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Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty

where the probability distribution of a random parameter is unknown while its partial information (e.g.,

statistical properties) is available. In this framework, the unknown probability distribution is assumed to

lie in an ambiguity set consisting of all distributions that are compatible with the available partial informa-

tion. Although DRO bridges the gap between stochastic programming and robust optimization, one of its

limitations is that its models for large-scale problems can be significantly difficult to solve, especially when

the uncertainty is of high dimension. In this paper, we propose computationally efficient inner and outer

approximations for DRO problems under a piece-wise linear objective function and with a moment-based

ambiguity set and a combined ambiguity set including Wasserstein distance and moment information. In

these approximations, we split a random vector into smaller pieces, leading to smaller matrix constraints. In

addition, we use principal component analysis to shrink uncertainty space dimensionality. We quantify the

quality of the developed approximations by deriving theoretical bounds on their optimality gap. We display

the practical applicability of the proposed approximations in a production-transportation problem and a

multi-product newsvendor problem. The results demonstrate that these approximations dramatically reduce

the computational time while maintaining high solution quality. The approximations also help construct an

interval that is tight for most cases and includes the (unknown) optimal value for a large-scale DRO problem,

which usually cannot be solved to optimality (or even feasibility in most cases).

Key words : stochastic programming, distributionally robust optimization, moment information,

Wasserstein distance, principal component analysis, semidefinite programming

1. Introduction

Uncertainty poses significant challenge to decision making in many real-world problems. To over-

come such challenge, advanced optimization approaches have been developed to model uncertainty

from various perspectives. Among them, stochastic programming (SP), robust optimization (RO),
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and distributionally robust optimization (DRO) prevail nowadays. SP assumes that a decision

maker has complete knowledge about the probability distribution of the uncertain parameters,

whereas the distribution may not be precisely estimated due to limited data availability (Shapiro

et al. 2009). RO assumes the uncertain parameters run in a given set, and it hedges against the

worst-case possible scenario within this set, leading to potentially conservative decisions (Ben-Tal

and Nemirovski 1998, Bertsimas and Sim 2004). Scarf (1958) introduced the first DRO model by

relaxing the complete-knowledge assumption in SP and reducing the conservativeness of RO. DRO

models uncertainty through a distributional ambiguity set that specifies available information of

the probability distribution of the uncertain parameters. In addition, DRO searches for an optimal

solution that concerns the worst-case distribution in the ambiguity set. Thus, the performance of

DRO is less conservative than RO; see Rahimian and Mehrotra (2019) for more details.

The performance of DRO highly depends on the ambiguity set. An ideal ambiguity set possesses

four properties: (i) rich enough to contain the true distribution with high confidence; (ii) small

enough to exclude pathological distributions that make DRO solutions overly conservative; (iii)

calibrated easily from historical data; and (iv) leading to a structured DRO model that is com-

putationally tractable (Esfahani and Kuhn 2018). There are several different types of ambiguity

sets. Moment-based ambiguity sets contain distributions that share the same moment information

(Delage and Ye 2010). Distance-based ambiguity sets contain distributions that are close to a ref-

erence distribution with respect to a predetermined probability discrepancy metric. Probability

discrepancies that have been extensively studied include Wasserstein distance (Esfahani and Kuhn

2018), phi-divergence (Ben-Tal et al. 2013, Hu and Hong 2013, Gotoh et al. 2018), and Prokhorov

metric (Erdoğan and Iyengar 2006). Structural ambiguity sets contain distributions that share

the same structural properties such as monotonicity, symmetry, and unimodality (Li et al. 2019).

Hypothesis-test-based ambiguity sets contain distributions that pass a hypothesis test (e.g., X 2-

test, G-test) based on a given historical dataset and confidence level (Bertsimas et al. 2018a,b).

Finally, likelihood-based ambiguity sets contain distributions that achieve a given level of likelihood

evaluated under historical data (Wang et al. 2016).

Due to high complexity of the uncertainty involved in real-world problems, none of the individual

ambiguity sets can perfectly perform under all circumstances. For example, moment-based ambigu-

ity sets do not guarantee asymptotic consistency, i.e., they do not converge to the true distribution

of the uncertain parameters even if the number of historical data points increases to infinity (Chen

et al. 2019, Liu et al. 2019). Meanwhile, decision-makers usually face the difficulty of exactly esti-

mating an ambiguity set because high-dimensional and correlated uncertainties are involved in the

real-world problems, where different decision-makers may also have different understanding and

estimates of the ambiguity. Thus, to cope with such situation and further give the decision-makers
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more flexibility and freedom in selecting an appropriate ambiguity set from available alternatives,

we may better consider different types of ambiguity sets. For instance, we can combine two dif-

ferent types of ambiguity sets to construct a better one that enjoys the advantages of both. In

particular, we may consider a combined moment and Wasserstein ambiguity set. This combination

can help exclude pathological distributions and result in a less conservative DRO model, which

is also asymptotically consistent. Such benefits can be significant when the uncertainty is highly

complex (Wang et al. 2018, Gao and Kleywegt 2017).

Many DRO problems can be reformulated or approximated by conic programming problems,

including semidefinite programming (SDP), second-order cone programming (SOCP), copositive

programming (CP), and completely positive programming (CPP). For example, Delage and Ye

(2010) showed that the DRO model with support, mean, and covariance information can be refor-

mulated as an SDP formulation; Natarajan et al. (2010) reformulated a class of robust expected

utility models with known mean and covariance matrix as SOCP formulations; Li et al. (2019) refor-

mulated chance constraints under unimodal distributions with known first and second moments as

SOCP formulations; El Ghaoui et al. (2003) derived SDP and SOCP formulations for computing

robust Value-at-Risk with various ambiguity sets. More SDP reformulations can be found in Cheng

et al. (2014, 2016) and Zhang et al. (2018), and more SOCP reformulations were proposed by Li

et al. (2018) and Mieth and Dvorkin (2018). Moreover, Hanasusanto and Kuhn (2018) proposed CP

and CPP reformulations and approximations of two-stage DRO linear programs over Wasserstein

ambiguity sets.

Although SDP formulations are polynomially solvable in theory, many of them require significant

computational efforts, especially when the problem is complicated in its nature and the uncer-

tainty is high-dimensional and/or correlated. For instance, solving large-scale SDP problems in

practice can be computationally challenging because many high-dimensional matrix constraints

may be present (Yang and Wu 2019). To overcome such challenges, several studies have devel-

oped approximation solution approaches to trade-off between solution quality and computational

burden, including branch-and-bound, cutting-plane, interior point, and delayed constraint genera-

tion algorithms (Niu et al. 2019, Vandenberghe and Boyd 1996). In addition, Cheng et al. (2018)

used principal component analysis (PCA), which represents the data variability by employing a

linear combination of orthogonal eigenmodes (Wold et al. 1987), to consider only the dominant

random variables and shrink the dimension of the uncertainty, leading to smaller-size SDP matrix

constraints. In this paper, we provide a comprehensive study to derive computationally efficient

approaches to solve DRO formulations under a piece-wise linear objective function and with various

types of ambiguity sets. We summarize our contribution as follows:
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1. We derive computationally efficient inner and outer approximations of DRO problems with a

moment-based ambiguity set accounting for the support, mean, and covariance of the uncer-

tainty. The inner approximation is based on splitting a random vector into smaller sub-vectors

and is parameterized by the number of split pieces. Such approximation appears to be new in

the DRO literature. The outer approximation generalizes Cheng et al. (2018).

2. We quantify the quality of our inner and outer approximations by deriving theoretical bounds

on the gap between the optimal value of the DRO problems and those of their approximations.

These theoretical bounds guide us to select specific numbers of split pieces for reaching a

predetermined error bound. They also allow us to trade-off between solution quality and

computational burden of solving DRO formulations.

3. We extend the inner and outer approximations, as well as their theoretical bounds, to a

combined ambiguity set that contain covariance information and the Wasserstein distance

between the true distribution and an empirical distribution. We also investigate the corre-

sponding results by additionally including the first-order moment information in the combined

ambiguity set.

4. Our proposed inner and outer approximations together, while quickly finding a feasible solu-

tion with small optimality gap, enable us to construct a tight interval that includes the

(unknown) optimal value of DRO formulations. Such an interval is very helpful for decision

making in many real-world applications with large-scale instances and high-dimensional uncer-

tainties (e.g., energy and transportation), where the corresponding DRO model cannot be

solved to optimality (or even feasibility in most cases) by existing methods in reasonable time.

5. We perform extensive computational experiments to demonstrate the effectiveness of our

approximations in solving DRO formulations. Notably, while commercial solvers were unable

to even find a feasible solution to most large-size instances, our inner and outer approximations

quickly found solutions with optimality guarantee.

The remainder of this paper is organized as follows. In Section 2 (resp. Section 3), we study

DRO with the moment-based ambiguity set (resp. the combined ambiguity set), propose its inner

and outer approximations, and derive theoretical bounds of their optimality gaps. In Section 4, we

perform extensive computational experiments on distributionally robust multiproduct newsvendor

and production-transportation problems to evaluate the theoretical results and demonstrate the

strength of the proposed approximations. Finally, Section 5 concludes the paper.

Notation

In this paper, scalar values are denoted by non-bold symbols, e.g., s and γ1, while vectors are

denoted in the column form by bold symbols, e.g., x = (x1, . . . , xm)
>

and q. Similarly, matrices
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are represented by bold capital symbols, e.g., A and Σ, and the size of a matrix is indicated by

r × c, where r and c indicate the numbers of rows and columns, respectively. Italic subscripts

indicate indices, e.g., sk, while non-italic ones represent simplified specifications, e.g., Qr. We use

EP [·] to represent expectation over distribution P and use “•” to denote the inner product defined

by A •B =
∑

i,jAijBij, where A and B are two conformal matrices. If a matrix M is positive

semi-definite (PSD), it is indicated by M � 0. Symbols ‖·‖1 and ‖·‖2 denote L1-Norm and L2-

Norm, respectively. Symbol ‖·‖∗ represents the dual norm of ‖·‖1. We reserve symbols D. and S.
for ambiguity set and support, respectively. For any strictly positive integer number n, we use [n]

to represent the set {1,2, . . . , n}. The identity matrix of size m is denoted by Im. Symbols 0m and

0r×c represent a zero vector of size m and a zero matrix of size r× c, respectively.

2. Moment-based Ambiguity Set

In this section, we introduce a DRO problem with a moment-based ambiguity set. To solve it

towards practical uses, we first recast it as an SDP formulation. In view of the computational

challenge of solving the SDP problem in practice, we develop its inner and outer approximations

that can be solved more efficiently. Moreover, we derive theoretical bounds for their optimality

gaps as compared to the original DRO problem, leading to a quality measurement.

Given distribution P of the random vector ξ ∈ Rm, we seek an x ∈ X , which is a convex set in

Rn, to minimize the expectation of a convex function f (x,ξ) with respect to P. We present this

problem as the following stochastic program:

min
x∈X

EP [f(x,ξ)] . (1)

Here P is assumed to be known exactly, which though in practice may not be precisely estimated

due to limited data availability (e.g., missing data, lack of data, and expensive data acquirement).

Nevertheless, some partial information of ξ (e.g., mean and covariance) can be easily obtained from

historical data. Therefore, instead of solving Problem (1) with a given distribution, we may seek

a risk-averse solution that hedges against all the possible distributions that share such available

information, leading to the following DRO model with the available information collected in a

distributional ambiguity set DM1:

min
x∈X

max
P∈DM1

EP [f(x,ξ)] . (DRO-M)

Depending on different available information, the ambiguity set can be different. In this section,

we focus on moment information of ξ in DM1 (see Delage and Ye (2010)), i.e.,

DM1 (S,µ,Σ, γ1, γ2) =

P

∣∣∣∣∣∣∣
P (ξ ∈ S) = 1

(EP [ξ]−µ)
>

Σ−1 (EP [ξ]−µ)≤ γ1

EP

[
(ξ−µ) (ξ−µ)

>
]
� γ2Σ

 ,
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which specifies the support (S), mean (µ), and covariance of random variable ξ that could be

derived using available historical data. We assume that S is a convex set, µ lies in the strict interior

of S, and Σ is a positive definite matrix. Parameters γ1 ≥ 0 and γ2 ≥ 1 are derived from historical

data to control the size of the ambiguity set and the conservatism of optimal solutions. The three

constraints in DM1 describe that (i) the support of ξ is a subset of S; (ii) the mean of ξ lies in an

ellipsoid of size γ1 centered at µ; and (iii) the centered second-order moment matrix is bounded

by γ2Σ in a PSD sense.

Although (DRO-M) admits a convex reformulation (e.g., SDP reformulation; see Delage and Ye

(2010)), as discussed above, solving it in practice can be very challenging. Instead, we can solve

good inner and outer approximations of (DRO-M) much more efficiently and obtain high-quality

solutions, thereby complementing the existing studies such as Delage and Ye (2010) and Cheng

et al. (2018). More importantly, the inner and outer approximations together can help characterize

an interval that includes the unknown optimal value for a large-scale instance that may not be

solved to feasibility. In the following, we derive an outer (resp. inner) approximation of (DRO-M),

leading to a lower (resp. upper) bound, in Section 2.1 (resp. Section 2.3). We make the following

assumption in this section for practical purpose.

Assumption 1. Function f (x,ξ) is piecewise linear convex in ξ, i.e., f (x,ξ) =

maxKk=1

{
y0
k(x) + yk(x)>ξ

}
with both yk(x) = (y1

k(x), . . . , ymk (x))
>

and y0
k(x) affine in x for any

k ∈ [K], and S is polyhedral, i.e., S = {ξ|Aξ≤ b} with A ∈ Rn×m and b ∈ Rn, with at least one

interior point.

2.1. Lower Bound

The uncertainty characterization in the ambiguity set affects the computational performance of

solving the corresponding DRO problems because a large uncertainty space leads to a large solution

search space, which further asks for more computational time. We accordingly investigate the

moment-based ambiguity set in this section, and realize that the components with the lowest

variance play the smallest role in defining the uncertainty and hence are the best candidates

for relaxation. Therefore, we use the PCA approach to project high-dimensional and correlated

uncertainty onto a lower dimensional space by preserving the components with the highest variance

and relaxing the rest of ones.

First, we perform an eigenvalue decomposition on matrix Σ, i.e., Σ =UΛU> =UΛ
1
2 (UΛ

1
2 )>,

where U ∈Rm×m is an orthogonal transformation matrix and Λ∈Rm×m is a diagonal matrix whose

diagonal elements are in non-increasing order. By letting ξI = (UΛ−1/2)>(ξ−µ), we reformulate

(DRO-M) as

min
x∈X

max
PI∈DM2

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (2)
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where

DM2(SI, γ1, γ2) =

PI

∣∣∣∣∣∣∣
PI(ξI ∈ SI) = 1

EPI
[ξ>I ]EPI

[ξI]≤ γ1

EPI
[ξIξ

>
I ]� γ2Im

 ,

with SI :=
{
ξI ∈Rm :UΛ

1
2 ξI +µ∈ S

}
.

Theorem 1. If f(x,UΛ
1
2 ξI +µ) is PI-integrable for any PI ∈DM2, then (DRO-M) has the same

optimal value as the following problem:

min
x,s,q,Q

s+ γ2Im •Q+
√
γ1 ‖q‖2 (3a)

s.t. s≥ f
(
x,UΛ

1
2 ξI +µ

)
− ξ>I q− ξ

>
I QξI, ∀ξI ∈ SI, (3b)

Q� 0, x∈X ,

where q ∈Rm and Q∈Rm×m.

Proof. The result is deduced from Lemma 1 in Delage and Ye (2010). �

Problem (3) reduces to a SDP formulation with regard to a wide range of objective functions

and support of uncertainty, which are specified in Assumption 1. Our approximation techniques

may be applied to DRO problems with more general objective functions.

Proposition 1. Under Assumption 1, (DRO-M) has the same optimal value as the following

SDP formulation:

Z∗M(m) := min
x,s,λ̂,q,Q

s+ γ2Im •Q+
√
γ1 ‖q‖2 (4a)

s.t.

s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ

1
2

(
q+

(
UΛ

1
2

)> (
A>λk− yk(x)

))>
1
2

(
q+

(
UΛ

1
2

)> (
A>λk− yk(x)

))
Q

� 0,

∀k ∈ [K], (4b)

x∈X , λk ∈Rn+, ∀k ∈ [K],

where λ̂= {λ1, . . . ,λK} .

Proof. See Online Supplement A.1 for the detailed proof. �

Next, to derive a lower bound, we approximate ξ by capturing the dominant variability of UΛ
1
2 ξI

through considering only the first m1 random variables of ξI, i.e.,

ξ≈UΛ
1
2 [ξr;0m−m1

] +µ=Um×m1
Λ

1
2
m1
ξr +µ, (5)
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where Um×m1
∈Rm×m1 and Λ

1
2
m1
∈Rm1×m1 are upper-left submatrices of U and Λ

1
2 , respectively,

and ξr ∈Rm1 consists of the first m1 entries of ξI. As the uncertainty of the last (m−m1) entries

of ξI vanishes, this yields a relaxation of (DRO-M):

min
x∈X

max
Pr∈DM3

EPr

[
f
(
x,Um×m1

Λ
1
2
m1
ξr +µ

)]
, (6a)

where

DM3(Sr, γ1, γ2) =

Pr

∣∣∣∣∣∣∣
Pr(ξr ∈ Sr) = 1

EPr [ξ
>
r ]EPr [ξr]≤ γ1

EPr [ξrξ
>
r ]� γ2Im1

 (6b)

with

Sr :=
{
ξr ∈Rm1 :Um×m1

Λ
1
2
m1
ξr +µ∈ S

}
. (6c)

Theorem 2. If f(x,Um×m1
Λ

1
2
m1ξr +µ) is Pr-integrable for any Pr ∈DM3, then Problem (6) has

the same optimal value as the following problem:

min
x,s,qr,Qr

s+ γ2Im1
•Qr +

√
γ1 ‖qr‖2 (7)

s.t. s≥ f
(
x,Um×m1

Λ
1
2
m1
ξr +µ

)
− ξ>r qr− ξ

>
r Qrξr, ∀ξr ∈ Sr,

Qr � 0, x∈X ,

where qr ∈ Rm1 and Qr ∈ Rm1×m1. Furthermore, we have the following: (i) Problem (7) provides

a lower bound for the optimal value of (DRO-M); (ii) the optimal value of Problem (7) is nonde-

creasing in m1; and (iii) if m1 =m, then (DRO-M) and (7) have the same optimal value.

Proof. See Online Supplement A.2 for the detailed proof. �

Proposition 2. Under Assumption 1, Problem (7) has the same optimal value as the following

SDP formulation

Z∗M(m1) := min
x,s,λ̂,
qr,Qr

s+ γ2Im1
•Qr +

√
γ1 ‖qr‖2 (8a)

s.t.

 s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ

1
2

(
qr +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))>
1
2

(
qr +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))
Qr

� 0,

∀k ∈ [K], (8b)

x∈X , λk ∈Rn+, ∀k ∈ [K], (8c)

where λ̂= {λ1, . . . ,λK} .

Proof. The proof is similar with that of Proposition 1 and thus is omitted here. �
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Comparing Problems (4) and (8) in terms of size, one can observe that Problem (8) is significantly

easier to solve than Problem (4) because: (i) Problem (8) includes fewer decision variables than

Problem (4), i.e., (m2
1 +m1 + 2n+ 1) vs. (m2 +m+ 2n+ 1); and (ii) the size of PSD matrices in

Problem (8) is smaller than in Problem (4), i.e., (m1 + 1)× (m1 + 1) vs. (m+ 1)× (m+ 1).

2.2. Lower Bound Quality

To measure the quality of our derived lower bound, i.e., Z∗M(m1) in (8), we develop a theoretical

upper bound for the gap between the optimal values of Problems (4) and (8). This upper bound

brings two benefits: (i) it provides a rough approximation for the optimal value of Problem (4),

which may not be solved efficiently in practice; and (ii) it determines how many principal compo-

nents are required to reach a preferred gap between the original and approximated optimal values,

indicating a trade-off between solution quality and computational time.

Proposition 3. It holds that

0≤Z∗M(m)−Z∗M(m1)≤√γ2

K∑
k=1

√√√√ m∑
i=m1+1

Λi,i

((
A>λ∗k− yk(x∗)

)>
U i

)2

, (9)

where U i represents the ith column of matrix U , and x∗ and λ∗k (∀k ∈ [K]) are optimal solutions

of Problem (8).

Proof. By Theorem 2, we have Z∗M(m)−Z∗M(m1)≥ 0. Meanwhile, when m1 =m, Problem (8)

is equivalent to Problem (4). We use (x∗, s∗,λk
∗ ∀k ∈ [K],q∗r ,Q

∗
r ) to denote an optimal solution

of Problem (8). Based on this optimal solution, we construct a feasible solution of Problem (4),

represented by
(
x̄, s̄, λ̄k ∀k ∈ [K], q̄, Q̄

)
. For clarity, we define

Sk = s∗− y0
k(x

∗)−λ∗k
>
b− yk(x∗)>µ+λ∗k

>
Aµ, ∀k ∈ [K], and

qkc =
(
Um×cΛ

c 1
2

)>
(A>λ∗k− yk(x∗)), ∀k ∈ [K], ∀c∈ {m1,m−m1,m},

where Λm1 ∈Rm1×m1 and Λm−m1 ∈R(m−m1)×(m−m1) represent the upper-left and lower-right sub-

matrices of Λ, respectively.

First, we let x̄=x∗, λ̄k =λ∗k for any k ∈ [K], q̄= (q∗r
>,0>m−m1

)>, s̄= s∗+
∑K

k=1 s
k
1 , and

Q̄=

 Q∗r 0m1×(m−m1)

0(m−m1)×m1

K∑
k=1

sk2
4
qkm−m1

(
qkm−m1

)>
 ,

where sk1 > 0 and sk2 > 0 for any k ∈ [K]. As x̄= x∗ ∈ X and λ̄k = λ∗k ∈ Rn+, for any k ∈ [K], due

to constraint (8c), we only require (x̄, s̄, λ̄k ∀k ∈ [K], q̄, Q̄) to satisfy (4b). Thus, we will find the

values of sk1 and sk2 for any k ∈ [K] that enable this solution to satisfy (4b).
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We plug (x̄, s̄, λ̄k ∀k ∈ [K], q̄, Q̄) to (4b) and use Ȳ
k

for any k ∈ [K] to denote the corresponding

matrix in (4b). For any given k ∈ [K], we perform the following decomposition:

Ȳ
k

=

[
Sk 1

2(q∗r+qkm1)
>

01×(m−m1)

1
2(q∗r+qkm1) Q∗r 0m1×(m−m1)

0(m−m1)×1 0(m−m1)×m1
0(m−m1)×(m−m1)

]
+

 ∑K
k=1 s

k
1 01×m1

1
2q
k
m−m1

>

0m1×1 0m1×m1
0m1×(m−m1)

1
2q
k
m−m1

0(m−m1)×m1

∑K
k=1

sk2
4 q

k
m−m1(qkm−m1)

>


�

[
Sk 1

2(q∗r+qkm1)
>

01×(m−m1)

1
2(q∗r+qkm1) Q∗r 0m1×(m−m1)

0(m−m1)×1 0(m−m1)×m1
0(m−m1)×(m−m1)

]
+

 sk1 01×m1
1
2q
k
m−m1

>

0m1×1 0m1×m1
0m1×(m−m1)

1
2q
k
m−m1

0(m−m1)×m1

sk2
4 q

k
m−m1(qkm−m1)

>

 . (10)

The first matrix in (10) is clearly PSD because the elimination of its zero components leads to a

PSD matrix due to constraint (8b). Now we find the values of sk1 and sk2 to make the second matrix

PSD as well, and then accordingly the constructed solution is feasible for (4).

