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Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty
where the probability distribution of a random parameter is unknown while its partial information (e.g.,
statistical properties) is available. In this framework, the unknown probability distribution is assumed to
lie in an ambiguity set consisting of all distributions that are compatible with the available partial informa-
tion. Although DRO bridges the gap between stochastic programming and robust optimization, one of its
limitations is that its models for large-scale problems can be significantly difficult to solve, especially when
the uncertainty is of high dimension. In this paper, we propose computationally efficient inner and outer
approximations for DRO problems under a piece-wise linear objective function and with a moment-based
ambiguity set and a combined ambiguity set including Wasserstein distance and moment information. In
these approximations, we split a random vector into smaller pieces, leading to smaller matrix constraints. In
addition, we use principal component analysis to shrink uncertainty space dimensionality. We quantify the
quality of the developed approximations by deriving theoretical bounds on their optimality gap. We display
the practical applicability of the proposed approximations in a production-transportation problem and a
multi-product newsvendor problem. The results demonstrate that these approximations dramatically reduce
the computational time while maintaining high solution quality. The approximations also help construct an
interval that is tight for most cases and includes the (unknown) optimal value for a large-scale DRO problem,

which usually cannot be solved to optimality (or even feasibility in most cases).
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1. Introduction
Uncertainty poses significant challenge to decision making in many real-world problems. To over-
come such challenge, advanced optimization approaches have been developed to model uncertainty

from various perspectives. Among them, stochastic programming (SP), robust optimization (RO),



and distributionally robust optimization (DRO) prevail nowadays. SP assumes that a decision
maker has complete knowledge about the probability distribution of the uncertain parameters,
whereas the distribution may not be precisely estimated due to limited data availability (Shapiro
et al. 2009). RO assumes the uncertain parameters run in a given set, and it hedges against the
worst-case possible scenario within this set, leading to potentially conservative decisions (Ben-Tal
and Nemirovski 1998, Bertsimas and Sim 2004). Scarf (1958) introduced the first DRO model by
relaxing the complete-knowledge assumption in SP and reducing the conservativeness of RO. DRO
models uncertainty through a distributional ambiguity set that specifies available information of
the probability distribution of the uncertain parameters. In addition, DRO searches for an optimal
solution that concerns the worst-case distribution in the ambiguity set. Thus, the performance of
DRO is less conservative than RO; see Rahimian and Mehrotra (2019) for more details.

The performance of DRO highly depends on the ambiguity set. An ideal ambiguity set possesses
four properties: (i) rich enough to contain the true distribution with high confidence; (ii) small
enough to exclude pathological distributions that make DRO solutions overly conservative; (iii)
calibrated easily from historical data; and (iv) leading to a structured DRO model that is com-
putationally tractable (Esfahani and Kuhn 2018). There are several different types of ambiguity
sets. Moment-based ambiguity sets contain distributions that share the same moment information
(Delage and Ye 2010). Distance-based ambiguity sets contain distributions that are close to a ref-
erence distribution with respect to a predetermined probability discrepancy metric. Probability
discrepancies that have been extensively studied include Wasserstein distance (Esfahani and Kuhn
2018), phi-divergence (Ben-Tal et al. 2013, Hu and Hong 2013, Gotoh et al. 2018), and Prokhorov
metric (Erdogan and Iyengar 2006). Structural ambiguity sets contain distributions that share
the same structural properties such as monotonicity, symmetry, and unimodality (Li et al. 2019).
Hypothesis-test-based ambiguity sets contain distributions that pass a hypothesis test (e.g., X*-
test, G-test) based on a given historical dataset and confidence level (Bertsimas et al. 2018a,b).
Finally, likelihood-based ambiguity sets contain distributions that achieve a given level of likelihood
evaluated under historical data (Wang et al. 2016).

Due to high complexity of the uncertainty involved in real-world problems, none of the individual
ambiguity sets can perfectly perform under all circumstances. For example, moment-based ambigu-
ity sets do not guarantee asymptotic consistency, i.e., they do not converge to the true distribution
of the uncertain parameters even if the number of historical data points increases to infinity (Chen
et al. 2019, Liu et al. 2019). Meanwhile, decision-makers usually face the difficulty of exactly esti-
mating an ambiguity set because high-dimensional and correlated uncertainties are involved in the
real-world problems, where different decision-makers may also have different understanding and

estimates of the ambiguity. Thus, to cope with such situation and further give the decision-makers



more flexibility and freedom in selecting an appropriate ambiguity set from available alternatives,
we may better consider different types of ambiguity sets. For instance, we can combine two dif-
ferent types of ambiguity sets to construct a better one that enjoys the advantages of both. In
particular, we may consider a combined moment and Wasserstein ambiguity set. This combination
can help exclude pathological distributions and result in a less conservative DRO model, which
is also asymptotically consistent. Such benefits can be significant when the uncertainty is highly
complex (Wang et al. 2018, Gao and Kleywegt 2017).

Many DRO problems can be reformulated or approximated by conic programming problems,
including semidefinite programming (SDP), second-order cone programming (SOCP), copositive
programming (CP), and completely positive programming (CPP). For example, Delage and Ye
(2010) showed that the DRO model with support, mean, and covariance information can be refor-
mulated as an SDP formulation; Natarajan et al. (2010) reformulated a class of robust expected
utility models with known mean and covariance matrix as SOCP formulations; Li et al. (2019) refor-
mulated chance constraints under unimodal distributions with known first and second moments as
SOCP formulations; El Ghaoui et al. (2003) derived SDP and SOCP formulations for computing
robust Value-at-Risk with various ambiguity sets. More SDP reformulations can be found in Cheng
et al. (2014, 2016) and Zhang et al. (2018), and more SOCP reformulations were proposed by Li
et al. (2018) and Mieth and Dvorkin (2018). Moreover, Hanasusanto and Kuhn (2018) proposed CP
and CPP reformulations and approximations of two-stage DRO linear programs over Wasserstein
ambiguity sets.

Although SDP formulations are polynomially solvable in theory, many of them require significant
computational efforts, especially when the problem is complicated in its nature and the uncer-
tainty is high-dimensional and/or correlated. For instance, solving large-scale SDP problems in
practice can be computationally challenging because many high-dimensional matrix constraints
may be present (Yang and Wu 2019). To overcome such challenges, several studies have devel-
oped approximation solution approaches to trade-off between solution quality and computational
burden, including branch-and-bound, cutting-plane, interior point, and delayed constraint genera-
tion algorithms (Niu et al. 2019, Vandenberghe and Boyd 1996). In addition, Cheng et al. (2018)
used principal component analysis (PCA), which represents the data variability by employing a
linear combination of orthogonal eigenmodes (Wold et al. 1987), to consider only the dominant
random variables and shrink the dimension of the uncertainty, leading to smaller-size SDP matrix
constraints. In this paper, we provide a comprehensive study to derive computationally efficient
approaches to solve DRO formulations under a piece-wise linear objective function and with various

types of ambiguity sets. We summarize our contribution as follows:



1. We derive computationally efficient inner and outer approximations of DRO problems with a
moment-based ambiguity set accounting for the support, mean, and covariance of the uncer-
tainty. The inner approximation is based on splitting a random vector into smaller sub-vectors
and is parameterized by the number of split pieces. Such approximation appears to be new in
the DRO literature. The outer approximation generalizes Cheng et al. (2018).

2. We quantify the quality of our inner and outer approximations by deriving theoretical bounds
on the gap between the optimal value of the DRO problems and those of their approximations.
These theoretical bounds guide us to select specific numbers of split pieces for reaching a
predetermined error bound. They also allow us to trade-off between solution quality and
computational burden of solving DRO formulations.

3. We extend the inner and outer approximations, as well as their theoretical bounds, to a
combined ambiguity set that contain covariance information and the Wasserstein distance
between the true distribution and an empirical distribution. We also investigate the corre-
sponding results by additionally including the first-order moment information in the combined
ambiguity set.

4. Our proposed inner and outer approximations together, while quickly finding a feasible solu-
tion with small optimality gap, enable us to construct a tight interval that includes the
(unknown) optimal value of DRO formulations. Such an interval is very helpful for decision
making in many real-world applications with large-scale instances and high-dimensional uncer-
tainties (e.g., energy and transportation), where the corresponding DRO model cannot be
solved to optimality (or even feasibility in most cases) by existing methods in reasonable time.

5. We perform extensive computational experiments to demonstrate the effectiveness of our
approximations in solving DRO formulations. Notably, while commercial solvers were unable
to even find a feasible solution to most large-size instances, our inner and outer approximations
quickly found solutions with optimality guarantee.

The remainder of this paper is organized as follows. In Section 2 (resp. Section 3), we study
DRO with the moment-based ambiguity set (resp. the combined ambiguity set), propose its inner
and outer approximations, and derive theoretical bounds of their optimality gaps. In Section 4, we
perform extensive computational experiments on distributionally robust multiproduct newsvendor
and production-transportation problems to evaluate the theoretical results and demonstrate the

strength of the proposed approximations. Finally, Section 5 concludes the paper.

Notation
In this paper, scalar values are denoted by non-bold symbols, e.g., s and ~;, while vectors are

denoted in the column form by bold symbols, e.g., x = (x1,... ,xm)T and g. Similarly, matrices



are represented by bold capital symbols, e.g., A and X, and the size of a matrix is indicated by
r X ¢, where r and c¢ indicate the numbers of rows and columns, respectively. Italic subscripts
indicate indices, e.g., si, while non-italic ones represent simplified specifications, e.g., Q,. We use

“e” to denote the inner product defined

Ep [] to represent expectation over distribution P and use
by AeB = Zw‘ AijBija

semi-definite (PSD), it is indicated by M > 0. Symbols |[|-||, and ||-||, denote L1-Norm and L2-

where A and B are two conformal matrices. If a matrix M is positive

Norm, respectively. Symbol ||-||, represents the dual norm of ||-||,. We reserve symbols D and S.
for ambiguity set and support, respectively. For any strictly positive integer number n, we use [n]
to represent the set {1,2,...,n}. The identity matrix of size m is denoted by I,,. Symbols 0,, and

0,.. represent a zero vector of size m and a zero matrix of size r X ¢, respectively.

2. Moment-based Ambiguity Set
In this section, we introduce a DRO problem with a moment-based ambiguity set. To solve it
towards practical uses, we first recast it as an SDP formulation. In view of the computational
challenge of solving the SDP problem in practice, we develop its inner and outer approximations
that can be solved more efficiently. Moreover, we derive theoretical bounds for their optimality
gaps as compared to the original DRO problem, leading to a quality measurement.

Given distribution P of the random vector & € R™, we seek an x € X, which is a convex set in
R™, to minimize the expectation of a convex function f (x,&) with respect to P. We present this

problem as the following stochastic program:

min Ep [f(x,£)]. (1)

xeX
Here P is assumed to be known exactly, which though in practice may not be precisely estimated
due to limited data availability (e.g., missing data, lack of data, and expensive data acquirement).
Nevertheless, some partial information of € (e.g., mean and covariance) can be easily obtained from
historical data. Therefore, instead of solving Problem (1) with a given distribution, we may seek
a risk-averse solution that hedges against all the possible distributions that share such available
information, leading to the following DRO model with the available information collected in a

distributional ambiguity set Dy;:

min max Ep[f(x,€)]. (DRO-M)

zEX PeDyy

Depending on different available information, the ambiguity set can be different. In this section,
we focus on moment information of € in Dyy; (see Delage and Ye (2010)), i.e.,
PesS)=1
Dt (S, 11, 2,71, 72) = { P| (Ee [€] — p) B (Ep €] - ) <m
Ee (€ m)(€-p)| 27T

Y



which specifies the support (S), mean (u), and covariance of random variable £ that could be
derived using available historical data. We assume that S is a convex set, p lies in the strict interior
of S, and X is a positive definite matrix. Parameters v, > 0 and 7, > 1 are derived from historical
data to control the size of the ambiguity set and the conservatism of optimal solutions. The three
constraints in Dy describe that (i) the support of £ is a subset of S; (ii) the mean of £ lies in an
ellipsoid of size 7, centered at p; and (iii) the centered second-order moment matrix is bounded
by 123 in a PSD sense.

Although (DRO-M) admits a convex reformulation (e.g., SDP reformulation; see Delage and Ye
(2010)), as discussed above, solving it in practice can be very challenging. Instead, we can solve
good inner and outer approximations of (DRO-M) much more efficiently and obtain high-quality
solutions, thereby complementing the existing studies such as Delage and Ye (2010) and Cheng
et al. (2018). More importantly, the inner and outer approximations together can help characterize
an interval that includes the unknown optimal value for a large-scale instance that may not be
solved to feasibility. In the following, we derive an outer (resp. inner) approximation of (DRO-M),
leading to a lower (resp. upper) bound, in Section 2.1 (resp. Section 2.3). We make the following

assumption in this section for practical purpose.

ASSUMPTION 1. Function f(x,€) is piecewise linear conver in &, i.e., f[(x,€) =
maxi_, {y,?(:c) —i—yk(:n)Té} with both yi(x) = (y,ﬁ(a:),...,y,’c’”b(:n))T and y2(x) affine in x for any
k€ [K], and S is polyhedral, i.e., S = {€|A& < b} with A € R™™™ and b € R", with at least one

interior point.

2.1. Lower Bound

The uncertainty characterization in the ambiguity set affects the computational performance of
solving the corresponding DRO problems because a large uncertainty space leads to a large solution
search space, which further asks for more computational time. We accordingly investigate the
moment-based ambiguity set in this section, and realize that the components with the lowest
variance play the smallest role in defining the uncertainty and hence are the best candidates
for relaxation. Therefore, we use the PCA approach to project high-dimensional and correlated
uncertainty onto a lower dimensional space by preserving the components with the highest variance
and relaxing the rest of ones.

First, we perform an eigenvalue decomposition on matrix X, i.e., X=UAU ' = UA%(UA%)T,
where U € R™*™ is an orthogonal transformation matrix and A € R™*™ is a diagonal matrix whose
diagonal elements are in non-increasing order. By letting &, = (UAfl/ T(& — ), we reformulate
(DRO-M) as

min max [Ep, [f (m,UA%éﬁ—u)} ) (2)

zEX PrEDyo



where

PI(&I S SI) =1
DM2(31>’71772) =P EPI [EIT]EPI [51] <m ¢,
EPI [£I£IT] i Y I

with S := {gI CR™:UA?E, + pc 3}.

THEOREM 1. If f(x, UA%&—{—“) is Pr-integrable for any P; € Dya, then (DRO-M) has the same

optimal value as the following problem:

Juin s +521, e Q@+l (3a)
1

st s> f (@ UMY +n) —€ -] Q& ¥ €S, (3b)
Q=0 zed,

where g € R™ and Q € R™*™.

Proof. The result is deduced from Lemma 1 in Delage and Ye (2010). O

Problem (3) reduces to a SDP formulation with regard to a wide range of objective functions
and support of uncertainty, which are specified in Assumption 1. Our approximation techniques

may be applied to DRO problems with more general objective functions.

PROPOSITION 1. Under Assumption 1, (DRO-M) has the same optimal value as the following
SDP formulation:

Ziglm)i= min s+92L,0Q+ Vi al, (4a)
,S,A,q,
T T 1 1N (AT !
s—y2(@) = Ao ye(@) p+ Al Ap (q+ (UA?) (4™, —yk<m>)> ;
s.t. >
T —_ )
: (q—i— (UA%) (AT)\k—yk(ac))> Q
Vk e [K], (4b)
rxeX, A\, eRY, Vke[K],
where A={A1,...,Ax}.
Proof. See Online Supplement A.1 for the detailed proof. O

Next, to derive a lower bound, we approximate & by capturing the dominant variability of U A%&

through considering only the first m; random variables of &, i.e.,

1
ExUA €0, ]+ 1=U e, A2 € +pa, (5)



where U, x,, € R™*™1 and A,%,L , € R™X™ are upper-left submatrices of U and A%, respectively,

and €, € R™ consists of the first m; entries of ;. As the uncertainty of the last (m —m;) entries

of & vanishes, this yields a relaxation of (DRO-M):

. 1
mip 1o, B [F (@ Unmeni A 6 a1) ] (6
where
P.(§€S)=1
DM?) (Sr7 1, ,YQ) = ]Pr ]EPr [E:]]E[Pr [€r] S M (6b)
e, [£,€] <2l m,
with

S, = {grEle :U'rn><m1A%11£r+lJ/€S}. (60)

1
THEOREM 2. If f(x, U xm, A% &, + 1) is Po-integrable for any P, € Dy, then Problem (6) has

the same optimal value as the following problem:

m?:llln 8+721n11.Qr+m”qT”2 (7)
s.t. S Z f (w, Um><7n1A7%nl£r + H) - E;rqr - E:Qrsra VEr S Sr7
Q. =0, zck,

where q, € R™ and Q, € R™>*™._ Furthermore, we have the following: (i) Problem (7) provides
a lower bound for the optimal value of (DRO-M); (ii) the optimal value of Problem (7) is nonde-

creasing in mq; and (iii) if my =m, then (DRO-M) and (7) have the same optimal value.
Proof. See Online Supplement A.2 for the detailed proof. O

PROPOSITION 2. Under Assumption 1, Problem (7) has the same optimal value as the following
SDP formulation

Zy(m) = min s+l ¢ Q, + vl (8a)
0.Qy
1 T T
s—yl(@) - Ab-y@) pr A A ] (qr + (UnemiAL,) (AN —yk<w>)) -
s.t. T Y
% (qr + (UmxmlA?nl) (AT)VG — Yk (.’1}))) Qr

Vk € [K], (8b)
reX, \,eRY, Vke[K], (8¢)

where A={A1,..., Ax}.

Proof. The proof is similar with that of Proposition 1 and thus is omitted here. O



Comparing Problems (4) and (8) in terms of size, one can observe that Problem (8) is significantly
easier to solve than Problem (4) because: (i) Problem (8) includes fewer decision variables than
Problem (4), i.e., (m? +m; +2n+1) vs. (m* +m+2n+1); and (ii) the size of PSD matrices in
Problem (8) is smaller than in Problem (4), i.e., (m; +1) x (m; +1) vs. (m+1) x (m+1).

2.2. Lower Bound Quality

To measure the quality of our derived lower bound, i.e., Z3;(m;) in (8), we develop a theoretical
upper bound for the gap between the optimal values of Problems (4) and (8). This upper bound
brings two benefits: (i) it provides a rough approximation for the optimal value of Problem (4),
which may not be solved efficiently in practice; and (ii) it determines how many principal compo-
nents are required to reach a preferred gap between the original and approximated optimal values,

indicating a trade-off between solution quality and computational time.

PROPOSITION 3. It holds that

0< Zu(m) — Z'u(m) < vy .| 3 Ai7i<(AT)\Z—yk(g;*))TUi)27 (9)

k=1 i=m1+1

where U; represents the it" column of matriz U, and * and Xy, (Vk € [K]) are optimal solutions

of Problem (8).

