
power grid models that have been subjected to network reduction, hence altering the proper-
ties of the systems relative to the other, more typical systems. Similarly, case24_ieee_rts and
case73_ieee_rts are special in that they have a large number of generators relative to the num-
ber of nodes, and case73_iecee_rts consists of three identical areas. Due to the nature of their
construction, these instances are useful adversarial systems for analyzing the performance of
different learning algorithms.

13

Influence of parameter distribution We observe that the uniform distribution typically
discovers a larger number of active sets compared to the normal distribution and requires more
samples M before termination. With the probability mass spread more evenly across the proba-
bility space, there are a larger number of active sets with significant probability mass, and fewer
active sets with high probability mass (for the multivariate normal, there is a concentration of
mass in active sets closer to the forecasted value). However, for systems like case24_ieee_rts, the
uniform distribution appears to encourage earlier termination due to a faster exploration rate.

Out of sample prediction performance The learning algorithm is compared against
a full optimization approach where for each realization of w the problem is solved using
standard optimization methods. This approach has higher computational requirements, but
produces optimal solutions with probability one. Our learning based method has better compu-
tational efficiency but has a non-zero probability of failure, corresponding to returning infeasible
solutions. To assess the performance of our learning algorithm we evaluated the predictions gen-
erated by the ensemble policy (where the solution is evaluated for all discovered active sets, then
checked for feasibility) on 20’000 test samples.

The results are shown in Table [I] which shows the probability of failure. We see that this value
is consistently lower than the mass of the undiscovered set a provided as input to the Discov-
erMass algorithm. Intuitively, this is to be expected, since Theorem [I] strives to provide upper
bounds on the mass of the undiscovered set that are universal in nature and are guaranteed
to work for all almost any continuous optimization problem and various kinds of uncertainty,
without pre-specifying the number of samples M.

6 Conclusion

We present an approach to learn the mapping from a set of uncertain input parameters to the
optimal solution for parametric programs. Our target application is engineered systems, where
optimization problems used in operational decision making are typically solved repeatedly, but
with varying input parameters. Our approach is based on learning the active sets of constraints
at the optimal solution. By relying on active sets, we are able to decompose the learning task
into a simpler classification task, and at the same time exploiting the knowledge of the exact
mathematical model of the optimization problem, and enabling tight constraint enforcement.
The viability of learning active sets and the performance of our approach is validated using a
series of experiments based on benchmark optimization problem used in electric grid operation.
The prediction step in this paper used the so-called ensemble policy. In future work we will
explore classification and ranking algorithms to learn the mapping between the realization of
the uncertain parameter onto the optimal active set. Further topics of exploration include
application to long-term planning and multi-stage optimization problems.

References

Achiam J, Held D, Tamar A, Abbeel P (2017) Constrained policy optimization. International
Conference on Machine Learning, 22-31.

Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, Mané D (2016) Concrete problems
in ai safety. arXiv preprint arXiv:1606.06565 .

Bayat F, Johansen TA, Jalali AA (2011) Using hash tables to manage the time-storage complex-
ity in a point location problem: Application to explicit model predictive control. Automatica
47(3):571-577.

Bayat F, Johansen TA, Jalali AA (2012) Flexible piecewise function evaluation methods based
on truncated binary search trees and lattice representation in explicit mpc. IEEE Transactions
on Control Systems Technology 20(3):632—640.

Bemporad A, Borrelli F, Morari M (2002a) Model predictive control based on linear
Programming—The explicit solution. IEEE Trans. Automat. Contr. 47(12).

14

Bemporad A, Morari M, Dua V, Pistikopoulos EN (2002b) The explicit linear quadratic regu-
lator for constrained systems. Automatica 38(1):3-20.

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A Fast Dynamic Language for
Technical Computing. CoRR abs/1209.5145, URL https://arxiv.org/abs/1209.5145|

Birchfield AB, Xu T, Gegner KM, Shetye KS, Overbye TJ (2017) Grid structural characteristics
as validation criteria for synthetic networks. IEEE Trans. Power Systems 32(4):3258—-3265.

Borrelli L, Baotic T, Bemporad A, Morari T (2001) Efficient on-line computation of constrained
optimal control. Decision and Control, 2001. Proceedings of the 40th IEEE Conference on,
volume 2, 11871192 (IEEE).

Christie RD, Wollenberg BF, Wangensteen I (2000) Transmission management in the deregu-
lated environment. Proceedings of the IEEE 88(2):170-195.

Coffrin C, Bent R, Sundar K, Ng Y, Lubin M (2017) Powermodels.jl: An open-source framework
for exploring power flow formulations. URL http://arxiv.org/abs/1711.01728.