Next, we use

[
Ā B̄

B̄
>
C̄

]
to denote second matrix in (10) by letting Ā= sk1 , B̄

>
=
(

01×m1
1
2q
k
m−m1

> ),
and C̄ =

[
0m1×m1

0m1×(m−m1)

0(m−m1)×m1

sk2
4 q

k
m−m1(qkm−m1)

>

]
. It follows that

C̄ − B̄Ā−1
B̄
>

=

[
0m1×m1

0m1×(m−m1)

0(m−m1)×m1

sk2
4 q

k
m−m1(qkm−m1)

>

]
− 1

sk1

(
01×m1

1
2q
k
m−m1

> )> (
01×m1

1
2q
k
m−m1

> )
=

[
0m1×m1

0m1×(m−m1)

0(m−m1)×m1

(
sk2
4 −

1

4sk1

)
qkm−m1(qkm−m1)

>

]
, (11)

which is PSD if sk1 × sk2 ≥ 1. Thus, we let sk1 × sk2 ≥ 1 hold for any k ∈ [K] and by the properties of

Schur complement, we have

[
Ā B̄

B̄
>
C̄

]
� 0 because Ā is invertible and positive definite.

In addition, since Problem (4) is a minimization problem, its optimal value is no larger than the

objective corresponding to the feasible solution
(
x̄, s̄, λ̄k ∀k ∈ [K], q̄, Q̄

)
. That is,

Z∗M(m)≤ s̄+ γ2Im • Q̄+
√
γ1 ‖q̄‖

=Z∗M(m1) +
K∑
k=1

sk1 + γ2

K∑
k=1

sk2
4

trace
(
qkm−m1

(qkm−m1
)>
)
.

(12)

Due to the condition sk1× sk2 ≥ 1, we let sk1 =

√
γ2(qkm−m1

)>qkm−m1

2
and sk2 = 2√

γ2(qkm−m1
)>qkm−m1

, which

leads to the smallest possible value of the RHS of (12). Therefore, we have

Z∗M(m)≤Z∗M(m1) +
K∑
k=1

sk1 + γ2

K∑
k=1

sk2
4

trace
(
qkm−m1

(qkm−m1
)>
)

=Z∗M(m1) +
√
γ2

K∑
k=1

√
(qkm−m1

)>qkm−m1

2
+
√
γ2trace

 K∑
k=1

qkm−m1
(qkm−m1

)>

2
√

(qkm−m1
)>qkm−m1

 .

Finally, since
∑K

k=1

√
(qkm−m1

)>qkm−m1

2
is equal to trace

(∑K

k=1

qkm−m1
(qkm−m1

)>

2
√

(qkm−m1
)>qkm−m1

)
, we have

0≤Z∗M(m)−Z∗M(m1)≤√γ2

 K∑
k=1

√√√√ m∑
i=m1+1

Λi,i

(
(A>λ∗k− yk(x∗))>U i

)2

 . �
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Remark 1. Note that Cheng et al. (2018) derived a similar upper bound by specifically consid-

ering γ1 = 0 and γ2 = 1, while (9) applies to general values of γ1 and γ2.

Before closing this subsection, we can observe that theoretical optimality gap (9) does not explic-

itly depend on parameter γ1. It is because we develop this gap based on a specific feasible solution

of Problem (4), i.e., (x̄, s̄, λ̄k ∀k ∈ [K], q̄, Q̄) where q̄ = (q∗r
>,0>m−m1

)>. By setting the last m−m1

elements of q̄ to be 0, we eventually obtain the optimality gap that does not explicitly depend

on parameter γ1. Technically we can construct a different feasible solution and correspondingly

develop a possibly better optimality gap, which will explicitly depend on γ1 though. For instance,

we can let x̄=x∗, λ̄k =λ∗k for any k ∈ [K], q̄= (q∗r
>, q̂>)>, s̄= s∗+

∑K

k=1 s
k, and

Q̄=
[

Q∗r 0m1×(m−m1)

0(m−m1)×m1
Q̂

]
,

where sk > 0 for any k ∈ [K]. Instead of fixing the values of q̂ and Q̂ as what do in the proof of

Proposition 3, we can optimize the values of sk,∀k ∈ [K], q̂, and Q̂ together towards minimizing

the difference between the objective value corresponding to this feasible solution and the original

optimal value Z∗M(m), leading to a better gap denoted by Z1
gap(m1). That is, we solve the following

optimization problem

Z1
gap(m1) := min

sk,∀k∈[K],

q̂,Q̂

K∑
k=1

sk + γ2Im−m1
• Q̂+

√
γ1 ‖q̂‖2 (13)

s.t.

[
sk 1

2

(
qkm−m1

− q̂
)>

1
2

(
qkm−m1

− q̂
)

Q̂

]
� 0, ∀k ∈ [K],

sk ∈R+, ∀k ∈ [K], q̂ ∈Rm−m1 , Q̂∈R(m−m1)×(m−m1),

where the SDP constraints are enforced to ensure the constructed solution to be feasible, similar

to what we do in the proof of Proposition 3.

Solving Problem (13) clearly can give us a better theoretical error bound than (9). We also

notice that (13) can be computationally intensive, particularly when m1 is large. Thus, we can

further develop a more conservative yet computationally tractable error bound, based on Problem

(13), by fixing Q̂ at a feasible value. Specifically, the SDP constraints in (13) implies that Q̂ �
(qkm−m1

−q̂)(qkm−m1
−q̂)

>

4sk
for any k ∈ [K] by Schur’s complement. Thus, we fix Q̂ at the following

feasible value by letting

Q̂=
K∑
k=1

(
qkm−m1

− q̂
) (
qkm−m1

− q̂
)>

4sk
.
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It follows that we can reduce Problem (13) to the following problem where we only optimize the

values of sk,∀k ∈ [K], and q̂:

Z2
gap(m1) := min

sk,∀k∈[K],q̂

K∑
k=1

sk + γ2

K∑
k=1

(
qkm−m1

− q̂
)> (

qkm−m1
− q̂
)

4sk
+
√
γ1 ‖q̂‖2 (14)

s.t. sk ∈R+, ∀k ∈ [K], q̂ ∈Rm−m1 .

Problem (14) can be reformulated as a second-order conic program, which is significantly more

tractable than (13). Meanwhile, based on the above descriptions on how to construct the required

feasible solution for deriving the corresponding error bound, we have

0≤Z∗M(m)−Z∗M(m1)≤Z1
gap(m1)≤Z2

gap(m1)≤√γ2

K∑
k=1

√√√√ m∑
i=m1+1

Λi,i

((
A>λ∗k− yk(x∗)

)>
U i

)2

.

2.3. Upper Bounds

We further develop computationally efficient inner approximations for Problem (2), leading to

upper bounds of its optimal value. Specifically, we derive two inner approximations in Sections

2.3.1 and 2.3.2.

2.3.1. PCA based Upper Bound Similar to Section 2.1, we utilize PCA to consider only

the first m1 entries of ξI in the second-moment constraint in DM2. This is a relaxation of the

second-moment constraint, leading to a larger ambiguity set and so an inner approximation of

Problem (2):

min
x∈X

max
PI∈DM4

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (15)

where

DM4 (SI, γ1, γ2) =

PI

∣∣∣∣∣∣∣
PI (ξI ∈ SI) = 1

EPI

[
ξ>I
]
EPI

[ξI]≤ γ1

EPI

[
ξrξ
>
r

]
� γ2Im1

 .

Theorem 3. If f(x,UΛ
1
2 ξI +µ) is PI-integrable for any PI ∈ DM4, then Problem (15) has the

same optimal value as the following problem:

min
x,s,q,Qr

s+ γ2Im1
•Qr +

√
γ1 ‖q‖2 (16a)

s.t. s≥ f
(
x,UΛ

1
2 ξI +µ

)
− ξ>r Qrξr− q>ξI, ∀ξI ∈ SI, (16b)

Qr � 0, x∈X ,

where q ∈ Rm and Qr ∈ Rm1×m1. We also have the following: (i) Problem (16) provides an upper

bound for the optimal value of Problem (3); (ii) the optimal value of Problem (16) is non-increasing

in m1; and (iii) if m1 =m, then Problems (3) and (16) have the same optimal value.
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Proof. The proof is similar with that of Theorem 2 and thus is omitted here. �

Proposition 4. Under Assumption 1, Problem (16) has the same optimal value as the following

SDP formulation:

Z
∗
M(m1) := min

x,s,λ̂,
q,Qr

s+ γ2Im1
•Qr +

√
γ1 ‖q‖2 (17a)

s.t.

 s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ

1
2

(
q1 +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))>
1
2

(
q1 +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))
Qr

� 0,

∀k ∈ [K], (17b)

q2 +
(
Um×(m−m1)Λ

1
2
m−m1

)> (
A>λk− yk(x)

)
= 0, ∀k ∈ [K], (17c)

x∈X , λk ∈Rn+, ∀k ∈ [K],

where λ̂= {λ1, . . . ,λK} and q= (q>1 ∈Rm1 ,q>2 ∈Rm−m1)
>

.

Proof. See Online Supplement A.3 for the detailed proof. �

One can observe that Problem (17) is significantly easier to solve than Problem (4) due to fewer

decision variables and lower-dimensional PSD matrices in Problem (17).

2.3.2. Vector Splitting based Upper Bound We derive the second inner approximation by

splitting the random vector ξI into P pieces, i.e., ξI = (ξ>I1 ,ξ
>
I2
, . . . ,ξ>IP )>, where ξIi

∈Rmi , ∀i∈ [P ],

and
∑P

i=1mi = m. Accordingly, we revise the second-moment constraint in DM2 with respect to

these smaller pieces, leading to the following ambiguity set:

DM5 (SI, γ1, γ2) =

PI

∣∣∣∣∣∣∣
PI (ξI ∈ SI) = 1

EPI

[
ξ>I
]
EPI

[ξI]≤ γ1

EPI

[
ξIi
ξ>Ii
]
� γ2Imi , ∀i∈ [P ]

 .

Set DM5 is a superset of DM2 because we ignore the correlations among ξIp
and ξIq

for any p, q ∈ [P ]

with p 6= q. This leads to the following inner approximation of Problem (2):

min
x∈X

max
PI∈DM5

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
. (18)

Theorem 4. If f(x,UΛ
1
2 ξI +µ) is PI-integrable for any PI ∈ DM5, then Problem (18) has the

same optimal value as the following problem:

min
x,s,q,Q̂

s+ γ2

P∑
i=1

Imi •Qi +
√
γ1 ‖q‖2 (19a)

s.t. s≥ f
(
x,UΛ

1
2 ξI +µ

)
−

P∑
i=1

ξ>IiQiξIi
− q>ξI, ∀ξI ∈ SI, (19b)

x∈X , Qi � 0, ∀i∈ [P ],
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where q ∈ Rm, Qi ∈ Rmi×mi for any i ∈ [P ], and Q̂ = {Q1, . . . ,QP}. Furthermore, Problem (19)

provides an upper bound for the optimal value of Problem (3).

Proof. See Online Supplement A.4 for the detailed proof. �

Proposition 5. Under Assumption 1, Problem (19) has the same optimal value as the following

SDP formulation:

UB∗M := min
x,s,q,

Q̂,λ̂,ŝ

s+ γ2

P∑
i=1

Imi •Qi +
√
γ1 ‖q‖2 (20)

s.t.

 sik
1
2

(
qi +

(
Um×miΛ

1
2
mi

)> (
A>λk− yk(x)

))>
1
2

(
qi +

(
Um×miΛ

1
2
mi

)> (
A>λk− yk(x)

))
Qi

� 0,

∀i∈ [P ],∀k ∈ [K],
P∑
i=1

sik = s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ, ∀k ∈ [K],

λk ∈Rn+, ∀k ∈ [K], x∈X ,

where qi ∈ Rmi, Qi ∈ Rmi×mi for any i ∈ [P ], Q̂= {Q1, . . . ,QP}, λ̂= {λ1, . . . ,λK}, and ŝ =

{sik, ∀i∈ [P ], ∀k ∈ [K]}.

Proof. The proof is similar with that of Proposition 4 and thus is omitted here. �

One can observe that Problem (20) is significantly easier to solve than Problem (4) because it

has smaller-sized PSD matrices and matrix variables compared to Problem (4). We also note that

the size of each piece (i.e., mi with i ∈ [P ]) does not necessarily equal to each other. Thus, our

theoretical results, including theoretical reformulations in this section and optimal gap bounds in

the following Section 2.4, are general with respect to the size of each piece. Nevertheless, different

ways of assigning a random vector to pieces lead to different computational performance. We will

explain how we split the random vector in our numerical experiments in Section 4.

2.4. Upper Bound Quality

To measure the quality of our derived upper bounds in Section 2.3, we derive a theoretical bound

for the gap between the optimal values of Problem (4) and Problem (17) (resp. Problem (20)).

Before that, we present the following lemma that will facilitate the proofs in this section.

Lemma 1. Consider the following PSD matrix with dimension (m+ 1)× (m+ 1):

Z =

 s q>1 ··· q>K
q1 Q1 ··· 0

...
...

...
...

qK 0 ··· QK

� 0, (21)
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where s∈R, qk ∈Rmk for any k ∈ [K] with
∑K

k=1mk =m, Qk ∈Rmk×mk for any k ∈ [K], and other

components are zero. Inequality (21) holds if and only if there exist {sk}Kk=1 with
∑K

k=1 sk = s such

that [
sk q

>
k

qk Qk

]
� 0, ∀k ∈ [K].

Proof. We prove the following equivalence:

Z =

 s q>1 ··· q>K
q1 Q1 ··· 0

...
...

...
...

qK 0 ··· QK

� 0 ⇔
[
sk q

>
k

qk Qk

]
� 0, ∀k ∈ [K], with

K∑
k=1

sk = s.

Matrix Z is PSD if and only if η>Zη ≥ 0 for any η ∈ Rm, where η = (η0,η
>
1 ,η

>
2 , · · · ,η>K)

>
and

ηk ∈ Rmk for any k ∈ [K] with
∑K

k=1mk = m. Similar to the proofs of Propositions 1 and 4 in

Online Supplements A.1 and A.3, respectively, we assume that η0 = 1 without loss of generality.

Thus, we have

Z � 0 ⇔
(
1,η>1 ,η

>
2 , · · · ,η>K

)
Z
(
1,η>1 ,η

>
2 , · · · ,η>K

)> ≥ 0, ∀ηk ∈Rmk , k ∈ [K]

⇔ s+
K∑
k=1

(
2q>k ηk +η>kQkηk

)
≥ 0, ∀ηk ∈Rmk , k ∈ [K]

⇔ s+
K∑
k=1

inf
∀ηk∈Rmk ,k∈[K]

{
2q>k ηk +η>kQkηk

}
≥ 0.

There exists sk ∈R for any k ∈ [K] such that
∑K

k=1 sk = s, by which we further have

s+
K∑
k=1

inf
∀ηk∈Rmk ,k∈[K]

{
2q>k ηk +η>kQkηk

}
≥ 0 ⇔ sk + inf

∀ηk∈Rmk

{
2q>k ηk +η>kQkηk

}
≥ 0, ∀k ∈ [K]

⇔ sk + 2q>k ηk +η>kQkηk ≥ 0, ∀ηk ∈Rmk , k ∈ [K]

⇔
(
1,η>k

)[
sk q

>
k

qk Qk

](
1,η>k

)> ≥ 0, ∀ηk ∈Rmk , k ∈ [K]

⇔
[
sk q

>
k

qk Qk

]
� 0, ∀k ∈ [K].

In summary, we have

Z � 0 ⇔ ∃sk ∈R,∀k ∈ [K], such that
K∑
k=1

sk = s and
[
sk q

>
k

qk Qk

]
� 0, ∀k ∈ [K]. �

Proposition 6. Suppose that x∗ is an optimal solution of Problem (17) and Y k
r

∗
=[

Y k11
∗
Y k12r

∗>

Y k12r
∗
Y k22r

∗

]
and θ∗k are the corresponding dual optimal solutions associated with constraints

(17b) and (17c), respectively. Then, it holds that

0≤Z∗M(m1)−Z∗M(m)≤
K∑
k=1

((
UΛ

1
2

)>
yk(x

∗)

)> (
Y k∗

12r

>
,θ∗k

>
)>(ck− 1

ck

)
, (22)

where

ck =

√√√√1 +
1

Y k∗
11

m−m1∑
i=1

K

γ2

θ∗ki
2, ∀k ∈ [K]. (23)
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Proof. We prove the results by investigating the duals of Problems (4) and (17) where x is fixed

at x∗. Given x= x∗, we use Y k to denote the dual variable of constraints (4b) for any k ∈ [K],

where the dual of Problem (4) can be described as follows:

Z∗M(m) = max
Y

K∑
k=1

(
y0
k(x) + yk(x)>µ

)
Y k

11 +
K∑
k=1

((
UΛ

1
2

)>
yk(x)

)>
Y k

12 (24a)

s.t. 1−
K∑
k=1

Y k
11 = 0, (24b)

√
γ1−

∥∥∥∥∥
K∑
k=1

Y k
12

∥∥∥∥∥
2

≥ 0, (24c)

γ2Im−
K∑
k=1

Y k
22 � 0, (24d)

bY k
11−AµY k

11−AUΛ
1
2Y k

12 ≥ 0, ∀k ∈ [K], (24e)

Y k :

[
Y k11 Y k12

>

Y k12 Y k22

]
� 0, ∀k ∈ [K]. (24f)

Similarly, given x= x∗, we use Y k
r and θk to denote the dual variables of constraints (17b) and

(17c), respectively, for any k ∈ [K], where the dual of Problem (17) can be described as follows:

Z
∗
M(m1) = max

Y ,θ

K∑
k=1

(
y0
k(x) + yk(x)>µ

)
Y k

11 +
K∑
k=1

((
Um×m1

Λ
1
2
m1

)>
yk(x)

)>
Y k

12r

+
K∑
k=1

((
Um×(m−m1)Λ

1
2
m−m1

)>
yk(x)

)>
θk (25a)

s.t. 1−
K∑
k=1

Y k
11 = 0, (25b)

√
γ1−

∥∥∥∥∥
K∑
k=1

(
Y k

12r

>
,θk

>
)>∥∥∥∥∥

2

≥ 0, (25c)

γ2Im1
−

K∑
k=1

Y k
22r � 0, (25d)

bY k
11−AµY k

11−AUm×m1
Λ

1
2
m1
Y k

12r−AUm×(m−m1)Λ
1
2
m−m1

θk ≥ 0, ∀k ∈ [K],(25e)

Y k
r :

[
Y k11 Y k12r

>

Y k12r Y k22r

]
� 0, θk free, ∀k ∈ [K]. (25f)

Given an optimal solution of Problem (25), i.e., Y k∗
r and θ∗k for any k ∈ [K], we construct a

feasible solution of Problem (24), represented by Ȳ
k

=

[
Ȳ k11 Ȳ k12

>

Ȳ k12 Ȳ k22

]
for any k ∈ [K]. For any given



17

k ∈ [K], we let Ȳ k
11 = Y k∗

11 , Ȳ
k

12 = 1
ck

(
Y k∗

12r

>
,θ∗k

>
)>

with ck ≥ 1, and

Ȳ
k

22 =


Y k∗

22r 0 · · · 0

0 wk1 0
...

... 0
. . . 0

0 · · · 0 wkm−m1

 ,
where the value of ck as well as the value of wki for any i ∈ [m−m1] will be determined later so

that Ȳ
k

satisfies all the constraints in Problem (24).

First, for the solution (Ȳ
k ∀k ∈ [K]), it satisfies constraint (24b) because 1−

∑K

k=1 Y
k∗

11 = 0 due

to constraint (25b). This solution satisfies constraint (24c) because∥∥∥∥∥
K∑
k=1

Ȳ
k

12

∥∥∥∥∥
2

=

∥∥∥∥∥
K∑
k=1

1

ck

(
Y k∗

12r

>
,θ∗k

>
)>∥∥∥∥∥

2

≤

∥∥∥∥∥
K∑
k=1

(
Y k∗

12r

>
,θ∗k

>
)>∥∥∥∥∥

2

≤√γ1,

where the first equality is due to the definition of Ȳ
k

12, the first inequality is because ck ≥ 1, and

the second inequality is because of constraint (25c). This solution also satisfies constraints (24e)

because for any k ∈ [K], we have bȲ k
11−AµȲ k

11−AUΛ
1
2 Ȳ

k

12 = bY k∗
11 −AµY k∗

11 −AUm×m1
Λ

1
2
m1
Y k∗

12r−
AUm×(m−m1)Λ

1
2
m−m1

θ∗k ≥ 0, where the first equality is due to the definition of Ȳ
k

12 and the first

inequality is because of constraints (25e).

Next, in order for (Ȳ
k ∀k ∈ [K]) to satisfy constraint (24d), we require γ2Im −

∑K

k=1 Ȳ
k

22 � 0,

which is equivalent to

γ2Im−
K∑
k=1


Y k∗

22r 0 · · · 0

0 wk1 0
...

... 0
. . . 0

0 · · · 0 wkm−m1

� 0 ⇔


∑K

k=1Y
k∗
22r 0 · · · 0

0
∑K

k=1w
k
1 0

...
... 0

. . . 0

0 · · · 0
∑K

k=1w
k
m−m1

�

γ2Im1

γ2

...
γ2

 .
Since

∑K

k=1Y
k∗
22r � γ2Im1

due to constraint (25d), we require

K∑
k=1

wki ≤ γ2, ∀i∈ [m−m1]. (26)

In addition, in order for (Ȳ
k ∀k ∈ [K]) to satisfy constraints (24f), matrix Ȳ

k
must be PSD for

any k ∈ [K]. Note that if ckȲ
k

is PSD, then Ȳ
k

is PSD because ck ≥ 1. Therefore, we consider the

following decomposition on ckȲ
k
:

ckȲ
k

=


1
ck
Y k∗

11 Y k∗
12r

>
01×(m−m1)

Y k∗
12r ckY k∗

22r

0(m−m1)×1 0(m−m1)×(m−m1)

+



(
ck− 1

ck

)
Y k∗

11 01×m1
θ∗k
>

0m1×1 0m1×m1
0

θ∗k 0

ckwk1

...
ckwkm−m1


, ∀k ∈ [K],

(27)
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where the first matrix on the RHS of (27) is clearly PSD because Y k∗
r is PSD due to constraints

(25f) and we require the second one to be PSD as well so that Ȳ
k

can be PSD. By Lemma 1, we

equivalently require[
yki θ∗ki
θ∗ki c

kwki

]
� 0, ∀i∈ [m−m1] , ∀k ∈ [K], with

m−m1∑
i=1

yki =

(
ck− 1

ck

)
Y k∗

11 , ∀k ∈ [K]. (28)

Now, for a given i ∈ [m−m1], we let wki = wi for any k ∈ [K], and then we have wi ≤ γ2
K

due

to (26). It follows that, from (28), we equivalently require ckwiy
k
i ≥ (θ∗ki)

2
for any k ∈ [K] and

i∈ [m−m1]. Therefore, for any given k ∈ [K], we have

ck ≥ (θ∗ki)
2

wiyki
≥ K

γ2

(θ∗ki)
2

yki
, (29)

where the first inequality is due to ckwiy
k
i ≥ (θ∗ki)

2
and the second inequality is because of wi ≤ γ2

K
.