Proof. By Theorem 2, we have Z*\(m) — Z*\i(m) > 0. Meanwhile, when m; =m, Problem (8)
is equivalent to Problem (4). We use (x*,s*, A" VEk € [K],qF,Q}) to denote an optimal solution
of Problem (8). Based on this optimal solution, we construct a feasible solution of Problem (4),

represented by (58, 5, A\ VEk € [K],q, Q) For clarity, we define
St =5 — (@) = AL b—yi(x) T n+ AL Ap, Vk € [K], and

.
¢ = (UmXCAC%) (AT, —yu(a")), Vk e [K], Vee {my,m—mi,m},

where A" € R™1X™ and A"~ € Rm—m0)x(m=m1) yepresent the upper-left and lower-right sub-
matrices of A, respectively.
First, we let & =x*, A, = A} for any ke [K], g=(¢:',0) . )7, 5=5" 4+ s, and

ro Y m—mg

Q; Omlx('m my)

Q= 82 k T
O(m mq)Xmy Z qm mq qm ml) ’

where sf >0 and s§ >0 for any k € [K]. As £ =x* € X and A\, = X}, € R?, for any k € [K], due
to constraint (8c), we only require (Z,3, A, Vk € [K],q,Q) to satisfy (4b). Thus, we will find the
values of s and s§ for any k € [K| that enable this solution to satisfy (4b).
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We plug (z,5, A\, Vk € [K],q, Q) to (4b) and use Y" for any k € [K] to denote the corresponding

matrix in (4b). For any given k € [K|, we perform the following decomposition:

r T . [ Kk 1k T
K s* %(q:-"_qlf"l) le(m—ml) Zﬂk:l 51 Oolxml qum—ml
= 1 k x1 X —
Yo= lh(arah,) @ Omuemy | B[ T P memm
1 _k K s k k
_O(mfml)xl 0(m7m1)><m1 O(mfml)x(mfml)_ | 59m—my 0(m—m1)><m1 D=1 Tzquml (qm*ml)
M T 7 [ k 1k T
s* %(q:+q'lrcn1) le(m—ml) 51 01><m1 29m—my
k 0 1 0 0 _
= %(q’;Jrqml) Qr Oy x (m—my) + mi X mqXmq . my X (m—mq) . (]_O)
O(mfm )x1 0(m7'm )xm O(mf'm. )X (m—mq) lqk 0 32 ok ( k )T
L 1 1 1 1 1) - L 29m—mq Y(m—-mq)xm; 4 Im—mq\9m—mq

The first matrix in (10) is clearly PSD because the elimination of its zero components leads to a
PSD matrix due to constraint (8b). Now we find the values of s* and s§ to make the second matrix

PSD as well, and then accordingly the constructed solution is feasible for (4).

A B _ _
Next, we use [BT C] to denote second matrix in (10) by letting A = s¥, B' = (01smy 2, )s

_ Oml Xmy Omlx(m—ml)
and C' = ok . T |. It follows that
0(mfm1)><m1 4 9m—my (qm—ml)
0 0
— - -1 = T mpXmy my X(m—my) 1 T T
C - B.A B S5 k k T - % (01><7n1 %qlfnfml ) (01><m1 %qlfn—ml )
O(m—ml)xml 4 9m—mq (quml) S1

Omy xmy Omlx(m my)
— k 11
O(m—my)xmq (T 42 )q}:" my (O ml)T ’ (11)
which is PSD if s¥ x sk > 1. Thus, we let s¥ x s§ > 1 hold for any k € [K] and by the properties of

Schur complement, we have [ B & > 0 because A is invertible and positive definite.

In addition, since Problem (4) is a minimization problem, its optimal value is no larger than the
objective corresponding to the feasible solution (:i:, 5, A, Vk € [K],q, Q) That is,

Z m(m) <5471, 0 Q+ 714l

* . k S s5 k k T (12)
=7 M(ml) + Z S1 + Y2 Z Ztrace (Qm—ml (qm—ml) ) .

k=1 k=1

T k
\/72 A — ml) m—mj

Due to the condition s¥ x sk > 1, we let s% = 5 and s§ = e 2 — . which
leads to the smallest possible value of the RHS of (12). Therefore, we have e
K K
Z"w(m) < Z"(ma) + Z st + 72 Z %trace (@, (@) )
k=1 k=1

. :
m—m m—m qm m (qm m )
m(ma) + \/’%Z + /2trace L 1
k=1

2
k 12 qm ml qm—m1
k T k k k T
. . K (qm—ml) m—mq K quml(qm "”1)
Finally, since >, _, 5 is equal to trace | Y, _, e — | we have

0<Z"w(m) —Z m(m1) < /72 Z Z Ai,i((ATAZ*yk(CL'*))TUi)Q .

k=1 i=m1+1
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REMARK 1. Note that Cheng et al. (2018) derived a similar upper bound by specifically consid-
ering v; =0 and 7, = 1, while (9) applies to general values of v; and ~,.

Before closing this subsection, we can observe that theoretical optimality gap (9) does not explic-
itly depend on parameter ;. It is because we develop this gap based on a specific feasible solution
of Problem (4), i.e., (&,5, A, Vk € [K],q,Q) where g = (qiT,Ol_ml)T. By setting the last m —m;
elements of g to be 0, we eventually obtain the optimality gap that does not explicitly depend
on parameter 7;. Technically we can construct a different feasible solution and correspondingly
develop a possibly better optimality gap, which will explicitly depend on ~; though. For instance,

we can let & =x*, A\, = A, for any k € [K], g = (q:T,f]T)T, s=s* —i—Zf:lsk, and

_ Q: 0., (m—mq)
Q: R ! j|7

O(m—mq)xmy Q

where s* > 0 for any k € [K]. Instead of fixing the values of ¢ and Q as what do in the proof of
Proposition 3, we can optimize the values of s*,Vk € [K], g, and Q together towards minimizing
the difference between the objective value corresponding to this feasible solution and the original
optimal value Z*\;(m), leading to a better gap denoted by Z',,,(m;). That is, we solve the following

optimization problem

K
Zyp(my) = min Y st 4yl ., e Q+ A1l (13)
sk wkelK),
q,Q
5" 1k —a)"
s.t. 2 \Tmem =0, Vk € [K],
{; @ .. -a) O K]

E

s"eR,, Vke K], geR™ ™, Qe Rm-m)x(m=m1)

where the SDP constraints are enforced to ensure the constructed solution to be feasible, similar
to what we do in the proof of Proposition 3.

Solving Problem (13) clearly can give us a better theoretical error bound than (9). We also
notice that (13) can be computationally intensive, particularly when m; is large. Thus, we can
further develop a more conservative yet computationally tractable error bound, based on Problem
(13), by fixing Q at a feasible value. Specifically, the SDP constraints in (13) implies that Q-

(- =) (hmy ~1)
4sk

for any k € [K] by Schur’s complement. Thus, we fix Q at the following
feasible value by letting

Q=

(qfnfml - Q) (qfnfml - Q)T '

K
4k
k=

1



12

It follows that we can reduce Problem (13) to the following problem where we only optimize the

values of s*,Vk € [K], and q:

(ak o, — a@h m —a .
Z2,(mi):= min Zs + 72 Z ) | ! )+\/%HqH2 (14)

sk vke[K],q k 1 45k

st.  sFeR,, Vke[K], geR™ ™,

Problem (14) can be reformulated as a second-order conic program, which is significantly more
tractable than (13). Meanwhile, based on the above descriptions on how to construct the required

feasible solution for deriving the corresponding error bound, we have

0< Z* m(m)—Z*m(my) < Z" ap (M) < Z%gap(my) < \/%z Z A <(AT)\; — yk(m*))T Ui>2'

k=1 i=mq+1

2.3. Upper Bounds
We further develop computationally efficient inner approximations for Problem (2), leading to

upper bounds of its optimal value. Specifically, we derive two inner approximations in Sections

2.3.1 and 2.3.2.

2.3.1. PCA based Upper Bound Similar to Section 2.1, we utilize PCA to consider only
the first my entries of & in the second-moment constraint in Dy;. This is a relaxation of the
second-moment constraint, leading to a larger ambiguity set and so an inner approximation of

Problem (2):
min max Ep, [f (m,UA%é’I—i—u)} ) (15)

xEX PeDy4

where

P& esS)=1
Dhia (St 71,72) = { Pr| By [€] | Bz, [€] <
Bz, [6,8]] <72l m,
THEOREM 3. If f(au',UA%fI + p) is Pr-integrable for any Py € Dy, then Problem (15) has the

same optimal value as the following problem:

L s+l ¢ Qr+ v llall, (16a)
% T T
st. s> f (@ UAE +p) €] Qe —a'&, V€S, (16b)
Qrt()) wGX’

where g € R™ and Q, € R™ > We also have the following: (i) Problem (16) provides an upper
bound for the optimal value of Problem (3); (ii) the optimal value of Problem (16) is non-increasing

in my; and (iit) if my =m, then Problems (3) and (16) have the same optimal value.



13

Proof. The proof is similar with that of Theorem 2 and thus is omitted here. U

PROPOSITION 4. Under Assumption 1, Problem (16) has the same optimal value as the following
SDP formulation:

Zyg(my) := min s+50L,, 0 Q,+ v lall (17a)
.G,

. s—y(@) = ALb— (@) T+ A Ap 3<¢11+(UmxmA;%l)T(ATAkyk(ﬂc))>T .
T 3 <q1 + (UmelAil)T (AT, —yk(w))> Q. o
Vk e [K], (17b)
0+ (Umx(,,Ab_ﬂ,q)Aéml)T (ATA, —yu(@)) =0, Vk € [K], (17¢)
reX, \eRY, Vke K],
where A={Ay,...,Ax} and g= (¢ eR™ ,q] € Rm*ml)T.
Proof. See Online Supplement A.3 for the detailed proof. O

One can observe that Problem (17) is significantly easier to solve than Problem (4) due to fewer

decision variables and lower-dimensional PSD matrices in Problem (17).

2.3.2. Vector Splitting based Upper Bound We derive the second inner approximation by
splitting the random vector & into P pieces, i.e., & = (ﬁﬂ,ﬁg, e ,ﬁlTp)T, where &, € R™i, Vi€ [P],
and 221 m; = m. Accordingly, we revise the second-moment constraint in Dy, with respect to

these smaller pieces, leading to the following ambiguity set:

P;(&€8)=1
Duis (St,71,72) = § Pr| Ep, [5;'—] Eg, [&] <™
Ep, [Slzéz} =yl ,,,, Yie[P]
Set Dy is a superset of Dy because we ignore the correlations among 51,, and Elq for any p,q € [P]

with p # g. This leads to the following inner approximation of Problem (2):

min max Ep, [f (m,UA%EI—l-[,L)} . (18)

xEX PreDys

THEOREM 4. If f(w,UA%EI + ) is Pr-integrable for any Py € Dyis, then Problem (18) has the

same optimal value as the following problem:

P
min s+ 3L, 0 Qv lall, (19a)
T,5,4, i=1
) P
st. s> f (% UAZE + H) _ Zéngélz —q'¢&, V& ES, (19b)
i=1

xeX, Q,=0, Viel[P],
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where g € R™, Q, € R™*™i for any i € [P], and Q= {Q,,...,Qp}. Furthermore, Problem (19)

provides an upper bound for the optimal value of Problem (3).
Proof.  See Online Supplement A.4 for the detailed proof. O

PROPOSITION 5. Under Assumption 1, Problem (19) has the same optimal value as the following
SDP formulation:

P
UBy = min s+72 Y I, 0 Q;+v1 dl, (20)
QN3 i=1
1\ " T
Sik % <qz =+ (UmeZAE”> (A Ak - yk(m)))
s.t o =0,

P
Zsik =s—y(x)— /\Zb — () "+ )\ZAN, Vk € [K],
=1

A €RY, VEE K], xe X,

where q; € R™i, Q, € R™*™ for any i € [P], Q:{Ql,...,QP}, 5\:{)\1,...,)\1(}, and § =
{six, Vi€ [P], Yk e [K]}.

Proof. The proof is similar with that of Proposition 4 and thus is omitted here. O

One can observe that Problem (20) is significantly easier to solve than Problem (4) because it
has smaller-sized PSD matrices and matrix variables compared to Problem (4). We also note that
the size of each piece (i.e., m; with i € [P]) does not necessarily equal to each other. Thus, our
theoretical results, including theoretical reformulations in this section and optimal gap bounds in
the following Section 2.4, are general with respect to the size of each piece. Nevertheless, different
ways of assigning a random vector to pieces lead to different computational performance. We will

explain how we split the random vector in our numerical experiments in Section 4.

2.4. Upper Bound Quality
To measure the quality of our derived upper bounds in Section 2.3, we derive a theoretical bound
for the gap between the optimal values of Problem (4) and Problem (17) (resp. Problem (20)).

Before that, we present the following lemma that will facilitate the proofs in this section.

LEMMA 1. Consider the following PSD matriz with dimension (m+1) x (m+1):

s af - af
0
z=|"% =0, (21)

ar 0 - Qg
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where s € R, q,, € R™ for any k € [K] with Y1, my, =m, Q, € R™>*™ for any k € K], and other
components are zero. Inequality (21) holds if and only if there exist {sy}r_, with Zszl s, =58 such
that

[Sk fﬂ =0, Vke [K].

qp Qg

Proof. We prove the following equivalence:

T T
s 4 o dp K
q Q - O T .
z= """ 0 & [ZZZfJEQ vk [K], with 3 s, =s.
Do r
ax 0 - Q@

Matrix Z is PSD if and only if n"Zn >0 for any n € R™, where n = (19,1, ,75 , - ,n})T and
n, € R™ for any k € [K] with Zle my, = m. Similar to the proofs of Propositions 1 and 4 in
Online Supplements A.1 and A.3, respectively, we assume that 1y = 1 without loss of generality.

Thus, we have

T m
Z-0 < (Ln,my, - ng)Z(Ln,n, - ,ng) >0, Vn, eR™ ke [K]

K
& s+ (2q/n.+n.Quny) >0, ¥, ER™ k€ [K]

k=1

VN ER™k ke

K
& s—l—z inf [K]{ZQEnkJrnngm} > 0.
k=1

There exists s € R for any k € [K] such that Zle s = s, by which we further have

K

. . r > ) 3 T T >
5+ ;WERQE,%[K] {20, + 0, QN } 20 & s+ oinf {2¢/ 1, + 1. Qum,} >0, Yk € [K]

& s +2q, M+ @y, >0, Y, e R™ k€ [K]
& (Lnl) [z (nl) 20, v, eR™ ke K]

qr Qp

[ZZ gfk} =0, Vk e [K].

In summary, we have

K
Z-0 & 3s,€RVke[K], such that Y sc=s and [ZZ g{]zo, Vke[K]. O

k=1

PROPOSITION 6. Suppose that x* is an optimal solution of Problem (17) and Yf* =
v Y’fzr*T
Y’{:Qr* YIQCQr*

17b) and (17c), respectively. Then, it holds that

and 0; are the corresponding dual optimal solutions associated with constraints

— . - T N\ o T o\ (-1
0<Zy(m)—2um) <Y ((UAY) w@)) (Y .67) (). @
k=1
where
1 "<& K
= 114+— —0r2 VkelK]. 23
7 > o0 vkelK] (23)

i=1
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Proof. We prove the results by investigating the duals of Problems (4) and (17) where @ is fixed
at *. Given « = z*, we use Y* to denote the dual variable of constraints (4b) for any k € [K],

where the dual of Problem (4) can be described as follows:

Zi(m = max Z (ve () +yi( Yﬁ"‘z ((UA2) yk(a’))TYIfz (24a)

K
k=1
Z 0’ (24C)
oI, ZY’“ =0, (24d)
bYE — Aqukl —AUA:Y", >0, Vk € [K], (24e)
k ok T
v e e 0

Similarly, given x = x*, we use Yf and 0 to denote the dual variables of constraints (17b) and

(17c), respectively, for any k € [K], where the dual of Problem (17) can be described as follows:

— K T T
Zu max (4 (@) + (e Yﬁ+Z<( . ) m(m)) Y
k=1
K 3 T T
+Z((Umx<m-ml>Afn_ml) wie)) 0 (250)
k=1
K
st. 1) V=0, (25b)
k=1
= kT "
\/’771_ Z(Y12r aak ) 207 (25C)
k=1 2

I, Z Y50, (25d)

bYl’“l—Aqu’“l—AUmxmlA Y, — AU (e ml)A m, Ok >0, Vk € [K],(25¢)

vt {Y v, ]>o 0, free, Vk € [K]. (251)

r k
Y12r Y22r

Given an optimal solution of Problem (25), i.e., Y and 6} for any k € [K], we construct a

_ r ok T
feasible solution of Problem (24), represented by Y= L};H Yiz ] for any k € [K]. For any given
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_ _ T
k€ [K], we let Y =Y}*, Y]f2 =% (Y’f;rT,BZT> with ¢f > 1, and
Yis o0 - 0
_ k :
Yg2 = 0 i 0 ’
o . 0
0O --- 0 wfn_ml

where the value of ¢ as well as the value of w¥ for any i € [m —m;] will be determined later so
that Y satisfies all the constraints in Problem (24).
First, for the solution (?k Vk € [K]), it satisfies constraint (24b) because 1 — 3, Y =0 due

to constraint (25b). This solution satisfies constraint (24c) because
K K K

ok 1 ke T opeTY | ke T opeT) |
ZYu = ||ch (Y12r ;05 ) Z <Y12r , 05, )
k=1 2 k=1

where the first equality is due to the definition of l_’]fz, the first inequality is because c* > 1, and

<

2

VTS

2

the second inequality is because of constraint (25c). This solution also satisfies constraints (24e)
because for any k € [K], we have bY — AuY} — AUA%Y};2 =bYl — ApYr — AUmxmlA%nlYlf;r -
AUmX(m—ml)Aq%n—mlglt > 0, where the first equality is due to the definition of Y’fQ and the first
inequality is because of constraints (25¢).

Next, in order for (Yk Vk € [K]) to satisfy constraint (24d), we require voI,, — Y1, Y = 0,

which is equivalent to

* K *
Y]2€2r 0 e 0 Zk:l YI;Zr O U 0 ’YZIml
K k : K k . y
e 1 I e o 1
= | : 0 . 0 : 0 g 0 ‘
0 --- 0 wfniml 0 ... 0 Zle wfnfml 72

Since Y1, Y5 <~,I,,, due to constraint (25d), we require

K

wagfyg, Vi e [m—my). (26)

k=1
In addition, in order for (?k Vk € [K]) to satisfy constraints (24f), matrix Y" must be PSD for
any k € [K]. Note that if A~V s PSD, then Y" is PSD because c* > 1. Therefore, we consider the

following decomposition on c*¥™":

i * T T
1 vk e T (Ck - cik) Ylkl 01Xml Hk
CTCYVII* Y12r 01><(m—m1)
k—k Om1><1 0m1><m1 0
¢ Y = Yllc;r CkYIQC;r + & ? Vk € [K]7
cwy
O(m—ml)xl O(m—ml)x(m—ml) ek 0 .
—- cw —m1
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where the first matrix on the RHS of (27) is clearly PSD because Y** is PSD due to constraints
(25f) and we require the second one to be PSD as well so that Y" can be PSD. By Lemma 1, we
equivalently require

m—mq

kogx 1
[gi Cfﬁjk] =0, Yie[m—m4], Yk € K], with Z yr = (ck—ck> Yi*, Vk € [K]. (28)

Now, for a given i € [m —m], we let wf =w; for any k € [K], and then we have w; < 2 due
o (26). Tt follows that, from (28), we equivalently require c*w;y* > (8;,)* for any k € [K] and
i € [m —my]. Therefore, for any given k € [K], we have
* \2 % \2
0 K 6:)

k
c® > > — , 29
wiyzl’c V2 yzk (29)

where the first inequality is due to cFw;yF > (0;;)2 and the second inequality is because of w; < 32.