Dunning I, Huchette J, Lubin M (2017) JuMP: A modeling language for mathematical opti-
mization. STAM Review 59(2):295-320, URL http://dx.doi.org/10.1137/15M1020575.

Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ (2017) A gen-
eral safety framework for learning-based control in uncertain robotic systems. arXiv preprint
arXiw:1705.01292 .

Fuchs AN, Jones C, Morari M (2010) Optimized decision trees for point location in polytopic
data sets-application to explicit mpc. American Control Conference (ACC), 2010, 55075512
(IEEE).

Garcia J, Ferndndez F (2015) A comprehensive survey on safe reinforcement learning. Journal
of Machine Learning Research 16(1):1437-1480.

Geyer T, Torrisi FD, Morari M (2008) Optimal complexity reduction of polyhedral piecewise
affine systems. Automatica 44(7):1728-1740.

Grigg C, Wong P, Albrecht P, Allan R, Bhavaraju M, Billinton R, Chen Q, Fong C, Haddad
S, Kuruganty S, et al. (1999) The IEEE Reliability Test System-1996. A report prepared by
the reliability test system task force of the application of probability methods subcommittee.
IEEE Trans. Power Systems 14(3):1010-1020.

Herceg M, Mariethoz S, Morari M (2013) Evaluation of piecewise affine control law via graph
traversal. Control Conference (ECC), 2013 European, 3083-3088 (IEEE).

Huang X, Kwiatkowska M, Wang S, Wu M (2017) Safety verification of deep neural networks.
International Conference on Computer Aided Verification, 3-29 (Springer).

IEEE PES Task Force (2017) PGLib Optimal Power Flow Benchmarks. Published online at
https://github.com/power-grid-1ib/pglib-opf} accessed: October 4, 2017.

Jafargholi M, Peyrl H, Zanarini A, Herceg M, Mariéthoz S (2014) Accelerating space traversal
methods for explicit model predictive control via space partitioning trees. Control Conference
(ECC), 2014 European, 103-108 (IEEE).

Johansen TA, Grancharova A (2003) Approximate explicit constrained linear model predictive
control via orthogonal search tree. IEEE Transactions on Automatic Control 48(5):810-815.

Karg B, Lucia S (2018) Efficient representation and approximation of model predictive control
laws via deep learning. arXiv preprint arXiv:1806.10644 .

Lesieutre BC, Molzahn DK, Borden AR, DeMarco CL (2011) Examining the limits of the

application of semidefinite programming to power flow problems. 49th Allerton Conference,
1492-1499 (IEEE).

Li F, Bo R (2010) Small test systems for power system economic studies. IEEE PES General
Meeting, 1-4 (IEEE).

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Con-
tinuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 .

Lu T, Zinkevich M, Boutilier C, Roy B, Schuurmans D (2017) Safe exploration for identifying
linear systems via robust optimization. arXiv preprint arXiv:1711.11165 .

15

https://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1711.01728
http://dx.doi.org/10.1137/15M1020575
https://github.com/power-grid-lib/pglib-opf

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller
M, Fidjeland AK, Ostrovski G, et al. (2015) Human-level control through deep reinforcement
learning. Nature 518(7540):529.

Moldovan TM, Abbeel P (2012) Safe exploration in markov decision processes. Proceedings of the
29th International Coference on International Conference on Machine Learning, 1451-1458
(Omnipress).

Ng YS, Misra S, Roald LA, Backhaus S (2018) Statistical learning for DC optimal power flow.

Price JE, Goodin J (2011) Reduced network modeling of WECC as a market design prototype.
IEEE PES General Meeting, 1-6 (IEEE).

Tgndel P, Johansen TA, Bemporad A (2003) Evaluation of piecewise affine control via binary
search tree. Automatica 39(5):945-950.

Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double g-learning.
AAAI volume 16, 2094-2100.

Zhang J, Xiu X (2018) Kd tree based approach for point location problem in explicit model
predictive control. Journal of the Franklin Institute .

Zhang J, Xiu X, Xie Z, Hu B (2016) Using a two-level structure to manage the point location
problem in explicit model predictive control. Asian Journal of Control 18(3):1075-1086.

16

	1 Introduction
	2 Active Set Learning for Optimization
	2.1 Learning the collection of relevant active sets
	2.2 From active sets to the optimal solution

	3 Algorithm to learn relevant active sets
	3.1 Streaming Algorithm for Learning Important Active Sets
	3.2 Low-complexity systems

	4 Proofs
	4.1 Proof of Theorem 1
	4.2 Proof of Theorem 2
	4.3 Proof of Theorem 3

	5 Numerical results
	5.1 Test set-up
	5.2 Parameter choices in experiments
	5.3 Numerical results

	6 Conclusion