Since (29) is equivalent to yki ≥ K
γ2

(θ∗ki)
2

ck
and we have

∑m−m1

i=1 yki =
(
ck− 1

ck

)
Y k∗

11 from (28), we can

conclude that

m−m1∑
i=1

yki =

(
ck− 1

ck

)
Y k∗

11 ≥
m−m1∑
i=1

K

γ2

(θ∗ki)
2

ck
, ∀k ∈ [K]

⇒ ck ≥

√√√√1 +
1

Y k∗
11

m−m1∑
i=1

K

γ2

(θ∗ki)
2
, ∀k ∈ [K]. (30)

Therefore, we choose the value of ck such that (30) is satisfied at equality, leading to (23), while

the constructed solution (Ȳ
k ∀k ∈ [K]) satisfies all the constraints in Problem (24).

Finally, by Theorem 3, we have Z
∗
M(m1)−Z∗M(m)≥ 0. Meanwhile, we have

Z
∗
M(m1) =

K∑
k=1

(
y0
k(x

∗) + yk(x
∗)>µ

)
Y k∗

11 +
K∑
k=1

((
Um×m1

Λ
1
2
m1

)>
yk(x

∗)

)>
Y k∗

12r

+
K∑
k=1

((
Um×(m−m1)Λ

1
2
m−m1

)>
yk(x

∗)

)>
θ∗k,

Z∗M(m)≥
K∑
k=1

(
y0
k(x

∗) + yk(x
∗)>µ

)
Y k∗

11 +
K∑
k=1

((
Um×m1

Λ
1
2
m1

)>
yk(x

∗)

)>
Y k∗

12r

ck

+
K∑
k=1

((
Um×(m−m1)Λ

1
2
m−m1

)>
yk(x

∗)

)>
θ∗k
ck
,

where the inequality holds because the constructed solution (Ȳ
k ∀k ∈ [K]) is feasible for Problem

(24), which is a maximization problem. Therefore, it follows that

0≤Z∗M(m1)−Z∗M(m)≤
K∑
k=1

((
UΛ

1
2

)>
yk(x

∗)

)> (
Y k∗

12r

>
,θ∗k

>
)>(ck− 1

ck

)
. �
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Remark 2. Optimality gap (22) does not explicitly depend on γ1 while γ2 is explicitly there

because upper bound (17) captures the complete first-order moment information while dropping

some information about the second-order moment.

Proposition 7. Suppose that Assumption 1 holds, µ∈ S, and minKk=1

{
y0
k(x

∗) + yk(x
∗)>µ

}
≥ 0,

where x∗ is an optimal solution of Problem (4), then the relative gap between the optimal values of

Problems (20) and (4) is bounded from above by
√
P −1, i.e., 0≤UB∗M−Z∗M(m)≤ (

√
P −1)Z∗M(m).

Proof. We reformulate Problem (20) as the following problem:

UB∗M = min
x,s,q,

Q̂,λ̂

s+ γ2

P∑
i=1

Imi •Qi +
√
γ1 ‖q‖2 (31a)

s.t.

 s−y0
k(x)−λ>k b−yk(x)>µ+λ>k Aµ

1
2

(
q+

(
UΛ

1
2

)>
(A>λk−yk(x))

)>
1
2

(
q+

(
UΛ

1
2

)>
(A>λk−yk(x))

)
Q′

� 0, ∀k ∈ [K], (31b)

x∈X , λk ≥ 0, ∀k ∈ [K],

where

Q
′
=


Q1 0m1×m2

··· 0m1×mP−1
0m1×mP

0m2×m1
Q2 ··· 0m2×mP−1

0m2×mP
...

...
...

...
...

0mP−1×m1
0mP−1×m2

··· QP−1 0mP−1×mp
0mP×m1

0mP×m2
··· 0mP ∗mP−1

QP

 , (32)

Qi ∈ Rmi×mi for any i ∈ [P ] with
∑P

i=1mi = m, Q̂ = {Q1, . . . ,QP}, and λ̂= {λ1, . . . ,λK}. Let

(x∗, s∗,λ∗k ∀k ∈ [K],q∗,Q∗) denote an optimal solution of Problem (4) with

Q∗ =


Q∗1 Q∗m1×m2

··· Q∗m1×mP−1
Q∗m1×mP

Q∗m2×m1
Q∗2 ··· Q∗m2×mP−1

Q∗m2×mP
...

...
...

...
...

Q∗mP−1×m1
Q∗mP−1×m2

··· Q∗P−1 Q∗mP−1×mP
Q∗mP×m1

Q∗mP×m2
··· Q∗mP×mP−1

Q∗P

 . (33)

Based on this optimal solution, in the following, we construct a feasible solution of Problem (31),

denoted by (x̄, s̄, q̄, Q̄′, λ̄k ∀k ∈ [K]).

First, we let x̄=x∗, s̄= k0s
∗, q̄= q∗, λ̄k =λ∗k for any k ∈ [K], and

Q̄′ =


k1Q

∗
1 0m1×m2

··· 0m1×mP−1
0m1×mP

0m2×m1
k2Q

∗
2 ··· 0m2×mP−1

0m2×mP
...

...
...

...
...

0mP−1×m1
0mP−1×m2

··· kP−1Q
∗
P−1 0mP−1×mP

0mP×m1
0mP×m2

··· 0mP×mP−1
kPQ

∗
P

 , (34)

with ki ≥ 1 for any i∈ {0,1,2, . . . , P}. In order for this solution to satisfy (31b), we require k0s
∗−y0

k(x∗)−λ∗k
>b−yk(x∗)>µ+λ∗>k Aµ

1
2

(
q∗+

(
UΛ

1
2

)>
(A>λ∗k−yk(x∗))

)>
1
2

(
q∗+

(
UΛ

1
2

)>
(A>λ∗k−yk(x∗))

)
Q̄′

� 0, ∀k ∈ [K]. (35)
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In the following, we find the values of ki for any i∈ {0,1,2, . . . , P} so that (35) holds. To that end,

we construct the following matrix k0(s∗−y0
k(x∗)−λ∗k

>b−yk(x∗)>µ+λ∗>k Aµ) 1
2

(
q∗+

(
UΛ

1
2

)>
(A>λ∗k−yk(x∗))

)>
1
2

(
q∗+

(
UΛ

1
2

)>
(A>λ∗k−yk(x∗))

)
Q̄′

 , ∀k ∈ [K]. (36)

Note that subtracting (36) from (35) leads to the following matrix:[
(k0−1)(y0

k(x∗)+yk(x∗)>µ−λ∗k
>(Aµ−b)) 01×m

0m×1 0m×m

]
� 0, ∀k ∈ [K],

which is PSD because its eigenvalues are non-negative. In fact, (k0 − 1)(y0
k(x

∗) + yk(x
∗)>µ −

λ∗k
>

(Aµ− b)) is the only non-zero eigenvalue of this matrix that is non-negative because k0 ≥ 1,

−λ∗k
>

(Aµ− b) ≥ 0 due to Aµ ≤ b and λ∗k ≥ 0, and we have y0
k(x

∗) + yk(x
∗)>µ ≥ 0 according

to the assumption minKk=1

{
y0
k(x

∗) + yk(x
∗)>µ

}
≥ 0. Thus, we choose good values of ki for any

i∈ {0,1,2, . . . , P} to ensure (36) to be a PSD matrix and accordingly will make (35) hold.

Next, by Lemma 1, in order for (36) to be a PSD, we equivalently require si(s
∗−y0

k(x∗)−λ∗k
>b−yk(x∗)>µ+λ∗>k Aµ) 1

2

q∗i+

(
Um×miΛ

1
2
mi

)>
(A>λ∗k−yk(x∗))

>

1
2

q∗i+

(
Um×miΛ

1
2
mi

)>
(A>λ∗k−yk(x∗))

 kiQ
∗
i

� 0, ∀k ∈ [K], i∈ [P ], (37)

with
∑P

i=1 si = k0. Constraints (37) can be satisfied by allowing si×ki ≥ 1 for any i∈ [P ] due to (4b).

Then, we let k0 = k1 = · · ·= kP and si× ki = 1 for any i∈ [P ], leading to k0 = k1 = · · ·= kP =
√
P .

Finally, we have UB∗M ≥ Z∗M(m) by Theorem 4. Meanwhile, as Problem (20) is a minimization

problem, UB∗M is no larger than the objective value corresponding to our constructed feasible

solution (x̄, s̄, q̄, Q̄′, λ̄k ∀k ∈ [K]). That is, we have

UB∗M ≤
√
Ps∗+ γ2

P∑
i=1

Imi •
(√

PQ∗i

)
+
√
γ1 ‖q∗‖2 ≤

√
P

(
s∗+ γ2

P∑
i=1

Imi •Q
∗
i +
√
γ1 ‖q∗‖2

)
=
√
PZ∗M(m),

where the second inequality holds because P ≥ 1. Therefore, we have

0≤UB∗M−Z∗M(m)≤ (
√
P − 1)Z∗M(m). �

We observe that the theoretical upper bound in Proposition 7 is achievable through the following

example.

Example 1. Suppose that µ = 0, S = Rm, γ1 = +∞, and γ2 = 1. With f(x,UΛ
1
2 ξI + µ) =

|x>ξI|, Problem (4) can be recast as the following SDP formulation:

Z∗M(m) = min
x,s,Q

s+ Im •Q (38)

s.t.

[
s x>

2
x
2
Q

]
� 0,

[
s −x>

2−x
2

Q

]
� 0, x∈X .
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For fixed x ∈ X , optimizing over the remaining decision variables in (38) yields Q∗ = xx>

4s
, and

s∗ =
√
x>x
2

with objective value
√
x>x. By Proposition 5, we obtain an upper bound by considering

UB∗M = min
x,s,Q̂

s+
P∑
i=1

I i •Qi (39)

s.t.

[
s x>

2
x
2

diag(Qi)

]
� 0,

[
s −x>

2−x
2

diag(Qi)

]
� 0, x∈X ,

where Q̂ = {Q1, . . . ,QP} and diag(Qi) is a block diagonal matrix consisting of Q1, . . . ,QP . For

fixed x ∈ X , where x= (x>1 , . . . ,x
>
P )
>

and xi ∈ Rmi for all i ∈ [P ], optimizing over the remaining

decision variables in Problem (39) yields Q∗i =
xix
>
i

4si
for all i ∈ [P ], and s∗ =

∑P

i=1

√
x>i xi
2

with

objective value
∑P

i=1

√
x>i xi. Now we let mi = m

P
for any i∈ [P ] and X = {x∈Rm|xi ≥ 1,∀i∈ [m]}.

It follows that Z∗M(m) =
√
m and UB∗M = P

√
m
P

, and so the relative gap between Z∗M(m) and UB∗M

is
P
√

m
P
−
√
m

√
m

=
√
P − 1,

attaining the theoretical upper bound in Proposition 7.

Remark 3. The theoretical error bound
√
P − 1 in Proposition 7, albeit achievable in the

above example, is usually conservative because it needs to hold valid for arbitrary (including many

pathetic and worst-case) DRO problem instances. For instance, if P > 1, γ1 > 0, and ‖q∗‖2 > 0,

then the theoretical bound cannot be attained. The above example is comparable to the worst-case

distribution induced by solving a DRO problem. Nevertheless, the inner approximation (20) leads

to much better computational optimality gaps under various instances, which will be shown in our

numerical experiments in Section 4.

3. Combined Ambiguity Set

We consider the combined ambiguity set that incorporates both Wasserstein distance and moment

information. Like in the last section, we derive an SDP reformulation of the corresponding DRO

problem, as well as its inner and outer approximations that can be solved more efficiently. Further-

more, we bound the gaps between the optimal values of the DRO problem and its approximations.

Formally, we consider DRO problem

min
x∈X

max
P∈DC1

EP [f (x,ξ)] , (DRO-C)

where

DC1 (S,µ,Σ, γ2,P0,R0) =

{
P

∣∣∣∣∣EP

[
(ξ−µ) (ξ−µ)

>
]
� γ2Σ

W (P,P0)≤R0

}
.
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In this combined ambiguity set, P0 denotes a reference distribution. For example, P0 is an empirical

distribution of ξ generated by N i.i.d. samples {ξ̂
i
: i∈ [N ]} of ξ, i.e., P0{ξ= ξ̂

i
}= 1

N
for all i∈ [N ].

In addition, W (P,P0) denotes the type-1 Wasserstein distance between P and P0 defined through

W (P,P0) := min
π

{∫
S2

‖ξ− ξ̂‖1π
(
ξ, ξ̂
)}

,

where π denotes a joint distribution of ξ and ξ̂ with marginals P and P0, respectively. Intuitively,

W (P,P0) represents the minimum expected distance between ξ and ξ̂ over all possible joint dis-

tributions π. It has been shown that, as N →∞, P0 converges to the true distribution of ξ almost

surely (Van der Vaart 2000). As a result, if we select the value of R0 > 0 appropriately, then the

Wasserstein ball centered at P0 with radius R0 will include such true distribution with high confi-

dence. Besides the Wasserstein ball, DC1 designates that the centered second-order moment matrix

of ξ is bounded by γ2Σ. We notice that R0 controls the conservatism degree of DC1. The larger

radius R0 is, DC1 has higher confidence to contain the true distribution of ξ, while it leads to a

more conservative optimal solution to (DRO-C). In contrast, when R0 decreases to zero, (DRO-C)

reduces to an ambiguity-free stochastic program with regard to P0. For (DRO-C), we consider a

setting slightly stronger than that in Assumption 1.

Assumption 2. Function f (x,ξ) is piecewise linear convex in ξ, i.e., f (x,ξ) =

maxKk=1

{
y0
k(x) + yk(x)>ξ

}
with both yk(x) = (y1

k(x), . . . , ymk (x))
>

and y0
k(x) affine in x for any

k ∈ [K]. Additionally, S =Rm.

Proposition 8. Under Assumption 2, (DRO-C) can be recast as the following SDP formulation:

Z∗C(m) := min
x,λ,Q,ζ̂,ŷ

λR0 + γ2Σ •Q+
1

N

N∑
i=1

yi (40a)

s.t.

[
Q 1

2

(
−yk(x) + ζi− 2Qµ

)
1
2

(
−yk(x) + ζi− 2Qµ

)>
yi− y0

k(x)− ζi>ξ̂
i
+µ>Qµ

]
� 0, ∀i∈ [N ], ∀k ∈ [K], (40b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ],

where Q∈Rm×m, ζi ∈Rm for any i∈ [N ], ζ̂ = {ζ1, . . . ,ζN}, and ŷ= {y1, . . . , yN} .

Proof. The result is deduced from Corollary 1 in Gao and Kleywegt (2017). �

As discussed in Section 2, Problem (40) can be computationally difficult when ξ is high-

dimensional and/or correlated, leading to many large-scale PSD constraints. We derive more effi-

ciently solvable outer and inner approximations of Problem (40) (i.e., (DRO-C)) in Sections 3.1

and 3.2, leading to lower and upper bounds, respectively, while theoretically showing their quality.
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3.1. Lower Bound

By performing the eigenvalue decomposition on matrix Σ, we first reformulate (DRO-C) as

min
x∈X

max
PI∈DC2

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (41)

where

DC2 (SI,µ, γ2,P0,R0) =

PI

∣∣∣∣∣∣
EPI

[
ξIξ
>
I

]
� γ2Im

∃π :

∫
S2

∥∥∥UΛ
1
2 ξI +µ− ξ̂

∥∥∥
1
π
(
UΛ

1
2 ξI +µ, ξ̂

)
≤R0


under the condition that f(x,UΛ

1
2 ξI +µ) is PI-integrable for any PI ∈ DC2 and SI := {ξI ∈ Rm :

UΛ
1
2 ξI +µ∈ S}. Next, by the approximation of ξ in (5) due to PCA, we outer approximate (41)

as the following problem:

min
x∈X

max
Pr∈DC3

EPr

[
f
(
x,Um×m1

Λ
1
2
m1
ξr +µ

)]
, (42a)

where

DC3 (Sr,µ, γ2,P0,R0) =

Pr

∣∣∣∣∣∣∣
EPr

[
ξrξ
>
r

]
� γ2Im1

∃π :

∫
S2

r

∥∥∥Um×m1
Λ

1
2
m1
ξr +µ− ξ̂

∥∥∥
1
π
(
Um×m1

Λ
1
2
m1
ξr +µ, ξ̂

)
≤R0


(42b)

with

Sr :=
{
ξr ∈Rm1 :Um×m1

Λ
1
2
m1
ξr +µ∈ S

}
. (42c)

Note that ξ̂ is a given data point and thus it is not approximated following what we do for ξ.

Theorem 5. Under Assumption 2, Problem (42) has the same optimal value as the following

SDP formulation:

Z∗C(m1) := min
x,λ,Qr,ζ̂,ŷ

λR0 + γ2Im1
•Qr +

1

N

N∑
i=1

yi (43a)

s.t.

 Qr
1
2

((
−yk(x) + ζi

)>
Um×m1

Λ
1
2
m1

)>
1
2

(
−yk(x) + ζi

)>
Um×m1

Λ
1
2
m1

yi− yk(x)>µ− y0
k(x) +

(
µ− ξ̂

i
)>
ζi

� 0,

∀i∈ [N ], ∀k ∈ [K], (43b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (43c)

where Qr ∈Rm1×m1, ζi ∈Rm for any i∈ [N ], ζ̂ =
{
ζ1, . . . ,ζN

}
, and ŷ= {y1, . . . , yN}. Furthermore,

we have the following: (i) Problem (43) provides a lower bound for the optimal value of (DRO-C);

(ii) the optimal value of Problem (43) is nondecreasing in m1; and (iii) if m1 =m, then (DRO-C)

and (43) have the same optimal value.
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Proof. See Online Supplement B.1 for the detailed proof. �

We show the quality of the outer approximation (43) in the following proposition.

Proposition 9. It holds that

0≤Z∗C(m)−Z∗C(m1)≤
√
γ2

N

N∑
i=1

K∑
k=1

√
Likm−m1

(
Likm−m1

)>
, (44)

where Likm−m1
= (−yk(x∗) + ζi

∗
)>Um×(m−m1)(Λ

m−m1)
1
2 , x∗ and ζi

∗
(∀i ∈ [N ]) denote an optimal

solution of Problem (43), and Λm−m1 ∈R(m−m1)×(m−m1) denotes the lower-right submatrix of Λ.

Proof. See Online Supplement B.2 for the detailed proof. �

3.2. Upper Bound

We further inner approximate Problem (40), leading to an upper bound, by splitting random vector

ξI into P pieces in the second-moment constraint in DC2 so that ξI = (ξ>I1 ,ξ
>
I2
, . . . ,ξ>IP )>, where

ξIj
∈Rmj , ∀j ∈ [P ], and

∑P

j=1mj =m. This gives rise to an inner approximation

min
x∈X

max
PI∈DC4

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (45)

where

DC4 (SI,µ, γ2,P0,R0) =

PI

∣∣∣∣∣∣∣
EPI

[
ξIj
ξ>Ij

]
� γ2Imj , ∀j ∈ [P ]

∃π :

∫
S2

∥∥∥UΛ
1
2 ξI +µ− ξ̂

∥∥∥
1
π
(
UΛ

1
2 ξI +µ, ξ̂

)
≤R0

 .

Theorem 6. Under Assumption 2, Problem (45) has the same optimal value as the following

SDP formulation:

UB∗C := min
x,λ,Q̂,

ζ̂,ŷ,ŝ

λR0 + γ2

P∑
j=1

Imj •Qj +
1

N

N∑
i=1

yi (46)

s.t.

[
Qj

1
2

((
−yk(x) + ζi

)>
Um×mjΛ

1
2
mj

)>
1
2

(
−yk(x) + ζi

)>
Um×mjΛ

1
2
mj

sjik

]
� 0, ∀j ∈ [P ], ∀i∈ [N ],

∀k ∈ [K],
P∑
j=1

sjik = yi− yk(x)>µ− y0
k(x) +

(
µ− ξ̂

i
)>
ζi, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ],

where Qj ∈Rmj×mj , ζ
i ∈Rm for any i∈ [N ], Q̂= {Q1, . . . ,QP}, ζ̂ =

{
ζ1, . . . ,ζN

}
, ŷ= {y1, . . . , yN},

and ŝ= {sijk, ∀i∈ [N ], ∀j ∈ [P ], ∀k ∈ [K]}. Furthermore, Problem (46) provides an upper bound

for the optimal value of (DRO-C).

Proof. See Online Supplement B.3 for the detailed proof. �
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We show the quality of our derived inner approximation (46) in the following proposition.

Proposition 10. If minKk=1

{
y0
k(x

∗) + yk(x
∗)>µ

}
≥ 0 and maxNi=1{(µ− ξ̂

i
)>ζi

∗
} ≤ 0, where x∗

and ζi
∗

are optimal solutions of Problem (40), then the relative gap between the optimal values of

Problems (46) and (40) is bounded from above by
√
P −1, i.e., 0≤UB∗C−Z∗C(m)≤ (

√
P −1)Z∗C(m).

Proof. See Online Supplement B.4 for the detailed proof. �

Remark 4. The theoretical upper bound in Proposition 10 is achievable. Indeed, when we

enlarge R0 enough such that DC4 degenerates to a moment-based ambiguity set, we can follow the

same setting of Example 1 to achieve the theoretical upper bound in Proposition 10. Meanwhile,

similar to our notes in Remark 3, the theoretical bound in Proposition 10 is also conservative

and only achievable in pathetic problem instances. The quality of the inner approximation (46) is

usually much more optimistic due to the corresponding numerical results in Section 4.

Before closing this section, we note that the first-order moment constraint, albeit important

to reduce solution conservatism, is not included in the combined ambiguity set of (DRO-C). We

consider additionally including the first-order moment constraint, leading to a DRO problem with

a combined ambiguity set consisting of Wasserstein distance and first- and second-order moment

information; see Problem (DRO-C2) in Online Supplement B.5. We correspondingly derive the

inner and outer approximations of (DRO-C2), and conduct computational experiments to com-

pare their performance with the approximations of (DRO-C). Based on the results, we observe

that adding the first-order moment information does further reduce the conservatism of optimal

solutions for both (DRO-C) and its approximations, though such reduction is not significant. This

is because the second-order moment information together with the Wasserstein information has

already (partially) implied the first-order moment information. Such insight is also explained in

Gao and Kleywegt (2017). Due to this, we only keep (DRO-C) in the main body.

4. Computational Experiments

We perform extensive computational experiments to demonstrate the effectiveness of our proposed

inner and outer approximations in two applications: production-transportation and multi-product

newsvendor problems. The mathematical models are implemented in MATLAB R2017a (ver. 9.2)

by the modeling language CVX (ver. 2.1) (Grant and Boyd 2008, 2014) with the Mosek solver

(8.0.0.60) on a PC with 64-bit Windows Operating System, an Intel(R) Core(TM) i7-7700 CPU @

3.60 GHz processor, and a 16 GB RAM. The time limit for each run is set at 36 hours. In Section

4.1, we specify the proposed lower and upper bounds in the context of the two aforementioned

applications. In Section 4.2, we explain how to randomly generate test instances and report the

numerical results together with analyses.
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4.1. Computational Setup

In this section, we specify the proposed lower and upper bounds, as well as the theoretical upper

bounds for their gaps with the original DRO model, in the context of production-transportation

and multi-product newsvendor problems.