0;)
Since (29) is equivalent to yF > 1; ( o ) and we have Y 7" = (" — &) Y}t from (28), we can
conclude that
m—mj 1 m—mji K(Q* )2
k_ [ & o ki
;yl_(c_k>yil—;,}/2 ok 7Vk€[K]
1 " K
= > 1+ > —(61)°, Vee[K]. (30)
Y "2

Therefore, we choose the value of ¢* such that (30) is satisfied at equality, leading to (23), while
the constructed solution (}_’k Vk € [K]) satisfies all the constraints in Problem (24).
Finally, by Theorem 3, we have Z,,(m1) — Zi;(m) > 0. Meanwhile, we have

J— K T T

Zy(m) =3 (W(@") +ye(@”) Yﬁ*+2<< mxmi AL, yk<m*>) Y,
K ) T T

+ Z <<Um><(mm1)A21 ml) yk(m*)> 02,

Zim) 23" (hla) + )T Yﬁ*+2<( - %1)Tyk<x*>>TYf5r

ck

T

K 1 T 0,
+Z<(Um><(m—m1)Ar2n—M1) yk(w*)) 077

where the inequality holds because the constructed solution (f’k Vk € [K]) is feasible for Problem

(24), which is a maximization problem. Therefore, it follows that

0< Zay(ma) — Ziy(m) gi <(UA§>Tyk(x*)>T (Yf;;rTﬁ;T)T (Ckc;1> . O

k=1
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REMARK 2. Optimality gap (22) does not explicitly depend on ; while ~, is explicitly there
because upper bound (17) captures the complete first-order moment information while dropping

some information about the second-order moment.

PROPOSITION 7. Suppose that Assumption 1 holds, p € S, and ming_; {yp(z*) +y(x*) "} >0,
where x* is an optimal solution of Problem (4), then the relative gap between the optimal values of

Problems (20) and (4) is bounded from above by /P —1, i.e., 0 <UB}; — Zi(m) < (VP —1)Z5(m).

Proof. 'We reformulate Problem (20) as the following problem:

x,s
QA

P
UBy = min 54723 In 0 Qi v lal, 1y
i=1
1\ T T
s=yR (@)= AL b—yp (@) Tp+A] Ap %<q+(UA7> (AT)‘k*yk(m))>
1 1 T T /
§<q+<UA2> (A )\kfyk(m))> Q
reX, A, >0, Vke[K],

s.t. =0, Vk € [K], (31b)

where
Q Omixmy = Omyxmp_; Omyxmp
0m2><m1 Q2 0m2><mp71 0m2><mp
/
Q = : : : : ) (32)
OmP71Xm1 OmP71Xm2 Qp-1 Ompilxmp
O'mPXml Ompxm2 Omp*mp_l QP

Q, € R™i*™i for any i € [P] with Zi1mi =m, Q={Q,,....Qp}, and A={Ay,...,Ax}. Let
(z*,s*, A\, Yk € [K],q*,Q") denote an optimal solution of Problem (4) with

* * * *
Ql leme lexmp_l lexmp
* * * *
ngxml Q> ngme71 Qm2><mP
Q = : : - : : : (33)
* : * : : *' * :
Q'mp_1><m1 Qmp_1><m2 QP—l Q'mp_1><’mp
* * * *
Qmpxml Qmpxmg Qmpxmp71 Qp

Based on this optimal solution, in the following, we construct a feasible solution of Problem (31),
denoted by (E,E,Q,Q’,Xk Vk € [K]).
First, we let & =x*, 5 = kos*, g = q*, Ay = A, for any k € [K], and

leT 0m1><'m2 Omlme71 Omlxmp
0m2><'m1 k2Q§ OmQXmP_l OmQXmP
~/
Q = : : : : ) (34)
Omp_1><m1 Omp_1><m2 kalQ}‘Dfl OmP_IXmP
Ompxml Ompxm2 OmPXmP71 kPQjD

with k; > 1 for any ¢ € {0,1,2,..., P}. In order for this solution to satisfy (31b), we require

.
1\ T
kos™—yp(@")=X; Tb—yp(@") T pt A An %(q*+(UA?) (ATA:—ym*)))

. ~0, Vke[K].  (35)
%(q*+(UA?) (ATAZ—W*))) @
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In the following, we find the values of k; for any i € {0,1,2,..., P} so that (35) holds. To that end,

we construct the following matrix

.
INT
ko(8**yg(fﬂ*)*’\ZTb*yk(m*)T#+>\*2A#) %(‘1*+<UA2> (AT} —y(™))

- , Vk € [K]. (36)
1 * 1 Ty * * S
§<q +(UA2> (A A —yp(z ))) Q'

Note that subtracting (36) from (35) leads to the following matrix:

[<k071>(y2<m*>+yk<w*>Tsz<Au*b>) 0“"’} =0, Vk € [K],

Omx1 mxXm

which is PSD because its eigenvalues are non-negative. In fact, (ko — 1)(y2(z*) + yp(z*) "o —
A" (Ap — b)) is the only non-zero eigenvalue of this matrix that is non-negative because ko > 1,
“AST(Ap—b) >0 due to Ap < b and A. >0, and we have y°(x*) + yx(z*) g > 0 according
to the assumption min;_, {y2(x*) +yr(x*) "} > 0. Thus, we choose good values of k; for any
i€{0,1,2,..., P} to ensure (36) to be a PSD matrix and accordingly will make (35) hold.

Next, by Lemma 1, in order for (36) to be a PSD, we equivalently require
si(s* =y =y b—yp(z) T pt A Ap) ;<q;-‘+<UmxTniAéi)T<AT ;

.
n(m*)))

LT =0, Vk e [K],ie[P], (37)
5<q:+(vmmi1\%i> (ATAZym*))) kiQF

with Zil s; = ko. Constraints (37) can be satisfied by allowing s; x k; > 1 for any i € [P] due to (4b).
Then, we let kg =k; =---=kp and s; X k; =1 for any i € [P], leading to ko=k =--=kp=+/P.
Finally, we have UBy; > Zy(m) by Theorem 4. Meanwhile, as Problem (20) is a minimization

problem, UB;f; is no larger than the objective value corresponding to our constructed feasible

solution (@,E,q,é/,j\k Vk € [K]). That is, we have

P P
UB, <VPs +% Y In, o (VPQ!) + i lla’l, < VP ( Y L 0@+ mrq*m) = VPZ;y(m),
=1 =1
where the second inequality holds because P > 1. Therefore, we have
0<UB;j; — Zi(m) < (VP —1)Zi(m). O

We observe that the theoretical upper bound in Proposition 7 is achievable through the following
example.
EXAMPLE 1. Suppose that g =0, S =R™, 4, = 400, and v, = 1. With f(z, UAZ &, + p) =

|z T¢&,|, Problem (4) can be recast as the following SDP formulation:
Ziym) = min 5+ 1,0 Q (39)

mT —mT
s.t. 2| =0, | 2 2] =0, x€X.
[ ] L Q
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For fixed « € X, optimizing over the remaining decision variables in (38) yields Q" = %, and
st = 7?”3 with objective value vVaTx. By Proposition 5, we obtain an upper bound by considering
P
UBy=min s+» I,eQ, (39)
©,5Q i=1

t |5 = 0. 1% T2 |>=0 X
S[WMQJ_’bd@@J‘wE’

where Q = {Q,,...,Qp} and diag(Q,) is a block diagonal matrix consisting of Q,,...,Qp. For

fixed x € X, where = = (x] ,. .. ,:I:ITD)T and x; € R™ for all i € [P], optimizing over the remaining
T /el x.
decision variables in Problem (39) yields Q; = =7 for all i € [P], and s* = S Y5 with

objective value Zf; VT x;. Now we let m,; = 2 for any i € [P] and X = {x € R"|z; > 1,Vi € [m]}.
It follows that Z3;(m) = /m and UBy; = P/, and so the relative gap between Zy;(m) and U By,
is

P\/W;T:n vm_ Jp - 1,

attaining the theoretical upper bound in Proposition 7.

REMARK 3. The theoretical error bound v/P — 1 in Proposition 7, albeit achievable in the
above example, is usually conservative because it needs to hold valid for arbitrary (including many
pathetic and worst-case) DRO problem instances. For instance, if P > 1, v; > 0, and ||¢*||> > 0,
then the theoretical bound cannot be attained. The above example is comparable to the worst-case
distribution induced by solving a DRO problem. Nevertheless, the inner approximation (20) leads
to much better computational optimality gaps under various instances, which will be shown in our

numerical experiments in Section 4.

3. Combined Ambiguity Set

We consider the combined ambiguity set that incorporates both Wasserstein distance and moment

information. Like in the last section, we derive an SDP reformulation of the corresponding DRO

problem, as well as its inner and outer approximations that can be solved more efficiently. Further-

more, we bound the gaps between the optimal values of the DRO problem and its approximations.
Formally, we consider DRO problem

min max Ep[f (x,£)], (DRO-C)

xzeX PeDcq

where

D01 (87”@27727?)07}20) - {P

M{@—uﬂﬁ—uf}jwz}.
W (P,Py) < Ry
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In this combined ambiguity set, Py denotes a reference distribution. For example, P is an empirical
distribution of € generated by NV i.i.d. samples {él ;1 €[N]}of &, ie., Po{& = él} =+ for all i € [N].
In addition, W (PP, Py) denotes the type-1 Wasserstein distance between P and Py defined through

W .0 =min{ [ €~ &l (6.€) |

where 7w denotes a joint distribution of & and é’ with marginals P and Py, respectively. Intuitively,
W (P,Py) represents the minimum expected distance between & and é over all possible joint dis-
tributions 7. It has been shown that, as N — oo, Py converges to the true distribution of & almost
surely (Van der Vaart 2000). As a result, if we select the value of Ry > 0 appropriately, then the
Wasserstein ball centered at Py with radius Ry will include such true distribution with high confi-
dence. Besides the Wasserstein ball, D¢, designates that the centered second-order moment matrix
of £ is bounded by v,3. We notice that Ry controls the conservatism degree of Dg;. The larger
radius Ry is, Do, has higher confidence to contain the true distribution of &, while it leads to a
more conservative optimal solution to (DRO-C). In contrast, when R, decreases to zero, (DRO-C)
reduces to an ambiguity-free stochastic program with regard to Py. For (DRO-C), we consider a

setting slightly stronger than that in Assumption 1.

ASSUMPTION 2. Function f(x,€) 1is piecewise linear conver in &, i.e., f(x, &) =

maxj_, {y)(x) +yi(x) €} with both y(x) = (yi(x),...,y"(x)) and y2(x) affine in T for any
k € [K]. Additionally, S =R™.

PROPOSITION 8. Under Assumption 2, (DRO-C) can be recast as the following SDP formulation:

N
Zg(m) = /I\ncéncy ARy +7XeQ+ %Z Yi (40a)
ARG, i=1
Q 5 (—yn(@) + C' 2Qu) .
£ . . =0, Vi € [N], Vk € [K], (40b
T Cu@ 20 g @) - ¢TE +uTQu i€ [N, vk e [K], (40b)
AeRy, meX, ||C°|. <A Vie[N],

where Q e R™*™ ' eR™ for any i€ [N], C={¢"....¢N}, and §={y1,...,yn} .

Proof. The result is deduced from Corollary 1 in Gao and Kleywegt (2017). g

As discussed in Section 2, Problem (40) can be computationally difficult when £ is high-
dimensional and/or correlated, leading to many large-scale PSD constraints. We derive more effi-
ciently solvable outer and inner approximations of Problem (40) (i.e., (DRO-C)) in Sections 3.1

and 3.2, leading to lower and upper bounds, respectively, while theoretically showing their quality.
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3.1. Lower Bound

By performing the eigenvalue decomposition on matrix 3, we first reformulate (DRO-C) as

min max Ep, [f <:B,UA%£I+M)} ; (41)

zEX P€DCo

where
Ep, [515?] =72l
Do (St, 72, Py, Ry) = 4 P . .
2 (S p 70 o ) |om: [ loate v n-g| «(vate +ud) <m
S2

under the condition that f(x, UA%EI + p) is Pr-integrable for any P; € Dgy and S;:= {£;, € R™:
UA%EI + p € §}. Next, by the approximation of £ in (5) due to PCA, we outer approximate (41)
as the following problem:

min max [Ep, [f (CU,UernlAr%nlfr‘f‘Mﬂ ; (42a)

TEX PreDey

where
Ee, [£.£] 22lm,
Des (Sry 72, Fo, Ro) = { By dm: / UmxmlAr%nlEr +p- éH1 " (UmelA%nlfr + M’é) =Ho
s2 (42b)

with
Sy = {&ele : UmxmlAilngrueS}. (42¢)
Note that é is a given data point and thus it is not approximated following what we do for €.

THEOREM 5. Under Assumption 2, Problem (42) has the same optimal value as the following
SDP formulation:

N
. 1
Zi(my) = Angn&A)\RO—F%Imler—l—NZyi (43a)
TR i=1
.
. L (—yp(z)+¢° TUmxmlA%n
s.t. @ 2(( w(@) +¢') Al) =0

—

(@) +¢) Ui, AL, vi—we(@) -2 (2) + (“_gi)TCi
Vie[N], Vke K],  (43b)

AeR,, zeX, ||<'

<\, Vie[N], (43¢c)

where Q, € R™>™1_ ¢' e R™ for any i € [N], ¢= {Cl, . .,CN}, and §={y1,...,y~n}. Furthermore,
we have the following: (i) Problem (43) provides a lower bound for the optimal value of (DRO-C);
(ii) the optimal value of Problem (43) is nondecreasing in mq; and (iii) if my =m, then (DRO-C)

and (43) have the same optimal value.
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Proof. See Online Supplement B.1 for the detailed proof. O

We show the quality of the outer approximation (43) in the following proposition.

PROPOSITION 9. It holds that

0< Z°c(m) - Z*c(my) \FZZW:‘; om0 (44)

i=1 k=1

where LY = (—yu(x*) + Ci*)TUmx(m_ml)(Am_ml)%, x* and ¢ (Vi € [N]) denote an optimal

m—mj

solution of Problem (43), and A"~ ™" € Rim—muUx(m=m1) denotes the lower-right submatriz of A.
Proof. See Online Supplement B.2 for the detailed proof. O

3.2. Upper Bound
We further inner approximate Problem (40), leading to an upper bound, by splitting random vector
&, into P pieces in the second-moment constraint in Dgy so that & = (EITI,EITQ, e ,EITP)T, where

&, €R™, Vje [P], and Zle m; =m. This gives rise to an inner approximation

min max Ep, [f (a:,UA%EI—I—p,)] , (45)

xceX P1eDcy
where
Ep, |:€IJ£;Z:| =y2lm;, Vj€[P]

Dc4(31>N772,P07R0): Py 1 A 1 4
aw-/ UAYE +p—&| 7 (UMY +p.€) <R,
S2 1

THEOREM 6. Under Assumption 2, Problem (45) has the same optimal value as the following
SDP formulation:

UB¢ = H)l\lg )\Ro+7221m] °Q,+ Zyz (46)
¢.,9,8 =t
(= o 3!
s.t. Q-j'r o2 (( yr() +¢') UmejA-mJ') =0, Vj € [P], Vi€ [N],
2 (@) +€) Unom, A Sji

Vk € [K],

A~

AL
Zsmzyi—yk(w)Tu—yi(wH(u—ﬁ) ¢', Vie [N], Vke[K],

AeERy, weX, ||¢

LS, Vie[N],

where Q; € R™i*™i, ¢'eR™ forany i€ [N], Q: {Q,...,Qp}, &': {Cl,...,CN}, J=A{vy1,---,yn},
and § = {s;jx, Vi€ [N], Vje€[P], Vk € [K|}. Furthermore, Problem (46) provides an upper bound
for the optimal value of (DRO-C).

Proof.  See Online Supplement B.3 for the detailed proof. O
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We show the quality of our derived inner approximation (46) in the following proposition.

PROPOSITION 10. If min;" | {y2(x*) +yx(z*) "} >0 and max , {(p — éZ)Tc’} <0, where x*
and Ci* are optimal solutions of Problem (40), then the relative gap between the optimal values of

Problems (46) and (40) is bounded from above by /P —1, i.e., 0 <UBg — Z&(m) < (VP —1)Zg(m).

Proof. See Online Supplement B.4 for the detailed proof. O

REMARK 4. The theoretical upper bound in Proposition 10 is achievable. Indeed, when we
enlarge Ry enough such that Dc, degenerates to a moment-based ambiguity set, we can follow the
same setting of Example 1 to achieve the theoretical upper bound in Proposition 10. Meanwhile,
similar to our notes in Remark 3, the theoretical bound in Proposition 10 is also conservative
and only achievable in pathetic problem instances. The quality of the inner approximation (46) is

usually much more optimistic due to the corresponding numerical results in Section 4.

Before closing this section, we note that the first-order moment constraint, albeit important
to reduce solution conservatism, is not included in the combined ambiguity set of (DRO-C). We
consider additionally including the first-order moment constraint, leading to a DRO problem with
a combined ambiguity set consisting of Wasserstein distance and first- and second-order moment
information; see Problem (DRO-C2) in Online Supplement B.5. We correspondingly derive the
inner and outer approximations of (DRO-C2), and conduct computational experiments to com-
pare their performance with the approximations of (DRO-C). Based on the results, we observe
that adding the first-order moment information does further reduce the conservatism of optimal
solutions for both (DRO-C) and its approximations, though such reduction is not significant. This
is because the second-order moment information together with the Wasserstein information has
already (partially) implied the first-order moment information. Such insight is also explained in

Gao and Kleywegt (2017). Due to this, we only keep (DRO-C) in the main body.

4. Computational Experiments

We perform extensive computational experiments to demonstrate the effectiveness of our proposed
inner and outer approximations in two applications: production-transportation and multi-product
newsvendor problems. The mathematical models are implemented in MATLAB R2017a (ver. 9.2)
by the modeling language CVX (ver. 2.1) (Grant and Boyd 2008, 2014) with the Mosek solver
(8.0.0.60) on a PC with 64-bit Windows Operating System, an Intel(R) Core(TM) i7-7700 CPU @
3.60 GHz processor, and a 16 GB RAM. The time limit for each run is set at 36 hours. In Section
4.1, we specify the proposed lower and upper bounds in the context of the two aforementioned
applications. In Section 4.2, we explain how to randomly generate test instances and report the

numerical results together with analyses.
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4.1. Computational Setup
In this section, we specify the proposed lower and upper bounds, as well as the theoretical upper
bounds for their gaps with the original DRO model, in the context of production-transportation

and multi-product newsvendor problems.

4.1.1. Production-Transportation Problem A deterministic production-transportation
problem aims to minimize the total production and transportation cost by making production and
transportation decisions while satisfying all customer demands. Suppose there are n customers with
demand d; (Vj € [n]) and m suppliers, each with normalized capacity 1, and >_. ., d; <m. We
use x; and z;; to respectively denote the amount of goods produced by supplier ¢ and the amount
of goods shipped from supplier ¢ to customer j. Moreover, we use ¢; and &;; to denote the unit
production cost by supplier 7 and the unit transportation cost to customer j from this supplier,

respectively. Thus, this problem can be formulated as follows:

Iilin Zm:ciwi—i-zm:zn:&jzij (47&)
—

i=1 j=1
st Y z;=d;, Vj€n, (47b)
i=1
Zzii =ux;, Vi€ [m], (47¢)
=1
0<z <1, Vie|m], (47d)
zi; >0, Vi€ [m], Vj € n]. (47e)

Now we derive the DRO counterpart of Problem (47). Specifically, we assume that £ is random
and its probability distribution P is unknown but it belongs to a predefined distributional ambiguity
set D. The decision x is decided before the realization of randomness and z is made as a recourse
to specific realizations (Bertsimas et al. 2010). This leads to a two-stage DRO counterpart

mcgn {ch+max Ep U (Q(2,€))]: (47d)} , (48)

PeD

where U(-) is a convex nondecreasing disutility function used to incorporate risk considerations

into the second-stage cost. In particular, we define

U(Q(26) = max {anQ(=,6) + B}

where Q (z,£) = min {sz : (47b), (47¢), (476)}. We can apply the proposed inner and outer approx-
imations (i.e., Problems (8), (43), (17), (20), and (46)) to approximate Problem (48) in the context

of production-transportation problem, with the details provided in Online Supplement C.
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We follow Bertsimas et al. (2010) to randomly generate the locations of m suppliers and n
customers from a unit square considering &;; as the distance between supplier ¢ and customer j.
We estimate the mean, standard deviation, and covariance matrix of € by using 10,000 indepen-
dent samples, generated from independent uniform distributions on intervals [0.5;;,1.5¢;;], Vi €
[m] and j € [n]. We let ¢ denote the average transportation cost and generate production cost ¢; and
demand d; uniformly on the intervals [0.5¢, 1.5¢] and [0.5%, %], respectively. We consider disutility
function U(x) = 0.25 (e** — 1) while approximating it by an equidistant linear approximation with

five segments on the interval [0, 1].

4.1.2. Multi-Product Newsvendor Problem Given n products and the demand ¢; for
each i € [n], a deterministic multi-product newsvendor problem determines a nonnegative ordering

amount = (x;,7 € [n]) " to minimize the total loss described as follows:

f(waé) =c'xz—v' min (w7£) _gT (w_€>+
=(c-v)2+@v-9) (-8,
= max{(c—v) z,(c—g) @ +(g-v) ¢}

where ¢ represents the wholesale price, v represents the retail price, g represents the salvage price,
and the minimum and nonnegativity operator are applied componentwise. Now we consider that
demand £ is uncertain and its probability distribution belongs to a distributional ambiguity set D.
The DRO counterpart of the multi-product newsvendor problem to minimize the expected total

loss against the worst-case distribution in D can be described as follows:

min max Ep [max{(c—v)Ta:, (c—g) x+ (g—v)TE}] . (49)

x>0 PeD
Note that the procedure of applying the proposed inner and outer approximations and the theo-
retical bounds to Problem (49) is similar to that for Problem (48) and thus is omitted here.

The mean and standard deviation of £ are randomly picked from the intervals [0,10] and [0, 2],
respectively. To generate the covariance matrix, first we randomly generate a correlation matrix
by the MATLAB function “gallery(‘randcorr’;n)” and then convert it to a covariance matrix. We
follow Xu et al. (2018) to set the wholesale, retail, and savage prices as ¢; =0.1(5 47— 1), v; =
0.15(5+¢—1), and g; =0.05(5+1 — 1) for any i € [n], respectively.

4.2. Computational Results

We first evaluate the performance of our proposed lower and upper bounds and then show how they
can help construct a tight interval, which includes unknown optimal solutions of large-sized DRO
problems that cannot be solved to optimality (or even feasibility in most cases) by existing methods
in reasonable time. We further investigate the benefits of choosing the components with the largest
variability (i.e., leading components) in the PCA approach (as compared to randomly choosing

components) and also perform sensitivity analyses with respect to several given parameters.
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4.2.1. Instance Generation and Table Header Description We perform our experiments
to solve various instances. First, we consider different levels of problem size, namely small, medium
and large, by varying m and n in the production-transportation problem and varying n in the
newsvendor problem. Second, we consider different levels of approximation. In particular, for PCA-
based lower and upper bounds, we consider different values of =+ in {100%, 75%,50%, 25%, 10%}.
For vector splitting based upper bounds, we consider P € {2,4,5}, by which the random vector & is
equally split with m; =my =--- =mp; that is, here we use a homogeneous division of the random
vector. This is because such homogeneous division eventually leads to a set of SDP constraints,
with all of them having the smallest possible matrices simultaneously, in our proposed formulations.
It helps improve the computational performance of the corresponding inner approximation. In
addition, when assigning all the components of &€ to pieces, we consider the non-increasing order of
the components based on their variance. Specifically, the first piece includes the first m; components
with the largest variance, the next m, components are assigned to the second pieces, and so on. The
reason is that in our approximation, the correlations among different pieces are dropped, but we
would like to capture the correlations among those important components within each piece. Third,
we consider different supports, i.e., S € {[-20,20],[—30,30],[—40,40]}, where o represents the
sample standard deviation of random vector £€. In addition, v, and ~, are set as 1 and 2, respectively,
for the moment-based ambiguity set, the number of i.i.d data samples N = 10 for the combined
ambiguity set, the Wasserstain radius Ry is set as 30 for the production-transportation problem
and as 700 for the newsvendor problem. We will perform sensitivity analyses with respect to other
different values of 71, 72, and Ry. For each combination of the above three variants, we randomly
generate five instances' and report the average results over them.

In the following Sections 4.2.2 - 4.2.6, we will use tables to report our results and here we describe
several table headers that are shared by most of the tables. Column “Size” reports the values of
m and n in the production-transportation problem and n in the newsvendor problem, indicating
different levels of the problem size. Column “Orig.” represents the computational time in seconds
required to solve the original DRO problem and column “Time” represents the computational
time in seconds required to solve the corresponding inner or outer approximations. Column “Gap”
represents the relative gap in percentage between a lower or upper bound and the original optimal
value. Here, the relative gap between two values is defined as their difference divided by the
maximum. As such relative gaps are theoretically bounded from above, e.g., (9) and (22), we use
column “Gap2” in percentage to represent the value of theoretical bound. Whenver needed, we use
“LB” and “UB” to denote the lower and upper bounds, respectively. Note that the percentage of
&’s components utilized to construct lower and upper bounds, i.e., ™1 x 100%, is represented by

71 (%) and P represents the number of split pieces of §, with each piece having the same size.
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4.2.2. Lower Bound Performance We summarize the lower bounds of the DRO problem
with the moment-based ambiguity set on both applications in Tables 1 and 2, while Tables 3 and
4 report the results for the DRO problem with the combined ambiguity set.

Table 1 Lower bound (8) on the production-transportation problem

= (%) 100% 5% 50% 25% 10%
Size Support | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(m,n) (secs) | (secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%)

[-20,20]]66.3 [66.2 0.00 0.00 [21.3 0.95 11.26/3.9 3.42 18.00[{1.1 4.73 19.72/0.5 5.07 19.49
(5,20) | [-30,30]|73.6 |73.8 0.00 0.00 |[21.8 1.11 10.83/4.7 292 16.90/1.2 4.96 19.74]0.5 5.50 20.06
—40,40]|67.3 |67.4 0.00 0.00 |22.5 1.10 11.95/4.4 3.48 18.89|1.2 5.66 21.26/0.5 5.93 21.21
—20,20]]560.9 |559.6 0.00 0.00 |180.8 0.53 7.48 |40.3 1.73 12.52|3.8 3.47 15.05/0.8 3.94 15.38
(4,40) | [-30,30] | 551.5 | 549.3 0.00 0.00 |181.3 0.58 8.25 |39.5 2.28 14.23|4.4 3.74 17.29/0.87 4.63 18.01
—40,40]]542.9 |543.2 0.00 0.00 |173.9 0.60 7.67 |40.2 1.93 12.76{4.4 3.53 15.04/0.9 3.86 15.04
—20,20]|1553.1| 1553.5 0.00 0.00 |392.0 2.55 13.33|68.9 3.50 13.81|7.2 3.71 13.63|1.0 3.83 13.57
(8,25) | [-30,30] | 1558.3| 1553.1 0.00 0.00 |440.1 1.71 11.00{76.6 3.09 13.22|7.3 3.60 13.28/0.9 3.80 13.17
[-40,40]|1612.2| 1610.8 0.00 0.00 |465.2 1.40 11.08/92.4 3.07 15.70/7.4 3.96 14.94/0.9 4.16 14.80

Table 2 Lower bound (8) on the newsvendor problem

%(%) 100% 75% 50% 25% 10%
Size| Support | Orig. | Time Gap Gap2|Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(n) (secs) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%)
—20,20]|19.0 18.9  0.00 0.00 |5.1 0.02 0.65 [1.0 0.26 2.37 |0.3 1.18 4.82 |0.2 223 6.29
100 | [-30,30] | 17.2 |17.4  0.00 0.00 |4.6 0.03 0.77 |1.0 0.24 2.27 |0.3 1.05 4.63 | 0.2 1.98 6.14
17.1 17.2 0.00 0.00 |4.4 0.02 0.57 {09 0.22 2.17 |0.3 0.95 4.40 |0.2 2.22 6.32

[ ]

[ ]

[ ]

[ [[175.0 [175.7 0.00 0.00 [421 0.02 058 |6.0 0.21 1.83 |05 000 3.67 [0.3 2.00 5.04
160 | [~30,30] | 171.2 {1714 0.00 0.00 [422 0.02 0.60 [6.1 019 1.82 |0.5 0.94 3.85 |02 1.96 5.19

[ ]

[ ]

[ ]

[ ]

—40,40]|154.1 | 154.0 0.00 0.00 |43.3 0.02 0.57 |6.2 0.21 1.82 |0.5 0.83 3.53 |0.2 1.75 4.81
—20,20]|518.0 | 519.0 0.00 0.00 |118.5 0.02 0.52 |18.3 0.19 1.66 |1.0 0.83 3.34 |0.3 1.71 4.48
200 | [-30,30]|494.8 | 494.1 0.00 0.00 |124.3 0.02 0.51 [18.1 0.15 1.52 |09 0.79 3.37 |0.3 1.50 4.40
—40,40]|521.9 |522.1 0.00 0.00 |120.3 0.02 0.54 |19.4 0.15 1.51 |0.9 0.80 3.35 |0.2 1.82 4.70

From Tables 1 and 2, where the column “Gap2” represents the relative gap induced by the theo-
retical upper bound in (9), we have the following observations. First, when the number of principal
components my increases, both Gap and Gap2 decrease and the computational time increases.
When m; increases to m, we obtain the lower bound equivalent to the original optimal value but in
a large computational time. In practice, thus we can leverage the number of principal components
as a tool to trade-off between solution quality and computational time. Second, when the prob-
lem size increases, the original problem becomes more difficult to solve, while our approximations
reduce the computational time significantly and maintain very high solution quality. For instance,
even with a 90% reduction in the dimension of uncertainty space, our approximation solution can
give an objective value at around 2% of the original optimal value, as shown in the column “Gap”.
Third, when comparing the values of Gap and Gap2, we can observe that the latter is always
larger than the former, demonstrating that theoretical bound (9) is valid. Meanwhile, the quality
of theoretical bound (9) is sensitive to different problems and datasets, as Gap?2 is closer to Gap in

the newsvendor problem as compared to in the production-transportation problem. Similarly, the
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Table 3  Lower bound (43) on the production-transportation problem
(%) 100% 5% 50% 25% 10%

Size Orig. Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(m,n) | (secs) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%)
(5,20) | 704.5 704.4 0.00 0.00 | 265.3 1.22 32.93| 94.1 4.11 57.25| 37.2 6.88 63.55| 16.4 7.22 62.93
(4,40) | 4787.7 | 4792.9 0.00 0.00 |1700.9 1.24 34.02| 497.5 2.93 48.95]134.6 5.13 56.38 | 55.1 5.68 55.96
(

8,25) | 13503.8 [ 13401.5 0.00 0.00 |4132.6 2.21 36.65[1196.8 3.94 42.46 | 233.2 4.78 44.68| 79.0 4.98 42.43

Table 4  Lower bound (43) on the newsvendor problem

L (%) 100% 5% 50% 25% 10%
Size | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(n) | (secs) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%)
100 | 128.9 | 128.8° 0.00 0.00 | 58.2 0.02 1.93 | 28.7 0.21 6.69 | 14.6 1.04 14.52| 12.9 2.57 20.96
160 | 859.3 | 862.5 0.00 0.00 |333.5 0.02 1.82 |107.4 0.18 5.64 | 42.1 0.71 10.87| 23.0 1.94 16.52
200 |2234.7]2227.4 0.00 0.00 | 811.8 0.01 1.42 |216.8 0.14 4.58 | 63.0 0.72 10.01| 30.4 1.68 14.56

lower bound (8) performs better when applied to the newsvendor application, as the relative gap,
i.e., Gap, is generally smaller than that in the production-transportation problem.

From Tables 3 and 4, where the column “Gap2” represents the relative gap induced by the
theoretical upper bound in (44), we have the similar observations as from Tables 1 and 2. In
addition, a comparison among Tables 1 - 4 shows that (i) solving DRO problems with the combined
ambiguity set and their outer approximations takes more computational time than solving those
with the moment-based ambiguity set; and (ii) theoretical bound (44) is more conservative than

theoretical bound (9) and can be improved in our future studies.

4.2.3. Upper Bound Performance We report performance of the upper bound (17) in
Tables 5 - 6 and report that of (20) and (46) in Tables 7 - 10.

Table 5 Upper bound (17) on the production-transportation problem

(%) 100% 75% 50% 25% 10%
Size | Support | Orig. | Time Gap Gap2|Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(m,n) (secs) | (secs) (%) (%) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%)

20,20]/60.4 [60.7 0.00 0.00 [244 3.28 850 [5.7 6.68 14.80[1.8 7.60 16.29/1.1 7.60 16.48
30,30]/709 |71.1 0.00 0.00 |24.5 1.25 6.19 |59 498 12.68/1.8 891 20.14/1.1 10.60 23.80
40,40/ 68.9 |68.7 0.00 0.00 |23.8 3.66 9.35 |59 10.83 16.60/1.8 16.08 25.03| 1.1  17.41 29.25
20,20 524.8 [525.3 0.00 0.00 [175.2 2.37 6.20 [43.4 5.40 11.21|7.6 7.08 14.82[3.0 7.46 13.53

=
(5,20) | [—
%,

(4,40) | [-30,30]) 477.7 |477.7 0.00 0.00 | 189.7 4.37 9.56 |42.6 9.17 16.27|8.1 13.34 23.27|3.1  15.79 27.59
[—
[,
[—
[_

40,40] 565.0 | 566.0 0.00 0.00 |175.7 7.33 11.74|38.6 14.03 19.69/8.0 18.88 26.56|3.1  20.52 29.76
20,20 1470.2] 1468.7 0.00 0.00 [479.6 0.98 5.40 [100.1 1.77 9.34 [15.3 2.06 9.86 [4.1 2.11 10.78
30,30 1634.5| 1632.6 0.00 0.00 |491.6 2.06 7.09 |104.8 5.57 16.16/15.7 6.73 19.33|/4.2 7.14 20.66
4o,40] 1562.0| 1563.3 0.00 0.00 |483.5 6.03 11.82|104.8 10.93 21.38/16.4 12.61 23.84|4.1  13.53 26.24

(8,25)

From Tables 5 - 6, where the column “Gap2” represents the relative gap induced by the the-
oretical upper bound in (22), we have similar observations as from Tables 1 and 2. In addition,
our approximation (17) performs better when solving the production-transportation problem as
compared to solving the newsvendor problem. Meanwhile, the values of Gap2 are always larger
than those of Gap, implying that theoretical bound (22) is valid.

From Tables 7 - 10, we have the following observations. First, when P increases, the computa-

tional time decreases and the Gap increases. In practice, thus we can leverage the number of split
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Table 6  Upper bound (17) on the newsvendor problem
(%) 100% 5% 50% 25% 10%
Size| Support | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap Gap2 |Time Gap Gap2 | Time Gap Gap2
(n) (secs) | (secs) (%) (%) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%)
[-20,20]/18.8 [19.0 0.00 0.00 [4.7 5.04 12.12/1.0 19.35 25.88 [0.3 40.63 46.47 [0.3 53.46 58.93
100 | [-30,30]|17.0 [17.0 0.00 0.00 |4.7 10.48 20.37|1.0 39.22 4844 (0.3 77.8 86.09 {0.3 97.94 105.47
[~40,40]/18.6 |18.7 0.00 0.00 |49 19.29 35.54|1.0 70.79 86.16 |0.3 158.74 172.17|0.3 213.95 226.36
[-20,20]181.8 [181.5 0.00 0.00 |44.2 4.45 10.43|6.3 17.53 23.16 [0.7 3525 40.34 [0.3 48.71 53.31
160 | [-30,30]| 174.3 |175.0 0.00 0.00 |41.6 9.73 19.07/6.0 37.45 46.33 |0.6 81.59 89.55 [0.3 110.04 117.66
[—40,40]149.2 |149.0 0.00 0.00 |43.8 17.85 31.48|5.7 73.73 86.37 |0.7 156.36 167.72|0.3 212.74 222.98
[-20,20]501.3 [501.2 0.00 0.00 |138.4 4.65 10.21|20.5 18.95 24.17 [1.4 38.26 42.89 [0.5 51.69 56.0
200 | [-30,30]| 495.3 | 495.4 0.00 0.00 |126.7 9.04 16.53|19.3 35.06 42.09 |14 73.70 79.95 [0.5 102.89 108.66
[-40,40]|537.5 |536.7 0.00 0.00 | 145.7 18.39 30.61|17.0 78.17 89.52 |1.3 165.07 175.67|0.5 222.91 232.47
Table 7 Upper bound (20) on the production-transportation problem
P 2 4 5
Size | Support | Orig. | Time Gap Gap2| Time Gap Gap2|Time Gap Gap2
(m,n) (secs) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%)
[-20,20]| 65.9 11.3 0.18 41.42| 5.4 0.52 100 4.4 0.71 123.61
(5,20) | [-30,30] | 69.0 | 10.7 0.07 41.42| 5.7 0.35 100 4.5 0.54 123.61
—4o,40] | 67.1 11.4 0.10 41.42| 54 0.39 100 4.3 0.51  123.61
—20,20] | 521.9 | 794 0.15 4142 32.8 0.40 100 | 22.9 0.53  123.61
(4,40) | [-30,30] | 566.2 | 86.8  0.13 41.42| 355 043 100 | 24.7 054 123.61
—4o,40] | 5429 | 83.0 0.17 4142 33.9 0.47 100 | 25.1 0.57  123.61
—20,20] | 1531.3 | 205.2 0.02 41.42| 55.8 0.07 100 | 61.5 0.11  123.61
(8,25) | [-30,30] | 1594.0 | 216.8  0.04 41.42| 58.4 0.13 100 | 67.8 0.18 123.61
[-40,40]|1539.1 | 207.0 0.04 41.42| 56.8 0.16 100 | 67.5 0.24 123.61
Table 8  Upper bound (20) on the newsvendor problem
P 2 4 5
Size | Support | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap  Gap2
(n) (secs) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%)
[-20,20]] 20.1 1.3 1.11  41.42| 0.5 3.05 100 0.5 3.86  123.61
100 | [-30,30] | 17.7 1.3 1.26  41.42| 0.5 3.20 100 0.5 4.07  123.61
[—40,40]| 18.1 1.3 1.11  41.42| 0.5 2.99 100 0.5 3.73  123.61
[-20,20] 1623 | 7.3 091 41.42| 1.3 2.52 100 0.9 3.25  123.61
160 | [-30,30]| 169.2 | 7.4 1.10  41.42| 1.2 2.88 100 0.9 3.57  123.61
[~40,40]|169.6 | 7.9 0.95 41.42| 1.2 2.62 100 0.9 3.34  123.61
[-20,20] | 521.6 | 25.7 0.84 4142 2.6 2.13 100 1.7 2.62 123.61
200 | [-30,30] | 4934 | 21.7 0.84 41.42] 29 2.28 100 1.7 2.86 123.61
[—40,40]| 518.1 | 23.9 0.84 41.42| 2.8 2.18 100 1.7 2.81 123.61

pieces as a tool to balance between solution quality and computational time. Second, the quality
of upper bound (20) is sensitive to different problems and datasets because it performs better (i.e.,
with smaller Gap) on the production-transportation problem than on the newsvendor problem.
Third, as mentioned in Remarks 3 and 4, although the theorectical error bound vP — 1 is very
conservative, as represented in the column “Gap2”, the computational optimality gap perform very
well, as represented in the column “Gap”. In addition, by comparing Tables 5 - 6 and Tables 7 -
10, we can observe that the vector splitting based upper bounds are much tighter than the PCA
based upper bounds.