4.1.1. Production-Transportation Problem A deterministic production-transportation

problem aims to minimize the total production and transportation cost by making production and

transportation decisions while satisfying all customer demands. Suppose there are n customers with

demand dj (∀j ∈ [n]) and m suppliers, each with normalized capacity 1, and
∑

j∈[n] dj ≤m. We

use xi and zij to respectively denote the amount of goods produced by supplier i and the amount

of goods shipped from supplier i to customer j. Moreover, we use ci and ξij to denote the unit

production cost by supplier i and the unit transportation cost to customer j from this supplier,

respectively. Thus, this problem can be formulated as follows:

min
x,z

m∑
i=1

cixi +
m∑
i=1

n∑
j=1

ξijzij (47a)

s.t.
m∑
i=1

zij = dj, ∀j ∈ [n], (47b)

n∑
j=1

zij = xi, ∀i∈ [m], (47c)

0≤ xi ≤ 1, ∀i∈ [m], (47d)

zij ≥ 0, ∀i∈ [m], ∀j ∈ [n]. (47e)

Now we derive the DRO counterpart of Problem (47). Specifically, we assume that ξ is random

and its probability distribution P is unknown but it belongs to a predefined distributional ambiguity

set D. The decision x is decided before the realization of randomness and z is made as a recourse

to specific realizations (Bertsimas et al. 2010). This leads to a two-stage DRO counterpart

min
x

{
c>x+ max

P∈D
EP [U (Q (z,ξ))] : (47d)

}
, (48)

where U(·) is a convex nondecreasing disutility function used to incorporate risk considerations

into the second-stage cost. In particular, we define

U (Q (z,ξ)) = max
k∈[K]

{αkQ (z,ξ) +βk} ,

whereQ (z,ξ) = min
z

{
z>ξ : (47b), (47c), (47e)

}
. We can apply the proposed inner and outer approx-

imations (i.e., Problems (8), (43), (17), (20), and (46)) to approximate Problem (48) in the context

of production-transportation problem, with the details provided in Online Supplement C.
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We follow Bertsimas et al. (2010) to randomly generate the locations of m suppliers and n

customers from a unit square considering ξij as the distance between supplier i and customer j.

We estimate the mean, standard deviation, and covariance matrix of ξ by using 10,000 indepen-

dent samples, generated from independent uniform distributions on intervals [0.5ξij,1.5ξij] , ∀i ∈
[m] and j ∈ [n]. We let c̄ denote the average transportation cost and generate production cost ci and

demand dj uniformly on the intervals [0.5c̄,1.5c̄] and
[
0.5m

n
, m
n

]
, respectively. We consider disutility

function U(x) = 0.25 (e2x− 1) while approximating it by an equidistant linear approximation with

five segments on the interval [0,1].

4.1.2. Multi-Product Newsvendor Problem Given n products and the demand ξi for

each i∈ [n], a deterministic multi-product newsvendor problem determines a nonnegative ordering

amount x= (xi, i∈ [n])> to minimize the total loss described as follows:

f (x,ξ) = c>x−v>min(x,ξ)− g> (x− ξ)+

= (c−v)
>
x+ (v− g)

>
(x− ξ)+

= max
{

(c−v)
>
x, (c− g)

>
x+ (g−v)

>
ξ
}
,

where c represents the wholesale price, v represents the retail price, g represents the salvage price,

and the minimum and nonnegativity operator are applied componentwise. Now we consider that

demand ξ is uncertain and its probability distribution belongs to a distributional ambiguity set D.

The DRO counterpart of the multi-product newsvendor problem to minimize the expected total

loss against the worst-case distribution in D can be described as follows:

min
x≥0

max
P∈D

EP

[
max

{
(c−v)

>
x, (c− g)

>
x+ (g−v)

>
ξ
}]
. (49)

Note that the procedure of applying the proposed inner and outer approximations and the theo-

retical bounds to Problem (49) is similar to that for Problem (48) and thus is omitted here.

The mean and standard deviation of ξ are randomly picked from the intervals [0,10] and [0,2],

respectively. To generate the covariance matrix, first we randomly generate a correlation matrix

by the MATLAB function “gallery(‘randcorr’,n)” and then convert it to a covariance matrix. We

follow Xu et al. (2018) to set the wholesale, retail, and savage prices as ci = 0.1(5 + i− 1), vi =

0.15(5 + i− 1), and gi = 0.05(5 + i− 1) for any i∈ [n], respectively.

4.2. Computational Results

We first evaluate the performance of our proposed lower and upper bounds and then show how they

can help construct a tight interval, which includes unknown optimal solutions of large-sized DRO

problems that cannot be solved to optimality (or even feasibility in most cases) by existing methods

in reasonable time. We further investigate the benefits of choosing the components with the largest

variability (i.e., leading components) in the PCA approach (as compared to randomly choosing

components) and also perform sensitivity analyses with respect to several given parameters.
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4.2.1. Instance Generation and Table Header Description We perform our experiments

to solve various instances. First, we consider different levels of problem size, namely small, medium

and large, by varying m and n in the production-transportation problem and varying n in the

newsvendor problem. Second, we consider different levels of approximation. In particular, for PCA-

based lower and upper bounds, we consider different values of m1
m

in {100%,75%,50%,25%,10%}.

For vector splitting based upper bounds, we consider P ∈ {2,4,5}, by which the random vector ξ is

equally split with m1 =m2 = · · ·=mP ; that is, here we use a homogeneous division of the random

vector. This is because such homogeneous division eventually leads to a set of SDP constraints,

with all of them having the smallest possible matrices simultaneously, in our proposed formulations.

It helps improve the computational performance of the corresponding inner approximation. In

addition, when assigning all the components of ξ to pieces, we consider the non-increasing order of

the components based on their variance. Specifically, the first piece includes the first m1 components

with the largest variance, the next m2 components are assigned to the second pieces, and so on. The

reason is that in our approximation, the correlations among different pieces are dropped, but we

would like to capture the correlations among those important components within each piece. Third,

we consider different supports, i.e., S ∈ {[−2σ,2σ] , [−3σ,3σ] , [−4σ,4σ]}, where σ represents the

sample standard deviation of random vector ξ. In addition, γ1 and γ2 are set as 1 and 2, respectively,

for the moment-based ambiguity set, the number of i.i.d data samples N = 10 for the combined

ambiguity set, the Wasserstain radius R0 is set as 30 for the production-transportation problem

and as 700 for the newsvendor problem. We will perform sensitivity analyses with respect to other

different values of γ1, γ2, and R0. For each combination of the above three variants, we randomly

generate five instances1 and report the average results over them.

In the following Sections 4.2.2 - 4.2.6, we will use tables to report our results and here we describe

several table headers that are shared by most of the tables. Column “Size” reports the values of

m and n in the production-transportation problem and n in the newsvendor problem, indicating

different levels of the problem size. Column “Orig.” represents the computational time in seconds

required to solve the original DRO problem and column “Time” represents the computational

time in seconds required to solve the corresponding inner or outer approximations. Column “Gap”

represents the relative gap in percentage between a lower or upper bound and the original optimal

value. Here, the relative gap between two values is defined as their difference divided by the

maximum. As such relative gaps are theoretically bounded from above, e.g., (9) and (22), we use

column “Gap2” in percentage to represent the value of theoretical bound. Whenver needed, we use

“LB” and “UB” to denote the lower and upper bounds, respectively. Note that the percentage of

ξ’s components utilized to construct lower and upper bounds, i.e., m1
m
× 100%, is represented by

m1
m

(%) and P represents the number of split pieces of ξ, with each piece having the same size.
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4.2.2. Lower Bound Performance We summarize the lower bounds of the DRO problem

with the moment-based ambiguity set on both applications in Tables 1 and 2, while Tables 3 and

4 report the results for the DRO problem with the combined ambiguity set.

Table 1 Lower bound (8) on the production-transportation problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2

(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
[−2σ,2σ] 66.3 66.2 0.00 0.00 21.3 0.95 11.26 3.9 3.42 18.00 1.1 4.73 19.72 0.5 5.07 19.49

(5,20) [−3σ,3σ] 73.6 73.8 0.00 0.00 21.8 1.11 10.83 4.7 2.92 16.90 1.2 4.96 19.74 0.5 5.50 20.06
[−4σ,4σ] 67.3 67.4 0.00 0.00 22.5 1.10 11.95 4.4 3.48 18.89 1.2 5.66 21.26 0.5 5.93 21.21
[−2σ,2σ] 560.9 559.6 0.00 0.00 180.8 0.53 7.48 40.3 1.73 12.52 3.8 3.47 15.05 0.8 3.94 15.38

(4,40) [−3σ,3σ] 551.5 549.3 0.00 0.00 181.3 0.58 8.25 39.5 2.28 14.23 4.4 3.74 17.29 0.87 4.63 18.01
[−4σ,4σ] 542.9 543.2 0.00 0.00 173.9 0.60 7.67 40.2 1.93 12.76 4.4 3.53 15.04 0.9 3.86 15.04
[−2σ,2σ] 1553.1 1553.5 0.00 0.00 392.0 2.55 13.33 68.9 3.50 13.81 7.2 3.71 13.63 1.0 3.83 13.57

(8,25) [−3σ,3σ] 1558.3 1553.1 0.00 0.00 440.1 1.71 11.00 76.6 3.09 13.22 7.3 3.60 13.28 0.9 3.80 13.17
[−4σ,4σ] 1612.2 1610.8 0.00 0.00 465.2 1.40 11.08 92.4 3.07 15.70 7.4 3.96 14.94 0.9 4.16 14.80

Table 2 Lower bound (8) on the newsvendor problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

[−2σ,2σ] 19.0 18.9 0.00 0.00 5.1 0.02 0.65 1.0 0.26 2.37 0.3 1.18 4.82 0.2 2.23 6.29
100 [−3σ,3σ] 17.2 17.4 0.00 0.00 4.6 0.03 0.77 1.0 0.24 2.27 0.3 1.05 4.63 0.2 1.98 6.14

[−4σ,4σ] 17.1 17.2 0.00 0.00 4.4 0.02 0.57 0.9 0.22 2.17 0.3 0.95 4.40 0.2 2.22 6.32
[−2σ,2σ] 175.0 175.7 0.00 0.00 42.1 0.02 0.58 6.0 0.21 1.83 0.5 0.90 3.67 0.3 2.00 5.04

160 [−3σ,3σ] 171.2 171.4 0.00 0.00 42.2 0.02 0.60 6.1 0.19 1.82 0.5 0.94 3.85 0.2 1.96 5.19
[−4σ,4σ] 154.1 154.0 0.00 0.00 43.3 0.02 0.57 6.2 0.21 1.82 0.5 0.83 3.53 0.2 1.75 4.81
[−2σ,2σ] 518.0 519.0 0.00 0.00 118.5 0.02 0.52 18.3 0.19 1.66 1.0 0.83 3.34 0.3 1.71 4.48

200 [−3σ,3σ] 494.8 494.1 0.00 0.00 124.3 0.02 0.51 18.1 0.15 1.52 0.9 0.79 3.37 0.3 1.50 4.40
[−4σ,4σ] 521.9 522.1 0.00 0.00 120.3 0.02 0.54 19.4 0.15 1.51 0.9 0.80 3.35 0.2 1.82 4.70

From Tables 1 and 2, where the column “Gap2” represents the relative gap induced by the theo-

retical upper bound in (9), we have the following observations. First, when the number of principal

components m1 increases, both Gap and Gap2 decrease and the computational time increases.

When m1 increases to m, we obtain the lower bound equivalent to the original optimal value but in

a large computational time. In practice, thus we can leverage the number of principal components

as a tool to trade-off between solution quality and computational time. Second, when the prob-

lem size increases, the original problem becomes more difficult to solve, while our approximations

reduce the computational time significantly and maintain very high solution quality. For instance,

even with a 90% reduction in the dimension of uncertainty space, our approximation solution can

give an objective value at around 2% of the original optimal value, as shown in the column “Gap”.

Third, when comparing the values of Gap and Gap2, we can observe that the latter is always

larger than the former, demonstrating that theoretical bound (9) is valid. Meanwhile, the quality

of theoretical bound (9) is sensitive to different problems and datasets, as Gap2 is closer to Gap in

the newsvendor problem as compared to in the production-transportation problem. Similarly, the
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Table 3 Lower bound (43) on the production-transportation problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2

(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
(5,20) 704.5 704.4 0.00 0.00 265.3 1.22 32.93 94.1 4.11 57.25 37.2 6.88 63.55 16.4 7.22 62.93
(4,40) 4787.7 4792.9 0.00 0.00 1700.9 1.24 34.02 497.5 2.93 48.95 134.6 5.13 56.38 55.1 5.68 55.96
(8,25) 13503.8 13401.5 0.00 0.00 4132.6 2.21 36.65 1196.8 3.94 42.46 233.2 4.78 44.68 79.0 4.98 42.43

Table 4 Lower bound (43) on the newsvendor problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
100 128.9 128.8 0.00 0.00 58.2 0.02 1.93 28.7 0.21 6.69 14.6 1.04 14.52 12.9 2.57 20.96
160 859.3 862.5 0.00 0.00 333.5 0.02 1.82 107.4 0.18 5.64 42.1 0.71 10.87 23.0 1.94 16.52
200 2234.7 2227.4 0.00 0.00 811.8 0.01 1.42 216.8 0.14 4.58 63.0 0.72 10.01 30.4 1.68 14.56

lower bound (8) performs better when applied to the newsvendor application, as the relative gap,

i.e., Gap, is generally smaller than that in the production-transportation problem.

From Tables 3 and 4, where the column “Gap2” represents the relative gap induced by the

theoretical upper bound in (44), we have the similar observations as from Tables 1 and 2. In

addition, a comparison among Tables 1 - 4 shows that (i) solving DRO problems with the combined

ambiguity set and their outer approximations takes more computational time than solving those

with the moment-based ambiguity set; and (ii) theoretical bound (44) is more conservative than

theoretical bound (9) and can be improved in our future studies.

4.2.3. Upper Bound Performance We report performance of the upper bound (17) in

Tables 5 - 6 and report that of (20) and (46) in Tables 7 - 10.

Table 5 Upper bound (17) on the production-transportation problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2

(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
[−2σ,2σ] 60.4 60.7 0.00 0.00 24.4 3.28 8.50 5.7 6.68 14.80 1.8 7.60 16.29 1.1 7.60 16.48

(5,20) [−3σ,3σ] 70.9 71.1 0.00 0.00 24.5 1.25 6.19 5.9 4.98 12.68 1.8 8.91 20.14 1.1 10.60 23.80
[−4σ,4σ] 68.9 68.7 0.00 0.00 23.8 3.66 9.35 5.9 10.83 16.60 1.8 16.08 25.03 1.1 17.41 29.25
[−2σ,2σ] 524.8 525.3 0.00 0.00 175.2 2.37 6.20 43.4 5.40 11.21 7.6 7.08 14.82 3.0 7.46 13.53

(4,40) [−3σ,3σ] 477.7 477.7 0.00 0.00 189.7 4.37 9.56 42.6 9.17 16.27 8.1 13.34 23.27 3.1 15.79 27.59
[−4σ,4σ] 565.0 566.0 0.00 0.00 175.7 7.33 11.74 38.6 14.03 19.69 8.0 18.88 26.56 3.1 20.52 29.76
[−2σ,2σ] 1470.2 1468.7 0.00 0.00 479.6 0.98 5.40 100.1 1.77 9.34 15.3 2.06 9.86 4.1 2.11 10.78

(8,25) [−3σ,3σ] 1634.5 1632.6 0.00 0.00 491.6 2.06 7.09 104.8 5.57 16.16 15.7 6.73 19.33 4.2 7.14 20.66
[−4σ,4σ] 1562.0 1563.3 0.00 0.00 483.5 6.03 11.82 104.8 10.93 21.38 16.4 12.61 23.84 4.1 13.53 26.24

From Tables 5 - 6, where the column “Gap2” represents the relative gap induced by the the-

oretical upper bound in (22), we have similar observations as from Tables 1 and 2. In addition,

our approximation (17) performs better when solving the production-transportation problem as

compared to solving the newsvendor problem. Meanwhile, the values of Gap2 are always larger

than those of Gap, implying that theoretical bound (22) is valid.

From Tables 7 - 10, we have the following observations. First, when P increases, the computa-

tional time decreases and the Gap increases. In practice, thus we can leverage the number of split
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Table 6 Upper bound (17) on the newsvendor problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

[−2σ,2σ] 18.8 19.0 0.00 0.00 4.7 5.04 12.12 1.0 19.35 25.88 0.3 40.63 46.47 0.3 53.46 58.93
100 [−3σ,3σ] 17.0 17.0 0.00 0.00 4.7 10.48 20.37 1.0 39.22 48.44 0.3 77.8 86.09 0.3 97.94 105.47

[−4σ,4σ] 18.6 18.7 0.00 0.00 4.9 19.29 35.54 1.0 70.79 86.16 0.3 158.74 172.17 0.3 213.95 226.36
[−2σ,2σ] 181.8 181.5 0.00 0.00 44.2 4.45 10.43 6.3 17.53 23.16 0.7 35.25 40.34 0.3 48.71 53.31

160 [−3σ,3σ] 174.3 175.0 0.00 0.00 41.6 9.73 19.07 6.0 37.45 46.33 0.6 81.59 89.55 0.3 110.04 117.66
[−4σ,4σ] 149.2 149.0 0.00 0.00 43.8 17.85 31.48 5.7 73.73 86.37 0.7 156.36 167.72 0.3 212.74 222.98
[−2σ,2σ] 501.3 501.2 0.00 0.00 138.4 4.65 10.21 20.5 18.95 24.17 1.4 38.26 42.89 0.5 51.69 56.0

200 [−3σ,3σ] 495.3 495.4 0.00 0.00 126.7 9.04 16.53 19.3 35.06 42.09 1.4 73.70 79.95 0.5 102.89 108.66
[−4σ,4σ] 537.5 536.7 0.00 0.00 145.7 18.39 30.61 17.0 78.17 89.52 1.3 165.07 175.67 0.5 222.91 232.47

Table 7 Upper bound (20) on the production-transportation problem
P 2 4 5

Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

[−2σ,2σ] 65.9 11.3 0.18 41.42 5.4 0.52 100 4.4 0.71 123.61
(5,20) [−3σ,3σ] 69.0 10.7 0.07 41.42 5.7 0.35 100 4.5 0.54 123.61

[−4σ,4σ] 67.1 11.4 0.10 41.42 5.4 0.39 100 4.3 0.51 123.61
[−2σ,2σ] 521.9 79.4 0.15 41.42 32.8 0.40 100 22.9 0.53 123.61

(4,40) [−3σ,3σ] 566.2 86.8 0.13 41.42 35.5 0.43 100 24.7 0.54 123.61
[−4σ,4σ] 542.9 83.0 0.17 41.42 33.9 0.47 100 25.1 0.57 123.61
[−2σ,2σ] 1531.3 205.2 0.02 41.42 55.8 0.07 100 61.5 0.11 123.61

(8,25) [−3σ,3σ] 1594.0 216.8 0.04 41.42 58.4 0.13 100 67.8 0.18 123.61
[−4σ,4σ] 1539.1 207.0 0.04 41.42 56.8 0.16 100 67.5 0.24 123.61

Table 8 Upper bound (20) on the newsvendor problem
P 2 4 5

Size Support Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

[−2σ,2σ] 20.1 1.3 1.11 41.42 0.5 3.05 100 0.5 3.86 123.61
100 [−3σ,3σ] 17.7 1.3 1.26 41.42 0.5 3.20 100 0.5 4.07 123.61

[−4σ,4σ] 18.1 1.3 1.11 41.42 0.5 2.99 100 0.5 3.73 123.61
[−2σ,2σ] 162.3 7.3 0.91 41.42 1.3 2.52 100 0.9 3.25 123.61

160 [−3σ,3σ] 169.2 7.4 1.10 41.42 1.2 2.88 100 0.9 3.57 123.61
[−4σ,4σ] 169.6 7.9 0.95 41.42 1.2 2.62 100 0.9 3.34 123.61
[−2σ,2σ] 521.6 25.7 0.84 41.42 2.6 2.13 100 1.7 2.62 123.61

200 [−3σ,3σ] 493.4 21.7 0.84 41.42 2.9 2.28 100 1.7 2.86 123.61
[−4σ,4σ] 518.1 23.9 0.84 41.42 2.8 2.18 100 1.7 2.81 123.61

pieces as a tool to balance between solution quality and computational time. Second, the quality

of upper bound (20) is sensitive to different problems and datasets because it performs better (i.e.,

with smaller Gap) on the production-transportation problem than on the newsvendor problem.

Third, as mentioned in Remarks 3 and 4, although the theorectical error bound
√
P − 1 is very

conservative, as represented in the column “Gap2”, the computational optimality gap perform very

well, as represented in the column “Gap”. In addition, by comparing Tables 5 - 6 and Tables 7 -

10, we can observe that the vector splitting based upper bounds are much tighter than the PCA

based upper bounds.

4.2.4. Interval Performance In many real-world applications with large-scale models and

high-dimensional uncertainties (e.g., energy and transportation), we may not be able to solve a

DRO model to optimality (or even feasibility in most cases) by existing methods in reasonable

time. In this case, it can be very useful to quickly find a feasible solution with small optimality
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Table 9 Upper bound (46) on the production-transportation problem

P 2 4 5
Size Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2

(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
(5,20) 716.4 179.3 1.78 41.42 121.4 4.90 100 114.2 6.26 123.61
(4,40) 5050.3 1028.3 2.06 41.42 521.8 4.56 100 488.4 5.50 123.61
(8,25) 11383.6 2281.3 0.93 41.42 1017.6 3.25 100 1010.7 3.96 123.61

Table 10 Upper bound (46) on the newsvendor problem

P 2 4 5
Size Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2

(m,n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)
100 129.5 55.8 1.66 41.42 37.1 4.35 100 34.1 5.46 123.61
160 798.6 275.7 1.13 41.42 132.5 3.18 100 120.5 4.17 123.61
200 2038.4 615.7 0.93 41.42 251.4 2.70 100 225.3 3.49 123.61

gap, evaluated through an interval that includes the (unknown) optimal value of this model. In this

section, we construct such intervals with the help of our proposed inner and outer approximations.