4.2.4. Interval Performance In many real-world applications with large-scale models and
high-dimensional uncertainties (e.g., energy and transportation), we may not be able to solve a
DRO model to optimality (or even feasibility in most cases) by existing methods in reasonable

time. In this case, it can be very useful to quickly find a feasible solution with small optimality
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Table 9 Upper bound (46) on the production-transportation problem

P 2 4 5
Size | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap  Gap2
)| (secs) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%)
)| 716.4 | 179.3 1.78  41.42] 1214 4.90 100 | 114.2 6.26  123.61
)| 5050.3 [ 1028.3 2.06 41.42] 521.8 4.56 100 | 488.4 5.50 123.61
)| 11383.6]2281.3 0.93 41.42[1017.6 3.25 100 |1010.7 3.96 123.61

Table 10 Upper bound (46) on the newsvendor problem
P 2 4 5
Size | Orig. | Time Gap Gap2|Time Gap Gap2| Time Gap  Gap2
(m,n) | (secs) | (secs) (%) (%) | (secs) (%) (%) | (secs) (%) (%)
100 | 129.5 | 55.8 1.66 41.42| 37.1  4.35 100 | 34.1 546  123.61
160 | 798.6 | 275.7 1.13 41.42]1325 3.18 100 | 120.5 4.17 123.61
200 [2038.4|615.7 0.93 4142|2514 2.70 100 |225.3 3.49 123.61

gap, evaluated through an interval that includes the (unknown) optimal value of this model. In this

section, we construct such intervals with the help of our proposed inner and outer approximations.

Table 11 Intervals on the production-transportation problem

(LB, UB] [(8),(17)] [(8),(20)]
Size Support (%%7 P) Orig. | Itv-Time Itv-Gap | Itv-Time Itv-Gap
(m,n) (secs) | (secs) (%) (secs) (%)
(25%,5) - 100.0 7.98 203.5 3.53
[—20,20] (50%,4) - 1017.9 5.74 730.5 2.32
(75%,2) - 5626.6 2.56 3706.4 0.93
(25%,5) - 106.2 13.60 219.6 3.31
(6,50) | [~3¢,30] | (50%,4) | - | 1071.3 1075 | 813.3 242
(75%,2) - 5955.1 6.39 3913.1 1.23
(25%,5) - 102.7 20.37 233.2 3.54
[—40,40] (50%,4) - 1093.9 16.40 780.7 2.87
(75%,2) | - | 5564.6  6.82 | 41243  1.09
(25%,5) - 265.7 4.94 604.7 2.78
[~20,20] | (50%,4) | - | 33752 453 | 21811 247
(75%,2) | - - - - -
(25%,5) | - 302.6 1028 | 629.1 280
(8,50) | [~30.30] | (50%,4) | - | 3697.8 821 | 26677  2.21
(75%,2) - - - - -
(25%,5) - 299.4 15.86 650 2.86
[—do,40] | (50%,4) | - | 41207  14.08 | 25964 241
( )

The interval results of the DRO problem with the moment-based ambiguity set are summarized
in Tables 11 and 12, while Tables 13 and 14 report the results for the DRO problem with the
combined ambiguity set. The first row of each table, indicated by [LB,UB], shows that each interval
is constructed by which lower and upper bounds. Column “Itv-Time” reports the time spent to
construct each interval, which equals to the summation of the computational times needed to find
the lower and upper bounds. Column “Itv-Gap”, calculated by % x 100%, demonstrates how
tight the interval [LB, UB] is. Symbol “-” indicates that no optimal solution of the original DRO
problem or its approximations can be found within the time limit. In Column “(™L%, P)”, ™1% is

used to define the lower bound problem and the PCA based upper bound problems, i.e., Problems
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Table 12 Intervals on the newsvendor problem
[LB, UB] [(8), (17)] [(8), (20)]
Size | Support [ (L%, P) | Orig. | Itv-Time Itv-Gap |Itv-Time Itv-Gap
(n) (secs) | (secs) (%) (secs) (%)
@25%,5) | - 103 3306 | 111 2.99
[—20,20] | (50%,4) | - 227.0 1431 | 1245  1.98
(75%,2) | - | 17032 324 | 9824  0.71
(25%,5) - 11.1 51.19 13.3 2.62
300 | [-30,30] (50%,4) - 244.7 17.90 144.2 1.76
(75%,2) - 1693.3 3.79 782.1 0.60
(25%,5) - 11.1 84.47 11.9 2.72
[—40,40] | (50%,4) | - 2519 2662 | 1264  1.85
(75%,2) - 1814.3 7.00 950.8 0.63
(25%,5) - 36 28.82 35.7 2.38
[~20,20] | (50%.4) | - 958.2 1586 | 4235  1.82
(75%.2) | - - ; ) )
(25%,5) | - 347 5855 | 354 2.8
400 | [-30,30] (50%,4) - 1093.7 20.06 525.8 1.74
(75%.2) | - i ; ; ;
(25%,5) - 38.5 80.60 39.1 2.38
[—do,40] | (50%,4) | - | 990.7 2366 | 4304 155
(75%,2) | - - - - -
Table 13 Intervals on the production-transportation Table 14 Intervals on the newsvendor problem
[LB, UB] [(43), (46)]
problem Size | (2%, P) | Orig. | Itv-Time Itv-Gap
[LB,UB] [(43), (46]] (n) (secs) | (secs) (%)
Size | (%1%, P) | Orig. | Itv-Time Itv-Gap (25%,5) - 503.7 3.34
(m,n) (secs) | (secs) (%) 240 | (50%,4) - 891.1 2.44
(25%,5) | - 21446 7.08 (75%,2) | - | 28534  0.88
(8,30) | (50%,4) | - 4204.3  6.32 (25%,5) | - 1018.8  3.36
(75%,2) | - | 14043.1  3.14 320 | (50%,4) | - | 22757 2.28
(8,40) | (50%,4) | - | 10290.3  6.98 100 gg?ig o | o 3
0, - . .
(75%,2) 40784.1 2.73 (75%. 2) i i i

(8), (17), and (43), while P is used to define the vector splitting based upper bound problems, i.e.,
Problems (20) and (46).

From Tables 11 - 14, we have the following observations. First, when the optimal solution cannot
be found for most original cases, an interval that includes the unknown optimal value can be
constructed fast by using our proposed inner and outer approximations. Such interval is relatively
tight for most cases, as demonstrated by the interval [(8),(20)] in Tables 11 - 12 and the interval
[(43), (46)] in Tables 13 - 14. Second, when m; increases and P decreases, such interval can be
tighter but it costs more computational time. In practice, thus we can leverage the number of
principal components and split pieces as a tool to balance between the interval tightness and
computational time. Third, from Tables 11 and 12, we can observe that the vector splitting based
upper bounds due to (20) are much tighter than the PCA based upper bounds due to (17) and

take less computational time.

4.2.5. Benefits of Choosing Leading Components When using the PCA approach to

derive our inner and outer approximations, we choose the leading components and relax the rest
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of ones. To show the benefits of choosing the leading components in guaranteeing solution quality,
we take our derived lower bound (8) together with its corresponding theoretical error bound (9)
as an example and compare its performance of solving the newsvendor problem under two cases:
(a) choose m; arbitrary components; (b) choose m, leading components.

If we choose m; arbitrary components, then we can follow the same process in Section 2.1 to
derive the corresponding outer approximation (denoted by (8’) here for short) and theoretical error
bound (denoted by (9’) here for short). Following the table header of Tables 1 and 2, which show
the performance of lower bound (8), we introduce subscripts a and b to use “Gap,” to denote the
relative gap in percentage between the lower bound (8') and the original optimal value, “Gap2,”
to denote the value of theoretical error bound (9) in percentage, use “Gapy,” to denote the relative
gap in percentage between the lower bound (8) and the original optimal value, and “Gap2;,” to
denote the value of theoretical error bound (9) in percentage. We further use “Det.” to denote the
relative gap in percentage between “Gap,” and “Gapy”, i.e., (Gap, - Gapy,) / Gap, x100%, and
use “Det,” to denote the relative gap in percentage between “Gap2,” and “Gap2,”, i.e., (Gap2, -

Gap2y,) / Gap2, x100%. We show the corresponding results in Table 15.

Table 15 Arbitrary vs. leading components on the newsvendor problem
L (%) 100% 5% 50% 25% 10%

Size Support Det. Det; |Det, Det, |Det. Det, |Det, Det, |Det. Det,

(n) | 7P (%) (%) () (%) |(%) (%) [(%) (%) |(%) (%)

[-20,20]]0.00 0.00 |98.80 83.04 |93.84 69.68 |78.47 40.56 |53.72 16.42
100 | [-30,30]| 0.00 0.00 |99.08 89.17 [94.97 72.70 | 79.27 42.36 |55.57 18.59
[—40,40]]0.00 0.00 |99.05 89.25 |93.65 69.51 | 74.69 36.59 |59.68 20.72
[—20,20]]0.00 0.00 [99.09 89.56 |94.00 69.93 |75.59 37.00 |52.88 16.41
160 | [-30,30]| 0.00 0.00 |98.98 88.82 [94.47 71.10 | 79.10 41.23 | 60.45 20.96
[-40,40]]0.00 0.00 |98.79 87.66 |92.97 67.85 | 77.78 40.25 |58.43 19.59
[—20,20]]0.00 0.00 [98.85 88.02 [93.40 68.60 |80.09 42.79 [57.00 18.68
200 | [-30,30]|0.00 0.00 |98.92 88.50 |94.77 71.69 |78.49 40.57 |57.36 19.18
[—40,40]]0.00 0.00 |99.03 88.92 | 94.88 72.10 | 81.28 44.06 |57.67 19.04

From the table, we can observe that Gap, > Gap,, and Gap2, > Gap2, for all the instances
when m; < m. It means that choosing m; arbitrary components leads to a worse lower bound. For
instance, for a newsvendor problem with size 100 and support [—20,20], if we arbitrarily choose
75% of the components, then the values of Gap, and Gap2, are 98.80% and 88.04% larger (i.e.,
worse) than those of Gapy, and Gap2,, respectively, when we choose 75% of the components with

the largest variability (leading components).

4.2.6. Sensitivity Analyses To better analyze the performance of our derived approxima-
tions more thoroughly, we conduct sensitivity analyses with respect to parameters v, vz, and Rj.
We take lower bound (8) with support [—3e,30] on the newsvendor problem as an example to

conduct the sensitivity analyses with respect to v; and 7, and summarize the results in Tables
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Table 16  Sensitivity analysis for lower bound (8) on the newsvendor problem with respect to 71

=L(%) 100% 75% 50% 25% 10%
Size| v1 Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(n) (secs) | (secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%)

0.4 13.2 |13.6 0.00 0.00 |4.1 0.03 0.78 | 1.18 0.24 2.32 |0.38 1.07 4.68 (0.3 2.16 6.24
0.6 13.7 |13.5 0.00 0.00 |4.0 0.03 0.78 |1.1 0.25 2.33 |04 1.10 4.69 |03 2.23 6.25
100 1 0.8 12.8 |13.0 0.00 0.00 |4.3 0.03 0.78 |1.1 0.25 2.33 |04 1.12 4.69 |03 2.27 6.26
1 18.8 |19.5 0.00 0.00 |5.7 0.03 0.78 |1.4 0.25 2.33 |04 1.13 470 |03 2.29 6.26
1.2 139 |14.1 0.00 0.00 |4.5 0.03 0.78 |1.2 0.25 2.33 |04 1.13 470 0.3 2.29 6.26
0.4 129.2 |130.0 0.00 0.00 |34.4 0.02 0.55 |6.2 0.24 197 |09 094 3.83 |05 2.00 5.17
0.6 136.7 | 138.5 0.00 0.00 |34.8 0.02 0.55 |6.4 0.25 1.97 |09 097 3.83 |04 2.07 518
160 | 0.8 145.0 |143.4 0.00 0.00 |33.7 0.02 0.55 |6.2 0.25 1.97 |09 0.99 3.83 |0.5 2.11 5.18
1 163.6 |164.5 0.00 0.00 |46.4 0.02 0.55 |9.1 0.25 198 |1.0 099 3.83 |04 212 5.18
1.2 132.1 1129.0 0.00 0.00 |31.7 0.02 0.55 |6.1 0.25 1.98 |0.8 099 383 |04 212 5.18
0.4 402.2 |402.8 0.00 0.00 {88.4 0.02 0.53 |16.1 0.18 1.67 |1.4 0.77 3.30 |0.4 1.57 4.40
0.6 435.1 4349 0.00 0.00 {90.6 0.02 0.53 {15.2 0.19 1.67 |1.3 0.80 3.30 |0.4 1.62 4.40
200 (0.8 425.3 |425.1 0.00 0.00 {103.0 0.02 0.53 |14.4 0.19 1.67 |1.3 0.81 3.31 |04 1.65 4.41
1 483.0 |483.5 0.00 0.00 {113.9 0.02 0.53 |21.5 0.19 1.67 |1.8 0.81 3.31 |04 1.65 4.41
1.2 371.3 |371.6 0.00 0.00 |100.6 0.02 0.53 |15.2 0.19 1.67 |1.3 081 3.31 |04 1.65 441

Table 17 Sensitivity analysis for lower bound (8) on the newsvendor problem with respect to 7

(%) 100% 5% 50% 25% 10%
Size| v, Orig. | Time Gap Gap2|Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(n) (secs) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%)
1 12.2 |12.0 0.00 0.00 |3.9 0.01 042 (1.1 0.17 1.54 |04 0.83 3.25 |03 1.72 4.36
2 17.8 17.5 0.00 0.00 |5.7 0.02 0.60 1.4 024 221 |04 1.19 4.66 |03 246 6.26
100 |3 13.3 |13.4 0.00 0.00 |{4.04 0.02 0.74 |1.1 029 2.73 |04 1.45 577 |03 3.01 7.76
4 14.1 14.1  0.00 0.00 |4.44 0.02 0.8 |1.2 0.33 3.18 |04 1.65 6.72 |0.3 3.43 9.03
5 13.8 |13.7 0.00 0.00 (4.4 0.03 097 1.2 037 358 |04 1.83 7.57 |0.3 3.80 10.17
1 114.0 |113.3 0.00 0.00 [28.8 0.01 0.38 |5.4 0.14 1.29 |0.7 0.64 2.66 |0.3 1.34 3.61
2 158.0 | 159.8 0.00 0.00 |45.2 0.02 0.54 |83 0.20 1.86 |0.9 091 3.82 |04 192 5.18
160 | 3 140.3 | 140.5 0.00 0.00 |32.7 0.02 0.67 {6.0 0.24 2.29 [0.8 1.11 4.72 |04 2.34 6.40
4 152.7 |152.8 0.00 0.00 [33.5 0.02 0.78 |6.6 0.27 2.67 |0.7 1.27 549 |0.3 2.67 7.45
5 142.2 | 142.8 0.00 0.00 |38.8 0.03 0.88 |7.4 0.30 3.00 |0.7 1.40 6.18 |04 295 &8.38
1 396.4 [398.2 0.00 0.00 {103.2 0.01 0.36 |15.5 0.11 1.06 |1.4 0.52 2.26 |04 1.12 3.09
2 473.8 |473.3 0.00 0.00 |125.4 0.02 0.52 |22.1 0.15 1.52 |1.9 0.74 3.23 |0.5 1.60 4.42
200 | 3 452.03|451.8 0.00 0.00 |86.7 0.02 0.64 |19.1 0.19 1.87 |1.3 0.91 3.99 |04 195 5.45
4 429.3 [430.0 0.00 0.00 |106.6 0.02 0.74 |15.9 0.21 2.18 |1.4 1.03 4.63 |04 222 6.34
5 466.9 1465.9 0.00 0.00 [98.6 0.03 0.84 |14.8 0.23 245 |14 1.14 520 |04 245 T7.12

Table 18  Sensitivity analysis for lower bound (43) on the newsvendor problem with respect to Ry

L (%) 100% 5% 50% 25% 10%
Size | Ry | Orig. | Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2| Time Gap Gap2
(n) (secs) | (secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) |(secs) (%) (%) | (secs) (%) (%)

400 | 141.2 | 139.7 0.00 0.00 | 60.9 0.02 2.12 | 314 0.20 6.38 | 14.7 1.17 14.88| 129 1.86 18.09
500 | 118.7 | 118.7 0.00 0.00 | 69.0 0.03 2.13 | 309 0.21 6.39 | 15.7 1.18 14.90| 14.0 1.87 18.10
100 | 600 | 128.4 | 1289 0.00 0.00 | 60.4 0.03 2.14 | 31.0 0.22 6.39 | 15.7 1.19 14.90| 14.0 1.88 18.11
700 | 138.5 | 139.0 0.00 0.00 | 56.8 0.04 2.14 | 30.9 0.23 6.40 | 159 1.19 1491 | 14.1 1.88 18.12
800| 119.2 | 118.8 0.00 0.00 | 63.0 0.04 2.14 | 32.2 0.23 6.40 | 15.8 1.20 14.92| 14.0 1.88 18.12
400 | 832.6 | 834.8 0.00 0.00 |294.1 0.02 1.74 | 975 0.14 535 | 383 0.65 11.31| 229 1.78 16.13
500| 941.2 | 943.7 0.00 0.00 | 332.4 0.02 1.75 |110.2 0.14 5.35 | 43.3 0.66 11.31| 25.9 1.79 16.14
160 |600| 911.6 | 9144 0.00 0.00 |322.1 0.03 1.76 |106.8 0.15 5.36 | 42.6 0.66 11.31| 25.1 1.79 16.15
700 | 897.2 | 899.6 0.00 0.00 |316.9 0.03 1.76 | 105.1 0.16 5.37 | 41.3 0.67 11.33| 24.7 1.80 16.16
800 | 958.2 | 960.8 0.00 0.00 | 338.4 0.04 1.77 |112.2 0.16 5.37 | 44.1 0.68 11.33| 26.4 1.81 16.16
400 | 2575.2{2556.7 0.00 0.00 |820.3 0.01 1.40 |233.5 0.13 4.16 | 51.1 0.59 10.42| 26.9 1.56 14.73
500 | 2421.2|2438.7 0.00 0.00 | 771.5 0.01 1.41 |224.8 0.13 4.17 | 48.2 0.60 10.43| 30.1 1.57 14.74
200 | 600|2367.1|2331.6 0.00 0.00 |725.7 0.02 1.42 |218.5 0.13 4.17 | 46.1 0.61 10.43| 27.0 1.57 14.74
700 {2255.9 | 2250.3 0.00 0.00 | 729.0 0.02 1.43 |213.7 0.14 4.18 | 45.5 0.61 10.44| 27.7 1.58 14.76
800 | 2316.7|2318.1 0.00 0.00 | 735.1 0.02 1.43 |226.8 0.14 4.18 | 47.2 0.62 10.45| 28.1 1.58 14.76

16 and 17, respectively. Similarly, we conduct the sensitivity analysis with respect to Ry for lower

bound (43) on the newsvendor problem and summarize the results in Table 18.



36

When parameter ~; increases, the values of Gap and Gap2 increase very slightly, as shown in
Table 16. In contrast, when parameter v, increases, the values of Gap and Gap2 also increase,
though at higher rates. It implies that the value of v, and accordingly the second-order moment con-
straint are more important than the value of v; and the first-order moment constraint, respectively,
in terms of affecting the computational performance of solving the corresponding DRO problems.
It also further supports our focus on approximating the covariance matrix in an ambiguity set
through either the PCA approach or the vector splitting approach in this paper. In addition, we
can observe that an increase in R, will also lead to slightly increasing Gap and Gap2, as shown in
Table 18. Meanwhile, the values of computational time are close for the changes of values in 7,

v, and Ry, respectively.

5. Conclusions

In this paper, we proposed computationally efficient inner and outer approximations for DRO prob-
lems with two types of ambiguity sets: the moment-based ambiguity set and combined ambiguity
set. We approximated the original DRO problems mainly through two approaches: (i) use PCA
to shrink the dimensionality of the uncertainty space; and (ii) split the random parameter vector
into smaller pieces, both of which lead to smaller PSD matrix constraints. Furthermore, we derived
theoretical bounds on the gap between the optimal values of DRO problems and their approxima-
tions. Such bounds help determine the required numbers of split pieces and principal components
to reach a predetermined error bound. Our proposed approximations enable decision-makers to
better balance the trade-off between solution quality and computational time by leveraging the
appropriate numbers of split pieces and principal components. Meanwhile, the inner and outer
approximations together enable us to construct an interval that contains the (unknown) optimal
solution for a large-scale DRO problem, which cannot be solved to optimality (or even feasibility
in most cases) by existing methods in a reasonable time. Such interval is tight for most cases, as
demonstrated by our numerical experiments. Finally, we demonstrated the significant effectiveness
of the proposed approximations in solving the distributionally robust production-transportation
and multi-product newsvendor problems. The results showed that our approximations significantly
reduce the computational time while maintaining high solution quality, with the strengths of our
derived theoretical bounds well justified.

In the future research, we can extend our work from multiple perspectives by addressing the
limitations of this paper. First, it would be nice to consider a more general objective function
and further develop inner and outer approximations for DRO problems. Currently in this paper,
we only consider piece-wise linear objective functions. Second, it would be appealing to derive

tighter and thus less conservative theoretical error bounds for our derived approximations, given
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that error bounds in Propositions 7 and 10 are not tight in general. Third, by observing our
derived approximations perform differently in the context of different applications, it would be
very interesting to investigate how the problem structure and the technical insights of deriving the
approximations can affect the computational performance of our approximations in solving various

application problems.
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Appendix A: Supplement to Section 2
A.1. Proof of Proposition 1

We apply the strong duality theorem to constraints (3b). As function f (x,&) is piecewise linear convex, we

reformulate constraints (3b) as:
s> y(x) +y(@) € - q €T QE, VEES, Ve [K], (EC.1)

which are equivalent to minae<p ecrm gi(€) >0, where g, (&) =s+&'q+ &' Q€& — 32 (x) — yu(x) &, for any
k € [K]. Moreover, we consider the Lagrangian dual problem of min a¢<p ¢crm gx(£), i.e., maxx, >0 infg g (&) +
AL (A€ —b), where X, € R”. Note that function g, (&) is convex in & because Q > 0. Due to Assumption 1,
there exists an interior point for the primal problem. It follows that constraints (EC.1) are equivalent to the
following ones:
max inf g(€) + A (A§—b) 20, Vke[K],

which are further equivalent to the following constraints:

N >0, 5+€Tq+E"QE—yd(x) —yn(x) €+ N (AE—b) >0, VECR™ Vkc[K]. (EC.2)
As &= UA%éI + u, we replace € with UA%EI + p in (EC.2). Thus, we have

(EC.2) = 3X, >0, (1,&]) Zi (1,&]) " >0, V& €R™, V€ [K], (EC.3)

3N >0, Z, =0, Vke[K], (EC.4)
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where

1 T T
s—y0(@) —ALb—y(@) p+ X[ Ap (q+ (Uat) (a™x, ykcc)))

! (q+ (UA%)T (AT, —yk(w>)> 9

and the first equivalence holds due to the definition of Z,. For the second equivalence, clearly < follows from

Zk:

)

the definition of a PSD matrix. To prove =, we consider two possible cases for any (no € R,n" € R’")—r
R™*HL: (1) if no =0, then (o, T)Zk(no, )T =n"Qn >0 because Q is PSD; (2) if ng # 0, then we have
(no,n ") Zy(no,m™) T =n2(1, ” =) Zi (1, ) > 0 according to (EC.3). Therefore, = holds and we obtain Prob-
lem (4) by replacing constraints (3b) w1th (EC4). O

A.2. Proof of Theorem 2
The proof of the deterministic reformulation (7) is the same as that of Theorem 1 and thus is omitted here.
With (7), we define ¢ = UmxmlAilEr + p and use S, and D, to denote its support and ambiguity set,
respectively. As S, = {£, e R™ : UmelA'r%nlér +peStand S;={¢eR™: (= UmxmlAT%nlﬁr +p, € €S},
we can deduce S CS. We also have
(Be, (€1~ 1) (Ui AnaUy) ™ (B2 (6] 1)
= (BalUsni AR &) U AaUln) B [U i AL 6

= B €] (UnonAL) (UL, (UrninAd,) ) (Uil ) Bl
= Ep, [ ]Ex, [€,]
< M

where the last inequality is due to (6b). Note that

UmxmlAmlUT U |: Am1 Omlx(mfwu) :l UT j UAUT —

mxXmi 0(m7m1)><’m1 O(mfml)x(mf’ﬂn)

It follows that

(Ee. [¢) =) B (B [¢)— ) <. (EC.5)

Meanwhile, we have

E]Pg [(C_“’)(C_#’)T] = ’YQU’MXWHA Uv—q:xml
A, Omix(m-m) |\ T <1, UAUT =, %. (EC.6)

O(m—m1)xmi O(m—my)x(m-mi)

By S: C S, (EC.5), and (EC.6), it follows that D, lies in Dy, i.e., D C Dyi, and accordingly

= ’YQU

max Ep, [f(z,¢)] < max Ep[f(x,§)]. (EC.7)

P.eD¢ PeDyy

By the definition of ¢, we have Jmax Ep [f(x,¢)] = plax E]p [f(m,UmxmlAilsr + p)] due to change of
¢€D¢
variable. Then (EC.7) implies the following 1nequahty

max Ep, [f(w,UmxmA?méﬂru) < max Ep [f(x,€)],
M1

Pr€Dnms
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which demonstrates that the optimal value of Problem (7) (i.e., Problem (6)) is a lower bound for that of
Problem (3) (i.e., Problem (2)).

To show the monotonicity result, we define ¢, = UmxmiA;éniEri + p for any i € [2], where §, € R™ for
mgo >my. The ambiguity set of ¢, is denoted by D,,, i.e.,

D, = {Pﬁi C;i~Pe €= UmeiAr%niEri +I"l’7€ri ~P, € Dri} Vi€ [2],

where D,, (defined as (6b)) represents the ambiguity set of £, for any i € [2]. For any ¢, ~P¢, € D, there
exists a §, ~ P, €D, suchthat ¢; = UmxmlAéllgr1 +u=U, xm, Aizérz + pu, where Em =(¢],0] Te

ri’ mg—m1>

R™2. By using S,, (defined as (6¢)) to denote the support of &, for any i € [2], we have
P{¢, €5} =P{Unan AbE, +neSH=1,

which is equivalent to IP’{U,,LX,,LQAT%ME'r2 + p € S} =1 and implies that P{{,, € S;,} =1 because
UmxmlA% €, = UmeQA% Em. In addition, we have E[E’,Q] =0,,, and

mi mo

£fer) =[] Omimm T,

(ma—m1)xm 0(m2*m1) X (mg—m1)

It follows that the distribution of £, belongs to D;, and thus P, € D,. Therefore, we have D¢, C D, and

max Ep_ [f(x,¢)] < m%XC EPQJC[(QZ’CQ)]-

P¢y €Dy Pey€
That is, the optimal value of Problem (7) is nondecreasing in m;.
Finally, Problem (6) is equivalent to Problem (2) when m; = m. Then, Problem (7) results in an exact

reformulation of Problem (2) by Theorem 1. O

A.3. Proof of Proposition 4

We apply the strong duality theorem to constraints (16b). As function f(x,&) is piecewise linear convex,

E= UA%EI +p, and & = (¢] € R™ ¢, € R™™)T we reformulate (16b) as
5> 90(@) +uule)” (UAL (6],65) +1) ~ &/ Qe — a7 (€1.6L) ", VE €5, Vhe[K],  (ECS)

1 i i — T(eT ¢TH\T T _
which are cquivalent {0 min, 4 l6) 20, where 04(6) = 5 + a7 (6] 65)7 + 6 Q.6,
y(x) —yp(x) T(UA2(E] €))7 + ), for any k € [K]. Moreover, we consider the Lagrangian dual problem of

. . : 1 n
D, ab e py<be crm gx (&), i-e., maxa, >0 infe, gx(&r) + A} (A(UA2&; + p) — b), where A, € R™. Note that

function g, (&;) is convex in &; because it is a quadratic function that can be written as the general form

mi

f(@)=x" Mz +2"b+c where M is PSD, i.e., Q = 0. Due to Assumption 1, there exists an interior point

for the primal problem. It follows that constraints (EC.8) are equivalent to the following ones:

ma inf gu(6r) + Al (A (UAsg +p)-b) >0, Vke[K],

A >0

which are further equivalent to the following constraints:
W2 0,s+q" (6],65) +€ Qe — @) —m(@) (UAL (€] €L) " +n)

0] (A(UA} (€7.65) + ) —b) 20, Ve R Ve K], (EC.9)
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Then, we perform the following decomposition:
1
UAS (6],65) +1=Unm, AL &+ Uniimm) Al b+ 11, (EC.10)

where U, xm, € R™*™ and Ail € R™M>*™1 are upper-left submatrices of U and A%7 respectively, and
1
A . € R(m=m1)x(m=m1) apd Uinx(m-m) € R™*(m=m1) are their lower-right submatrices, respectively. By

plugging (EC.10) to (EC.9) and defining ¢ = (g{ € R™*,q; € R™~™1)T we have
1 T T
(EC.9) =3 >0, s—y2(x) = A b—yp(x) "+, Ap+ (ql + (UmelAEM) (ATX, - yk(m))) &,
T

1 T
+(q2+(Umx<m_m1)A;_ml) (ATAkyk(w») € €] Q6 >0, V& €R™, VhE[K],

& (LE)Z(1.E]) + W€, >0, V& ER™, Vi€ [K], (EC.11)
where
) s—u(@) —Ab—y(@) A Ap §<q1+ (UmmlAil)T (ATAkyk(m)))T
- : (ql + (UmelA%nl)T (ATX, —yk(m))> Q,
and

1 T -
W= <q2 + (Umx(m—ml)A'rQn—ml) (A Ak — yk(m))> .

Since W, £, in (EC.11) is affine and £, € R™™1 we set W, =0 for any k € [K], which prevents the
objective value of the Lagrangian dual problem from going to infinity and accordingly leads to constraints

(17¢). Thus, we have

(EC.9) & 3N >0, (1,&])Z (1,6]) >0, V€, €R™, Vk e [K]; (17¢), (EC.12)

& 3N, >0, Z, =0, Vk € [K]; (17c). (EC.13)

The first equivalence holds due to the definition of Z,. For the second equivalence, clearly < follows from
the definition of a PSD matrix. To prove =, we consider two possible cases for any (o € R,p" € R™)T €
R™ L (1) if 5o = 0, then (no,m")Zx(n0,m")" =n"Q,m > 0 because Q, is PSD; (2) if ny # 0, then we
have (no,n")Zx(no,n")" =na (1 207, (1, %)T > 0 according to (EC.12). Therefore, = holds and we obtain

’ Mo

Problem (17) by replacing constraints (16b) with (EC.13). O
A.4. Proof of Theorem 4

As P is a probability measure on (R™,B), where B denotes the Borel o-algebra on R™, Problem (18) can

be described as the following problem:

min max /f(w,UA%&—i—u)dPI(ﬁI) (EC.14a)

x€X PreDys

s.t. dP;(&) =1, (EC.14Db)
St
I, ¢
/SI |:£;F Vj d Pi(&) =0, (EC.14c)

/ 1.6 dP(&) 221, Vie P, (EC.14d)
St
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where (EC.14c¢) is derived due to Schur’s complement. In the following, we first formulate the dual of Problem
(EC.14) and then we show that strong duality holds.

Considering s, L‘j/; 1:} =0, and Q, > 0 for any i € [P] as Lagrangian multipliers of constraints (EC.14b),
(EC.14c¢), and (EC.14d), respectively, we formulate the following problem as the Lagrangian dual problem
of (EC.14):

P
min max s—i—ImoW—i—’ylr—l—’ngImioQi

xzeX P1e€Dy\s —
i=

- /s (5 —2w' & + i&t@,& -f (:1:, UA%&I + H)) dPi(&).
1 i=1
To prevent the objective value of the Lagrangian dual problem from going to infinity, we require
§— 2U’T£1 + iéIngll —f (wa UA%&I + #) >0, V& €S
i=1
Accordingly, the dual problem of (EC.14) can be described as follows:

P
mnglgv s+Im0W+’ylr+’ngImi0Qi (EC.15a)

w,rQ =1

,
st s—2w'&+ Y 61Q&, — /(2. UAE +p) 20, ¥ €8,

i=1

zeX, Q,=0, Vie[P],

B‘ﬁ ﬂ -0, (EC.15b)

where Q = {Q,,...,Qp}. We further simplify Problem (EC.15) towards eliminating variables W and r. To

that end, we keep variables @Q;, for any i € [P], and s fixed while solving Problem (EC.15) analytically for

variables W, w, and r. It follows that we solve mrvr‘}lg . I, ¢ W + ~ir analytically for W, w, and r. We

consider two cases for the optimal solution of r (denoted by r*) due to constraint (EC.15b), i.e., 7* >0 and
r* =0, as follows.

e If 7 > 0, then constraint (EC.15b) can be reformulated as W > % by Schur’s complement. As

a result, W* = % is a valid optimal solution because min I,, ¢ W + 7;r is a minimization

z, W,w,r

problem. Replacing W* by % leads to solve a one-dimensional convex optimization problem, i.e.,

Igigl “’:“’ + ~v17. By applying the necessary first-order optimality condition to this problem, i.e., setting
the derivative of the objective function over r to zero, we have r* = % as the optimal solution of r.
If we plug W* = % and r* = % in (EC.15a), we obtain the following problem:
P
min_ 5417 > I, 0Q,+ 712wl (EC.16)
@,5,w, pr

P
st s—20' &+ Q& — f (2 UAE + 1) 20, Vg €5,
=1

reX, Q,=0, Vie[P].

By introducing a new variable g = —2w, we obtain Problem (19).
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e If r* =0, then we let w* denote the optimal solution of w and we must have w* = 0. Otherwise, we
have w* Tw* >0, and by defining Z = (w*T7n)T with n < =2 W w® we further have

S T g™
zZ' {:}‘ffr ué*] Z=w""W'w" 4 2nw* "w* <0,
which contradicts constraint (EC.15b). Considering r* =0 and w* =0, mrvr[}lgr I, ¢ W +~r reduces
to Imn‘lg/l I,, e W whose optimal solution is clearly W™ = 0 as it is a minimization problem. Here also by
replacing ¢ = —2w, we obtain Problem (19).

Note that our conditions on 7, 72, and I,,, for any ¢ € [P] are sufficient to ensure that the Dirac measure
lies in the relative interior of the feasible set of Problem (18). Therefore, we can conclude that there is no
duality gap between Problems (18) and (19) according to the weaker version of Proposition 3.4 in Shapiro
(2001).

Finally, to prove Problem (19) provides an upper bound for Problem (3), we can equivalently prove that
Problem (18) is an upper bound of Problem (2) since Problems (19) and (3) are equivalent reformulations
of Problems (18) and (2), respectively. To that end, we only need to prove Dyz C Dus, i-€., any distribution
in Dy2 also belongs to Dys. As the first two constraints of Dy2 and Dys are the same, any distribution
in Dy, satisfies constraints P(&; € Sp) = 1 and Ep, [£] |Ep, [€;] <71 in Dys. Thus, we only require to show
any distribution in Do satisfies constraint Ep, [&i 51: ] X721,,,, Yi € [P], in Dus. To that end, we let & =
(SITI , SIZ e ,ﬁlTp)T7 &, €R™ forany i€ [P], and reformulate the second-order moment constraint of Dy2 as

the following equivalent constraint:

5115; 5115;, Ellfgp Yolw, 0 - 0
]E]PI 512.511 512.612 ' 512'5113 < 0 ’721.—1712 : O , (EC].?)
£Ip£;1 SIpﬁsz o £IP£;P 0 0 o ’YQImP

which implies Ep, [511-‘5;; | X721,.,, Vi € [P] by simply considering the diagonal components of the matrices
on both sides of (EC.17). That is, any distribution in Dye, which satisfies Ep, [£:€]] < 721 ,,, also satisfies
EIF’I [£IL£;;] j ’)/QImi, VZ c [P] iIl DM57 i.e., DMQ C DMS- D

Appendix B: Supplement to Section 3
B.1. Proof of Theorem 5

By Theorem 1 in Gao and Kleywegt (2017), Problem (42) has the following strong dual problem:

min {)\RO +72l.,, @ Q.+ /]R sup g(éw é) Py (dé>} ) (EClg)

zEX,Q ), A my €,

where g(€,€) = maxt_ {yu(@) (U s, A2, & + 1) +12(2)} — & Q€ = N|U s, AZ &, + = €]l1, and
Q, and X\ are the Lagrangian multipliers of the primal second-order moment and Wasserstein constraints,
respectively. As Py denotes an empirical distribution of & generated by i.i.d. samples {g ;1€ N} C S from
the P, ie., P{€ =€} =

1
~> Wwe have

m1 €,

/R sup g(£,,&) Po(d€) =%ngpg(£pg)- (EC.19)
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Thus, by plugging (EC.19) into (EC.18), (EC.18) can be reformulated as

. 1 —
i {)\RO + 7.1, 0Q, + ~ Z;y} (EC.20a)
st oy = supg(ér,é'i)7 Vi € [N]. (EC.20Db)

T

Since Problem (EC.20) is a minimization problem, constraints (EC.20b) can be relaxed to y; > sup, g(§,, '3
for any ¢ € [N]. Thus, we have

K

T 1 0 T B 1 gt :
y@sgp{rgg;c{yk(w) (Ui AL &+ 1) +10(@) } — €] Qo ~ A | Ui AL &+ 1= €|}, vie V]
Sy ng}éf sgp{yk(wf (UmnlAilﬁrJru) +yp(w) — €/ Q.8 — A HUmmlAilér+N—EZHI}, Vi € [N]
92500 (@) (U AL &t 1) +00(0) € Qu MU ALE 1= &| }vi€ V), Wk [K).

For any given i € [N], we let

AT ~i
= sup ¢ (UmelAilér+u—£)7

(Ui AL+ &

1

and accordingly we have

i s ”;ﬁfﬂ{yk(fﬂf (U AL &, +u)+yk ~€1Qu6 A (U AL & +n—&)}, vhe[K]
ouz il b {0s@) (U, AL & 11) +20(@) ~ €] Q& =N (Ui AL &1 =€) | VR[]
@2 st ¢ <t vzswp {u @ (U Al 6+ ) FR@) 6 QE N (Vi AL &+ n—E)

: u

Vk € [K]

~ 1 AT 1 ~1
e3¢ st ¢ <1 > n@) T (Unam AL &+ 1) +50@) —& Q=X (Ui AL & +1—E),
VE, eR™, Vk € [K]
N L NT
. . L((—yp(@) T+ A ) Upnseon, A2
<3(C s.t. ‘ <1, Qf_r ) 2 (( u(@) < ) o ml)ﬂ_ =0, Vk € [K],
T (@A) U AL, (@)= 12@) + 08 (n—€)
(EC.21)

where the first equivalence is due to the convexity of g(£,,€), S, and the feasible region defined by |||, < 1.
For any given i € [N], we replace A by ¢', and then we can obtain Problem (43) by further replacing
(EC.20b) by (EC.21) for any i € [N].