Table 11 Intervals on the production-transportation problem

[LB, UB] [(8),(17)] [(8),(20)]
Size Support

(
m1
m

%, P
)

Orig. Itv-Time Itv-Gap Itv-Time Itv-Gap
(m,n) (secs) (secs) (%) (secs) (%)

(25%,5) - 100.0 7.98 203.5 3.53
[−2σ,2σ] (50%,4) - 1017.9 5.74 730.5 2.32

(75%,2) - 5626.6 2.56 3706.4 0.93
(25%,5) - 106.2 13.60 219.6 3.31

(6,50) [−3σ,3σ] (50%,4) - 1071.3 10.75 813.3 2.42
(75%,2) - 5955.1 6.39 3913.1 1.23
(25%,5) - 102.7 20.37 233.2 3.54

[−4σ,4σ] (50%,4) - 1093.9 16.40 780.7 2.87
(75%,2) - 5564.6 6.82 4124.3 1.09
(25%,5) - 265.7 4.94 604.7 2.78

[−2σ,2σ] (50%,4) - 3375.2 4.53 2181.1 2.47
(75%,2) - - - - -
(25%,5) - 302.6 10.28 629.1 2.80

(8,50) [−3σ,3σ] (50%,4) - 3697.8 8.21 2667.7 2.21
(75%,2) - - - - -
(25%,5) - 299.4 15.86 650 2.86

[−4σ,4σ] (50%,4) - 4129.7 14.08 2596.4 2.41
(75%,2) - - - - -

The interval results of the DRO problem with the moment-based ambiguity set are summarized

in Tables 11 and 12, while Tables 13 and 14 report the results for the DRO problem with the

combined ambiguity set. The first row of each table, indicated by [LB,UB], shows that each interval

is constructed by which lower and upper bounds. Column “Itv-Time” reports the time spent to

construct each interval, which equals to the summation of the computational times needed to find

the lower and upper bounds. Column “Itv-Gap”, calculated by UB−LB
UB

× 100%, demonstrates how

tight the interval [LB, UB] is. Symbol “-” indicates that no optimal solution of the original DRO

problem or its approximations can be found within the time limit. In Column “
(
m1
m

%, P
)
”, m1

m
% is

used to define the lower bound problem and the PCA based upper bound problems, i.e., Problems
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Table 12 Intervals on the newsvendor problem

[LB, UB] [(8), (17)] [(8), (20)]
Size Support

(
m1
m

%, P
)

Orig. Itv-Time Itv-Gap Itv-Time Itv-Gap
(n) (secs) (secs) (%) (secs) (%)

(25%,5) - 10.3 33.06 11.1 2.99
[−2σ,2σ] (50%,4) - 227.0 14.31 124.5 1.98

(75%,2) - 1703.2 3.24 982.4 0.71
(25%,5) - 11.1 51.19 13.3 2.62

300 [−3σ,3σ] (50%,4) - 244.7 17.90 144.2 1.76
(75%,2) - 1693.3 3.79 782.1 0.60
(25%,5) - 11.1 84.47 11.9 2.72

[−4σ,4σ] (50%,4) - 251.9 26.62 126.4 1.85
(75%,2) - 1814.3 7.00 950.8 0.63
(25%,5) - 36 28.82 35.7 2.38

[−2σ,2σ] (50%,4) - 958.2 15.86 423.5 1.82
(75%,2) - - - - -
(25%,5) - 34.7 58.55 35.4 2.48

400 [−3σ,3σ] (50%,4) - 1093.7 20.06 525.8 1.74
(75%,2) - - - - -
(25%,5) - 38.5 80.60 39.1 2.38

[−4σ,4σ] (50%,4) - 990.7 23.66 430.4 1.55
(75%,2) - - - - -

Table 13 Intervals on the production-transportation

problem

[LB,UB] [(43), (46)]
Size (m1

m
%, P ) Orig. Itv-Time Itv-Gap

(m,n) (secs) (secs) (%)
(25%,5) - 2144.6 7.08

(8,30) (50%,4) - 4204.3 6.32
(75%,2) - 14043.1 3.14
(25%,5) - 5153.1 7.38

(8,40) (50%,4) - 10290.3 6.98
(75%,2) - 40784.1 2.73

Table 14 Intervals on the newsvendor problem

[LB, UB] [(43), (46)]
Size (m1

m
%, P ) Orig. Itv-Time Itv-Gap

(n) (secs) (secs) (%)
(25%,5) - 503.7 3.34

240 (50%,4) - 891.1 2.44
(75%,2) - 2853.4 0.88
(25%,5) - 1018.8 3.36

320 (50%,4) - 2275.7 2.28
(75%,2) - 7946.2 0.77
(25%,5) - 3078.8 3.24

400 (50%,4) - 7780.3 2.19
(75%,2) - - -

(8), (17), and (43), while P is used to define the vector splitting based upper bound problems, i.e.,

Problems (20) and (46).

From Tables 11 - 14, we have the following observations. First, when the optimal solution cannot

be found for most original cases, an interval that includes the unknown optimal value can be

constructed fast by using our proposed inner and outer approximations. Such interval is relatively

tight for most cases, as demonstrated by the interval [(8),(20)] in Tables 11 - 12 and the interval

[(43), (46)] in Tables 13 - 14. Second, when m1 increases and P decreases, such interval can be

tighter but it costs more computational time. In practice, thus we can leverage the number of

principal components and split pieces as a tool to balance between the interval tightness and

computational time. Third, from Tables 11 and 12, we can observe that the vector splitting based

upper bounds due to (20) are much tighter than the PCA based upper bounds due to (17) and

take less computational time.

4.2.5. Benefits of Choosing Leading Components When using the PCA approach to

derive our inner and outer approximations, we choose the leading components and relax the rest
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of ones. To show the benefits of choosing the leading components in guaranteeing solution quality,

we take our derived lower bound (8) together with its corresponding theoretical error bound (9)

as an example and compare its performance of solving the newsvendor problem under two cases:

(a) choose m1 arbitrary components; (b) choose m1 leading components.

If we choose m1 arbitrary components, then we can follow the same process in Section 2.1 to

derive the corresponding outer approximation (denoted by (8′) here for short) and theoretical error

bound (denoted by (9′) here for short). Following the table header of Tables 1 and 2, which show

the performance of lower bound (8), we introduce subscripts a and b to use “Gapa” to denote the

relative gap in percentage between the lower bound (8′) and the original optimal value, “Gap2a”

to denote the value of theoretical error bound (9′) in percentage, use “Gapb” to denote the relative

gap in percentage between the lower bound (8) and the original optimal value, and “Gap2b” to

denote the value of theoretical error bound (9) in percentage. We further use “Detc” to denote the

relative gap in percentage between “Gapa” and “Gapb”, i.e., (Gapa - Gapb) / Gapa ×100%, and

use “Dett” to denote the relative gap in percentage between “Gap2a” and “Gap2b”, i.e., (Gap2a -

Gap2b) / Gap2a ×100%. We show the corresponding results in Table 15.

Table 15 Arbitrary vs. leading components on the newsvendor problem
m1
m

(%) 100% 75% 50% 25% 10%
Size

Support
Detc Dett Detc Dett Detc Dett Detc Dett Detc Dett

(n) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)
[−2σ,2σ] 0.00 0.00 98.80 88.04 93.84 69.68 78.47 40.56 53.72 16.42

100 [−3σ,3σ] 0.00 0.00 99.08 89.17 94.97 72.70 79.27 42.36 55.57 18.59
[−4σ,4σ] 0.00 0.00 99.05 89.25 93.65 69.51 74.69 36.59 59.68 20.72
[−2σ,2σ] 0.00 0.00 99.09 89.56 94.00 69.93 75.59 37.00 52.88 16.41

160 [−3σ,3σ] 0.00 0.00 98.98 88.82 94.47 71.10 79.10 41.23 60.45 20.96
[−4σ,4σ] 0.00 0.00 98.79 87.66 92.97 67.85 77.78 40.25 58.43 19.59
[−2σ,2σ] 0.00 0.00 98.85 88.02 93.40 68.60 80.09 42.79 57.00 18.68

200 [−3σ,3σ] 0.00 0.00 98.92 88.50 94.77 71.69 78.49 40.57 57.36 19.18
[−4σ,4σ] 0.00 0.00 99.03 88.92 94.88 72.10 81.28 44.06 57.67 19.04

From the table, we can observe that Gapa > Gapb and Gap2a > Gap2b for all the instances

when m1 <m. It means that choosing m1 arbitrary components leads to a worse lower bound. For

instance, for a newsvendor problem with size 100 and support [−2σ,2σ], if we arbitrarily choose

75% of the components, then the values of Gapa and Gap2a are 98.80% and 88.04% larger (i.e.,

worse) than those of Gapb and Gap2b, respectively, when we choose 75% of the components with

the largest variability (leading components).

4.2.6. Sensitivity Analyses To better analyze the performance of our derived approxima-

tions more thoroughly, we conduct sensitivity analyses with respect to parameters γ1, γ2, and R0.

We take lower bound (8) with support [−3σ,3σ] on the newsvendor problem as an example to

conduct the sensitivity analyses with respect to γ1 and γ2 and summarize the results in Tables
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Table 16 Sensitivity analysis for lower bound (8) on the newsvendor problem with respect to γ1
m1
m

(%) 100% 75% 50% 25% 10%
Size γ1 Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

0.4 13.2 13.6 0.00 0.00 4.1 0.03 0.78 1.18 0.24 2.32 0.38 1.07 4.68 0.3 2.16 6.24
0.6 13.7 13.5 0.00 0.00 4.0 0.03 0.78 1.1 0.25 2.33 0.4 1.10 4.69 0.3 2.23 6.25

100 0.8 12.8 13.0 0.00 0.00 4.3 0.03 0.78 1.1 0.25 2.33 0.4 1.12 4.69 0.3 2.27 6.26
1 18.8 19.5 0.00 0.00 5.7 0.03 0.78 1.4 0.25 2.33 0.4 1.13 4.70 0.3 2.29 6.26
1.2 13.9 14.1 0.00 0.00 4.5 0.03 0.78 1.2 0.25 2.33 0.4 1.13 4.70 0.3 2.29 6.26
0.4 129.2 130.0 0.00 0.00 34.4 0.02 0.55 6.2 0.24 1.97 0.9 0.94 3.83 0.5 2.00 5.17
0.6 136.7 138.5 0.00 0.00 34.8 0.02 0.55 6.4 0.25 1.97 0.9 0.97 3.83 0.4 2.07 5.18

160 0.8 145.0 143.4 0.00 0.00 33.7 0.02 0.55 6.2 0.25 1.97 0.9 0.99 3.83 0.5 2.11 5.18
1 163.6 164.5 0.00 0.00 46.4 0.02 0.55 9.1 0.25 1.98 1.0 0.99 3.83 0.4 2.12 5.18
1.2 132.1 129.0 0.00 0.00 31.7 0.02 0.55 6.1 0.25 1.98 0.8 0.99 3.83 0.4 2.12 5.18
0.4 402.2 402.8 0.00 0.00 88.4 0.02 0.53 16.1 0.18 1.67 1.4 0.77 3.30 0.4 1.57 4.40
0.6 435.1 434.9 0.00 0.00 90.6 0.02 0.53 15.2 0.19 1.67 1.3 0.80 3.30 0.4 1.62 4.40

200 0.8 425.3 425.1 0.00 0.00 103.0 0.02 0.53 14.4 0.19 1.67 1.3 0.81 3.31 0.4 1.65 4.41
1 483.0 483.5 0.00 0.00 113.9 0.02 0.53 21.5 0.19 1.67 1.8 0.81 3.31 0.4 1.65 4.41
1.2 371.3 371.6 0.00 0.00 100.6 0.02 0.53 15.2 0.19 1.67 1.3 0.81 3.31 0.4 1.65 4.41

Table 17 Sensitivity analysis for lower bound (8) on the newsvendor problem with respect to γ2
m1
m

(%) 100% 75% 50% 25% 10%
Size γ2 Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

1 12.2 12.0 0.00 0.00 3.9 0.01 0.42 1.1 0.17 1.54 0.4 0.83 3.25 0.3 1.72 4.36
2 17.8 17.5 0.00 0.00 5.7 0.02 0.60 1.4 0.24 2.21 0.4 1.19 4.66 0.3 2.46 6.26

100 3 13.3 13.4 0.00 0.00 4.04 0.02 0.74 1.1 0.29 2.73 0.4 1.45 5.77 0.3 3.01 7.76
4 14.1 14.1 0.00 0.00 4.44 0.02 0.86 1.2 0.33 3.18 0.4 1.65 6.72 0.3 3.43 9.03
5 13.8 13.7 0.00 0.00 4.4 0.03 0.97 1.2 0.37 3.58 0.4 1.83 7.57 0.3 3.80 10.17
1 114.0 113.3 0.00 0.00 28.8 0.01 0.38 5.4 0.14 1.29 0.7 0.64 2.66 0.3 1.34 3.61
2 158.0 159.8 0.00 0.00 45.2 0.02 0.54 8.3 0.20 1.86 0.9 0.91 3.82 0.4 1.92 5.18

160 3 140.3 140.5 0.00 0.00 32.7 0.02 0.67 6.0 0.24 2.29 0.8 1.11 4.72 0.4 2.34 6.40
4 152.7 152.8 0.00 0.00 33.5 0.02 0.78 6.6 0.27 2.67 0.7 1.27 5.49 0.3 2.67 7.45
5 142.2 142.8 0.00 0.00 38.8 0.03 0.88 7.4 0.30 3.00 0.7 1.40 6.18 0.4 2.95 8.38
1 396.4 398.2 0.00 0.00 103.2 0.01 0.36 15.5 0.11 1.06 1.4 0.52 2.26 0.4 1.12 3.09
2 473.8 473.3 0.00 0.00 125.4 0.02 0.52 22.1 0.15 1.52 1.9 0.74 3.23 0.5 1.60 4.42

200 3 452.03 451.8 0.00 0.00 86.7 0.02 0.64 19.1 0.19 1.87 1.3 0.91 3.99 0.4 1.95 5.45
4 429.3 430.0 0.00 0.00 106.6 0.02 0.74 15.9 0.21 2.18 1.4 1.03 4.63 0.4 2.22 6.34
5 466.9 465.9 0.00 0.00 98.6 0.03 0.84 14.8 0.23 2.45 1.4 1.14 5.20 0.4 2.45 7.12

Table 18 Sensitivity analysis for lower bound (43) on the newsvendor problem with respect to R0
m1
m

(%) 100% 75% 50% 25% 10%
Size R0 Orig. Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2 Time Gap Gap2
(n) (secs) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%) (secs) (%) (%)

400 141.2 139.7 0.00 0.00 60.9 0.02 2.12 31.4 0.20 6.38 14.7 1.17 14.88 12.9 1.86 18.09
500 118.7 118.7 0.00 0.00 69.0 0.03 2.13 30.9 0.21 6.39 15.7 1.18 14.90 14.0 1.87 18.10

100 600 128.4 128.9 0.00 0.00 60.4 0.03 2.14 31.0 0.22 6.39 15.7 1.19 14.90 14.0 1.88 18.11
700 138.5 139.0 0.00 0.00 56.8 0.04 2.14 30.9 0.23 6.40 15.9 1.19 14.91 14.1 1.88 18.12
800 119.2 118.8 0.00 0.00 63.0 0.04 2.14 32.2 0.23 6.40 15.8 1.20 14.92 14.0 1.88 18.12
400 832.6 834.8 0.00 0.00 294.1 0.02 1.74 97.5 0.14 5.35 38.3 0.65 11.31 22.9 1.78 16.13
500 941.2 943.7 0.00 0.00 332.4 0.02 1.75 110.2 0.14 5.35 43.3 0.66 11.31 25.9 1.79 16.14

160 600 911.6 914.4 0.00 0.00 322.1 0.03 1.76 106.8 0.15 5.36 42.6 0.66 11.31 25.1 1.79 16.15
700 897.2 899.6 0.00 0.00 316.9 0.03 1.76 105.1 0.16 5.37 41.3 0.67 11.33 24.7 1.80 16.16
800 958.2 960.8 0.00 0.00 338.4 0.04 1.77 112.2 0.16 5.37 44.1 0.68 11.33 26.4 1.81 16.16
400 2575.2 2556.7 0.00 0.00 820.3 0.01 1.40 233.5 0.13 4.16 51.1 0.59 10.42 26.9 1.56 14.73
500 2421.2 2438.7 0.00 0.00 771.5 0.01 1.41 224.8 0.13 4.17 48.2 0.60 10.43 30.1 1.57 14.74

200 600 2367.1 2331.6 0.00 0.00 725.7 0.02 1.42 218.5 0.13 4.17 46.1 0.61 10.43 27.0 1.57 14.74
700 2255.9 2250.3 0.00 0.00 729.0 0.02 1.43 213.7 0.14 4.18 45.5 0.61 10.44 27.7 1.58 14.76
800 2316.7 2318.1 0.00 0.00 735.1 0.02 1.43 226.8 0.14 4.18 47.2 0.62 10.45 28.1 1.58 14.76

16 and 17, respectively. Similarly, we conduct the sensitivity analysis with respect to R0 for lower

bound (43) on the newsvendor problem and summarize the results in Table 18.
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When parameter γ1 increases, the values of Gap and Gap2 increase very slightly, as shown in

Table 16. In contrast, when parameter γ2 increases, the values of Gap and Gap2 also increase,

though at higher rates. It implies that the value of γ2 and accordingly the second-order moment con-

straint are more important than the value of γ1 and the first-order moment constraint, respectively,

in terms of affecting the computational performance of solving the corresponding DRO problems.

It also further supports our focus on approximating the covariance matrix in an ambiguity set

through either the PCA approach or the vector splitting approach in this paper. In addition, we

can observe that an increase in R0 will also lead to slightly increasing Gap and Gap2, as shown in

Table 18. Meanwhile, the values of computational time are close for the changes of values in γ1,

γ2, and R0, respectively.

5. Conclusions

In this paper, we proposed computationally efficient inner and outer approximations for DRO prob-

lems with two types of ambiguity sets: the moment-based ambiguity set and combined ambiguity

set. We approximated the original DRO problems mainly through two approaches: (i) use PCA

to shrink the dimensionality of the uncertainty space; and (ii) split the random parameter vector

into smaller pieces, both of which lead to smaller PSD matrix constraints. Furthermore, we derived

theoretical bounds on the gap between the optimal values of DRO problems and their approxima-

tions. Such bounds help determine the required numbers of split pieces and principal components

to reach a predetermined error bound. Our proposed approximations enable decision-makers to

better balance the trade-off between solution quality and computational time by leveraging the

appropriate numbers of split pieces and principal components. Meanwhile, the inner and outer

approximations together enable us to construct an interval that contains the (unknown) optimal

solution for a large-scale DRO problem, which cannot be solved to optimality (or even feasibility

in most cases) by existing methods in a reasonable time. Such interval is tight for most cases, as

demonstrated by our numerical experiments. Finally, we demonstrated the significant effectiveness

of the proposed approximations in solving the distributionally robust production-transportation

and multi-product newsvendor problems. The results showed that our approximations significantly

reduce the computational time while maintaining high solution quality, with the strengths of our

derived theoretical bounds well justified.

In the future research, we can extend our work from multiple perspectives by addressing the

limitations of this paper. First, it would be nice to consider a more general objective function

and further develop inner and outer approximations for DRO problems. Currently in this paper,

we only consider piece-wise linear objective functions. Second, it would be appealing to derive

tighter and thus less conservative theoretical error bounds for our derived approximations, given
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that error bounds in Propositions 7 and 10 are not tight in general. Third, by observing our

derived approximations perform differently in the context of different applications, it would be

very interesting to investigate how the problem structure and the technical insights of deriving the

approximations can affect the computational performance of our approximations in solving various

application problems.
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Endnotes

1. All the instance data are publicly available at https://github.com/meysamcheramin1370/

Computationally-Efficient-Approximations-for-Distributionally-Robust-Optimization.
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Appendix A: Supplement to Section 2

A.1. Proof of Proposition 1

We apply the strong duality theorem to constraints (3b). As function f (x,ξ) is piecewise linear convex, we

reformulate constraints (3b) as:

s≥ y0
k(x) + yk(x)>ξ− ξ>q− ξ>Qξ, ∀ξ ∈ S, ∀k ∈ [K], (EC.1)

which are equivalent to minAξ≤b,ξ∈Rm gk(ξ)≥ 0, where gk(ξ) = s+ ξ>q+ ξ>Qξ− y0
k(x)− yk(x)>ξ, for any

k ∈ [K]. Moreover, we consider the Lagrangian dual problem of minAξ≤b,ξ∈Rm gk(ξ), i.e., maxλk≥0 infξ gk(ξ)+

λ>k (Aξ− b), where λk ∈Rn. Note that function gk(ξ) is convex in ξ because Q� 0. Due to Assumption 1,

there exists an interior point for the primal problem. It follows that constraints (EC.1) are equivalent to the

following ones:

max
λk≥0

inf
ξ

gk(ξ) +λ>k (Aξ− b)≥ 0, ∀k ∈ [K],

which are further equivalent to the following constraints:

∃λk ≥ 0, s+ ξ>q+ ξ>Qξ− y0
k(x)− yk(x)>ξ+λ>k (Aξ− b)≥ 0, ∀ξ ∈Rm,∀k ∈ [K]. (EC.2)

As ξ=UΛ
1
2 ξI +µ, we replace ξ with UΛ

1
2 ξI +µ in (EC.2). Thus, we have

(EC.2)⇔∃λk ≥ 0,
(
1,ξ>I

)
Zk

(
1,ξ>I

)> ≥ 0, ∀ξI ∈Rm, ∀k ∈ [K], (EC.3)

⇔∃λk ≥ 0, Zk � 0, ∀k ∈ [K], (EC.4)
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where

Zk =

s− y
0
k(x)−λ>k b− yk(x)>µ+λ>kAµ

1
2

(
q+

(
UΛ

1
2

)> (
A>λk− yk(x)

))>
1
2

(
q+

(
UΛ

1
2

)> (
A>λk− yk(x)

))
Q

 ,
and the first equivalence holds due to the definition of Zk. For the second equivalence, clearly⇐ follows from

the definition of a PSD matrix. To prove ⇒, we consider two possible cases for any (η0 ∈R,η> ∈Rm)
> ∈

Rm+1: (1) if η0 = 0, then (η0,η
>)Zk(η0,η

>)> = η>Qη ≥ 0 because Q is PSD; (2) if η0 6= 0, then we have

(η0,η
>)Zk(η0,η

>)> = η2
0(1, η

>

η0
)Zk(1,

η>

η0
)> ≥ 0 according to (EC.3). Therefore,⇒ holds and we obtain Prob-

lem (4) by replacing constraints (3b) with (EC.4). �

A.2. Proof of Theorem 2

The proof of the deterministic reformulation (7) is the same as that of Theorem 1 and thus is omitted here.

With (7), we define ζ = Um×m1
Λ

1
2
m1
ξr + µ and use Sζ and Dζ to denote its support and ambiguity set,

respectively. As Sr = {ξr ∈Rm1 :Um×m1
Λ

1
2
m1ξr +µ ∈ S} and Sζ = {ζ ∈Rm : ζ =Um×m1

Λ
1
2
m1
ξr +µ,ξr ∈ Sr},

we can deduce Sζ ⊂S. We also have(
EPζ [ζ]−µ

)> (
Um×m1

Λm1
U>m×m1

)−1 (EPζ [ζ]−µ
)

=
(
EPr [Um×m1

Λ
1
2
m1
ξr]
)> (

Um×m1
Λm1

U>m×m1

)−1 EPr [Um×m1
Λ

1
2
m1
ξr]

= EPr
[ξ>r ]

(
Um×m1

Λ
1
2
m1

)>(
Um×m1

Λ
1
2
m1

(
Um×m1

Λ
1
2
m1

)>)−1 (
Um×m1

Λ
1
2
m1

)>
EPr

[ξr]

= EPr
[ξ>r ]EPr

[ξr]

≤ γ1,

where the last inequality is due to (6b). Note that

Um×m1
Λm1

U>m×m1
=U

[
Λm1

0m1×(m−m1)

0(m−m1)×m1
0(m−m1)×(m−m1)

]
U> �UΛU> = Σ.

It follows that (
EPζ [ζ]−µ

)>
Σ−1

(
EPζ [ζ]−µ

)
≤ γ1. (EC.5)

Meanwhile, we have

EPζ

[
(ζ−µ)(ζ−µ)>

]
� γ2Um×m1

Λm1
U>m×m1

= γ2U

[
Λm1

0m1×(m−m1)

0(m−m1)×m1
0(m−m1)×(m−m1)

]
U> � γ2UΛU> = γ2Σ. (EC.6)

By Sζ ⊂S, (EC.5), and (EC.6), it follows that Dζ lies in DM1, i.e., Dζ ⊂DM1, and accordingly

max
Pζ∈Dζ

EPζ [f(x,ζ)]≤ max
P∈DM1

EP [f(x,ξ)] . (EC.7)

By the definition of ζ, we have max
Pζ∈Dζ

EPζ [f(x,ζ)] = max
Pr∈DM3

EPr
[f(x,Um×m1

Λ
1
2
m1
ξr + µ)] due to change of

variable. Then (EC.7) implies the following inequality

max
Pr∈DM3

EPr

[
f(x,Um×m1

Λ
1
2
m1
ξr +µ)

]
≤ max

P∈DM1

EP [f(x,ξ)] ,
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which demonstrates that the optimal value of Problem (7) (i.e., Problem (6)) is a lower bound for that of

Problem (3) (i.e., Problem (2)).

To show the monotonicity result, we define ζi = Um×miΛ
1
2
mi
ξri

+ µ for any i ∈ [2], where ξri
∈ Rmi for

m2 >m1. The ambiguity set of ζi is denoted by Dζi , i.e.,

Dζi =
{
Pζi |ζi ∼ Pζi ,ζi =Um×miΛ

1
2
mi
ξri

+µ,ξri
∼ Pri ∈Dri

}
,∀i∈ [2],

where Dri (defined as (6b)) represents the ambiguity set of ξri
for any i∈ [2]. For any ζ1 ∼ Pζ1 ∈Dζ1 , there

exists a ξr1
∼ Pr1 ∈Dr1 such that ζ1 =Um×m1

Λ
1
2
m1
ξr1

+µ=Um×m2
Λ

1
2
m2
ξ̄r2

+µ, where ξ̄r2
= (ξ>r1 ,0

>
m2−m1

)> ∈

Rm2 . By using Sri (defined as (6c)) to denote the support of ξri
for any i∈ [2], we have

P
{
ξr1
∈ Sr1

}
= P

{
Um×m1

Λ
1
2
m1
ξr1

+µ∈ S
}

= 1,

which is equivalent to P{Um×m2
Λ

1
2
m2
ξ̄r2

+ µ ∈ S} = 1 and implies that P{ξ̄r2
∈ Sr2} = 1 because

Um×m1
Λ

1
2
m1
ξr1

=Um×m2
Λ

1
2
m2
ξ̄r2

. In addition, we have E[ξ̄r2
] = 0m2

and

E
[
ξ̄r2
ξ̄
>
r2

]
=

[
E
[
ξr1
ξ>r1
]

0m1×(m2−m1)

0(m2−m1)×m1
0(m2−m1)×(m2−m1)

]
� γ2Im2

.

It follows that the distribution of ξ̄r2
belongs to Dr2 and thus Pζ1 ∈Dζ2 . Therefore, we have Dζ1 ⊂Dζ2 and

max
Pζ1∈Dζ1

EPζ1
[f (x,ζ1)]≤ max

Pζ2∈Dζ2
EPζ2

f [(x,ζ2)] .

That is, the optimal value of Problem (7) is nondecreasing in m1.

Finally, Problem (6) is equivalent to Problem (2) when m1 = m. Then, Problem (7) results in an exact

reformulation of Problem (2) by Theorem 1. �

A.3. Proof of Proposition 4

We apply the strong duality theorem to constraints (16b). As function f (x,ξ) is piecewise linear convex,

ξ=UΛ
1
2 ξI +µ, and ξI = (ξ>r ∈Rm1 ,ξ>r2 ∈Rm−m1)>, we reformulate (16b) as

s≥ y0
k(x) + yk(x)>

(
UΛ

1
2

(
ξ>r ,ξ

>
r2

)>
+µ

)
− ξ>r Qrξr− q>

(
ξ>r ,ξ

>
r2

)>
, ∀ξI ∈ SI, ∀k ∈ [K], (EC.8)

which are equivalent to min
A(UΛ

1
2 ξI+µ)≤b,ξI∈Rm

gk(ξI) ≥ 0, where gk(ξI) = s + q>(ξ>r ,ξ
>
r2)> + ξ>r Qrξr −

y0
k(x)−yk(x)>(UΛ

1
2 (ξ>r ,ξ

>
r2)>+µ), for any k ∈ [K]. Moreover, we consider the Lagrangian dual problem of

min
A(UΛ

1
2 ξI+µ)≤b,ξI∈Rm

gk(ξI), i.e., maxλk≥0 infξI gk(ξI) +λ>k (A(UΛ
1
2 ξI +µ)−b), where λk ∈Rn. Note that

function gk(ξI) is convex in ξI because it is a quadratic function that can be written as the general form

f(x) = x>Mx+x>b+ c where M is PSD, i.e., Q� 0. Due to Assumption 1, there exists an interior point

for the primal problem. It follows that constraints (EC.8) are equivalent to the following ones:

max
λk≥0

inf
ξI

gk(ξI) +λ>k

(
A
(
UΛ

1
2 ξI +µ

)
− b
)
≥ 0, ∀k ∈ [K],

which are further equivalent to the following constraints:

∃λk ≥ 0, s+ q>
(
ξ>r ,ξ

>
r2

)>
+ ξ>r Qrξr− y0

k(x)− yk(x)>
(
UΛ

1
2

(
ξ>r ,ξ

>
r2

)>
+µ

)
+λ>k

(
A
(
UΛ

1
2

(
ξ>r ,ξ

>
r2

)>
+µ

)
− b
)
≥ 0, ∀ξI ∈Rm,∀k ∈ [K].

(EC.9)
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Then, we perform the following decomposition:

UΛ
1
2

(
ξ>r ,ξ

>
r2

)>
+µ=Um×m1

Λ
1
2
m1
ξr +Um×(m−m1)Λ

1
2
m−m1

ξr2 +µ, (EC.10)

where Um×m1
∈ Rm×m1 and Λ

1
2
m1
∈ Rm1×m1 are upper-left submatrices of U and Λ

1
2 , respectively, and

Λ
1
2
m−m1

∈R(m−m1)×(m−m1) and Um×(m−m1) ∈Rm×(m−m1) are their lower-right submatrices, respectively. By

plugging (EC.10) to (EC.9) and defining q= (q>1 ∈Rm1 ,q>2 ∈Rm−m1)>, we have

(EC.9)⇔∃λk ≥ 0, s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ+

(
q1 +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))>
ξr

+

(
q2 +

(
Um×(m−m1)Λ

1
2
m−m1

)> (
A>λk− yk(x)

))>
ξr2 + ξ>r Qrξr ≥ 0, ∀ξI ∈Rm, ∀k ∈ [K],

⇔
(
1,ξ>r

)
Zk

(
1,ξ>r

)>
+W>

k ξr2 ≥ 0, ∀ξI ∈Rm, ∀k ∈ [K], (EC.11)

where

Zk =

 s− y0
k(x)−λ>k b− yk(x)>µ+λ>kAµ

1
2

(
q1 +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))>
1
2

(
q1 +

(
Um×m1

Λ
1
2
m1

)> (
A>λk− yk(x)

))
Qr


and

W k =

(
q2 +

(
Um×(m−m1)Λ

1
2
m−m1

)> (
A>λk− yk(x)

))
.

Since W>
k ξr2 in (EC.11) is affine and ξr2 ∈ Rm−m1 , we set W k = 0 for any k ∈ [K], which prevents the

objective value of the Lagrangian dual problem from going to infinity and accordingly leads to constraints

(17c). Thus, we have

(EC.9)⇔∃λk ≥ 0,
(
1,ξ>r

)
Zk

(
1,ξ>r

)> ≥ 0, ∀ξr ∈Rm1 , ∀k ∈ [K]; (17c), (EC.12)

⇔∃λk ≥ 0, Zk � 0, ∀k ∈ [K]; (17c). (EC.13)

The first equivalence holds due to the definition of Zk. For the second equivalence, clearly ⇐ follows from

the definition of a PSD matrix. To prove ⇒, we consider two possible cases for any (η0 ∈ R,η> ∈ Rm1)> ∈
Rm1+1: (1) if η0 = 0, then (η0,η

>)Zk(η0,η
>)> = η>Qrη ≥ 0 because Qr is PSD; (2) if η0 6= 0, then we

have (η0,η
>)Zk(η0,η

>)> = η2
0(1, η

>

η0
)Zk(1,

η>

η0
)> ≥ 0 according to (EC.12). Therefore,⇒ holds and we obtain

Problem (17) by replacing constraints (16b) with (EC.13). �

A.4. Proof of Theorem 4

As PI is a probability measure on (Rm,B), where B denotes the Borel σ-algebra on Rm, Problem (18) can

be described as the following problem:

min
x∈X

max
PI∈DM5

∫
SI

f
(
x,UΛ

1
2 ξI +µ

)
d PI(ξI) (EC.14a)

s.t.

∫
SI

d PI(ξI) = 1, (EC.14b)∫
SI

[
Im ξI

ξ>I γ1

]
d PI(ξI)� 0, (EC.14c)∫

SI

ξIi
ξ>Iid PI(ξI)� γ2Imi , ∀i∈ [P ], (EC.14d)
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where (EC.14c) is derived due to Schur’s complement. In the following, we first formulate the dual of Problem

(EC.14) and then we show that strong duality holds.

Considering s,

[
W w
w> r

]
� 0, and Qi � 0 for any i∈ [P ] as Lagrangian multipliers of constraints (EC.14b),

(EC.14c), and (EC.14d), respectively, we formulate the following problem as the Lagrangian dual problem

of (EC.14):

min
x∈X

max
PI∈DM5

s+ Im •W + γ1r+ γ2

P∑
i=1

Imi •Qi

−
∫
SI

(
s− 2w>ξI +

P∑
i=1

ξ>IiQiξIi
− f

(
x,UΛ

1
2 ξI +µ

))
d PI(ξI).

To prevent the objective value of the Lagrangian dual problem from going to infinity, we require

s− 2w>ξI +

P∑
i=1

ξ>IiQiξIi
− f

(
x,UΛ

1
2 ξI +µ

)
≥ 0, ∀ξI ∈ SI.

Accordingly, the dual problem of (EC.14) can be described as follows:

min
x,s,W

w,r,Q̂

s+ Im •W + γ1r+ γ2

P∑
i=1

Imi •Qi (EC.15a)

s.t. s− 2w>ξI +

P∑
i=1

ξ>IiQiξIi
− f

(
x,UΛ

1
2 ξI +µ

)
≥ 0, ∀ξI ∈ SI,

x∈X , Qi � 0, ∀i∈ [P ],[
W w
w> r

]
� 0, (EC.15b)

where Q̂= {Q1, . . . ,QP}. We further simplify Problem (EC.15) towards eliminating variables W and r. To

that end, we keep variables Qi, for any i ∈ [P ], and s fixed while solving Problem (EC.15) analytically for

variables W , w, and r. It follows that we solve min
x,W ,w,r

Im •W + γ1r analytically for W , w, and r. We

consider two cases for the optimal solution of r (denoted by r∗) due to constraint (EC.15b), i.e., r∗ > 0 and

r∗ = 0, as follows.

• If r∗ > 0, then constraint (EC.15b) can be reformulated as W � ww>

r
by Schur’s complement. As

a result, W ∗ = ww>

r
is a valid optimal solution because min

x,W ,w,r
Im •W + γ1r is a minimization

problem. Replacing W ∗ by ww>

r
leads to solve a one-dimensional convex optimization problem, i.e.,

min
r>0

w>w
r

+γ1r. By applying the necessary first-order optimality condition to this problem, i.e., setting

the derivative of the objective function over r to zero, we have r∗ = ‖w‖2√
γ1

as the optimal solution of r.

If we plug W ∗ = ww>

r
and r∗ = ‖w‖2√

γ1
in (EC.15a), we obtain the following problem:

min
x,s,w,Q̂

s+ γ2

P∑
i=1

Imi •Qi +
√
γ1 ‖2w‖2 (EC.16)

s.t. s− 2w>ξI +

P∑
i=1

ξ>IiQiξIi
− f

(
x,UΛ

1
2 ξI +µ

)
≥ 0, ∀ξI ∈ SI,

x∈X , Qi � 0, ∀i∈ [P ].

By introducing a new variable q=−2w, we obtain Problem (19).
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• If r∗ = 0, then we let w∗ denote the optimal solution of w and we must have w∗ = 0. Otherwise, we

have w∗>w∗ > 0, and by defining Z =
(
w∗>, η

)>
with η < −w∗>W ∗w∗

2w∗>w∗
, we further have

Z>
[
W ∗ w∗

w∗> 0

]
Z =w∗>W ∗w∗+ 2ηw∗>w∗ < 0,

which contradicts constraint (EC.15b). Considering r∗ = 0 and w∗ = 0, min
x,W ,w,r

Im •W + γ1r reduces

to min
x,W

Im •W whose optimal solution is clearly W ∗ = 0 as it is a minimization problem. Here also by

replacing q=−2w, we obtain Problem (19).

Note that our conditions on γ1, γ2, and Imi for any i∈ [P ] are sufficient to ensure that the Dirac measure

lies in the relative interior of the feasible set of Problem (18). Therefore, we can conclude that there is no

duality gap between Problems (18) and (19) according to the weaker version of Proposition 3.4 in Shapiro

(2001).

Finally, to prove Problem (19) provides an upper bound for Problem (3), we can equivalently prove that

Problem (18) is an upper bound of Problem (2) since Problems (19) and (3) are equivalent reformulations

of Problems (18) and (2), respectively. To that end, we only need to prove DM2 ⊂DM5, i.e., any distribution

in DM2 also belongs to DM5. As the first two constraints of DM2 and DM5 are the same, any distribution

in DM2 satisfies constraints P(ξI ∈ SI) = 1 and EPI
[ξ>I ]EPI

[ξI] ≤ γ1 in DM5. Thus, we only require to show

any distribution in DM2 satisfies constraint EPI
[ξIi
ξ>Ii ]� γ2Imi , ∀i ∈ [P ], in DM5. To that end, we let ξI =(

ξ>I1 ,ξ
>
I2
, . . . ,ξ>IP

)>
, ξIi
∈Rmi for any i∈ [P ], and reformulate the second-order moment constraint of DM2 as

the following equivalent constraint:

EPI


ξI1
ξ>I1 ξI1

ξ>I2 · · · ξI1
ξ>IP

ξI2
ξ>I1 ξI2

ξ>I2 · · · ξI2
ξ>IP

...
...

. . .
...

ξIP
ξ>I1 ξIP

ξ>I2 · · · ξIP
ξ>IP

�

γ2Im1

0 · · · 0
0 γ2Im2

· · · 0
...

...
. . .

...
0 0 · · · γ2ImP

 , (EC.17)

which implies EPI
[ξIi
ξ>Ii ]� γ2Imi , ∀i ∈ [P ] by simply considering the diagonal components of the matrices

on both sides of (EC.17). That is, any distribution in DM2, which satisfies EPI
[ξIξ

>
I ]� γ2Im, also satisfies

EPI
[ξIi
ξ>Ii ]� γ2Imi , ∀i∈ [P ] in DM5, i.e., DM2 ⊂DM5. �

Appendix B: Supplement to Section 3

B.1. Proof of Theorem 5

By Theorem 1 in Gao and Kleywegt (2017), Problem (42) has the following strong dual problem:

min
x∈X ,Qr,λ

{
λR0 + γ2Im1

•Qr +

∫
Rm1

sup
ξr

g(ξr, ξ̂) P0(dξ̂)

}
, (EC.18)

where g(ξ, ξ̂) = maxKk=1{yk(x)>(Um×m1
Λ

1
2
m1
ξr + µ) + y0

k(x)} − ξ>r Qrξr − λ‖Um×m1
Λ

1
2
m1
ξr + µ − ξ̂‖1, and

Qr and λ are the Lagrangian multipliers of the primal second-order moment and Wasserstein constraints,

respectively. As P0 denotes an empirical distribution of ξ generated by i.i.d. samples {ξ̂
i
: i ∈N} ⊆ S from

the P, i.e., P{ξ= ξ̂
i
}= 1

N
, we have∫

Rm1

sup
ξr

g(ξr, ξ̂) P0(dξ̂) =
1

N

N∑
i=1

sup
ξr

g(ξr, ξ̂
i
). (EC.19)
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Thus, by plugging (EC.19) into (EC.18), (EC.18) can be reformulated as

min
x∈X ,Qr,λ

{
λR0 + γ2Im1

•Qr +
1

N

N∑
i=1

yi

}
(EC.20a)

s.t. yi = sup
ξr

g(ξr, ξ̂
i
), ∀i∈ [N ]. (EC.20b)

Since Problem (EC.20) is a minimization problem, constraints (EC.20b) can be relaxed to yi ≥ supξr g(ξr, ξ̂
i)

for any i∈ [N ]. Thus, we have

yi ≥ sup
ξr

{
K

max
k=1

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)
}
− ξ>r Qrξr−λ

∥∥∥Um×m1
Λ

1
2
m1
ξr +µ− ξ̂

i
∥∥∥

1

}
, ∀i∈ [N ]

⇔yi ≥
K

max
k=1

sup
ξr

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λ
∥∥∥Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
∥∥∥

1

}
, ∀i∈ [N ]

⇔yi ≥ sup
ξr

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λ
∥∥∥Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
∥∥∥

1

}
,∀i∈ [N ], ∀k ∈ [K].

For any given i∈ [N ], we let∥∥∥Um×m1
Λ

1
2
m1
ξr +µ− ξ̂

i
∥∥∥

1
= sup
‖ζ̂‖∗≤1

ζ̂
> (
Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
)
,

and accordingly we have

yi ≥ sup
ξr

inf
‖ζ̂‖∗≤1

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λζ̂
> (
Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
)}

, ∀k ∈ [K]

⇔yi ≥ inf
‖ζ̂‖∗≤1

sup
ξr

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λζ̂
> (
Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
)}

, ∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ sup

ξr

{
yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λζ̂
> (
Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
)}

,

∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ yk(x)>

(
Um×m1

Λ
1
2
m1
ξr +µ

)
+ y0

k(x)− ξ>r Qrξr−λζ̂
> (
Um×m1

Λ
1
2
m1
ξr +µ− ξ̂

i
)
,

∀ξr ∈Rm1 , ∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1,

 Qr
1
2

((
−yk(x)>+λζ̂

>)
Um×m1

Λ
1
2
m1

)>
1
2

(
−yk(x)>+λζ̂

>)
Um×m1

Λ
1
2
m1

yi− yk(x)>µ− y0
k(x) +λζ̂

> (
µ− ξ̂

i
)
� 0, ∀k ∈ [K],

(EC.21)

where the first equivalence is due to the convexity of g(ξr, ξ̂), Sr, and the feasible region defined by ‖ζ̂‖∗ ≤ 1.

For any given i ∈ [N ], we replace λζ̂ by ζi, and then we can obtain Problem (43) by further replacing

(EC.20b) by (EC.21) for any i∈ [N ].

To prove Problem (43) provides a lower bound for Problem (40), we consider Problem (42) and define

ζ = Um×m1
Λ

1
2
m1
ξr + µ, denoting its support and ambiguity set by Sζ and Dζ , respectively. As Sr = {ξr ∈

Rm1 :Um×m1
Λ

1
2
m1ξr +µ ∈ S} and Sζ = {ζ ∈Rm : ζ =Um×m1

Λ
1
2
m1
ξr +µ,ξr ∈ Sr}, we can deduce Sζ ⊂S. We

also have

EPζ

[
(ζ−µ)(ζ−µ)>

]
� γ2Um×m1

Λm1
U>m×m1

= γ2U

[
Λm1

0m1×(m−m1)

0(m−m1)×m1
0(m−m1)×(m−m1)

]
U> � γ2UΛU> = γ2Σ.
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Moreover, we have

min
π

{∫
S2

‖ζ− ξ̂‖1π
(
ζ, ξ̂
)}

= min
π

∫
S2

∥∥∥Um×m1
Λ

1
2
m1
ξr +µ− ξ̂

∥∥∥
1
π
(
Um×m1

Λ
1
2
m1
ξr +µ, ξ̂

)
≤R0.

It follows that Dζ lies in DC1, i.e., Dζ ⊂DC1, and accordingly

max
Pζ∈Dζ

EPζ [f(x,ζ)]≤ max
P∈DC1

EP [f(x,ξ)] . (EC.22)

By the definition of ζ, we have max
Pζ∈Dζ

EPζ [f(x,ζ)] = max
Pr∈DC3

EPr [f(x,Um×m1
Λ

1
2
m1
ξr + µ] due to change of

variable. Then (EC.22) implies the following inequality

max
Pr∈DC3

EPr

[
f(x,Um×m1

Λ
1
2
m1
ξr +µ)

]
≤ max

P∈DC1

EP [f(x,ξ)] ,

which demonstrates that the optimal value of Problem (42) (i.e., Problem (43)) is a lower bound for that of

Problem (DRO-C) (i.e., Problem (40)).

To show the monotonicity result, we define ζi = Um×miΛ
1
2
mi
ξri

+ µ for any i ∈ [2], where ξri
∈ Rmi for

m2 >m1. The ambiguity set of ζi is denoted by Dζi , i.e.,

Dζi =
{
Pζi |ζi ∼ Pζi ,ζi =Um×miΛ

1
2
mi
ξri

+µ,ξri
∼ Pri ∈Dri

}
,∀i∈ [2],

where Dri (defined as (42b)) represents the ambiguity set of ξri
for any i∈ [2]. For any ζ1 ∼ Pζ1 ∈Dζ1 , there

exists a ξr1
∼ Pr1 ∈Dr1 such that ζ1 =Um×m1

Λ
1
2
m1
ξr1

+µ=Um×m2
Λ

1
2
m2
ξ̄r2

+µ, where ξ̄r2
=
(
ξ>r1 ,0

>
m2−m1

)> ∈
Rm2 . By using Sri (defined as (42c)) to denote the support of ξri

for any i∈ [2], we have

P
{
ξr1
∈ Sr1

}
= P

{
Um×m1

Λ
1
2
m1
ξr1

+µ∈ S
}

= 1,

which is equivalent to P{Um×m2
Λ

1
2
m2
ξ̄r2

+ µ ∈ S} = 1 and implies that P{ξ̄r2
∈ Sr2} = 1 because

Um×m1
Λ

1
2
m1
ξr1

=Um×m2
Λ

1
2
m2
ξ̄r2

. In addition, we have E[ξ̄r2
] = 0m2

and

E
[
ξ̄r2
ξ̄
>
r2

]
=

[
E
[
ξr1
ξ>r1
]

0m1×(m2−m1)

0(m2−m1)×m1
0(m2−m1)×(m2−m1)

]
� γ2Im2

.