To prove Problem (43) provides a lower bound for Problem (40), we consider Problem (42) and define
¢= UmxmlAfnlﬁ + p, denoting its support and ambiguity set by S, and D, respectively. As S, = {&, €
R™ :U,xm, m1£ +peStand Se={CeR™: (= UmelA &+ 1,6 €8}, we can deduce S C S. We

also have

EP( [(C*N)(C*H)T} = PYQUMXWHA U'r—;xml
Am1 Omlx(m—ml) UT j ’}/QUAUT _ 722

O(m—m1)xmi O@m—m1)x(m-m)

— 72U
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Moreover, we have

mﬁin{/y ¢ — &l (c,é)} =H£3“/SZ

It follows that D, lies in D¢y, i.e., D; C D¢y, and accordingly

Unsm AL &+ = || 7 (Ui AL, &+ 11.€) < Ro.

max Ep, [f(z, ()] < max Ep[f(x,§)]. (EC.22)

Pe €D, PEDCy

By the definition of ¢, we have Jmax Ep [f(z,¢)] = prmax Ep, [f(w,UmelAT%MET + p] due to change of
¢EP¢

variable. Then (EC.22) implies the following mequahty

mox Be, [ (.U A, &+ )] < max B [f(2,€)],
1

P,€Dc3
which demonstrates that the optimal value of Problem (42) (i.e., Problem (43)) is a lower bound for that of
Problem (DRO-C) (i.e., Problem (40)).
To show the monotonicity result, we define ¢, = UmxmlA &+ for any i € [2], where £, € R™: for
mg >my. The ambiguity set of ¢, is denoted by D, i.e.,

DCi = {]P)Cz ‘Cz ~ PCwCi = Umxm,iAy%n,iéri + H’v&ri ~ ]P)r,i € Dr,i} ,V’L € [2}7

where D;, (defined as (42b)) represents the ambiguity set of £, for any i € [2]. For any ¢, ~P¢, € D,, there
exists a &, ~P;, € D,, such that ¢, = UmxmlAémSrl +p= UMXMA,%WEr2 +p, where £, = (&,0,, _ ml)T €
R™2. By using S,, (defined as (42c)) to denote the support of £, for any i € [2], we have

P{¢, €5} =P{Upan AbE, +neSh=1,

which is equivalent to ]P’{UmxmzAizEr2 + p € 8} =1 and implies that P{{, € S.,} =1 because
UmelA €, = UmeQA,%”QErQ. In addition, we have E[E’,Q] =0,,, and

_— E N 0,1, x (mo—ms
E |:€r2£r2:| = |: |:€T1£1‘1:| v ) :| j’yQImQ'

0(ma—m1)xm1 O(ma—m1)x(ma—m1)

It follows that the distribution of E’rz belongs to D,, and thus P;, € D,. Therefore, we have D, C D., and

max Ep. [f(z,¢;)] <11>maX Ee., [ [(®,¢5)]-

P €Dy ¢2€D¢y

That is, the optimal value of Problem (42) (i.e., Problem (43)) is nondecreasing in m;.

Finally, Problem (42) is equivalent to Problem (41) when m; = m. Therefore, Problem (43) results in an
exact reformulation of Problem (40). O
B.2. Proof of Proposition 9

By Theorem 5, we have Z*c(m) — Z*c(my) > 0. Moreover, according to this theorem, Problem (40) and the

following problem, i.e., Problem (43) with m; =m, have the same optimal value.

in(;n& ARy + 21, 0Q+ — Zyl (EC.23a)
i\ T 1 T
W[ e wereraayT T
L(wl(@) +¢) UAL g pl@) T yl@) + ¢ (n-€)

Vi€ [N], Vk € [K], (EC.23b)

AeRy, weX, [|¢

<A, Vie [N, (EC.23c)
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We use (z*,A\*,Q:,¢" Vi e [N],y; Vi€ [N]) to denote an optimal solution of Problem (43). Based on

)
this optimal solution, we construct a feasible solution of Problem (EC.23), represented by (a’c,/_\,Q,éi Vi e
[N],9; Yi € [N]). For clarity, we define

9k=y3—yawWTu—yﬂwU+<“T(u—év,ViEUWaVkGUﬂymﬁ
L = (~pu(@) +¢) Upee (A}, Vi€ [N], Vh € [K], Ve e {my,m —my,m},

where A™ € R™1*™1 and A™ ™t € R(m—m1)x(m=m1) represent the upper-left and lower-right submatrices of
A, respectively.
First, we let £ =x*, A= \* Z’ :C for any i € [N],

Oy x(m—mq)
Zzs' d EC.24
1 ik ik an .
O(nL mip)Xmy Lm ml Lm m1 ’ ( )
i=1 k=1

=y —|—Zs Vie [N

where si* >0 and si* > 0 for any i € [N] and k€ [K]. As A=A >0, £=a" € X, and ||C']|, = [I¢""||. <
A, Vi € [N] due to constraint (43c), we only require (z,,Q,C' Vi€ [N],7; Vi € [N]) to satisfy (EC.23b).
Thus, we will find the values of si* and s&¥ for any ¢ € [N] and k € [K] that enable this solution to satisfy
(EC.23b).

We plug (2, X, Q, ¢’ Vi € [N],§; Vi € [N]) to (EC.23b) and use Y"* for any i € [N] and k € [K] to denote the
corresponding matrix in (EC.23b). For any given i € [N] and k € [K], we perform the following decomposition:

. Qr O () §(Lf,’fl)T Oy xmy Ornlx(m mq) Oy x1 B}
Y = | Om-mp)xmy Om—mp)x(m—my) Om—mp)x1 | + | Ommi)xm; Srer Sher (Ln’i g ) LA (i ml)
lL:yIfl 01><(7n my) stk 01><7n1 éL;‘yI; mq Zk,l
Qr O s () %(Liy’fl)-r Oy xmy " Oy x (m—mq) Oy x1
= | Otm—my)xmy Om—rmy)x(memy) Om—myyx1 | + | Om—myymy (L, ) ik d(pik_ T (EC.25)
lL}nIfl 01><(7n77n1) stk 01><7n1 1LZJ§ mq “C

The first matrix in (EC.25) is clearly PSD because the elimination of its zero components leads to a PSD
matrix due to constraints (43b). Now we find the values of si* and s to make the second matrix PSD as

well, and then accordingly the constructed solution is feasible for (EC.23).
A B -
Next, we use { BT C’] to denote the second matrix in (EC.25) by letting A =

o 0

mqXmy mypX(m—my) =T & — ik
sk T o , B = (01xm; 3L ., ), and C = si¥. Tt follows that
0 L! L!
(m—mj)Xmy 4 ( mfml) m—mq
0, , (0]
_ _ _ T my Xmq miqX(m—my) 1 k T 1 ik
A-BC™! o T Lo — — (Ouxmy 3Ly ) (O1xmy S )
(m—mq)xmq 4 ( m— ml) m—my S5

|: 07711 Xmq Om,1><(7n—m1) :|
)

stk ik ik
0(77L777L1)><’rn1 (%7@> (Ln):—m,l )TLwIi—ml
which is PSD if s%* x s& > 1. Thus, we let s x s8¢ > 1 hold for any i € [N] and k € [K] and by the properties

C

A _
of Schur complement, we have [ BT } > 0 because C' is invertible and positive definite.
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In addition, since Problem (EC.23) is a minimization problem, its optimal value is no larger than the

objective corresponding to the feasible solution (5: X, Q. ¢ Vi€ [N],7: Vi€ [N]). That is,

Z*c(m) < ARo+71,eQ+ — Zy

N Z
c(m1)+vzzzsi trace( (L%, ) Lk ml) ZZs’“ (EC.26)

i=1 k=1 =1 k=1
2

. T
k ik
MNLY_ o (B s )

i € [N] and k € [K], which leads to the smallest possible value of the RHS of (EC.26). Therefore, we have

N K
4 C(ml)Jr’YZZZ%trace( L;I: m1) Lz: ml) NZZ

and s

Due to the condition si* x s8> 1, we let si* for any

Z"c(m) <
i=1 k=1 i=1 k=1
N K ik ik ik T
[s (L L L, . Lm m
= Z*c(m1) + %trace Z i ml) it + 7\? \/ ! 1) )
i=1 k=1 2\/Lm - L:f ml)T i=1 k_l
ik ik Lik Lik T
Finally, since trace (Zj\; >t 2\(/:; ml)( Lkm m;T) is equal to 37 S°F m_ml(Q o) , we have
* * 72 ik T
0< Z c(m) — Z*c(my) <4/ = ZZ\/Lm w (L) O
i=1 k=1
B.3. Proof of Theorem 6
By Theorem 1 in Gao and Kleywegt (2017), Problem (45) has the following strong dual problem:
P
me)?,lQl?w,)\ {)\Ro + 72 Zl I.,eQ;+ /Rm SEIP 9(&1.€) Po(dﬁ)} ) (EC.27)
=

where g(&;,€) = maxt_, {y(x) T (UA? &+ p) +yf ()} - E; 151 Q& ~MUAZ€&+p—€|1, and Q, for any
j € [P] and X are the Lagrangian multipliers of the primal second-order moment and Wasserstein constraints,
respectively. As Pg denotes an empirical distribution of € generated by i.i.d. samples {é’l ;1€ N} C S from
the P, i.e., P{¢& :g} =+, we have
| sup €& Pa(ad) = Zsupg £.8). (EC.28)
R

m &

because g(£;,€) is a convex function and S; = R™, which is convex. Thus, by plugging (EC.28) into (EC.27),
(EC.27) can be reformulated as

P N
. 1
i= i=
sty =supg(€,€), Vie[N]. (EC.29b)
&1

Since Problem (EC.29) is a minimization problem, constraints (EC.29b) can be relaxed to y; > supe, g(&1, é)

for any ¢ € [N]. Thus, we have

yi>szp{rg§;<{yk(> (US4 )+ @)} - Zwsl ~A|joade - sH} vi€[N]
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@yiz@sgp{yk() (UAYE+ 1) +3i(@) Z&Q& —A|uate +u- sH} Vi€ N]

&y, > sup {ym (UAE + 1) +1i(@) Z&Q& ~A|joate u- sH} Vi€ [N], Vk € [K].

&1
(EC.30)
For any given i € [N], we let
[uate +p-&|= s & (UAg+u-E),
llel]. <
and accordingly we have
A 1 i
wzswp ol {yk( )T (UA G+ u) + i@ ZsI Q,&, — A (UARE +p—é )}  Vk € [K]

Sy> inf sup{ym (UAYE, + 1) +100) - 3061 Q6 NG (UA%&W—&")},VM[K}

el <1 & =

<:>EIC:“ s.t. ‘ %

S MS?P{"’“( 7 (UAtG T p) i) Z&Qsl ¢ (UA5£I+uéi)},
vk € [K]
<3 st H&H*Sl, vi > ye(z) " (UA €1+u)+yk Z'EI Q€1 Vs (UA%€1+M—€),

Vg €R™ VE € [K]

Q %((—yk(w)T“&T)UA%)T | =0, vke K],

e L (@ YUAY y— @) u— (@) + 3 (¢

¢l <1

-

(EC.31)

where decision variable Q' is described as (32) and the first equivalence is due to the convexity of g(&;, &),
&1, and the feasible region defined by H&’H* < 1. For any given i € [N], we replace AC by ¢, and then we can
reduce Problem (45) to the following problem by further replacing (EC.29b) by (EC.31) for any i € [N]:

mAmql)n ~ARg +'yQZImJ °Q,+— Zyl (EC.32a)
¢t 74 ,Yi Vi J=1
’ 1\ T
1 — x K A2
5.t N 1 H((cntrie)Tuat) | =0, Vie[N], ke [K], (EC.32b)
(@) +¢) TUAZ gy (@) T p—y ()¢t T (ng)
AeRy, zeX, ||¢]|, <A, Vie[N].

Finally, by Lemma 1, we reformulate Problem (EC.32) as Problem (46) by decomposing the PSD matrix
in (EC.32b) equivalently to K PSD matrices. The proof of the claim that Problem (46) provides an upper
bound for Problem (40) is the same as that of Theorem 4 and thus is omitted here. O

B.4. Proof of Proposition 10

We reformulate Problem (46) as Problem (EC.32). Let (x*,\*, Q*,¢" Vi € [N],y; Vi € [N]) denote an optimal
solution of Problem (40) with Q™ represented by (33). Based on this optimal solution, in the following, we
construct a feasible solution of Problem (EC.32), denoted by (z,),Q, Vj € [P], ¢' Vi e [N],7: Vi € [N]).
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First, we let & =x*, A= \*, Z’l =" for any i € [N], §; = koy; for any i € [N], and Qj = Q' (as described
in (34)), with k; > 1 for any j € {0,1,2,...,P}. In order for this solution to satisfy (EC.32b), we require
[ Q é((—yk<w*)+ci*)TUA%>T
L(~un@)+¢ ) UAZ  hoyl—uk(e) Tu—1Q(@)+¢ | (n-&')

In the following, we find the values of k; for any j € {0,1,2,..., P} so that (EC.33) holds. To that end, we

=0, Vi€ [N], Vk e [K]. (EC.33)

construct the following matrix
.
o’ L (~yn(@)+¢i” TUuAs
o ((onenrse)Tuad) |, vieN], Vke[K). (EC.34)
F(—u@)+¢") UAT ko (vi—uk (@) Tu—vl (@) ¢ (u-€"))
Note that subtracting (EC.34) from (EC.33) leads to the following matrix:

Lorir o) (4o bonomrTimc” (umt')) | = 01 Vi€ N], VR €[K],

which is PSD because its eigenvalues are non-negative. In fact, (ko — 1)(y2(z*) + yx(z*) " — Ci*T(p - él))
is the only non-zero eigenvalue of this matrix that is non-negative because kq > 1, —Ci*T(p, — é’) >0 due to
the assumption max_, {¢* T(;L - éz)} <0, and we have y} (x*) +y.(x*) " > 0 according to the assumption
min;_, {y2(z*) + yr(x*) "} > 0. Thus, we choose good values of k; for any j € {0,1,2,..., P} to ensure
(EC.34) to be a PSD matrix and accordingly will make (EC.33) hold.

Next, by Lemma 1, in order for (EC.34) to be a PSD, we equivalently require

T INT
kQ; (@) U, A2, )

) =0, Vke[K], Vie[N],Vje[P], (EC.35)
(k@4 ) U A2, s (v —un@) T @) +¢" T (u-8"))
with Zj;l s; = ko. Constraints (EC.35) can be satisfied by allowing s; x k; > 1 for any j € [P] due to (40b).
Then, we let ko =k, =---=kp and s; x k; =1 for any j € [P], leading to ko =k, =--- = kp = /P.

Finally, we have UB& > Z&(m) by Theorem 6. Meanwhile, as Problem (46) is a minimization problem,
U B¢, is no larger than the objective value corresponding to our constructed feasible solution (z, ), Qj Vj e

[P],¢' Vi € [N],7; Vi € [N]). That is, we have
P 1 P N
UBL < A* Ro+s ;Imj . (\/TDQ;) +5 ; VPy: <VP (A*Ro NIPVR ;Imj «Q+ ; Ny;> =VPZ:(m),
where the second inequality holds because P > 1. Therefore, we have
0<UBL—Z&(m) < (VP —-1)Zg(m). O
B.5. Further Including the First-Order Moment Information

We develop a DRO problem with the combined ambiguity set that incorporates Wasserstein distance infor-

mation as well as both the first- and second-order moment information. That is, we consider

min max Ep[f (x,£)], (DRO-C2)

xzceX PeDcs

where
(Ez[€]—p) =71 (s [€] — p) <

Dcs (8711’727717’727]}%;1%0) =P Ep | (€ —p) (S—M)T <73
w (]P)a ]PO) < RO
We derive an SDP reformulation of (DRO-C2), as well as its inner and outer approximations that can be

solved more efficiently.
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ProOPOSITION EC.1. Under Assumption 2, (DRO-C2) can be recast as the following SDP formulation:

N
Zén(m) := cznAiré ARy + 72X e Q+2/mw w4+ % Zyl (EC.36a)
&jw i=1
Q 5 (—ue(@) + ¢ —2Qu —2w) .
s.t. ) T =0,Vie|N]|, Vke K
Hw(@ + ¢ —2Qu—2w) " y—ylx) - ¢ E +pTQu+ 2w Al al
(EC.36b)
AeRy, we X, || <A, Vie[N],
where w e R™, Q eR™*™, (' eR™ for any i€ [N], ¢={¢*,....¢V}, and §={y1,...,yn}.
Proof. Problem (DRO-C2) can be rewritten as
min max f(x,&)dP(&) (EC.37a)
xzeX P,w R™
b (ﬁ—u)]
b dP(&) =0, EC.37b
s [ L Zwr 6 arer (BC.370)
[ e-mie-n dr© =z, (BC.370)
[ Je-gm (s.8) <o (BC 374)
R‘Iu)2

where R™ =S and (EC.37b) is derived due to Schur’s complement.

We let L‘;Z 1: =0, Q =0, and A € R, denote the Lagrangian multipliers of constraints (EC.37b),

(EC.37c), and (EC.37d), respectively, and thus derive the Lagrangian dual problem of (EC.37) as follows:

min )\Ro—l—szoQ—&-EoW—i—%r—i—/ sup g(&,€) Po(d€) (EC.38a)
@, , W m £
QA
st. AeRy, zek&, Q=0
W w
[uﬁ T] =0, (EC.38b)

where g(£,€) = f(z,&) + 2w (€ — ) — (€ — )" Q(& — p) — A||€ — €||1. By following the similar steps in the
proof of Lemma 1 in Gao and Kleywegt (2017), we can prove that here the strong duality holds for Problem
(EC.38). We then further simplify (EC.38) towards eliminating variables W and r in the outer minimization
problem. To that end, we keep variables x, @Q, A, and w fixed while solving Problem (EC.38) analytically
for variables W and r. It follows that we solve rvr‘lllg 3 e W + ~;r analytically for W and r. We consider two
cases for the optimal solution of r (denoted by r*) due to constraint (EC.38b), i.e., r* >0 and r* =0, as
follows.

e If 7* > 0, then constraint (EC.38b) can be reformulated as W = “’TLT by Schur’s complement. As

a result, W* = *%— is a valid optimal solution because min 3 ¢ W + ;7 is a minimization prob-
W,r

ww |

lem. Replacing W™ by **— leads to solve a one-dimensional convex optimization problem, i.e.,

migl (%) w' Xw +v,7. By applying the necessary first-order optimality condition to this problem, i.e.,
>

setting the derivative of the objective function over r to zero, we have r* = (ﬂ/—i)fwTEw as the optimal

solution of r, resulting in I‘}qvin oW +vyir=2y/7w’Xw.
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e If r* =0, then we let w* denote the optimal solution of w and we must have w* = 0. Otherwise, we
have w* T w* > 0, and by defining Z = (w* ", n)T with < =2’ we further have

2aw* T w*
ZT |:W* w*

_ * T kK * T, ok
w T O}Z—w W*w™ + 2nw™ w* <0,

which contradicts constraint (EC.38b). Considering r* =0 and w* =0, min X e W + ~;7 reduces

x, W,w,r

to Hé‘i,n 3 ¢ W whose optimal solution is clearly W* =0 as it is a minimization problem. As a result,
Ivréig SeW +yr=2y1w’ Zw.
Therefore, Problem (EC.38) can be recast as follows:
min ARy +7XeQ +2/viw™Xw + /Rm sgp g(&,€) Po(dE) (EC.39)
;?tA AeR,, zeX, Q*0.
Note that f (,&) =max’_, {y2(x) +y.(x)T&}. Thus, we have g(£,€) can be rewritten as follows:

9(¢,€) = max {y (@) + v (@) 7€} + 20T (€ —p) = (€ — 1) Q€ —p) = A€ — €.

As Py denotes an empirical distribution of € generated by i.i.d. samples {él ;1€ N} CS from the P, i.e.,
P{e=¢) = + for any i € [N], we have

Po( EC.4
[ sup o(6. & Po(aé) - NZsupgsz) (EC.40)
Thus, by plugging (EC.40) into (EC.39), (EC.39) can be reformulated as
N
ARo+ 72X eQ +2 71wT2w+iZy~ (EC.41a)
ax NZ™
st oy = supg(ﬁ,g), Vi € [N], (EC.41b)
3

AeR,, zeX, Q*0.

Since Problem (EC.41) is a minimization problem, constraints (EC.41b) can be relaxed to y; > sup, g(&,€")
for any ¢ € [N]. Thus, we have

2 sup Lt {4 (@) + () 7€} + 20T (€ ) = (6~ ) Q€ — )~ NIE~E | vie[N]
ey it sup {(@) + (@) € +2w" (€~ p)~ (€~ 1) QE~ )~ NE-El ], Vi N]

ey 2 sup {(@) +.(@) € 207 (€~ )~ (€~ 0) Q€ — )~ Ng—E | Vie [N], ke [K).

For any given i € [N], we let ||€ — é'l||1 = sup &T(E - él), and accordingly we have

¢l«<1
= sup H<1||nf<1{y2<m>+yk<wfs 2w (E-p) - (E-m) QE-m - (6-&)}, vkelK]
epez inf sup (@) +pu(@) € 120 (€ ) (E-w) QE-m - (6-€)}, vhelK]

lell.< e

@3& s.t. Hé’

Showezow {l(@) +p@)E 20T (€ - (6w QE-m - (¢-8) )
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Vk € [K]
A st |8 <L wz @ +n@)TE 2wl E-m - E-w QE-m - (6-E),
VE eR™, Vk € [K]
. Q (e +2E - 2Qu—2u)
=3¢ st. \ <1, ) T o =0, Yk € [K],
- %(fyk(a:HACf?Qu*?w) Yi—yp(@) = A & +p ' Qut2wp
(BEC.42)

where the first equivalence is due to the convexity of g({,é), S, and the feasible region defined by Ha’ Il <1.
For any given i € [N], we replace A by ¢!, and then we can obtain Problem (EC.36) by further replacing
(EC.41b) by (EC.42) for any i € [N]. O

In the following Sections B.5.1 and B.5.2, we derive computationally efficient outer and inner approxima-
tions, leading to lower and upper bounds, for Problem (EC.36), respectively. We first reformulate (DRO-C2)

as the following problem by performing the eigenvalue decomposition on matrix X:

min max Ep, [f (:c,UAéﬁI —|—p,)] , (EC.43)

xzcX Pr€Dcg

where
Ep, [&] |Ep, [€] <

-
=
DCG (817 Y172, PO) RO) - ]P)I EPI [5151 ] - ’YQIm
3 [ |usiern-g n (UAte +ud) <Ry
S2 1
under the condition that f(x, UAéﬁI + ) is Pr-integrable for any P; € Dgg and Sy := {€; e R™ : UA%£I +pe
S}.

B.5.1. Lower Bound By the approximation of £ in (5) due to PCA, we outer approximate (EC.43) as
the following problem:
min max Ep, [f ($7Um><m1A7%n1£r+p’):| , (EC.44)

zeX P.€Dcr

where
Ep, [, |Ep, [£,] <™

E T = eI
DC7 (Srvu7717727P07R0) = IEDr Pr [grgr] =72 mi
EI,]T:/ UmxmlA’r%nl&-r—i_“_éle (UmxmlAi1£r+u7é) S RO
S2

with S, := {£, ER™ : U,y sn, A2 €, +p €S}

THEOREM EC.1. Under Assumption 2, Problem (EC.44) has the same optimal value as the following
SDP formulation:

. 1 &
Zea(m) = min ARo 492l ¢ Qo+ VArllail, + 5 > v (EC.46a)
Q..¢.4 i=1
1 T
t Qr §(qr+( ( )+C mxmlA
S.T.

1

gt (0@ +¢) Ui AL,) vi—m@) n—g@+(n-€) ¢
Vie [N], Vke[K], (EC.46b)

AER,, weX, |

¢l

<\, Vie [N, (EC.46c)
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where q, € R™, Q, € Rm1*m1 ' c R™, ¢ = {¢Y ..., ¢NY, and 9= {y1,...,yn}. Furthermore, (i) Problem
(EC.46) provides a lower bound for the optimal value of (DRO-C2); (ii) the optimal value of Problem (EC.46)

is nondecreasing in mq; and (iii) if mqy =m, then (DRO-C2) and (EC.46) have the same optimal value.

Proof. The reformulation proof is similar to that in Proposition EC.1, while the proofs for claims (i),

(ii), and (iii) are similar to those in Theorems 2 and 5. Thus we omit them here for brevity. O

B.5.2. Upper Bound We approximate Problem (EC.36) by splitting &; in D¢e into P pieces so that &; =

(S;,&g, ... ,éfp)T, where §; € R™/, Vj € [P], and Zj;l m; =m. This gives rise to an inner approximation
. 1
min max Ep, [f (a:, UAz¢ +u)} , (EC.47)

where

Ep, [& | Ep, [£1] <m
Des (Sts 71572, Po, Ro) = § Py Ep, [51.751:} =v2dm;, Vi €[P]
In :/ UA%E, “‘_EH . (UA%& +p,,é) < R,
s2 1
THEOREM EC.2. Under Assumption 2, Problem (EC.47) has the same optimal value as the following
SDP formulation:

P N
. . 1
UBg,:= min ARO+WZImJ_.Qj+Wl ||q||2+ﬁzyi (EC.48)
Q.8.5.8 i=1 =1
Q o+ (@) +¢) U ad))|
.t . ENEAC R mems s )0, v e [P,
1 i 1
5 (q]' + (_yk(w) +¢ ) Ume]-Afnj) Sjik

Vi € [N], Vk € [K],
P T
> s =v (@) p-yi@) + (n-&) ¢ vie[N), vke K],
=1
ANeR,, ze X, ||

where ¢ = (q{ €R™,...,q}, €R™")T, Q, e R™*™ for any j € [P], Q=1{Q,,....Q.}, ¢'€R™ for any
i€ [N], ¢={¢" .. ..¢ Y, g={u1,...,yn}, and 3= {s;;,Vi € [N], Vj € [P], Vk € [K]}. Furthermore, Problem
(EC.48) provides an upper bound for the optimal value of (DRO-C2).

<\, Vie[N],

Proof. The reformulation proof is similar to that in Proposition EC.1 and Theorem 6, while the proof
of the claim that Problem (EC.48) provides an upper bound for Problem (EC.36) is the same as that of

Theorem 4. Thus we omit them here for brevity. (]
B.5.3. Computational Experiments To evaluate how the first-order moment information affects com-
putational performance, we solve Problem (DRO-C2) and its approximations in the context of production-
transportation problem, and further compare the results with those of solving Problem (DRO-C) and its
approximations. We first specify the proposed lower and upper bounds of (DRO-C2) in this context. The
outer approximation (EC.46) leads to the following problem:

. 1 —
min '@+ ARy + 72l ¢ Q. + v lla. .+ ﬁZyi

©,2,\,q; —
Q.89 =



ecl?7

Q. 3 (gt (~owsl +¢T) U AL, )
( ( ayz, +¢' ) mnxmAéu) yi—akzlu—ﬁwcﬂ (N—g)
NER,, ||¢/]. <A Vi€ [N], (47d), (EC.49b) — (EC.49d),

s.t. =0, Vi e [N], Vk € [K],

where z;, € R™" is a vector whose ((i —1)m + j)-th element is z;;;, and ¢* € R™". The inner approximation

(EC.48) leads to the following problem:

P N
1
. T i .
Jmin e x+ ARy + 72 E I, eQ,+y7lal,+ N :Elyz

Q.8.5,3 i=1
1 T iT )"
1 5 i - + Umn mAyzn
s.t. QJ N (q’+< oz G ) o ’) =0, Vje[P],
% (qj + ( akzk +C ) mnxmjA?nj> Sjik
Vi € [N], Vk € [K],
P .
0T 2 .

ZSjik:yi*akzzH*6k+C (Ni&)a V'LG[N], vk e [KL
j=1
AeRy, [[¢F]]. <A, Vie[N], (47d), (EC.49b) — (EC.494).

where Q; € R™*™ and q; € R™s for any j € [P] so that Zle m; =mn.

First, we report the performance of lower bound (EC.46) and upper bound (EC.48) of Problem (DRO-C2)
in Tables EC.1 and EC.2, respectively. By comparing Table EC.1 with Table 3 that reports the lower
bound performance of (DRO-C), we can observe that both the computational time and gap are not changed
significantly, after additionally including the first-order moment information. By comparing Table EC.2 with
Table 9 that reports the upper bound performance of (DRO-C), we can observe that the computational time

change from Table 9 to Table EC.2 is not significant, while the computational gap reduction is observable.

Table EC.1 Lower bound (EC.46) on the production-transportation problem

L (%) 100% 5% 50% 25% 10%

Size Orig. Time Gap| Time Gap| Time Gap | Time Gap | Time Gap
) | (secs) | (secs) (%) | (secs) (%) | (secs) (%) | (secs) (%) | (secs) (%)
) | 774.6 | 759.2 0.00] 290.3 1.42| 99.1 2.67| 38.6 4.85| 19.5 5.19
) | 5260.4 | 4985.9 0.00|1531.5 1.09| 511.1 2.96| 140.7 5.35| 57.7 5.66
) |12324.4|12464.5 0.00 [ 3998.0 2.04 {1205.9 3.82|285.6 4.00| 96.2 4.11

Table EC.2 Upper bound (EC.48) on the production-transportation problem
P 2 4 5

Size Orig. | Time Gap| Time Gap| Time  Gap

(m,n) | (secs) | (secs) (%) | (secs) (%) | (secs) (%)

(5,20) | 824.1 | 202.8 0.25| 126.5 0.58 | 118.1 0.80

(4,40) | 5454.6 | 1088.8  0.46 | 548.3 1.09 | 519.6 1.33

(8,25) [12797.1 | 2505.0  0.08 | 1145.4  0.25|1135.5  0.37

Second, we compare the optimal value difference between the lower (resp. upper) bound of Problem
(DRO-C) and the lower (resp. upper) bound of Problem (DRO-C2), as reported in Tables EC.3 and EC.4.
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In Tables EC.3 and EC.4, the columns “Origl” and “Orig2” represent the optimal values of Problems (40)
(i.e., original Problem (DRO-C)) and (EC.36) (i.e., original Problem (DRO-C2)), respectively. The column
“Obj1” (resp. “Obj2”) represents the objective value of the approximation of Problem (DRO-C) (resp.
Problem (DRO-C2)). From Tables EC.3 and EC.4, we can observe that by including the first-order moment
information in the combined ambiguity set, the conservatism of the optimal solution can be reduced (leading

to a smaller objective value), though very slightly.

Table EC.3 Lower bounds (43) and (EC.46) on the production-transportation problem
(%) 100% 5% 50% 25% 10%
Size |Origl Orig2 | ObjI Obj2 | Obji Obj2| Objl Obj2 | Objl Ob;2 | Objl Ob;2

(m.n)
(5,20) | 4.18 4.09 | 4.18 4.09 | 4.09 4.02 | 3.97 3.94 | 3.87 3.87 | 3.86 3.86
(4,40) | 296 290 | 296 290 | 2.92 2.88 | 286 283|278 277|277 277
(8,25) | 7.04 693 [ 7.04 6.93]6.94 6.87 | 6.74 6.71 | 6.68 6.67 | 6.66 6.65
Table EC.4 Upper bounds (46) and (EC.48) on the production-transportation problem
P 2 4 5

Size |Origl Orig2 | Objl  Obj2|Objl  Obj2|Objl  Obj2

(m,n)

(5,20)| 3.49 3.46 | 3.51 3.47 | 3.61 3.49 | 3.63 3.49

(4,40) 2.96  2.90 | 3.03 2.91 | 3.12 2.92 | 3.15 2.92

(8,25)| 7.04 6.93 | 7.12 6.94 | 7.29 6.95 | 7.37 6.96

Third, we perform sensitivity analyses with respect to parameters y; and Rg, where we consider (m,n) =
(5,20). The results are reported in Tables EC.5 and EC.6. When either «; or Ry increases, both the com-
putational gap induced by lower bound (EC.46) increases slightly, while the computational time change is
not significant. From Table EC.6 we can observe that an increase in Ry slightly increases the computational

gap, while an increase in ; slightly decreases it.

Table EC.5  Sensitivity analysis for lower bound (EC.46) with respect to (1, Ro)
(%) 100% 5% 50% 25% 10%
(71, Ro)| Orig.| Time Gap |Time Gap|Time Gap| Time Gap| Time Gap

(secs)| (secs) (%) | (secs) (%) | (secs) (%) | (secs) (%) | (secs) (%)
(0.4,30)] 802.7| 759.1 0.00 |287.7 0.87|100.7 3.07(39.7 3.87[19.1 3.96
(0.6,30)| 776.8| 760.8 0.00 |295.6 1.02|113.1 3.62|40.3 4.57|18.3 4.68
(0.8,30)| 861.0{ 845.5 0.00 |282.8 1.15|109.9 4.07|39.5 5.15|17.0 5.27
(0.4,40)| 842.7| 728.9 0.00 |273.7 0.97|101.8 3.64|38.3 4.47|19.53 4.72
(0.6,40)| 769.2| 728.9 0.00 |281.4 1.25|/94.3 4.03|37.5 5.05/17.0 5.26
(0.8,40)| 799.9| 731.9 0.00 |282.8 1.40|94.5 4.53|37.1 5.78|17.2 6.26
(0.4,50)| 760.0| 703.6 0.00 |276.6 1.18|98.6 4.05|40.08 4.93|17.9 5.11
(0.6,50)| 725.3| 731.0 0.00 |277.2 1.39|101.2 4.52|38.7 5.47|17.7 5.94
(0.8,50)| 747.7| 703.4 0.00 |286.4 1.57|105.1 5.12|38.2 6.43|17.1 7.63
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Table EC.6  Sensitivity analysis for upper bound (EC.46) with respect to (v1, Ro)
P 2 4 5
(71, Ry)| Orig.| Time Gap | Time Gap|Time Gap
(secs)| (secs) (%) | (secs) (%) | (secs) (%)
( )| 823.31202.8 0.25 |127.2 0.74|119.4 0.77
( ) 852.6]205.4 0.24 |126.2 0.70|117.4 0.74
( )| 712.3/189.1 0.23 |128.1 0.68|120.7 0.72
( )| 795.8/199.4 0.26 |133.1 0.75|121.9 0.77
(0.6,40)| 827.6| 202.6 0.25 |135.3 0.71|126.4 0.75
( )
( )
( )
( )

775.51200.7 0.23 |134.4 0.69|122.6 0.73
747.0/198.0 0.26 |130.4 0.76|124.7 0.78
749.21206.3 0.26 |130.3 0.71|125.0 0.75
773.51205.4 0.24 |131.7 0.70|124.9 0.74

Appendix C: Supplement to Section 4

First, the outer approximation (8) leads to the following problem:

min  c'z+s+70,, 0 Q.+ el (EC.49a)
X,4:,Qx
1 T T
s—Bi— )\Zb — gzl p+ )\kTAu % (qr + (UmnXmlA?nl) (AT)\k — akzk)>
s.t. T t 07
% <qr + (UnLnanlAgll) (ATAIC - akzk)> Qr
Vk € [K],
Aw €RY, VE € [K], (47d),
>z =d;, Vj€ln, Vk € K], (EC.49D)
i=1
> zgp =, Vie[m], Vk € [K], (EC.49¢)
j=1
where z, € R™" is a vector whose ((i — 1)m + j)-th element is z;;;.
Second, the outer approximation (43) leads to the following problem:
1 N
min e’ z+ AR+ V2D, 0 Qo+ = Y i (EC.50)
z,2,,Q;,¢,4 N |
.
T L —« ZT + o U7nn 7rL1A%
s.t. @ 2(( SRR ) ) "“) =0, Vi€ [N], Vk € [K],

(sl 46 ) U AL, mi—anzln— i+ ¢ (n=€)
AeRy, €7, <A Vie[N], (47d), (EC.49b) — (EC.49d),

where ¢ € R™".

Third, the inner approximation (17) leads to the following problem:

min _ c'z+s+y2l,, ¢Q, + 1 llql,

T,2,5,X,q¢,Q,

LNT T
s—Br—AL b—agz] ut+A] Ap %<QI+(Umn><m1A72nl> (ATAk*aka)>
s.t.

1

-
%<q1+(Umn><m1A%1) (ATAk*akzk)> Qr
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1 T
q2 + (Umnx(mn—ml)A?nn—ml> (ATAIC - akzk) = Oa Vk S [K]a
Aw €R?, Yk € [K], (47d), (EC.49b) — (EC.49d),

where ¢ = (q{ € R™ g5 ¢ Rmm=™1)T,

Fourth, the inner approximation (20) leads to the following problem:

P
min CT$+S+’Y2ZIW 'Qi+ﬁ||q||2
i=1

,2,5,94,Q,A

1 T

-
Sik %<Qi+<Umn><miAT2ni) (ATAk*aka))

1

s.t. -
%(qi""(Um,anziAﬁli) (ATAk*akzk)> Q;

=0

b

Vi€ [P], Yk € [K],
zpjsik =5— P — A b—apz, p+ A Ap, Vk € [K],
;\:,:e R?, Vk € [K], (47d), (EC.49b) — (EC.49d),
where @, € R™*™ and g, € R™ for any i € [P] so that 3", m; = mn.

Fifth, the inner approximation (46) leads to the following problem:

P N
1
. T
iy eTe AR+ 3 I, 0 Qi+ 3

Q&4 7=1
Q 1(( azT+¢iT)U Az )T
. =5 —Qp < mnXxXm;+tim . .
st | ; e Ll s =0, Vje[P],
5 (—akzk +¢ ) UmnijAfnj Sjik

Vi € [N], Vk € [K],
P )
> siw=vi—owzlp— ¢ (n-€), vie[N], vke K],
j=1

)‘GR-H Cl

<A Vi€ [N], (47d), (EC.49b) — (EC.494).

By Proposition 3, the optimal value gap between Problem (48) with the moment-based ambiguity set and
Problem (EC.49) can be described as follows:

K mn

0< Zw(mn) — Z'w(m) < v [ 3] S Au [(ATX,;—akz,j)TUir :

k=1 i=mi+1
where 2z} and A}, k € [K], are optimal solutions of Problem (EC.49), and Z*\(mn) and Z*\(m4) are the
optimal values of Problems (48) and (EC.49), respectively. Similarly, by Proposition 9, the optimal value gap
between Problem (48) with the combined ambiguity set and Problem (EC.50) can be described as follows:

N K
* * ’y (3 i
0< 2" clmn) = Z"c(m) < /32 33 VIS T T

i=1 k=1

where  Z*c(m;) is the optimal value of Problem (EC.50) and L* = (—agzi" +

mn—mq
. 1 .
¢ T)Umnx(T,m_ml)Aﬁm_m1 with z; and ¢*", i € [IV], representing optimal solutions of Problem (EC.50).
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