It follows that the distribution of ξ̄r2
belongs to Dr2 and thus Pζ1 ∈Dζ2 . Therefore, we have Dζ1 ⊂Dζ2 and

max
Pζ1∈Dζ1

EPζ1
[f (x,ζ1)]≤ max

Pζ2∈Dζ2
EPζ2

f [(x,ζ2)] .

That is, the optimal value of Problem (42) (i.e., Problem (43)) is nondecreasing in m1.

Finally, Problem (42) is equivalent to Problem (41) when m1 =m. Therefore, Problem (43) results in an

exact reformulation of Problem (40). �

B.2. Proof of Proposition 9

By Theorem 5, we have Z∗C(m)−Z∗C(m1)≥ 0. Moreover, according to this theorem, Problem (40) and the

following problem, i.e., Problem (43) with m1 =m, have the same optimal value.

min
x,λ,Q,ζ̂,ŷ

λR0 + γ2Im •Q+
1

N

N∑
i=1

yi (EC.23a)

s.t.

 Q 1
2

((
−yk(x) + ζi

)>
UΛ

1
2

)>
1
2

(
−yk(x) + ζi

)>
UΛ

1
2 yi− yk(x)>µ− y0

k(x) + ζi
>
(
µ− ξ̂

i
)
� 0,

∀i∈ [N ], ∀k ∈ [K], (EC.23b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (EC.23c)
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We use (x∗, λ∗,Q∗r ,ζ
i∗ ∀i ∈ [N ], y∗i ∀i ∈ [N ]) to denote an optimal solution of Problem (43). Based on

this optimal solution, we construct a feasible solution of Problem (EC.23), represented by (x̄, λ̄, Q̄, ζ̄
i ∀i ∈

[N ], ȳi ∀i∈ [N ]). For clarity, we define

Sik = y∗i − yk(x∗)>µ− y0
k(x∗) + ζi

∗>
(
µ− ξ̂

i
)
, ∀i∈ [N ], ∀k ∈ [K], and

Likc =
(
−yk(x∗) + ζi

∗)>
Um×c (Λc)

1
2 , ∀i∈ [N ], ∀k ∈ [K], ∀c∈ {m1,m−m1,m},

where Λm1 ∈Rm1×m1 and Λm−m1 ∈R(m−m1)×(m−m1) represent the upper-left and lower-right submatrices of

Λ, respectively.

First, we let x̄=x∗, λ̄= λ∗, ζ̄
i
= ζi

∗
for any i∈ [N ],

Q̄=

 Q∗r 0m1×(m−m1)

0(m−m1)×m1

N∑
i=1

K∑
k=1

sik1
4

(
Likm−m1

)>
Likm−m1

 , and (EC.24)

ȳi = y∗i +

K∑
k=1

sik2 , ∀i∈ [N ],

where sik1 > 0 and sik2 > 0 for any i ∈ [N ] and k ∈ [K]. As λ̄ = λ∗ ≥ 0, x̄ = x∗ ∈ X , and ‖ζ̄i‖∗ = ‖ζi∗‖∗ ≤

λ, ∀i ∈ [N ] due to constraint (43c), we only require (x̄, λ̄, Q̄, ζ̄
i ∀i ∈ [N ], ȳi ∀i ∈ [N ]) to satisfy (EC.23b).

Thus, we will find the values of sik1 and sik2 for any i ∈ [N ] and k ∈ [K] that enable this solution to satisfy

(EC.23b).

We plug (x̄, λ̄, Q̄, ζ̄
i ∀i∈ [N ], ȳi ∀i∈ [N ]) to (EC.23b) and use Ȳ

ik
for any i∈ [N ] and k ∈ [K] to denote the

corresponding matrix in (EC.23b). For any given i∈ [N ] and k ∈ [K], we perform the following decomposition:

Ȳ
ik

=

[
Q∗r 0m1×(m−m1)

1
2 (Likm1

)
>

0(m−m1)×m1
0(m−m1)×(m−m1) 0(m−m1)×1

1
2
Likm1

01×(m−m1) Sik

]
+

[ 0m1×m1
0m1×(m−m1) 0m1×1

0(m−m1)×m1

∑N
i=1

∑K
k=1

sik1
4 (Likm−m1

)
>
Likm−m1

1
2 (Likm−m1

)
>

01×m1
1
2
Likm−m1

∑K
k=1s

ik
2

]

�

[
Q∗r 0m1×(m−m1)

1
2 (Likm1

)
>

0(m−m1)×m1
0(m−m1)×(m−m1) 0(m−m1)×1

1
2
Likm1

01×(m−m1) Sik

]
+

[ 0m1×m1
0m1×(m−m1) 0m1×1

0(m−m1)×m1

sik1
4 (Likm−m1

)
>
Likm−m1

1
2 (Likm−m1

)
>

01×m1
1
2
Likm−m1

sik2

]
. (EC.25)

The first matrix in (EC.25) is clearly PSD because the elimination of its zero components leads to a PSD

matrix due to constraints (43b). Now we find the values of sik1 and sik2 to make the second matrix PSD as

well, and then accordingly the constructed solution is feasible for (EC.23).

Next, we use

[
Ā B̄

B̄
>
C̄

]
to denote the second matrix in (EC.25) by letting Ā =[

0m1×m1
0m1×(m−m1)

0(m−m1)×m1

sik1
4 (Likm−m1

)
>
Likm−m1

]
, B̄

>
= ( 01×m1

1
2
Likm−m1 ), and C̄ = sik2 . It follows that

Ā− B̄C̄−1
B̄
>

=

[
0m1×m1

0m1×(m−m1)

0(m−m1)×m1

sik1
4 (Likm−m1

)
>
Likm−m1

]
− 1

sik2
( 01×m1

1
2
Likm−m1 )

>
( 01×m1

1
2
Likm−m1 )

=

[
0m1×m1

0m1×(m−m1)

0(m−m1)×m1

(
sik1
4
− 1

4sik2

)
(Likm−m1

)
>
Likm−m1

]
,

which is PSD if sik1 ×sik2 ≥ 1. Thus, we let sik1 ×sik2 ≥ 1 hold for any i∈ [N ] and k ∈ [K] and by the properties

of Schur complement, we have

[
Ā B̄

B̄
>
C̄

]
� 0 because C̄ is invertible and positive definite.
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In addition, since Problem (EC.23) is a minimization problem, its optimal value is no larger than the

objective corresponding to the feasible solution (x̄, λ̄, Q̄, ζ̄
i ∀i∈ [N ], ȳi ∀i∈ [N ]). That is,

Z∗C(m) ≤ λ̄R0 + γ2Im • Q̄+
1

N

N∑
i=1

ȳi

= Z∗C(m1) + γ2

N∑
i=1

K∑
k=1

sik1
4

trace
((
Likm−m1

)>
Likm−m1

)
+

1

N

N∑
i=1

K∑
k=1

sik2 . (EC.26)

Due to the condition sik1 × sik2 ≥ 1, we let sik1 = 2√
γ2NL

ik
m−m1

(Likm−m1
)
>

and sik2 =

√
γ2NL

ik
m−m1

(Likm−m1
)
>

2
for any

i∈ [N ] and k ∈ [K], which leads to the smallest possible value of the RHS of (EC.26). Therefore, we have

Z∗C(m) ≤ Z∗C(m1) + γ2

N∑
i=1

K∑
k=1

sik1
4

trace
((
Likm−m1

)>
Likm−m1

)
+

1

N

N∑
i=1

K∑
k=1

sik2

= Z∗C(m1) +

√
γ2

N
trace

 N∑
i=1

K∑
k=1

(
Likm−m1

)>
Likm−m1

2
√
Likm−m1

(
Likm−m1

)>
+

√
γ2

N

N∑
i=1

K∑
k=1

√
Likm−m1

(
Likm−m1

)>
2

.

Finally, since trace

(∑N

i=1

∑K

k=1

(Likm−m1
)
>
Likm−m1

2

√
Lik
m−m1

(Likm−m1
)
>

)
is equal to

∑N

i=1

∑K

k=1

√
Lik
m−m1

(Likm−m1
)
>

2
, we have

0≤Z∗C(m)−Z∗C(m1)≤
√
γ2

N

N∑
i=1

K∑
k=1

√
Likm−m1

(
Likm−m1

)>
. �

B.3. Proof of Theorem 6

By Theorem 1 in Gao and Kleywegt (2017), Problem (45) has the following strong dual problem:

min
x∈X ,Qj∀j,λ

{
λR0 + γ2

P∑
j=1

Imj •Qj +

∫
Rm

sup
ξI

g(ξI, ξ̂) P0(dξ̂)

}
, (EC.27)

where g(ξI, ξ̂) = maxKk=1{yk(x)>(UΛ
1
2 ξI +µ)+y0

k(x)}−
∑P

j=1 ξ
>
Ij
QjξIj

−λ‖UΛ
1
2 ξI +µ− ξ̂‖1, andQj for any

j ∈ [P ] and λ are the Lagrangian multipliers of the primal second-order moment and Wasserstein constraints,

respectively. As P0 denotes an empirical distribution of ξ generated by i.i.d. samples {ξ̂
i
: i ∈N} ⊆ S from

the P, i.e., P{ξ= ξ̂
i
}= 1

N
, we have∫

Rm
sup
ξI

g(ξI, ξ̂) P0(dξ̂) =
1

N

N∑
i=1

sup
ξI

g(ξI, ξ̂
i
). (EC.28)

because g(ξI, ξ̂) is a convex function and SI =Rm, which is convex. Thus, by plugging (EC.28) into (EC.27),

(EC.27) can be reformulated as

min
x∈X ,Qj∀j,λ

{
λR0 + γ2

P∑
j=1

Imj •Qj +
1

N

N∑
i=1

yi

}
(EC.29a)

s.t. yi = sup
ξI

g(ξI, ξ̂
i
), ∀i∈ [N ]. (EC.29b)

Since Problem (EC.29) is a minimization problem, constraints (EC.29b) can be relaxed to yi ≥ supξI g(ξI, ξ̂
i)

for any i∈ [N ]. Thus, we have

yi ≥ sup
ξI

{
K

max
k=1

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)
}
−

P∑
j=1

ξ>IjQjξIj
−λ

∥∥∥UΛ
1
2 ξI +µ− ξ̂

i
∥∥∥

1

}
, ∀i∈ [N ]
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⇔yi ≥
K

max
k=1

sup
ξI

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λ

∥∥∥UΛ
1
2 ξI +µ− ξ̂

i
∥∥∥

1

}
, ∀i∈ [N ]

⇔yi ≥ sup
ξI

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λ

∥∥∥UΛ
1
2 ξI +µ− ξ̂

i
∥∥∥

1

}
, ∀i∈ [N ], ∀k ∈ [K].

(EC.30)

For any given i∈ [N ], we let∥∥∥UΛ
1
2 ξI +µ− ξ̂

i
∥∥∥= sup
‖ζ̂‖∗≤1

ζ̂
> (
UΛ

1
2 ξI +µ− ξ̂

i
)
,

and accordingly we have

yi ≥ sup
ξI

inf
‖ζ̂‖∗≤1

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λζ̂

> (
UΛ

1
2 ξI +µ− ξ̂

i
)}

, ∀k ∈ [K]

⇔yi ≥ inf
‖ζ̂‖∗≤1

sup
ξI

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λζ̂

> (
UΛ

1
2 ξI +µ− ξ̂

i
)}

, ∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ sup

ξI

{
yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λζ̂

> (
UΛ

1
2 ξI +µ− ξ̂

i
)}

,

∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ yk(x)>

(
UΛ

1
2 ξI +µ

)
+ y0

k(x)−
P∑
j=1

ξ>IjQjξIj
−λζ̂

> (
UΛ

1
2 ξI +µ− ξ̂

i
)
,

∀ξI ∈Rm,∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1,

 Q
′ 1

2

((
−yk(x)>+λζ̂

>)
UΛ

1
2

)>
1
2

(
−yk(x)>+λζ̂

>)
UΛ

1
2 yi− yk(x)>µ− y0

k(x) +λζ̂
> (
µ− ξ̂

i
)
� 0, ∀k ∈ [K],

(EC.31)

where decision variable Q
′

is described as (32) and the first equivalence is due to the convexity of g(ξI, ξ̂),

SI, and the feasible region defined by ‖ζ̂‖∗ ≤ 1. For any given i∈ [N ], we replace λζ̂ by ζi, and then we can

reduce Problem (45) to the following problem by further replacing (EC.29b) by (EC.31) for any i∈ [N ]:

min
x,λ,Qj∀j,
ζi∀i,yi∀i

λR0 + γ2

P∑
j=1

Imj •Qj +
1

N

N∑
i=1

yi (EC.32a)

s.t.

[
Q
′ 1

2

(
(−yk(x)+ζi)

>
UΛ

1
2

)>
1
2 (−yk(x)+ζi)

>
UΛ

1
2 yi−yk(x)>µ−y0k(x)+ζi

>(µ−ξ̂i)

]
� 0, ∀i∈ [N ], ∀k ∈ [K], (EC.32b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ].

Finally, by Lemma 1, we reformulate Problem (EC.32) as Problem (46) by decomposing the PSD matrix

in (EC.32b) equivalently to K PSD matrices. The proof of the claim that Problem (46) provides an upper

bound for Problem (40) is the same as that of Theorem 4 and thus is omitted here. �

B.4. Proof of Proposition 10

We reformulate Problem (46) as Problem (EC.32). Let (x∗, λ∗,Q∗,ζi
∗
∀i∈ [N ], y∗i ∀i∈ [N ]) denote an optimal

solution of Problem (40) with Q∗ represented by (33). Based on this optimal solution, in the following, we

construct a feasible solution of Problem (EC.32), denoted by (x̄, λ̄, Q̄j ∀j ∈ [P ], ζ̄
i ∀i∈ [N ], ȳi ∀i∈ [N ]).
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First, we let x̄= x∗, λ̄= λ∗, ζ̄
i
= ζi

∗
for any i∈ [N ], ȳi = k0y

∗
i for any i∈ [N ], and Q̄j = Q̄′ (as described

in (34)), with kj ≥ 1 for any j ∈ {0,1,2, . . . , P}. In order for this solution to satisfy (EC.32b), we require[
Q̄′ 1

2

(
(−yk(x∗)+ζi

∗
)
>
UΛ

1
2

)>
1
2 (−yk(x∗)+ζi

∗
)
>
UΛ

1
2 k0y

∗
i−yk(x∗)>µ−y0k(x∗)+ζi

∗>
(µ−ξ̂i)

]
� 0, ∀i∈ [N ], ∀k ∈ [K]. (EC.33)

In the following, we find the values of kj for any j ∈ {0,1,2, . . . , P} so that (EC.33) holds. To that end, we

construct the following matrix[
Q̄′ 1

2

(
(−yk(x∗)+ζi

∗
)
>
UΛ

1
2

)>
1
2 (−yk(x∗)+ζi

∗
)
>
UΛ

1
2 k0

(
y∗i−yk(x∗)>µ−y0k(x∗)+ζi

∗>
(µ−ξ̂i)

)
]
, ∀i∈ [N ], ∀k ∈ [K]. (EC.34)

Note that subtracting (EC.34) from (EC.33) leads to the following matrix:[ 0m×m 0m×1

01×m (k0−1)
(
y0k(x∗)+yk(x∗)>µ−ζi

∗>
(µ−ξ̂i)

)]� 0, ∀i∈ [N ], ∀k ∈ [K],

which is PSD because its eigenvalues are non-negative. In fact, (k0 − 1)(y0
k(x∗) + yk(x

∗)>µ− ζi
∗>

(µ− ξ̂
i
))

is the only non-zero eigenvalue of this matrix that is non-negative because k0 ≥ 1, −ζi
∗>

(µ− ξ̂
i
)≥ 0 due to

the assumption maxNi=1{ζ
i∗>(µ− ξ̂

i
)} ≤ 0, and we have y0

k(x∗) + yk(x
∗)>µ≥ 0 according to the assumption

minKk=1 {y0
k(x∗) + yk(x

∗)>µ} ≥ 0. Thus, we choose good values of kj for any j ∈ {0,1,2, . . . , P} to ensure

(EC.34) to be a PSD matrix and accordingly will make (EC.33) hold.

Next, by Lemma 1, in order for (EC.34) to be a PSD, we equivalently require kjQ
∗
j

1
2

(
(−yk(x∗)+ζi

∗
)
>
Um×mjΛ

1
2
mj

)>
1
2 (−yk(x∗)+ζi

∗
)
>
Um×mjΛ

1
2
mj

sj

(
y∗i−yk(x∗)>µ−y0k(x∗)+ζi

∗>
(µ−ξ̂i)

)
� 0, ∀k ∈ [K], ∀i∈ [N ], ∀j ∈ [P ], (EC.35)

with
∑P

j=1 sj = k0. Constraints (EC.35) can be satisfied by allowing sj × kj ≥ 1 for any j ∈ [P ] due to (40b).

Then, we let k0 = k1 = · · ·= kP and sj × kj = 1 for any j ∈ [P ], leading to k0 = k1 = · · ·= kP =
√
P .

Finally, we have UB∗C ≥ Z∗C(m) by Theorem 6. Meanwhile, as Problem (46) is a minimization problem,

UB∗C is no larger than the objective value corresponding to our constructed feasible solution (x̄, λ̄, Q̄j ∀j ∈
[P ], ζ̄

i ∀i∈ [N ], ȳi ∀i∈ [N ]). That is, we have

UB∗C ≤ λ∗R0 +γ2

P∑
j=1

Imj •
(√

PQ∗j

)
+

1

N

N∑
i=1

√
Py∗i ≤

√
P

(
λ∗R0 + γ2

p∑
j=1

Imj •Q
∗
j +

N∑
i=1

1

N
y∗i

)
=
√
PZ∗C(m),

where the second inequality holds because P ≥ 1. Therefore, we have

0≤UB∗C−Z∗C(m)≤ (
√
P − 1)Z∗C(m). �

B.5. Further Including the First-Order Moment Information

We develop a DRO problem with the combined ambiguity set that incorporates Wasserstein distance infor-

mation as well as both the first- and second-order moment information. That is, we consider

min
x∈X

max
P∈DC5

EP [f (x,ξ)] , (DRO-C2)

where

DC5 (S,µ,Σ, γ1, γ2,P0,R0) =

P

∣∣∣∣∣∣∣∣
(EP [ξ]−µ)

>
Σ−1 (EP [ξ]−µ)≤ γ1

EP

[
(ξ−µ) (ξ−µ)

>
]
� γ2Σ

W (P,P0)≤R0

 .

We derive an SDP reformulation of (DRO-C2), as well as its inner and outer approximations that can be

solved more efficiently.
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Proposition EC.1. Under Assumption 2, (DRO-C2) can be recast as the following SDP formulation:

Z∗C2(m) := min
x,λ,Q

ζ̂,ŷ,w

λR0 + γ2Σ •Q+ 2
√
γ1w>Σw+

1

N

N∑
i=1

yi (EC.36a)

s.t.

[
Q 1

2

(
−yk(x) + ζi− 2Qµ− 2w

)
1
2

(
−yk(x) + ζi− 2Qµ− 2w

)>
yi− y0

k(x)− ζi>ξ̂
i
+µ>Qµ+ 2w>µ

]
� 0, ∀i∈ [N ], ∀k ∈ [K]

(EC.36b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ],

where w ∈Rm, Q∈Rm×m, ζi ∈Rm for any i∈ [N ], ζ̂ = {ζ1, . . . ,ζN}, and ŷ= {y1, . . . , yN}.

Proof. Problem (DRO-C2) can be rewritten as

min
x∈X

max
P,π

∫
Rm

f (x,ξ)d P(ξ) (EC.37a)

s.t.

∫
Rm

[
Σ (ξ−µ)

(ξ−µ)
>

γ1

]
d P(ξ)� 0, (EC.37b)∫

Rm
(ξ−µ) (ξ−µ)

>
d P(ξ)� γ2Σ, (EC.37c)∫

(Rm)2
‖ξ− ξ̂‖1π

(
ξ, ξ̂
)
≤R0, (EC.37d)

where Rm = S and (EC.37b) is derived due to Schur’s complement.

We let

[
W w
w> r

]
� 0, Q � 0, and λ ∈ R+ denote the Lagrangian multipliers of constraints (EC.37b),

(EC.37c), and (EC.37d), respectively, and thus derive the Lagrangian dual problem of (EC.37) as follows:

min
x,W ,w
r,Q,λ

λR0 + γ2Σ •Q+ Σ •W + γ1r+

∫
Rm

sup
ξ

g(ξ, ξ̂) P0(dξ̂) (EC.38a)

s.t. λ∈R+, x∈X , Q� 0,[
W w
w> r

]
� 0, (EC.38b)

where g(ξ, ξ̂) = f(x,ξ) + 2w>(ξ−µ)− (ξ−µ)>Q(ξ−µ)−λ‖ξ− ξ̂‖1. By following the similar steps in the

proof of Lemma 1 in Gao and Kleywegt (2017), we can prove that here the strong duality holds for Problem

(EC.38). We then further simplify (EC.38) towards eliminating variables W and r in the outer minimization

problem. To that end, we keep variables x, Q, λ, and w fixed while solving Problem (EC.38) analytically

for variables W and r. It follows that we solve min
W ,r

Σ •W +γ1r analytically for W and r. We consider two

cases for the optimal solution of r (denoted by r∗) due to constraint (EC.38b), i.e., r∗ > 0 and r∗ = 0, as

follows.

• If r∗ > 0, then constraint (EC.38b) can be reformulated as W � ww>

r
by Schur’s complement. As

a result, W ∗ = ww>

r
is a valid optimal solution because min

W ,r
Σ •W + γ1r is a minimization prob-

lem. Replacing W ∗ by ww>

r
leads to solve a one-dimensional convex optimization problem, i.e.,

min
r>0

(
1
r

)
w>Σw+ γ1r. By applying the necessary first-order optimality condition to this problem, i.e.,

setting the derivative of the objective function over r to zero, we have r∗ =
√

( 1
γ1

)w>Σw as the optimal

solution of r, resulting in min
W ,r

Σ •W + γ1r= 2
√
γ1w>Σw.
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• If r∗ = 0, then we let w∗ denote the optimal solution of w and we must have w∗ = 0. Otherwise, we

have w∗>w∗ > 0, and by defining Z = (w∗>, η)> with η < −w∗>W ∗w∗
2w∗>w∗

, we further have

Z>
[
W ∗ w∗

w∗> 0

]
Z =w∗>W ∗w∗+ 2ηw∗>w∗ < 0,

which contradicts constraint (EC.38b). Considering r∗ = 0 and w∗ = 0, min
x,W ,w,r

Σ •W + γ1r reduces

to min
W

Σ •W whose optimal solution is clearly W ∗ = 0 as it is a minimization problem. As a result,

min
W ,r

Σ •W + γ1r= 2
√
γ1w>Σw.

Therefore, Problem (EC.38) can be recast as follows:

min
x,w
Q,λ

λR0 + γ2Σ •Q+ 2
√
γ1w>Σw+

∫
Rm

sup
ξ

g(ξ, ξ̂) P0(dξ̂) (EC.39)

s.t. λ∈R+, x∈X , Q� 0.

Note that f (x,ξ) = maxKk=1 {y0
k(x) + yk(x)>ξ}. Thus, we have g(ξ, ξ̂) can be rewritten as follows:

g(ξ, ξ̂) =
K

max
k=1

{
y0
k(x) + yk(x)>ξ

}
+ 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λ‖ξ− ξ̂‖1.

As P0 denotes an empirical distribution of ξ generated by i.i.d. samples {ξ̂
i

: i ∈ N} ⊆ S from the P, i.e.,

P{ξ= ξ̂
i
}= 1

N
for any i∈ [N ], we have∫

Rm
sup
ξ

g(ξ, ξ̂) P0(dξ̂) =
1

N

N∑
i=1

sup
ξ

g(ξ, ξ̂
i
). (EC.40)

Thus, by plugging (EC.40) into (EC.39), (EC.39) can be reformulated as

min
x,w
Q,λ

{
λR0 + γ2Σ •Q+ 2

√
γ1w>Σw+

1

N

N∑
i=1

yi

}
(EC.41a)

s.t. yi = sup
ξ

g(ξ, ξ̂
i
), ∀i∈ [N ], (EC.41b)

λ∈R+, x∈X , Q� 0.

Since Problem (EC.41) is a minimization problem, constraints (EC.41b) can be relaxed to yi ≥ supξ g(ξ, ξ̂i)

for any i∈ [N ]. Thus, we have

yi ≥ sup
ξ

{
K

max
k=1

{
y0
k(x) + yk(x)>ξ

}
+ 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λ‖ξ− ξ̂

i
‖1
}
, ∀i∈ [N ]

⇔yi ≥
K

max
k=1

sup
ξ

{
y0
k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λ‖ξ− ξ̂

i
‖1
}
, ∀i∈ [N ]

⇔yi ≥ sup
ξ

{
y0
k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λ‖ξ− ξ̂

i
‖1
}
,∀i∈ [N ], ∀k ∈ [K].

For any given i∈ [N ], we let ‖ξ− ξ̂
i
‖1 = sup

‖ζ̂‖∗≤1

ζ̂
>

(ξ− ξ̂
i
), and accordingly we have

yi ≥ sup
ξ

inf
‖ζ̂‖∗≤1

{
y0
k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λζ̂

> (
ξ− ξ̂

i
)}

, ∀k ∈ [K]

⇔yi ≥ inf
‖ζ̂‖∗≤1

sup
ξ

{
y0
k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λζ̂

> (
ξ− ξ̂

i
)}

, ∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ sup

ξ

{
y0
k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)

>
Q (ξ−µ)−λζ̂

> (
ξ− ξ̂

i
)}

,
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∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1, yi ≥ y0

k(x) + yk(x)>ξ + 2w> (ξ−µ)− (ξ−µ)
>
Q (ξ−µ)−λζ̂

> (
ξ− ξ̂

i
)
,

∀ξ ∈Rm, ∀k ∈ [K]

⇔∃ζ̂ s.t.
∥∥∥ζ̂∥∥∥

∗
≤ 1,

 Q 1
2

(
−yk(x) +λζ̂− 2Qµ− 2w

)
1
2

(
−yk(x) +λζ̂− 2Qµ− 2w

)>
yi− y0

k(x)−λζ̂
>
ξ̂
i
+µ>Qµ+ 2w>µ

� 0, ∀k ∈ [K],

(EC.42)

where the first equivalence is due to the convexity of g(ξ, ξ̂), S, and the feasible region defined by ‖ζ̂‖∗ ≤ 1.

For any given i ∈ [N ], we replace λζ̂ by ζi, and then we can obtain Problem (EC.36) by further replacing

(EC.41b) by (EC.42) for any i∈ [N ]. �

In the following Sections B.5.1 and B.5.2, we derive computationally efficient outer and inner approxima-

tions, leading to lower and upper bounds, for Problem (EC.36), respectively. We first reformulate (DRO-C2)

as the following problem by performing the eigenvalue decomposition on matrix Σ:

min
x∈X

max
PI∈DC6

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (EC.43)

where

DC6 (SI,µ, γ1, γ2,P0,R0) =

PI

∣∣∣∣∣∣∣∣∣
EPI

[ξ>I ]EPI
[ξI]≤ γ1

EPI

[
ξIξ
>
I

]
� γ2Im

∃π :

∫
S2

∥∥∥UΛ
1
2 ξI +µ− ξ̂

∥∥∥
1
π
(
UΛ

1
2 ξI +µ, ξ̂

)
≤R0


under the condition that f(x,UΛ

1
2 ξI +µ) is PI-integrable for any PI ∈DC6 and SI := {ξI ∈Rm :UΛ

1
2 ξI +µ∈

S}.

B.5.1. Lower Bound By the approximation of ξ in (5) due to PCA, we outer approximate (EC.43) as

the following problem:

min
x∈X

max
Pr∈DC7

EPr

[
f
(
x,Um×m1

Λ
1
2
m1
ξr +µ

)]
, (EC.44)

where

DC7 (Sr,µ, γ1, γ2,P0,R0) =

Pr

∣∣∣∣∣∣∣∣∣
EPr [ξ

>
r ]EPr [ξr]≤ γ1

EPr

[
ξrξ
>
r

]
� γ2Im1

∃π :

∫
S2

∥∥∥Um×m1
Λ

1
2
m1
ξr +µ− ξ̂

∥∥∥
1
π
(
Um×m1

Λ
1
2
m1
ξr +µ, ξ̂

)
≤R0


with Sr := {ξr ∈Rm1 :Um×m1

Λ
1
2
m1
ξr +µ∈ S}.

Theorem EC.1. Under Assumption 2, Problem (EC.44) has the same optimal value as the following

SDP formulation:

Z∗C2(m1) := min
x,λ,qr
Qr,ζ̂,ŷ

λR0 + γ2Im1
•Qr +

√
γ1 ‖qr‖2 +

1

N

N∑
i=1

yi (EC.46a)

s.t.

 Qr
1
2

(
qr +

(
−yk(x) + ζi

)>
Um×m1

Λ
1
2
m1

)>
1
2

(
qr +

(
−yk(x) + ζi

)>
Um×m1

Λ
1
2
m1

)
yi− yk(x)>µ− y0

k(x) +
(
µ− ξ̂

i
)>
ζi

� 0,

∀i∈ [N ], ∀k ∈ [K], (EC.46b)

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (EC.46c)
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where qr ∈ Rm1 , Qr ∈ Rm1×m1 , ζi ∈ Rm, ζ̂ = {ζ1, . . . ,ζN}, and ŷ = {y1, . . . , yN}. Furthermore, (i) Problem

(EC.46) provides a lower bound for the optimal value of (DRO-C2); (ii) the optimal value of Problem (EC.46)

is nondecreasing in m1; and (iii) if m1 =m, then (DRO-C2) and (EC.46) have the same optimal value.

Proof. The reformulation proof is similar to that in Proposition EC.1, while the proofs for claims (i),

(ii), and (iii) are similar to those in Theorems 2 and 5. Thus we omit them here for brevity. �

B.5.2. Upper Bound We approximate Problem (EC.36) by splitting ξI in DC6 into P pieces so that ξI =

(ξ>I1 ,ξ
>
I2
, . . . ,ξ>IP )>, where ξIj

∈Rmj , ∀j ∈ [P ], and
∑P

j=1mj =m. This gives rise to an inner approximation

min
x∈X

max
PI∈DC8

EPI

[
f
(
x,UΛ

1
2 ξI +µ

)]
, (EC.47)

where

DC8 (SI,µ, γ1, γ2,P0,R0) =

PI

∣∣∣∣∣∣∣∣∣
EPI

[
ξ>I
]
EPI

[ξI]≤ γ1

EPI

[
ξIj
ξ>Ij

]
� γ2Imj , ∀j ∈ [P ]

∃π :

∫
S2

∥∥∥UΛ
1
2 ξI +µ− ξ̂

∥∥∥
1
π
(
UΛ

1
2 ξI +µ, ξ̂

)
≤R0

 .

Theorem EC.2. Under Assumption 2, Problem (EC.47) has the same optimal value as the following

SDP formulation:

UB∗C2 := min
x,λ,q

Q̂,ζ̂,ŷ,ŝ

λR0 + γ2

P∑
j=1

Imj •Qj +
√
γ1 ‖q‖2 +

1

N

N∑
i=1

yi (EC.48)

s.t.

 Qj
1
2

(
qj +

(
−yk(x) + ζi

)>
Um×mjΛ

1
2
mj

)>
1
2

(
qj +

(
−yk(x) + ζi

)>
Um×mjΛ

1
2
mj

)
sjik

� 0, ∀j ∈ [P ],

∀i∈ [N ], ∀k ∈ [K],
P∑
j=1

sjik = yi− yk(x)>µ− y0
k(x) +

(
µ− ξ̂

i
)>
ζi, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+, x∈X ,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ],

where q = (q>1 ∈ Rm1 , . . . ,q>P ∈ RmP )>, Qj ∈ Rmj×mj for any j ∈ [P ], Q̂ = {Q1, . . . ,QP}, ζ
i ∈ Rm for any

i∈ [N ], ζ̂ = {ζ1, . . . ,ζN}, ŷ= {y1, . . . , yN}, and ŝ= {sijk,∀i∈ [N ], ∀j ∈ [P ], ∀k ∈ [K]}. Furthermore, Problem

(EC.48) provides an upper bound for the optimal value of (DRO-C2).

Proof. The reformulation proof is similar to that in Proposition EC.1 and Theorem 6, while the proof

of the claim that Problem (EC.48) provides an upper bound for Problem (EC.36) is the same as that of

Theorem 4. Thus we omit them here for brevity. �

B.5.3. Computational Experiments To evaluate how the first-order moment information affects com-

putational performance, we solve Problem (DRO-C2) and its approximations in the context of production-

transportation problem, and further compare the results with those of solving Problem (DRO-C) and its

approximations. We first specify the proposed lower and upper bounds of (DRO-C2) in this context. The

outer approximation (EC.46) leads to the following problem:

min
x,z,λ,qr
Qr,ζ̂,ŷ

c>x+λR0 + γ2Im1
•Qr +

√
γ1 ‖qr‖2 +

1

N

N∑
i=1

yi
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s.t.

 Qr
1
2

(
qr +

(
−αkz>k + ζi

>
)
Umn×m1

Λ
1
2
m1

)>
1
2

(
qr +

(
−αkz>k + ζi

>
)
Umn×m1

Λ
1
2
m1

)
yi−αkz>k µ−βk + ζi

>
(
µ− ξ̂

i
)

� 0, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (47d), (EC.49b)− (EC.49d),

where zk ∈Rmn is a vector whose ((i− 1)m+ j)-th element is zijk and ζi ∈Rmn. The inner approximation

(EC.48) leads to the following problem:

min
x,z,λ,q

Q̂,ζ̂,ŷ,ŝ

c>x+λR0 + γ2

P∑
j=1

Imj •Qj +
√
γ1 ‖q‖2 +

1

N

N∑
i=1

yi

s.t.

 Qj
1
2

(
qj +

(
−αkz>k + ζi

>
)
Umn×mjΛ

1
2
mj

)>
1
2

(
qj +

(
−αkz>k + ζi

>
)
Umn×mjΛ

1
2
mj

)
sjik

� 0, ∀j ∈ [P ],

∀i∈ [N ], ∀k ∈ [K],
P∑
j=1

sjik = yi−αkz>k µ−βk + ζi
>
(
µ− ξ̂

i
)
, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (47d), (EC.49b)− (EC.49d).

where Qj ∈Rmj×mj and qj ∈Rmj for any j ∈ [P ] so that
∑P

j=1mj =mn.

First, we report the performance of lower bound (EC.46) and upper bound (EC.48) of Problem (DRO-C2)

in Tables EC.1 and EC.2, respectively. By comparing Table EC.1 with Table 3 that reports the lower

bound performance of (DRO-C), we can observe that both the computational time and gap are not changed

significantly, after additionally including the first-order moment information. By comparing Table EC.2 with

Table 9 that reports the upper bound performance of (DRO-C), we can observe that the computational time

change from Table 9 to Table EC.2 is not significant, while the computational gap reduction is observable.

Table EC.1 Lower bound (EC.46) on the production-transportation problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Orig. Time Gap Time Gap Time Gap Time Gap Time Gap

(m,n) (secs) (secs) (%) (secs) (%) (secs) (%) (secs) (%) (secs) (%)
(5,20) 774.6 759.2 0.00 290.3 1.42 99.1 2.67 38.6 4.85 19.5 5.19
(4,40) 5260.4 4985.9 0.00 1531.5 1.09 511.1 2.96 140.7 5.35 57.7 5.66
(8,25) 12324.4 12464.5 0.00 3998.0 2.04 1205.9 3.82 285.6 4.00 96.2 4.11

Table EC.2 Upper bound (EC.48) on the production-transportation problem

P 2 4 5
Size Orig. Time Gap Time Gap Time Gap

(m,n) (secs) (secs) (%) (secs) (%) (secs) (%)
(5,20) 824.1 202.8 0.25 126.5 0.58 118.1 0.80
(4,40) 5454.6 1088.8 0.46 548.3 1.09 519.6 1.33
(8,25) 12797.1 2505.0 0.08 1145.4 0.25 1135.5 0.37

Second, we compare the optimal value difference between the lower (resp. upper) bound of Problem

(DRO-C) and the lower (resp. upper) bound of Problem (DRO-C2), as reported in Tables EC.3 and EC.4.
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In Tables EC.3 and EC.4, the columns “Orig1” and “Orig2” represent the optimal values of Problems (40)

(i.e., original Problem (DRO-C)) and (EC.36) (i.e., original Problem (DRO-C2)), respectively. The column

“Obj1” (resp. “Obj2”) represents the objective value of the approximation of Problem (DRO-C) (resp.

Problem (DRO-C2)). From Tables EC.3 and EC.4, we can observe that by including the first-order moment

information in the combined ambiguity set, the conservatism of the optimal solution can be reduced (leading

to a smaller objective value), though very slightly.

Table EC.3 Lower bounds (43) and (EC.46) on the production-transportation problem
m1
m

(%) 100% 75% 50% 25% 10%
Size Orig1 Orig2 Obj1 Obj2 Obj1 Obj2 Obj1 Obj2 Obj1 Obj2 Obj1 Obj2

(m,n)
(5,20) 4.18 4.09 4.18 4.09 4.09 4.02 3.97 3.94 3.87 3.87 3.86 3.86
(4,40) 2.96 2.90 2.96 2.90 2.92 2.88 2.86 2.83 2.78 2.77 2.77 2.77
(8,25) 7.04 6.93 7.04 6.93 6.94 6.87 6.74 6.71 6.68 6.67 6.66 6.65

Table EC.4 Upper bounds (46) and (EC.48) on the production-transportation problem

P 2 4 5
Size Orig1 Orig2 Obj1 Obj2 Obj1 Obj2 Obj1 Obj2

(m,n)
(5,20) 3.49 3.46 3.51 3.47 3.61 3.49 3.63 3.49
(4,40) 2.96 2.90 3.03 2.91 3.12 2.92 3.15 2.92
(8,25) 7.04 6.93 7.12 6.94 7.29 6.95 7.37 6.96

Third, we perform sensitivity analyses with respect to parameters γ1 and R0, where we consider (m,n) =

(5,20). The results are reported in Tables EC.5 and EC.6. When either γ1 or R0 increases, both the com-

putational gap induced by lower bound (EC.46) increases slightly, while the computational time change is

not significant. From Table EC.6 we can observe that an increase in R0 slightly increases the computational

gap, while an increase in γ1 slightly decreases it.

Table EC.5 Sensitivity analysis for lower bound (EC.46) with respect to (γ1,R0)
m1
m

(%) 100% 75% 50% 25% 10%
(γ1,R0) Orig. Time Gap Time Gap Time Gap Time Gap Time Gap

(secs) (secs) (%) (secs) (%) (secs) (%) (secs) (%) (secs) (%)
(0.4,30) 802.7 759.1 0.00 287.7 0.87 100.7 3.07 39.7 3.87 19.1 3.96
(0.6,30) 776.8 760.8 0.00 295.6 1.02 113.1 3.62 40.3 4.57 18.3 4.68
(0.8,30) 861.0 845.5 0.00 282.8 1.15 109.9 4.07 39.5 5.15 17.0 5.27
(0.4,40) 842.7 728.9 0.00 273.7 0.97 101.8 3.64 38.3 4.47 19.53 4.72
(0.6,40) 769.2 728.9 0.00 281.4 1.25 94.3 4.03 37.5 5.05 17.0 5.26
(0.8,40) 799.9 731.9 0.00 282.8 1.40 94.5 4.53 37.1 5.78 17.2 6.26
(0.4,50) 760.0 703.6 0.00 276.6 1.18 98.6 4.05 40.08 4.93 17.9 5.11
(0.6,50) 725.3 731.0 0.00 277.2 1.39 101.2 4.52 38.7 5.47 17.7 5.94
(0.8,50) 747.7 703.4 0.00 286.4 1.57 105.1 5.12 38.2 6.43 17.1 7.63
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Table EC.6 Sensitivity analysis for upper bound (EC.46) with respect to (γ1,R0)

P 2 4 5
(γ1,R0) Orig. Time Gap Time Gap Time Gap

(secs) (secs) (%) (secs) (%) (secs) (%)
(0.4,30) 823.3 202.8 0.25 127.2 0.74 119.4 0.77
(0.6,30) 852.6 205.4 0.24 126.2 0.70 117.4 0.74
(0.8,30) 712.3 189.1 0.23 128.1 0.68 120.7 0.72
(0.4,40) 795.8 199.4 0.26 133.1 0.75 121.9 0.77
(0.6,40) 827.6 202.6 0.25 135.3 0.71 126.4 0.75
(0.8,40) 775.5 200.7 0.23 134.4 0.69 122.6 0.73
(0.4,50) 747.0 198.0 0.26 130.4 0.76 124.7 0.78
(0.6,50) 749.2 206.3 0.26 130.3 0.71 125.0 0.75
(0.8,50) 773.5 205.4 0.24 131.7 0.70 124.9 0.74

Appendix C: Supplement to Section 4

First, the outer approximation (8) leads to the following problem:

min
x,z,s,

λ̂,qr,Qr

c>x+ s+ γ2Im1
•Qr +

√
γ1 ‖qr‖2 (EC.49a)

s.t.

 s−βk−λ>k b−αkz>k µ+λ>kAµ
1
2

(
qr +

(
Umn×m1

Λ
1
2
m1

)> (
A>λk−αkzk

))>
1
2

(
qr +

(
Umn×m1

Λ
1
2
m1

)> (
A>λk−αkzk

))
Qr

� 0,

∀k ∈ [K],

λk ∈Rn+, ∀k ∈ [K], (47d),
m∑
i=1

zijk = dj , ∀j ∈ [n], ∀k ∈ [K], (EC.49b)

n∑
j=1

zijk = xi, ∀i∈ [m], ∀k ∈ [K], (EC.49c)

zijk ≥ 0, ∀i∈ [m], ∀j ∈ [n], ∀k ∈ [K], (EC.49d)

where zk ∈Rmn is a vector whose ((i− 1)m+ j)-th element is zijk.

Second, the outer approximation (43) leads to the following problem:

min
x,z,λ,Qr,ζ̂,ŷ

c>x+λR0 + γ2Im1
•Qr +

1

N

N∑
i=1

yi (EC.50)

s.t.

 Qr
1
2

((
−αkz>k + ζi

>
)
Umn×m1

Λ
1
2
m1

)>
1
2

(
−αkz>k + ζi

>
)
Umn×m1

Λ
1
2
m1

yi−αkz>k µ−βk + ζi
>
(
µ− ξ̂

i
)
� 0, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (47d), (EC.49b)− (EC.49d),

where ζi ∈Rmn.

Third, the inner approximation (17) leads to the following problem:

min
x,z,s,λ̂,q,Qr

c>x+ s+ γ2Im1
•Qr +

√
γ1 ‖q‖2

s.t.

 s−βk−λ>k b−αkz
>
k µ+λ>k Aµ

1
2

(
q1+

(
Umn×m1

Λ
1
2
m1

)>
(A>λk−αkzk)

)>
1
2

(
q1+

(
Umn×m1

Λ
1
2
m1

)>
(A>λk−αkzk)

)
Qr

� 0, ∀k ∈ [K],
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q2 +
(
Umn×(mn−m1)Λ

1
2
mn−m1

)> (
A>λk−αkzk

)
= 0, ∀k ∈ [K],

λk ∈Rn+, ∀k ∈ [K], (47d), (EC.49b)− (EC.49d),

where q= (q>1 ∈Rm1 ,q>2 ∈Rmn−m1)>.

Fourth, the inner approximation (20) leads to the following problem:

min
x,z,s,q,Q̂,λ̂

c>x+ s+ γ2

P∑
i=1

Imi •Qi +
√
γ1 ‖q‖2

s.t.

 sik
1
2

(
qi+

(
Umn×miΛ

1
2
mi

)>
(A>λk−αkzk)

)>
1
2

(
qi+

(
Umn×miΛ

1
2
mi

)>
(A>λk−αkzk)

)
Qi

� 0,

∀i∈ [P ], ∀k ∈ [K],
P∑
i=1

sik = s−βk−λ>k b−αkz>k µ+λ>kAµ, ∀k ∈ [K],

λk ∈Rn+, ∀k ∈ [K], (47d), (EC.49b)− (EC.49d),

where Qi ∈Rmi×mi and qi ∈Rmi for any i∈ [P ] so that
∑P

i=1mi =mn.

Fifth, the inner approximation (46) leads to the following problem:

min
x,z,λ,

Q̂,ζ̂,ŷ

c>x+λR0 + γ2

P∑
j=1

Imj •Qj +
1

N

N∑
i=1

yi

s.t.

 Qj
1
2

((
−αkz>k + ζi

>
)
Umn×mjΛ

1
2
mj

)>
1
2

(
−αkz>k + ζi

>
)
Umn×mjΛ

1
2
mj

sjik

� 0, ∀j ∈ [P ],

∀i∈ [N ], ∀k ∈ [K],
P∑
j=1

sjik = yi−αkz>k µ−βk + ζi
>
(
µ− ξ̂

i
)
, ∀i∈ [N ], ∀k ∈ [K],

λ∈R+,
∥∥ζi∥∥∗ ≤ λ, ∀i∈ [N ], (47d), (EC.49b)− (EC.49d).

By Proposition 3, the optimal value gap between Problem (48) with the moment-based ambiguity set and

Problem (EC.49) can be described as follows:

0≤Z∗M(mn)−Z∗M(m1)≤√γ2

 K∑
k=1

√√√√ mn∑
i=m1+1

Λi,i

[(
A>λ∗k−αkz∗k

)>
U i

]2 ,

where z∗k and λ∗k, k ∈ [K], are optimal solutions of Problem (EC.49), and Z∗M(mn) and Z∗M(m1) are the

optimal values of Problems (48) and (EC.49), respectively. Similarly, by Proposition 9, the optimal value gap

between Problem (48) with the combined ambiguity set and Problem (EC.50) can be described as follows:

0≤Z∗C(mn)−Z∗C(m1)≤
√
γ2

N

N∑
i=1

K∑
k=1

√
Likmn−m1

(Likmn−m1
)>,

where Z∗C(m1) is the optimal value of Problem (EC.50) and Likmn−m1
= (−αkz∗k> +

ζi
∗>

)Umn×(mn−m1)Λ
1
2
mn−m1

with z∗k and ζi
∗
, i∈ [N ], representing optimal solutions of Problem (EC.50).
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